
SANDIA REPORT

SAND2018-9672
Unlimited Release
Printed August 2018

ASC CSSE Level 2 Milestone #6362:
Resilient Asynchronous Many-Task
Programming Model

Keita Teranishi, Hemanth Kolla, Nicole Slattengren, Matthew Whitlock, Jackson Mayo,
Robert L. Clay, Sri Raj Paul, Akihiro Hayashi, and Vivek Sarkar

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2018-9672

Unlimited Release

Printed August 2018

ASC CSSE Level 2 Milestone #6362: Resilient
Asynchronous Many-Task Programming Model

Keita Teranishi, Hemanth Kolla, Nicole Slattengren, Matthew Whitlock,

Jackson Mayo, and Robert L. Clay

Sandia National Laboratories, Livermore, California

and

Sri Raj Paul and Akihiro Hayashi

Rice University, Houston, Texas

and

Vivek Sarkar

Rice University, Houston, Texas

Georgia Institute of Technology, Atlanta, Georgia

Abstract

This report is an outcome of the ASC CSSE Level 2 Milestone 6362: Analysis of Re-
silient Asynchronous Many-Task (AMT) Programming Model. It comprises a summary and

in-depth analysis of resilience schemes adapted to the AMT programming model. Herein,
performance trade-offs of a resilient-AMT prograrnming model are assessed through two ap-
proaches: (1) an analytical model realized by discrete event simulations and (2) empirical

evaluation of benchmark programs representing regular and irregular workloads of explicit

partial differential equation solvers. As part of this effort, an AMT execution simulator and a
prototype resilient-AMT programming framework have been developed. The former permits

us to hypothesize the performance behavior of a resilient-AMT model, and has undergone a
verification and validation (V&V) process. The latter allows empirical evaluation of the perfor-

mance of resilience schemes under emulated program failures and enabled the aforementioned
V&V process. The outcome indicates that (1) resilience techniques implemented within an
AMT framework allow efficient and scalable recovery under frequent failures, that (2) the
abstraction of task and data instances in the AMT programming model enables readily us-
able Application Program Interfaces (APIs) for resilience, and that (3) this abstraction enables
predicting the performance of resilient-AMT applications with a simple simulation infrastruc-

ture. This outcome will provide guidance for the design of the AMT programming model and

runtime systems, user-level resilience support, and application development for ASC's next
generation platforms (NGPs).

3



Acknowledgment

We thank David Hollman, Jonathan Lifflander, Aram Markosyan, Jeremiah Wilke and Rob Arm-
strong for the consistent support and insightful discussions in asynchronous task parallel program-
ming and execution models. We thank Franck Cappello at Argonne National Laboratory, Christian
Engelmann at Oak Ridge National Laboratory, and Mattan Erez at University of Texas, who served
on the external review panel for this milestone. We also thank Michael Glass and Michael Heroux
for the internal review panel.

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration
under contract DE-NA0003525.

4



Contents

1 Introduction  15
2 Background  17

2.1 Classification of Failures   17
2.2 Exascale Computing and its Reliability  17
2.3 Existing Resilient Computing Models  19
2.4 Asynchronous Many-Task Programming and Execution Model  21
2.5 Resilience for the AMT model   21

3 Analysis Capability of Resilient Asynchronous Many-Task Programming Model  25
3.1 Modeling Reliability and Performance of AMT   25
3.2 AMT Simulator   29

4 Specification of Resilient-AMT prototype  41
4.1 Overview of HClib  41
4.2 HClib Runtime  43
4.3 Resilience Capability in HClib   46
4.4 Resilient API Specifications   48
4.5 Future Work  54

5 Empirical Evaluation  56
5.1 Explicit Stencil  57
5.2 Unstructured SPMV  70
5.3 Simulator Verification and Validation   75

6 Conclusion  82
6.1 Summary   82
6.2 Outcome of the Work  83
6.3 Recommendations for Future Work  84

Appendix

A Detailed Performance Analyses on NERSC's Cori  87
References  101

Figures

1 Resilient-AMT APIs extended from async_await in HClib. Red font indicates the
additional input parameters to enable replication, replay and ABFT tasks.   10

2 Empirical measurement of the benefit of allowing work-stealing on four 1D stencil
benchmark experiments. The first and third cases are balanced problems whereas
the second and fourth are imbalanced, with one tile having a much higher workload
than the others. The "1DN' cases have an over-decomposition factor four times as
high as the "1DB" cases. The red dashed lines indicate the performance numbers
predicted by the resilient-AMT simulator using the numbers from the balanced and
pinned (i.e., no work-stealing) cases  11

5



3 Empirical strong scalability of AMT 3D stencil application with task replication
enabled using four different task granularity settings  12

4 Overhead of task replay, replication, and mixed uses for a range of task failure
rates with 1D (left) and 3D (right) stencil applications. The performance numbers
are normalized to the non-resilient versions  13

5 Characteristics of task replay and replication  13

6 Behavior of C/R with a CSP (MPI) execution model  19

7 An Example of AMT Architecture   22

8 Task Replication performed at the user level.   23

9 Self replay of tasks proposed by [1]. Each task has a micro-checkpoint capability
for the input data (right). The task is replayed using the data from the micro-
checkpoint  24

10 A DAG (left) and its binary decomposition tree (right).   26

11 Series/Parallel decomposition of a DAG (left) into the corresponding binary tree
(right).   27

12 An illustration showing a 3-subdomain stencil DAG, with the N-shaped subgraph
highlighted in red.   28

13 Example illustrating "simple and "non-simple task graphs, which has a corre-
spondence with the series-parallel condition.   28

14 Simulator Architecture. Task 0 has been completed. Tasks 1-4 are being executed
and Task 5 is sitting in the ready queue.   31

15 A model of how the task DAG is modified for task replication. Either consensus-
checking task successfully finding consensus may satisfy Task B's dependence on
Task A  33

