skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect of Initial Conditions on Compressible Rayleigh-Taylor Instability and Transition to Turbulence

Conference ·
OSTI ID:15013929

Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, we present the first results from a computational study of such a system under drive conditions to be attainable on the National Ignition Facility. Using the multiphysics, AMR, higher order Godunov Eulerian hydrocode, Raptor, we consider the late nonlinear instability evolution for multiple amplitude and phase realizations of a variety of multimode spectral types. We show that compressibility effects preclude the emergence of a regime of self-similar instability growth independent of the initial conditions by allowing for memory of the initial conditions to be retained in the mix-width at all times. The loss of transverse spectral information is demonstrated, however, along with the existence of a quasi-self-similar regime over short time intervals. The initial conditions are shown to have a strong affect on the time to transition to the quasi-self-similar regime.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
15013929
Report Number(s):
UCRL-CONF-201776; TRN: US200803%%977
Resource Relation:
Conference: Presented at: Nuclear Explosives Design Physics Conference (NEDPC), Albuquerque, NM, United States, Oct 19 - Oct 24, 2003
Country of Publication:
United States
Language:
English