
SANDIA REPORT

SAND2019-0120
Unlimited Release
Printed January 8, 2019

Nalu's Linear System Assembly using
Tpetra

Stefan Domino and Alan Williams

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http:llwww.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2019-0120
Unlimited Release

Printed January 8, 2019

Nalu's Linear System Assembly using Tpetra

Stefan Domino and Alan Williams

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185

Abstract

The Nalu Exascale Wind application assembles linear systems using data structures provided by
the Tpetra package in Trilinos. This note describes the initialization and assembly process. The
purpose of this note is to help Nalu developers and maintainers to understand the code surrounding
linear system assembly, in order to facilitate debugging, optimizations, and maintenance. 1

1Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy's National Nuclear Security Administration under contract DE-NA0003525. This report followed
the Sandia National Laboratories formal review and approval process (SAND2019-0120), and is suitable for unlimited
release.

3



This page intentionally left blank.



Contents

1 Overview 7

2 Initialization 11

3 Assembly 13

3.1 Boundary condition enforcement  14

Index 15

5



This page intentionally left blank.



Chapter 1

Overview

Nalu constructs a linear system by mapping degrees of freedom at mesh nodes to equations, i.e.,
rows in the matrix and rhs vector. In a parallel run, the linear system that is given to the solver
contains equations that correspond to locally owned mesh nodes, which are the mesh nodes that
are owned by the local MPI rank. Each MPI rank can also have mesh nodes which are shared
but not owned, as well as mesh nodes that are ghosted. Shared-but-not-owned nodes are owned
by another MPI rank but are connected to an element that is locally owned. Ghosted mesh nodes
tend to arise in cases that involve periodic boundaries, and cases that involve mesh contact which
is handled via a Discontinuous Galerkin scheme.

Consider the simple two-element mesh decomposed onto 2 MPI ranks and shown in figures 1.1
and 1.2.

(78) (68)

[100]

( 0 )
(38)

Proc 0
• Identifier

(68) (58)
• •

[200]

(3°8) (48)

Proc 1

Figure 1.1: Parallel-decomposed mesh. Two elements, one on each MPI processor. Note that some
mesh nodes appear on both processors.

Nalu uses Tpetra::Map objects to identify the degrees of freedom and processor layout. There are
two maps, ownedRowsMap_ and sharedNotOwnedRowsMap_. For the simple two-element mesh in
this example, figure 1.3 shows how the owned and shared maps would be defined.

We then create Tpetra : : Cr sGraph objects for owned and shared (these objects are called
ownedGraph_ and sharedNotownedGraphA each using the appropriate row-map. These graphs
both use the same column map, and the creation and initialization of the column map will be dis-
cussed in a later section. We also create Tpetra::CrsMatrix objects for owned and shared, called
ownedMatrix_ and sharedNotOwnedMatrix_.

7



(78) (68)
 •

[100]

 4
(28) (38)

Proc 0
• Identifier

(58)

[200]

Proc 1

(48)

Figure 1.2: Locally-owned nodes. Nodes 38 and 68 are owned by process 0 and are shared but not
owned by process 1.

Proc 0

ownedRowsMap_ = {28, 38, 68, 78}

sharedNotOwnedRowsMap_ = {}

Proc 1
ownedRowsMap_ = {48, 58}

sharedNotOwnedRowsMap_ = {38, 68}

Figure 1.3: Owned and Shared-not-Owned Maps.

Each processor contributes an element-matrix of coefficients for its local elements as shown in
figure 1.4.

Note that processor 1 has contributions for some rows (38 and 68) that it doesn't own. Each pro-
cessor contributes the rows of its element-contributions to the appropriate matrix object depending
on whether the row is owned or not. Once all element-contributions have been assembled, the
contents of the shared-but-not-owned matrix are sent to the appropriate processors and added to
the owned matrix.

Listing 1.1: Assembly using export

sharedNotOwnedMatrix_—>fillComplete ();

ownedMatrix_—>doExport (* sharedNotOwnedMatrix_ ,
*exporter_ , Tpetra : : ADD) ;

ownedMatrix_—>fillComplete ();

8



28

78

38

68

28 78 38 68

Proc 0

38

68

48

58

38 68 48 58

Proc 1

Figure 1.4: Element-matrix contributions per processor.

This is done using Tpetra methods as shown in listing 1.1. The result is an assembled global rnatrix
as shown in figure 1.5.

Proc 0

28

78

38

68

28 78 38 68 48 58

Proc 1 
48

58

Figure 1.5: Assembled ownedMatrix_.

Note that corresponding operations are performed in the assembly of the right-hand-side vector, in
terms of owned and shared, export, etc.

Once the f illComplete operation has completed, the linear system is fully assembled and is
ready to be passed to solvers and/or preconditioners. Later sections will go into more detail on the
construction of the column map and graph objects, in order to correctly and efficiently incorporate
off-processor column entries, etc.