16 Graph of the execution time of the simulator itself. Each simulation ran 8192
iterations.   35

17 A comparison of measured and simulated wall-times for tests of work-stealing on
balanced and imbalanced applications.   38

18 A model of how the simulator finds the "distance between workers for 8 workers.
This can be used to model an 8-core CPU by making the L2 cache access cost the
work-stealing cost for the first distance, and setting the distance 2 and 3 values to
an L3 cache access cost.  38

19 A plot of the impact various work-stealing overheads have on the wall-time of a
balanced or imbalanced stencil application.   40

20 A hierarchical platform model in HClib  43

21 How work-stealing works in HClib (single-place) .   45

22 Generalized work-stealing with multiple places  45

23 The original task graph (ABCD) and the transformed resilient task graph (AB'C'D)
are isomorphic. Node B uses replication (based on Figure 8) and gets transformed
to Node B'. Node C uses replay (based on Figure 9) and gets transformed to C'. . 55

24 The topology of the evaluated platforms.  56

6



25 Work-stealing vs pinning tasks to workers for balanced and imbalanced workloads
on Shiller with gcc 5.5.0. There is a clear benefit to work-stealing with the 1D
stencil with both balanced and imbalanced workloads. We see a small performance
hit from work-stealing in 3D on Shiller and Hansen for both the balanced and
imbalanced cases but saw a gain on Cori (see Section A.2)  63

26 Work-stealing vs. pinning tasks to workers when emulating a slow worker. Work-
stealing prevents other workers from going idle for long periods while waiting on
the slow worker, resulting in a large decrease in execution time compared to when
tasks are pinned to workers. gcc 5.5.0 was used.  64

27 Comparison of execution time for non-resilient, replay-resilient, and replication-
resilient stencils. In 3D, replication has much less than a 2x overhead due to L3
cache benefits while the much smaller replay overhead is due almost entirely to
checksum cost. In 1D, the replay overhead was mostly due to the replay mecha-
nism rather than the checksums. Replication in 1D had roughly the expected 2x
overhead.   66

28 Overhead of different resilience strategies for 1D case A as a function of fault
rate per task. The additional overhead of mitigating faults is roughly the cost of
repeating only the failed tasks .  67

29 Overhead of different resilience strategies for 1D case B as a function of fault
rate per task. The additional overhead of mitigating faults is roughly the cost of
repeating only the failed tasks .  68

30 Overhead of different resilience strategies for 3D as a function of fault rate per
task. The additional overhead of mitigating faults is roughly the cost of repeating
only the failed tasks.   69

31 The computational domain/mesh corresponding to the cranksegJ matrix example
(left), and its sparsity distribution (right).   71

32 The influence of over-decomposition on number of task dependencies (top) and
number of non zeros (bottom) on a per tile/task basis for the crankseg_l matrix-
vector multiplication example. The plots on the left show the case of 32 tiles and
on the right show 128 tiles.   72

33 Influence of over-decomposition on task execution times of the crankseg_l matrix-
vector multiplication example. Minimum/average/maximum execution time per
iteration, measured over 100 iterations, are reported from 25 trials at various ODF
levels  73

34 The execution time for each individual task plotted against the number of non-zeros
in the corresponding tile for the crankseg_l matrix-vector multiplication example,
for the 32 tiles (left) and 128 tiles (right) cases. The R2 value for a linear correlation
fit is also shown.   74

35 Comparison of execution time for non-resilient, replay-resilient and replication-
resilient matrix-vector multiplication application in the absence of failures. The
times correspond to the crankseg_l case with 128 tiles and 500 iterations. All
execution times are taken to be the minimum of 25 trials.   75

7



36 Comparison of execution time overhead for replay-resilient and replication-resilient
matrix-vector multiplication application for three failure rates: 0 (no failures),
10-3 and 10-2. The results correspond to the crankseg_1 case with 128 tiles and
500 iterations. All execution times are taken to be the minimum of 25 trials.   76

37 Comparison of simulated and empirical execution times as a function of fault rate
for different kinds of resilience for Stencil 1D case A.   78

38 Comparison of simulated and empirical execution times as a function of fault rate
for different kinds of resilience for Stencil 1D case B.   78

39 Comparison of simulated and empirical execution times as a function of fault rate
per iteration for different kinds of resilience for Stencil 3D. The simulator pre-
dictions are way off because the simulator can't predict the L3 cache benefit of
replicating tasks.   79

40 A comparison of simulated and empirical data for various applications' wall-times
with replay-enabled and replication-enabled runs at a range of failure rates.   80

41 An example of how incorrect inputs can show seemingly correct outputs  81
A.1 A chart showing the difference in the impact of work-stealing between the Cori

and Shiller machines  89
A.2 HPC Toolkit   90

Tables

1 Cost of different ways of spatially and temporally decomposing a problem with
2,048,000 cells that need to be time-advanced 131,072 steps. The time quoted is
the fastest execution time from a set of three runs of each configuration using gcc
5.5.0. These runs were used only to choose an appropriate base case problem for
further experiments  59

2 Cost of different ways of spatially decomposing a 5123 problem size. Times quoted
are the execution time of a single trial of each configuration using gcc 5.5.0. These
runs were used only to choose an appropriate base case problem for further exper-
iments.   61

A.1 Performance numbers for 32 workers with different cube sizes (3D stencil, 128M
points, step = 256) on Cori. gcc 7.1.0 was used  87

A.2 Performance numbers for 32 workers with different worker-cube mapping policies
on Cori (3D stencil). gcc 7.1.0 was used.   88

A.3 Performance numbers with the sampled PAPI events on Cori.   89
A.4 A part of the profilable PAPI preset events on Cori.   91
A.5 Heap profiling results for 1) a synthetic benchmark and 2) Stencil 1D on Cori  92
A.6 The scalability of the 3D stencil code with different cube sizes (54M points, step

= 200) on the vanilla HClib runtime on Cori. gcc 7.1.0 was used.   92
A.7 The scalability of the 3D stencil code with different cube sizes (54M points, step

