skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the corrosion of high-level waste containers: CAM-CRM interface

Technical Report ·
DOI:https://doi.org/10.2172/14695· OSTI ID:14695

A key component of the Engineered Barrier System (EBS) being designed for containment of spent-fuel and high-level waste at the proposed geological repository at Yucca Mountain, Nevada is a two-layer canister. In this particular design, the inner barrier is made of a corrosion resistant material (CRM) such as Alloy 825, 625 or C-22, while the outer barrier is made of a corrosion-allowance material (CAM) such as A5 16 or Monel 400. At the present time, Alloy C-22 and A516 are favored. This publication addresses the development of models to account for corrosion of Alloy C-22 surfaces exposed directly to the Near Field Environment (NFE), as well as to the exacerbated conditions in the CAM-CRM crevice. [5]. Haynes International has published corrosion rates of Alloys 625 and C-22 in artificial crevice solutions (5-10 wt. % FeCl,) at various temperatures (25, 50 and 75 C) [6,7]. In this case, the observed rates for Alloy C-22 appear to be due to passive dissolution. It is believed that Alloy C-22 must be at an electrochemical potential above the repassivation potential to initiate localized corrosion.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE Office of Defense Programs (DP) (US)
DOE Contract Number:
W-7405-ENG-48
OSTI ID:
14695
Report Number(s):
UCRL-ID-129120; TRN: US0106216
Resource Relation:
Other Information: PBD: 1 Jun 1998
Country of Publication:
United States
Language:
English