skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stasis PCM Test Results

Technical Report ·
DOI:https://doi.org/10.2172/1481766· OSTI ID:1481766
 [1];  [1]
  1. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

A phase change material product distributed by Stasis Group, designed to reduce the cooling energy requirements of multi-story commercial buildings, was tested in a side-by-side comparison at FLEXLAB® (LBNL, 2018), a calibrated test facility for low energy building technology solutions. The product was installed according to Stasis recommendations in the ceiling plenum of a 600 ft2 cell representative of an office space, while an identical cell was operated in the same conditions, except for the night-time pre-cooling sequence and without the product, to gather baseline data. The cells were operated to replicate summer conditions of a candidate office building for retrofit. For the tests conducted at FLEXLAB, two Phase Change Material (PCM) compositions were tested, with the second product having an upgraded composition for thermal performance and upgraded packaging that was used to meet with fire safety requirements for a plenum application. Two rounds of tests were performed, which were designed to collect data for both core (designated as Round 1) and perimeter (Round 2) office space conditions. Following the analysis of the data collected during Round 1, the experimental design was modified to better represent the thermal conditions of a typical office space in relation to the PCM performance. A new product was also brought in for testing in Round 2, which had an improved operational temperature range and packaging properties. In Round 1, multiple tests were conducted to evaluate the performance of the product under different conditions of internal loads, temperature setpoints, pre-cooling strategies and temperature control strategies. In Round 2, the internal conditions were kept constant, while the test conditions only differ in the amount of PCM installed in the test cell plenum and the length of the nighttime pre-cooling sequence. The performance benefits of PCM are generally two-fold: the material may reduce peak cooling energy use during daytime hours (a peak demand energy use benefit) and may allow for energy savings with pre-cooling at night through night flush HVAC controls when night time outside air temperatures are lower, and fan energy use for cooling is more efficient than the use of daytime compressor-based cooling. The focus of this research project was mainly on quantifying the energy savings potential of the latter case although some effects on peak reduction were noted. Between the cell with PCM and nighttime precooling and the reference cell without PCM or precooling, a reduction in cooling load during occupied hours was noted between 7.6 kWh (or 22% of occupied hours cooling load) and 12.5 kWh (or 33% of occupied pg. 7 hours cooling load). Future work can further evaluate the peak cooling load reduction benefits of this product in more detail. This report highlights the results of Round 2, which reflect the performance of the modified PCM product when operated in suitable conditions. The results of Round 1, along with an analysis of the experimental data to identify the factors that prevented the product from performing as desired are presented in Appendix B.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Building Technologies Office
DOE Contract Number:
AC02-05CH11231
OSTI ID:
1481766
Report Number(s):
LBNL-2001162; ark:/13030/qt49n328cr
Country of Publication:
United States
Language:
English