= 200) on HClib's replay runtime without failure on Cori. gcc 7.1.0 was used  93
A.8 The scalability of the 3D stencil code with different cube sizes (54M points, step

= 200) on HClib's replication runtime without failure on Cori. gcc 7.1.0 was used. 93

8



Executive Summary

Introduction and Milestone Description

This milestone report presents an in-depth analysis of resilience schemes adapted to the asyn-
chronous many-task programming model with the goal of informing the Sandia Advanced Simu-
lation and Computing (ASC) program's application development strategy for next generation plat-
forms (NGPs). Written in the ASC Implementation Plan, the milestone description is as follows:

Resilience is an imminent issue of next generation platforms (NGP) due to the reliability concerns
based on the architectural complexity and the constraint in system power budget. Under such
unreliable computing systems, introducing failure mitigations at the runtime and application layers
is essential for executing IC. Today, the major resilience scheme is coordinated checkpoint and
restart (CR) that involves global coordination of processes and threads. This global recovery
model entails inherent scalability issues and disproportionate use of resources to respond to local
failures. These issues are better handled through introducing resilience in asynchronous many-
task (AMT) programming models. In the AMT paradigm, failures can be mitigated locally through
task replication and replay. However, extensive research on task-based resilience is still required
to determine the roadmap of resilience in the context of the programming environment for IC
development.

Our study involves the development of a prototype resilient-AMT system to enable multiple task
replay, replication strategies and other AMT-based failure mitigations. The prototype code will
facilitate 1) evaluating the scalability, performance and costs for different AMT resilience options
and 2) assessing the accuracy-cost trade-offs of the application-specific failure detection and miti-
gation schemes in the AMT context. Our empirical study will be performed with emulated failures
either on a large scale HPC system or simulated architecture to represent NGP. The outcome is ex-
pected to provide definitive guidance to the design roadmap of the AMT programming framework
(ATDM-DARMA) development as well as the resilience-driven codesign of NGP.

Specific Deliverables include:

1. Prototype implementation of resilience schemes for the asynchronous many-task model, in-
cluding task replication and replay.

2. An analysis of the scalability, performance and costs for multiple AMT resilience options.

3. An analysis of accuracy-cost trade-offs of application-specific failure detection and mitiga-
tion schemes.

4. A report to inform the code development roadmap guiding the Sandia/ASC strategy for AMT
resilience for NGP

9



Supporting Evidence of Deliverables

1. Prototype implementation of resilience schemes for the asynchronous many-task model,
including task replication and replay.

This is evidenced by the effort to extend Habanero C++ (HClib), an AMT programming frame-
work developed by Georgia Institute of Technology and Rice University, to support AMT-based re-
silience schemes. This resilience extension provides APIs for task replication, replay, and algorithm-
based fault tolerance. As shown in Figure 1, all of the APIs provide a syntax extended from the
task instantiation API (async_await) of HClib to realize ease of use. In addition, the design of
task-based checkpoint-restart APIs has been explored as part of a future extension. The details of
the API specifications are described in Section 4, and their performance evaluations are reported
in Section 5 and the Appendix.

Task Launch with Replication

diamond::async_await_check<N> (

lambda, hclib::promise<int> out,

hclib_future_t *fl,

hclib_future_t *f4);

Original Task Launch

hclib::async_await ( lambda,
hclib_future_t *fl,
hclib_future_t *f4);

Task Launch with Replay

replay::async_await_check<N>(

lambda, hclib::promise<int> out,
std::function<int(void*)>

error_check_fn, void * params,
hclib_future_t *fl, ,
hclib_future_t *f4);

Task Launch with ABFT

abft::async_await_check<N>(

lambda, hclib::promise<int> out,
std::function<int(void*)>

error_check_fn, void * params,
hclib_future_t *fl, 
hclib_future_t *f4, ABFT_lambda);

Figure 1. Resilient-AMT APIs extended from async_await in
HClib. Red font indicates the additional input parameters to enable
replication, replay and ABFT tasks.

2. An analysis of the scalability, performance and costs for multiple AMT resilience options.

This is evidenced by (1) the development of a resilient-AMT simulator, described in Section 3,
to analyze and predict the performance of resilient-AMT applications and (2) the empirical eval-
uations reported in Section 5 and the Appendix. Our resilient-AMT simulator covers a variety
of failure frequencies and runtime/hardware configurations to predict the performance of appli-
cations written with our resilient-AMT programming prototype. An example of a simulated, and
successfully verified, experiment is presented in Figure 2.

The empirical evaluation of task replay and task replication in a range of failure frequencies is
reported in Section 5. The scalability (see Figure 3) of our resilient-AMT programming framework
and its runtime overhead are reported in Sections A.5 and A.1, respectively.

10



V&V: impact of Work-Stealing on Balanced vs lmbalanced Applications

120

100

7 80

E

To 60

20

♦
♦

ir2 
1DA 1DA Unbalanced

Application type

1DB

we Pinned

K. Work-Stealing

Simulated

1DB Imbalanced

Figure 2. Empirical measurement of the benefit of allowing
work-stealing on four 1D stencil benchmark experiments. The
first and third cases are balanced problems whereas the second and
fourth are imbalanced, with one tile having a much higher work-
load than the others. The "1DPC' cases have an over-decomposition
factor four times as high as the "1DB" cases. The red dashed lines
indicate the performance numbers predicted by the resilient-AMT
simulator using the numbers from the balanced and pinned (i.e.,
no work-stealing) cases.

3. An analysis of accuracy-cost trade-offs of application-specific failure detection and miti-
gation schemes.

This deliverable, overlapped with the deliverable #2, is evidenced throughout Sections 3, 4, 5,
and the Appendix. We have developed task replay and replication in a way that allows the two
to be mixed within an application. We integrated resilience with the AMT benchmark applica-
tions to allow for quantitative comparison. Comprehensive performance evaluations are reported
in Section 5 with a range of failure frequencies and three different application instances. The per-
formance overheads of task replay, task replication, and their mixed use is presented in Figure 4 to
indicate part of the accuracy-performance trade-offs.