We broadly split the construction of the linear system into two phases called initialization and
assembly. The initialization phase is where we construct the maps, perform communication to
send column indices to appropriate processors, and construct graph objects. The assembly phase
is where we assemble coefficient values into the matrix using a "sum-into" operation, and also
modify the linear system to enforce boundary conditions. In simulations where the structure of the
linear system doesn't change from one timestep to the next, we can gain efficiency by performing
the initialization phase once and then reusing the data structures for many assembly and solve
phases.

9



Mesh nodes can also be ghosted, which means they are copied from the owning processor to an-
other processor which has no connectivity relationship with those nodes. Ghosted nodes (on the
receiving processor) are neither owned nor shared. Ghosting can happen when periodic boundaries
of the mesh are mapped to each other across MPI processors. Ghosting can also happen when a
mesh surface is in contact with another mesh surface where the elements on either side of the con-
tact don't share connected nodes. See figure 1.6 for an example of a mesh with contact boundaries
going through the middle. In this case elements along the sliding boundary can be ghosted to the
processor on the other side of the boundary. When elements are ghosted, the connected nodes of
those elements are also ghosted.

-4,,,--i,_,4,,soira,„ak -inujr& AIL-4--abi,,„takifr A" lartibv-40'4014WIL4laiTatissiraNspre..v4VIPANIp. -d~lartirinkl, —AANFAIII. eArik.,11m,-- --wAr4wegtrielemliraggiroba-- allOrgrape 410041.1r '1112101.W. ADP- 1121iNierfillitatia--414S6116-0 "KW . kV PAU p s- A I WAWA.410 itirAllp 111Pr VY AVIP#4,1riammisTk. WAIF. 4. A. ''gk1riLVr..SPrAk'_IPr-dkIfg1-Cr4kWp5riMiP.,"rzfiILgtkf"'lI-IWIkvlr--dBSi dilly litiMP 411110" -440 -4wierAer'alleW L ill- "IaL'"0-101°- -4110r -4k
416r %Ir. trek"r-40- grdkvjarddl""Villar41*- 4111.- -.NOW- aw"- Wan- Aar

ahr A 'few Altailkip- lib. Allik...ibm. -Aoriarare.--Mr .011 Igo- AlraliThi. 01 -141 All.41,41011111011r

altitilir 11111r41/411, P 
a..._ iiiwrAh.-4144..Prarikmairifr4imititrLiar..,,

41114410<IP
1100 

41r, 411lor 'terIF4011P vilifir-v• 'Iorire- ..•-•
ilir -*ft- gografikaTrak .411. fig

lir 4IPNor Priimemosii-t-grir--or qt,b7Awk. A44.-.4 award riagrotik'RI* illip 
161411knig.-It* 
"r ' WAffOrlikabrA,

AIZIF

PakVIP-41111111h- 411,10, 
-41F4IP 41*

411144,A"sh.
40"110.11AIIP 

-.Wilk I*WAVAPAVA, ra - 
111014101001407"1111U-

%Meal Alta& Ai LAW 
NO&VAIP- kv veiveritikb ii..._--w474 *NM 'irisgrAwlivaltko, --mrVirti"1394004WPiwalbi. AtIo•

IIPVIIII-LISAAVAlgifitill4.6711411.1%.-41101h 761131Milb- AWATATA‘ ‘VAIPP,4111101Warak 100' AVM vii.we& fira ki. itigiowiwiftwirb-iwatailip.
wibilli- -Alit lititroursfru. Aratior lib-
ParafrAjtdi ittPlihiliff NVONIROW2k. 10424.0._ Ay A. -411111b. -4111SP

Figure 1.6: Mesh with sliding contact boundary.

Ghosted nodes don't directly produce equations (rows) in the assembled linear system, but can
result in additional column-entries in other rows.

10



Chapter 2

Initialization

Each linear system assembly includes an initialization phase, where the degrees of freedom and
decomposition are defined using Tpetra::Map, and connectivities are mapped to a compressed row
storage (CRS) graph structure. The following list describes, with some pseudo-code, the broad
sequence used to create and initialize the Tpetra objects. The code that implements these steps
resides in the Nalu class TpetraLinearSystem.

1. Create owned and shared maps, and exporter to communicate between them.

ownedRowsMap_ = new Map(ownedGloballds, ...);
sharedNotOwnedRowsMap_ = new Map(sharedNotOwnedGlobalIds,
exporter_ = new Exporter(sharedNotOwnedRowsMap_,

ownedRowsMap_);

2. Accumulate lists of connectivities defined by element-node connections, etc. Currently these
connectivity lists are stored in a simple vector-of-vectors structure to represent the 'ragged
table' of node-to-node connections.

