skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Use of Electromyogram (EMG) Telemetry to Assess Swimming Activity and Energy Use of Adult Spring Chinook Salmon Migrating through the Tailraces, Fishways, and Forebays of Bonneville Dam, 2000 and 2001

Technical Report ·
DOI:https://doi.org/10.2172/15010059· OSTI ID:15010059

In 2000, PNNL conducted a two-year study for the U.S. Army Corps of Engineers to investigate energy use and swimming performance of adult spring chinook salmon (Oncorhynchus tshawystcha) migrating upstream through a large hydropower dam on the Columbia River. The investigation involved one year of laboratory study and one year of field study at Bonneville Dam. The objectives of the laboratory study were to 1) measure active rates of oxygen consumption of adult spring chinook salmon at three water temperatures over a range of swimming speeds; 2) estimate the upper critical swimming speed (Ucrit) of adult spring chinook salmon; and 3) monitor electromyograms (EMGs) of red and white muscle in the salmon over a range of swimming speeds. Laboratory results showed rate of oxygen consumption and red and white muscle activity in adult spring chinook salmon were strongly correlated with swimming speed over a range of fish sizes and at three different temperatures. In the field studies at Bonneville Dam, EMG radiotelemetry was used to examine the amount of energy spring chinook salmon expend while migrating upstream past the dam?s tailraces, fishways, and forebays. Aerobic and anaerobic energy use rates were determined. Energy use was estimated for different specific sections of each fishway also. The rates of energy used (kcal/kg/h) by spring chinook salmon were significantly higher in the tailraces (2.80 kcal/kg/h) than in other parts of the dam. Among all fishway areas, Cascade Island fishway appears to be more energetically costly than other fishways. Also, section 12 of the Washington shore fishway appears costly. Energy used during fallouts was substantial (11.5% to 18.8% of the amount of energy used for successful fishway passages).

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
15010059
Report Number(s):
PNNL-14080; 400480000; TRN: US200502%%426
Country of Publication:
United States
Language:
English