A summary of the characteristics of task replay and replication is listed in Figure 5. Task replay
is a reactive resilience technique with user-defined failure detection that is tunable for performance
and reliability. Its user-defined failure detection capability is generic enough to serve a wide class
of applications. We found the use of a simple physics-driven checksum allows inexpensive fail-
ure detection. Task replication, on the other hand, is expensive but enables application-agnostic
resilience leveraging class-specific equivalence (==) operators for majority-vote failure detection.
Overriding the equivalence operators permits application-specific failure detection, e.g., by loos-
ening the "correctness" criterion when the output is not strictly deterministic under the same input.
In terms of coding, there is little difference between the task APIs, which is an attractive choice for
the users who do not have much knowledge in application-specific fault tolerance. Task replication

11



3D Stencil with Task Replication
(200 time steps)

1000.00  -4-32^3 tasks, 12'1 cube

-4— 16^3 tasks, 24^3 cube

—4-8^3 tasks, 48^3 cube

100.00 —4--4^3 tasks,96^3 cubeu
-oc
uo
a)
())

10.00

1.00
2 4 8 16 32

# of Workers

Figure 3. Empirical strong scalability of AMT 3D stencil appli-
cation with task replication enabled using four different task gran-
ularity settings.

can be seen as either reactive or proactive depending on the number of initial replications. In the
report, we focused on the performance of the reactive-resilience version, where tasks are dupli-
cated for testing correctness, with a third task instantiated when the outputs of the first two replicas
do not meet the equivalence condition. Task replication can benefit from data locality, minimizing
overhead when the second or third replica is scheduled to exploit such locality.

4. A report to inform the code development roadmap guiding the Sandia/ASC strategy for
AMT resilience for NGP.

This is self-evident, and the recommendation for AMT resilience is discussed in Section 6.

12



1', Resilience Overhead with Respect to Failure Rate, 1D Case A

3 100
c
w

8
cc 

0

c
o
z
O 60
-o
w
N

To 40

z

• 20
-o

-E
a) • 0
>

-•- Replication Only

-•- 30% Replication

20% Replication

-a- 10% Replication

-•- Replay Only

• 

 •

 •

0 io-4 10-3
Failure Rate

10-2

3 100
c
w

'a7.3 80

c
o
z
O 60
-o
N

To 40

z
15

20
-o

-E• 0>
O

Resilience Overhead with Respect to Failure Rate, 3D

—0— Replication Only

-•- 30% Replication

-•- 20% Replication

—a— 10% Replication

—0— Replay Only

•

 •
■ 

•
 •

0 10-4 10-3
Failure Rate

Figure 4. Overhead of task replay, replication, and mixed uses

for a range of task failure rates with 1D (left) and 3D (right) stencil

applications. The performance numbers are normalized to the non-

resilient versions.

Task Replay Task Replication

Reactive or Proactive

Applicabi

Reactive Reactive or Proactive

lity Application Specific Application Agnostic or

Application Specific

Reliability

Overhead

Notes

Errors above round-off can

be detected.

Detect all bit flips that i=
impact only one of the first

two replicas.

Inexpensive 5%-9% Expensive 45%401%

More general ABFT performing

"approximate in-situ correction"

could use the HClib ABFT interface

(not demonstrated here).

Better data locality lowers
the overhead.

Figure 5. Characteristics of task replay and replication.

13

10-2



14



1 Introduction

Resilience is an imminent issue for next generation platforms (NGP). Reliability concerns stem
from the attempt to increase performance capability under the tight power budget of computing
facilities [2, 3]. As indicated by the presentation in the DOE Office of Science Exascale Computing
Project (ECP) [4], the target computing systems will deliver a ten-fold performance increase over
100-plus Peta Flops systems, such as the Summit system at Oak Ridge National Laboratory. At
the same time, the power budget will grow to no more than 30 Mega Watts. Managing trade-offs
to maintain the same level of system reliability poses an enormous design challenge.

For many years, reliability has been taken for granted in high performance computing (HPC)
system design, but a recent study indicates significant power and performance penalties from the
reliability enhancement of system components [5]. Efficient resilience techniques at the runtime
and application layers relax all the constraints of HPC system design and thus allow increasing
the performance capability while lowering the power budget. In the Local Failure Local Recovery
(LFLR) project, we have explored resilience for HPC systems at the application layer through new
progranmiing models and techniques.

The most popular resilience technique for application users today is coordinated checkpoint
and restart (C/R), which involves global coordination of processing elements (PEs) for accom-
modating a consistent global application state. This global recovery model suffers from inherent
performance issues such as (1) the scalability and performance of the persistent (secondary) storage
for checkpoint data, (2) a disproportionate use of resources by triggering global recovery even for
local failures and (3) a large overhead associated with garbage collection between global tear-down
and restart.

We have addressed these scalability issues with the idea of using local recovery as a propor-
tional response to local failures for large scale parallel programs implemented with the classic
Single Program Multiple Data (SPMD) or Communicating Sequential Process (CSP) models. Our
past achievements include API specifications and prototypes of online recovery for MPI programs
[6, 7] and scalable recovery techniques for stencil-based applications at scale [8]. However, these
efforts did not address resilience support for the emerging HPC programming models intended for
managing the increasing complexity of node architecture and heterogeneity.

In FY18, we have shifted our focus to resilience for the emerging asynchronous many-task
(AMT) programming and execution model [9, 10, 11, 12, 13, 14, 15, 16], which is anticipated either
to replace the traditional bulk-synchronous MPI model or to serve as a node-level programming
model to complement inter-node parallelism supported by MPI. In the AMT model, programmers
are responsible for describing the dependencies of tasks and data objects, leaving the underlying
runtime system to schedule task execution and manage data objects in a seamless manner.