3. Using mesh information, determine row-lengths due to local connections and due to contri-
butions from neighbor processors (which share rows that we own, and will thus contribute
column-indices to some of our rows). The STK mesh structure can tell us the list of neigh-
boring MPI processors, i.e., the MPI processors which have portions of the mesh which
connect to the local MPI processor's portion of the mesh.

We then traverse our connectivities and for each shared-but-not-owned entity we send col-
umn entries to the graph on the MPI processor that owns the entity. This enables us to
compute exact row-lengths for each row in the graph.

Note that this step, and the remaining initialization steps, are implemented in the Nalu
method TpetraLinearSystem: :f inalizeLinearSystem().

4. Create and fill Kokkos::Views representing the local portion of the compressed-sparse-row
graphs. These are the rowPointers and columnIndices arrays that will be passed into the
Tpetra : : CrsGraph: : setAllIndices method later. As an implementation detail, during
construction we hold these Kokkos::Views in a Nalu structure called LocalGraphArrays
and this object has methods for inserting entries, etc.

11



5. Construct column map. Fill a list of ids representing the union of all column-entries that will
be on the local processor. These ids are ordered as follows.

(a) Owned: indices that the local processor owns.

(b) Shared: indices that the local processor shares but doesn't own.

(c) Remote: sometimes called 'reachable', these are indices that are neither owned nor
shared, but are connected to shared on a neighboring processor. These indices are
grouped by which processor they come from.

totalColsMap_ = new Map(colGloballds, ...);

6. Construct Graphs.

sharedNotOwnedGraph_ = new Graph(sharedNotOwnedRowsMap_,

totalColsMap_, ...);

ownedGraph_ = new Graph(ownedRowsMap_,

totalColsMap_, ...);

ownedGraph_->setAlllndices(/* our computed local

owned-graph indices */);

sharedNotOwnedGraph_->setAllIndices(/* our computed local

shared-graph indices */);

importer = new Import(ownedRowsMap_, non-owned-col-ids, source-pids);

ownedGraph_->expertStaticFillComplete(ownedRowsMap_,

ownedRowsMap_, importer, ...);

sharedNotOwnedGraph_->expertStaticFillComplete(ownedRowsMap_,

ownedRowsMap_, importer, ...);

7. Construct Matrices

ownedMatrix_ = new Matrix(ownedGraph_);

sharedNotOwnedMatrix_ = new Matrix(sharedNotOwnedGraph_);

12



Chapter 3

Assembly

The linear system assembly phase is where matrix and rhs-vector contributions are added, using
sum-into APIs.

Nalu computes matrix and rhs-vector contributions in classes which are derived from the Kernel
base-class. These kernels include computations such as continuity-advection, momentum-
advection-diffusion, and many others. These kernels are called within an algorithm which manages
mesh traversal, handles the gathering of field-data and master-element computations, etc. The fol-
lowing pseudo-code shows the execution or flow of these algorithms.

select buckets for part(s) that algorithm is applied to

for each selected bucket {

ScratchViews scratch(gathered fields);

for each elem in bucket {

fill_scratch_views(scratch, ...);

}
}

for each active kernel {

kernel->execute(lhs, rhs, scratch);

}

sum_into_linear_system(lhs, rhs);

Note that in the above pseudo-code, f ill_scratch_views includes both gathering needed field-
data as well as making master-element calls such as grad-op, etc.

Note also that significant detail has been omitted, such as the handling of SIMD sub-looping,
interleaving the SIMD data, etc. To see the actual algorithm code, see the Nalu classes
AssembleElemsolverAlgorithm, and AssembleFaceElemsolverAlgorithm.

The sum_into_linear_system step is where the computed coefficients are contributed to the
linear-system. This is done by obtaining the local matrix from the Tpetra : : CrsMatr ix object us-
ing the method getLocalMatr ix () and then summing directly into that. Similarly, rhs coefficients

13



are summed into the Kokkos : : View provided by the getLo calView method of Tpetra: : Vector.

Recall that we are operating on two matrix objects, ownedMatrix_ and sharedNot OwnedMatrix_.
During this sum-into process, coefficients are added to the appropriate matrix (and rhs-
vector) depending on whether they are associated with an owned or shared mesh node.

Once all local assembly is complete, the shared matrix is then communicated and

added to the local matrix using Tpetra operations, called from within the Nalu method

TpetraLinearSystem::loadComplete():

sharedNotOwnedMatrix_->fillComplete();

ownedMatrix_->doExport(*sharedNotOwnedMatrix_, *exporter, Tpetra::ADD);

ownedMatrix_->fillComplete();

ownedRhs_->doExport(*sharedNotOwnedRhs_, *exporter_, Tpetra::ADD);

3.1 Boundary condition enforcement

Dirichlet boundary conditions are enforced by modifying the appropriate rows of the assemled
linear system before calling the linear-solver.

Insert pseudo-code for dirichlet BC enforcement here.

14



DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)



This page intentionally left blank.



v1.40

17



Sandia National Laboratories

18


