skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impacts of anthropogenic aerosols on fog in North China Plain

Journal Article · · Journal of Geophysical Research: Atmospheres
DOI:https://doi.org/10.1029/2018JD029437· OSTI ID:1484868
ORCiD logo [1]; ORCiD logo [2];  [3];  [4];  [4];  [4]; ORCiD logo [5]
  1. Chinese Meteorological Administration, Beijing (China). Inst. of Urban Meteorology; Brookhaven National Lab. (BNL), Upton, NY (United States); Nanjing Univ. of Information Science and Technology (China). Key Lab. of Materials-Oriented Chemical Engineering (MCE)of Aerosol-Cloud-Precipitation of China Meteorological Administration
  2. Chinese Meteorological Administration, Beijing (China). Inst. of Urban Meteorology
  3. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Atmospheric Physics
  4. Beijing Weather Modification Office, Beijing (China); Beijing Key Lab. of Cloud, Precipitation and Atmospheric Water Resources, Beijing (China)
  5. Brookhaven National Lab. (BNL), Upton, NY (United States)

Abstract Fog poses a severe environmental problem in the North China Plain, China, which has been witnessing increases in anthropogenic emission since the early 1980s. This work first uses the WRF/Chem model coupled with the local anthropogenic emissions to simulate and evaluate a severe fog event occurring in North China Plain. Comparison of the simulations against observations shows that WRF/Chem well reproduces the general features of temporal evolution of PM 2.5 mass concentration, fog spatial distribution, visibility, and vertical profiles of temperature, water vapor content, and relative humidity in the planetary boundary layer throughout the whole period of the fog event. Sensitivity studies are then performed with five different levels of anthropogenic emission as model inputs to systematically examine the comprehensive impacts of aerosols on fog microphysical, macrophysical, radiative, and dynamical properties. The results show that as aerosol concentration increases, fog droplet number concentration and liquid water content all increase nonlinearly; but effective radius decreases. Macrophysical properties (fog fraction, fog duration, fog height, and liquid water path) also increase nonlinearly with increasing aerosol concentration, with rates of changes smaller than microphysical properties. Further analysis reveals distinct aerosol effects on thermodynamic and dynamical conditions during different stages of fog evolution: increasing aerosols invigorate fog formation and development by enhancing longwave‐induced instability, fog droplet condensation accompanying latent heat release, and thus turbulence, but delay fog dissipation by reducing surface solar radiation, surface sensible, and latent heat fluxes, and thus suppressing turbulence during the dissipation stage.

Research Organization:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Natural Science Foundation of China (NSFC)
Grant/Contract Number:
SC0012704; 41505119
OSTI ID:
1484868
Alternate ID(s):
OSTI ID: 1786768
Report Number(s):
BNL-209645-2018-JAAM
Journal Information:
Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 1; ISSN 2169-897X
Publisher:
American Geophysical UnionCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Similar Records

Anthropogenic aerosols prolong fog lifetime in China
Journal Article · Tue Mar 23 00:00:00 EDT 2021 · Environmental Research Letters · OSTI ID:1484868

A Case Study of Urbanization Impact on Summer Precipitation in the Greater Beijing Metropolitan Area. Urban Heat Island Versus Aerosol Effects
Journal Article · Fri Oct 23 00:00:00 EDT 2015 · Journal of Geophysical Research: Atmospheres (Online) · OSTI ID:1484868

Model analysis of the anthropogenic aerosol effect on clouds over East Asia
Journal Article · Mon Jan 16 00:00:00 EST 2012 · Atmospheric and Oceanic Science Letters · OSTI ID:1484868