From the resilience perspective, the AMT execution model facilitates local recovery of par-
allel programs; a task represents a small piece of program execution that can be either replayed
or replicated without global coordination, and the data object model can be extended to support
redundancy and replica management. In this model, failures are manifested as failed or lost tasks,

15



and the recovery is performed through task replay or execution of replicated tasks. Data loss or cor-
ruption is recovered through the redundancy capability embedded in the data object model. During
the recovery, other non-failed tasks continue running to mask delays introduced by the recovery.

Despite the simplicity of the recovery model, many research questions are yet to be answered.
Recent efforts have demonstrated asynchronous application recovery [17] and explore ideas such
as task replay and replication [18, 19, 20], suggesting a possible extension of a popular node-
parallel programming model, such as OpenMR However, the progress of the OpenMP standard
specification is relatively slow, and the current focus of OpenMP 5.0 is performance portability
and heterogeneity for the recent divergence in compute node architectures. It is also unclear how
these efforts contribute to the ongoing effort on parallel programming models, such as DARMA
[21] and Kokkos [22], by ASC. Moreover, fundamental analytical models and infrastructure, as
have been used for evaluating the performance of resilience approaches for the SPMD/CSP models
[23, 24], have not been developed for the resilient-AMT model. In this report, we have explored
asynchronous recovery using a resilient-AMT prototype that, like DARMA and Kokkos, exploits
modern C++ features.

In this report, Section 2 provides some background information for resilience techniques appli-
cable to high performance computing. In Section 3, we discuss attempts at an analytical model of
task program execution and then introduce the resilient-AMT simulator model that we use for pre-
dicting the performance of applications developed using our resilient-AMT prototype. In Section
4, the specification of the resilient-AMT extension is discussed to demonstrate how the abstraction
of tasks and data in an AMT programming model facilitates readily usable APIs for resilience.
In Section 5, empirical evaluations of the resilient-AMT prototype are reported to demonstrate
the performance characteristics of resilience schemes with three different application instances.
Following that, we report on the V&V process for the simulator using the aforementioned evalua-
tions. To conclude the report, we discuss the findings of this project and potential future directions
in Section 6.

16



2 Background

In this section, we discuss the background of resilient programming models and runtimes for HPC.
Comprehensive review and discussions are found in [3].

2.1 Classification of Failures

On HPC systems, failures in application programs are manifested as job failures or incorrect ap-
plication outputs, resulting in a waste of computing cycles or a use of wrong results that can be
more damaging than the waste. From the resilience perspective, these failures are classified into
two major categories: hard and soft failures. Hard failures are program crashes that cause a loss of
computation and data. Typically, hard failures are easy to detect by the operating system, middle-
ware, or transport layer of HPC systems. Soft failures are unexpected alterations in computation
or data that can go undetected by the hardware and operating system. A soft failure itself can be
either harmful or benign because its severity depends on the subsequent use of the altered data.
Some soft failures that alter the values of pointers (addresses) in an application program, operat-
ing system, or runtime lead to segmentation violations or operating system kernel panic, which is
manifested as a hard failure to the user. If soft failures happen in the lowest bits of a mantissa or
in application data that is never referenced after the error, the final output of the program is likely
to be unchanged. If the corruption occurs in more significant bits, however, it can impact the final
output of the application in a way that is either obvious or subtle. Care must be taken to check
the correctness of results where precision is critical. The effect of soft failures has been studied
extensively through soft error emulations and injections [25, 26, 27], a simulator environment [28],
and direct neutron exposition [29].

2.2 Exascale Computing and its Reliability

High performance computing has been the norm for science and engineering involving simula-
tions and analyses of very complex and large systems. Due to the insatiable demand for computing
capability, the US, China, Japan and EU countries have committed on the development of exas-
cale supercomputers that will be deployed in the 2020 to 2024 time frame. The major obstacles
of exascale computing are performance, power, and reliability. According to the DOE Exascale
Computing Project (ECP) presentation [4], the first U.S. exascale computing system to be deliv-
ered in 2021 is going to exploit more parallelism to achieve an approximately ten-fold performance
increase while the power use is kept within 3 to 4 times (20-30 Mega Watts) over the Summit sys-
tem at Oak Ridge National Laboratory installed in 2018. In addition to the improvements in the
performance and power efficiency, the exascale system is expected to accommodate the same level
of reliability of today's flagship HPC systems.

From a system design perspective, system reliability and power efficiency have a reciprocal
relationship. Increasing reliability means adding extra components (redundancy) to handle error

17



detection and correction, as seen in error-correcting code (ECC) and Chipkill [30] for the memory
subsystem and RAID for file systems [31]. Another technique is reducing operating tempera-
ture [32], exemplified by the success of the K-computer system in Japan. The K-computer system
is operated at 30°C [33], which is 50 degrees lower than average data centers. These resilience
and reliability enhancements involve significant costs in performance and power. For example,
Sun et al reported that the penalty of reliable memory subsystems accounts for 20% of the total
power and performance of their non-protected version [5]. Despite the success in operation, the
K-computer system spends 50% more power than its contemporaries in the U.S., such as the Ti-
tan and Sequoia systems [34]. These facts indicate the enormous challenges in system design to
optimize performance, power, and reliability.

There are only a few technical options to improve all three elements from the system design
viewpoint: innovation in the fundamentals of computer architecture and semiconductor processing
or tuning the trade-offs between performance, power efficiency, and reliability of computing sys-
tem components. We have seen the former throughout the history of HPC, while the latter has not
been the main stream of HPC system architecture. Building an unreliable computing system is not
a big challenge, but it requires a solution to manage the reliability issues. Due to a lack of program-
ming models that embrace errors and failures during program execution, computer system and chip
vendors have been reluctant to deliver unreliable systems. Thus, a programming model that serves
high performance and resilience together could motivate vendors toward better application-driven
system co-design.

In addition to the reliability issues mentioned above, the sheer complexity of modern HPC
systems introduces more software bugs across all layers of the systems and applications. Ac-
cording to the observation at National Center of Supercomputing Applications at University of
Illinois [35, 36], software bugs are the major cause of application failures in the Blue Waters sys-
tem; these bugs trigger a system-wide shut down in the worst scenario. Vendors' continuous efforts
typically result in an improvement of system reliability over time, and software bugs manifested
in deterministic conditions can be fixed or isolated. However, some bugs are manifested under
rare nondeterministic conditions at runtime, such as certain types of concurrency bugs in a thread
library. These bugs are extremely difficult to fix, but some of them can be treated as soft errors
such as a wrong output due to unexpected race-conditions of threads. This is a possible use case
of application-based recovery (with help from runtime systems) that can overcome defects of the
software below the application layer.

Furthermore, the increased complexity of massive systems has been observed, on the Blue
Waters system, to increase the failure probability of a job non-linearly with the number of nodes
the job runs on [36]; with a 2.2 time increase of the node counts, applications were observed to fail
with the 20 times of the frequently of the original node counts. Without scalable application-based
resilience methods, trends indicate that we may see a massive increase in the wasted compute hours
and the cost given to the push for greater complexity, higher concurrency, and a lower power-to-
performance ratio.

18



PO

P1

P2Er Milkl I

Notify the Failure to the rest of processes
4

Restart

Resta rt

Restart

Resta rt

Figure 6. Behavior of C/R with a CSP (MPI) execution model.

2.3 Existing Resilient Computing Models

Run

Run

Run

Run

On today's systems, resilience is already imperative to execute large scale applications, as indicated
by the frequency of job failures (20-30%) in the report on the Blue Waters system [35]. Its follow-
up study also indicates that resilience enhancement improved the mean node-hours between fail-
ures (MNBF) by 50% [36]. The rest of this section reviews the resilience enhancement techniques
targeted at today's dominant SPMD or CSP model. In particular, resilience and fault-tolerance for
MPI programming models and emerging algorithm-based fault tolerance are discussed.

Global Recovery

Today, Coordinated Checkpoint/Restart (C/R) is widely practiced and a few production-ready soft-
ware packages [37, 38, 39] are available in the public domain. In a parallel program execution,
Coordinated C/R synchronizes all running processes to create a consistent global snapshot of the
program, called a checkpoint, which is then stored in persistent storage such as the global file
system. When failure is detected in the program execution, rollback is initiated. As illustrated in
Figure 6, all the processes are globally aborted upon a single process failure and then restarted.
When restarting, the global checkpoint is loaded to reconstruct the most recent valid state.

This model fits a large class of HPC application programs written with MPI or its equivalents
because of their bulk synchronous approach for global checkpointing and relatively simple garbage
collection for the rollback. However, scalability has been hindered by two major issues: one re-
lated to the cumulated I/0 bandwidth of the target system and another related to the overhead of
the process restart. The former can be addressed hand-in-hand by a reduction of the size of the
checkpoint (via compression or hierarchical checkpointing) at the software level, together with the
availability of novel technologies at the hardware level, such as NVRAM. Without considering a
reduction at the resource management level to ensure minimal disturbance of application execu-
tion, the C/R approach is bound to fail. For large scale parallel programs, a lack of scalable process

19



termination and restart in the existing process management middleware incurs a huge performance
penalty and is accountable for most of the overhead of current recovery techniques. This overhead
includes not only the required interaction with the system resource manager, but also the teardown
of the previous, faulty, parallel job, the allocation of the new resources, the launching of the new
application, the reconnection of all MPI processes, and finally the recovery of the last application
state (from a previous checkpoint). Moreover, the exclusive use of global recovery leads to dis-
proportionate use of computational resources to handle the most common failures occurring on a
single thread, process, or node, resulting in a huge waste of computational resources.

Local Recovery

Along with the emergence of fault-tolerance proposals in the Message Passing Interface (MPI)
standard, there has been an emerging idea of local recovery of parallel programs to overcome the
shortcomings of C/R. This idea is based on the observation and anecdotes that the majority of
application failures are attributed to local node/process failure as reported by [37], and that the
recovery can be applied only to the corrupted processes and data without global coordination.
Despite the simplicity of the idea, there are several challenges in implementation across the lay-
ers of computing systems. For example, uncoordinated Checkpoint Restart (UC/R) [40] exploits
message contents (message logging) exchanged between MPI ranks to enable localized recovery.
Several papers address the reduction of message logging overhead [41, 42, 43, 44, 45], while others
describe a hybrid with global C/R [46].

Another example of local recovery uses Containment Domains (CDs) [47] that provide an ab-
straction of failure detection and correction intended for efficient and transparent recovery of HPC
applications. In this model, a program is decomposed into a hierarchical tree model where each
node of the tree corresponds to a part of the program that represents a unit of failure containment
(domain). Each domain employs its own methods to detect and correct failures. Once a failure
is detected in a certain domain, this notification is propagated to its subtrees to trigger the re-
executions to ensure correctness. Consequently, a failure in a single domain is contained and never
propagated to the higher levels of the hierarchy and the disjoint subtrees. The major drawback is
adapting a parallel program into a hierarchical execution pattern, which may limit the scalability
for a large class of applications.

Algorithm Based Fault Tolerance

Algorithm based fault tolerance (ABFT) mitigates soft errors and failures using algorithm or ap-
plication specific knowledge to correct data corruptions and computation errors. One of the sem-
inal papers [48] introduced checksums that are embedded into the matrix and vector operators in
parallel dense matrix computations to enable runtime error detection and correction. This idea
was extended to cover hard failures using in-memory checkpointing [49], where the checksum is
stored in remote spare processes. Other than dense matrix computations, the ABFT community
has explored the numerical properties of Krylov subspace iterative linear system solvers [50] and

20



multigrid solvers [51] for detecting failures and tuning the reliability of the critical numerical op-
erators. The community has also studied more generic approaches, such as random sampling [52]
and interpolation [53] to approximate the correct values of data entries partially corrupted or lost.

2.4 Asynchronous Many-Task Programming and Execution Model

The asynchronous many-task (AMT) model [9, 10, 11, 12, 13, 14, 15, 16] is a categorization of
programming and execution models proposed as an alternative to the dominant SPMD program-
ming or CSP execution models. AMT programming models and runtime softwares have several
common functionalities across different implementations and packages. Typically, these frame-
works decompose an application program into small, transferable units of work (many tasks) with
associated inputs (dependencies or data blocks) rather than simply decomposing at the process
level (MPI ranks). To enable more sophisticated decomposition of a program, the architecture of a
typical AMT runtime involves several software components as illustrated in Figure 7:

• Tasks

• Data blocks

• Runtime scheduler (task queues, dependency graph and task/data tables)

• Workers (thread/processes)

Despite minor differences between individual AMT implementations, an AMT runtime pro-
vides APIs to instantiate these components. The most important features are task and data objects
encapsulated with their meta-data representations so that the runtime scheduler can orchestrate
these objects. The runtime scheduler consists of task queues and a special construct to represent
the task dependencies and monitor the status of task and data objects. Task dependencies can be
expressed either explicitly or implicitly. For example, ParSEC [12] employs a static parametric
task-graph to express all task dependencies, and the open community runtime (OCR) [16] employs
event objects to notify state changes of individual tasks and data objects.

The AMT model has been explored for on-node parallel computing. OpenMP has supported
task parallel computing since version 3.0, and extends the capability in the later versions. The latest
version of Kokkos [54] supports task parallel computing to extend its performance-portable, data-
parallel computing interface. Like Kokkos, HClib [55], described in Section 4, exploits modern
C++ features to instantiate tasks and data objects.

2.5 Resilience for the AMT model

In AMT settings, a program failure can be interpreted as failures of tasks, and its recovery can
be performed by isolation and correction of these failed tasks. This abstraction of tasks and data

21



Task Graph

Task

Data Object

d  
d2

d4

A table to record the status of
tasks and data

• •
r,,monsour--• • •

Task with satisfied
dependencies

submitted into the

ready Queue

IOW

-Isk ID

Home Location (Process ID)

Current Location (Process ID)

Task Body
List of Input Data

List of Output Data

List of In-Out Data

List of Predecessor Tasks
List of Successor Tasks
ID for "parent" task
List of "children" tasks ■

Data

 _fir/

Completed tasks are reported
to the scheduler

----

Ready Queue(s)

- -------—

Data ID

Data Version

Data Location

Data Content
List of past data access

List of future data access

Figure 7. An Example of AMT Architecture

22

•
•
•
•



Task Task
A A'

Check

Result

Figure 8. Task Replication perforrned at the user level.

facilitates modeling recovery patterns to enable asynchronous and localized application recovery
with simplicity. The rest of this section discusses the recent work in AMT resilience.

Task Replication

As illustrated in Figure 8, task replication is aimed at proactive reliability enhancement by execut-
ing the same task multiple times, assuming that at least one replica can survive, or that the majority
of the replicas produce the same output for determining correctness. The obvious drawback is the
increase of computational cost, but it is still effective in situations where a few tasks in a critical
path of the task graph leave the computing system underutilized. One idea to reduce the replication
overhead is selective application to control the trade-offs between the reliability and performance
penalties. The major research questions lie in effective management of the cost and reliability
trade-offs. One notable work is the study by Subasi et al [18, 56] for a node-level, task-parallel
runtime. They applied a Markov model to tune the amount of replications in a dynamic task graph
under a faulty system. They also suggested deferring launch of the third replica until duplicated
tasks report a failure. The mixed use with other resilience techniques and in-depth analysis of the
performance penalties are yet to be studied.

23



Checkpoint

Input

Domain
Body

(code)

Detection
1_

Figure 9. Self replay of tasks proposed by [1]. Each task has a
micro-checkpoint capability for the input data (right). The task is
replayed using the data from the micro-checkpoint.

Task Replay

Task replay is a natural extension of Checkpoint/Restart for the conventional execution models.
Instead applying a rollback of the entire program, as few as one tasks are replayed when failure
is detected. This requires some infrastructure to enable efficient checkpointing for the input of
individual tasks as the typical global file system is unable to manage a large number of concurrent
file creations followed by write operations. A notable work is found in the recent work by Subasi
et al [1] who have applied efficient in-memory local checkpointing to OmpS s [14] for node-level
resilience. The checkpoint API is integrated with the input data parameters of OmpSs directives to
protect the input of individual tasks. During the execution of a task, errors notified by the operating
system trigger a replay of the task using the input data stored in the checkpoint as indicated by
Figure 9. For performance reasons, in-memory checkpoint storage space must be pre-allocated
during the program execution to avoid frequent dynamic memory allocations. This approach is
combined with receiver-based MPI message-logging [20, 19] where the task graph encodes the
ordering of the messages to perform replay. The strength of this approach is simplicity with less
intrusive changes than the asynchronous C/R for the MPI programming model. The drawback of
this approach is a lack of mitigation for failure propagation, as the paper assumes reliable failure
detection support by the operating system, which is not always available.

24



3 Analysis Capability of Resilient Asynchronous Many-Task

Programming Model

3.1 Modeling Reliability and Performance of AMT

Assessing resilience mechanisms, qualitatively or quantitatively, is made difficult by the fact that
HPC systems are growing in scale and complexity at a rate that out-paces our ability to understand,
characterize, and quantify hardware errors occurring in them. The study of Gupta et al. [57], which
focuses on field data of errors from the latest four generations of systems at Oak Ridge Leadership
Computing Facility (OLCF), illustrates this difficulty. Errors of various categories can be analyzed
from system logs, but clear trends for future systems are hard to discern, even as the next generation
machine at OLCF, Summit, is already commissioned. Moreover, with the shift from homogeneous
to extremely heterogeneous node architectures, this gap in understanding hardware errors is likely
to become dire. In the face of such difficulty and uncertainty, it is desirable to have a framework
that allows us to analyze and assess various resilience mechanisms and their efficacies and trade-
offs for various application, programming model, and error rate scenarios.

As a first step of the current study, an attempt was made to devise a mathematical framework
for analyzing directed acyclic graphs (DAGs) of tasks, so that various resilience mechanisms (task
migration, replay, replication, etc.) could be assessed under various conditions before actually
implementing and testing them on physical platforms. The aim was to come up with an analytic
model, informed by graph-theory, and to evaluate the model using hand calculations, if possible,
or simple Matlab/Python codes to emulate various fault/failure scenarios. Such a model would be
helpful in analyzing task-DAGs even in the absence of failures and could inform optimization of
the various runtime aspects such as scheduling heuristics, dynamic unrolling of the DAG, look-
ahead, load balancing, etc. We present a brief overview of relevant literature from graph theory
and analysis, before identifying the feasibility, or lack thereof, of devising an analytic model.

Sahner et al. [58] present a very promising approach to analyze DAGs mathematically based
on the concept of "series-paraller graphs. The analysis comprises the following basic elements:

• Assign a cumulative density function (CDF) to each node of the graph. The CDF could
represent any generic cost metric such as time to completion of a task (performance analysis),
probability that failure has occurred by time t (reliability analysis), etc.

• Decompose the graph into subgraphs, such that the larger graph is composed of "series"
and/or "paraller combinations of the subgraphs.

• The decomposition into series/parallel components results in a binary tree whose leaf nodes
are the nodes of the original graph and whose internal nodes denote the series/parallel com-
position operations.

• Traverse the binary tree from bottom up. At each internal node a distribution function is
computed based on the CDFs of the leaf nodes, depending on whether they are combined in
series (summation over CDFs) or parallel (convolution over CDFs).

25



Seri es

Seri es Seri es

Figure 10. A DAG (left) and its binary decomposition tree
(right).

• The resulting distribution function at the root node represents the cost distribution over the
whole graph.

An example of a DAG and its binary tree decomposition is in Figure 10. The operation over the
two parallel components is a MIN and a MAX to illustrate the utility of the approach. This analysis
is promising, and may be slightly computationally expensive for large graphs having many parallel
components since the convolution operation can be expensive. However, in the trivial case, if the
CDF of each task (node) is not a random variable, but deterministic and fixed, then the CDF is a
Heaviside function and it is possible that the convolution reduces to a trivial result. Furthermore,
for large DAGs the series-parallel decomposition is not trivial and an algorithm for efficiently
performing such a decomposition is presented in Valdes et al., [59]. The steps, for a slightly more
complex DAG than in Figure 10, are illustrated by the example in Figure 11.

However, a necessary condition for this analysis to be applicable is that the DAG has to be
series-parallel decomposable. It turns out that, even in the simplest case, i.e., a 1D stencil task-
DAG, this condition is not met. One of the necessary conditions for a graph to be series-parallel
decomposable is that it be a combination of complete bipartite subgraphs; the stencil DAG is not.
An illustration of this for a simple three-way decomposed stencil DAG is shown in Figure 12.
The all-to-all pattern for vertices b-c-d-e in Figure 11 appears like a stencil (with vertices b, c

26



o-o-o

0-0-0

/
0-0 •

/ o /
0 0

Figure 11. Series/Parallel decomposition of a DAG (left) into the
corresponding binary tree (right).

advancing a time step to d, e). However, upon including tasks for more than two subdomains, the
locality of dependencies (important for efficient fault recovery) conflicts with the series-parallel
condition. Another way to state this condition is that "an N-shaped subgraph is forbiddee if a
DAG has to be series-parallel. As shown in Figure 12, once we have three subdomains, there is a
choice of four nodes on which the stencil DAG induces this forbidden pattern (in red).

The difficulty with a N-shaped subgraph is also illustrated by Robinson [60]. In [60], graphs
that are series-parallel are termed "simple," the definition being that for simple graphs the dis-
tribution function of the overall graph can be represented as a polynomial function which has a
factorization in which the CDF of an individual node appears exactly once. If such a factorization
does not exist, the graph is "non-simple", and its analysis expands by combinatorial explosion (see
Figure 13). The model by Benoit et al. [61] is intended to derive the execution time of a task-DAG
on a parallel computing environment with replication options. Their model assigns success/fail-
ure, execution time and computing resource properties to every task and sweeps all possible failure
scenarios of the task graph. Sweeping all failure scenarios creates a combinatorial explosion even
though the task dependencies are ignored. As a result, the complexity of analysis is #P (similar to
NP complete). In summary, it appears that, even the simplest task-DAGs may not be amenable to
a simple tractable analytical framework.

In light of this difficulty and recognizing that some sort of analysis of task-DAGs along with
various resilience mechanisms is worth pursuing, we adopted a more pragmatic approach. We
embarked on a simulation approach making reasonable starting assumptions about the structure of

27



Figure 12. An illustration showing a 3-subdomain stencil DAG,

with the N-shaped subgraph highlighted in red.

Simple

0 0

Simple Non-Simple

Figure 13. Example illustrating "simple and "non-simple task

graphs, which has a correspondence with the series-parallel condi-
tion.

28



the task-DAG (and analogously the structure of parallelism and concurrency of an app), kinds of
failures/faults and how they manifest in the task-DAG, the programming model/runtime specifics,
and the underlying hardware/machine characteristics. These assumptions essentially pin down
the starting numerical parameters of the task-DAG whose execution on a given hardware/software
stack can be simulated at a coarse-grained level.

3.2 AMT Sirnulator

Overview

Our AMT simulator functions by finding ready tasks from a pre-constructed task DAG. This graph
is capable of changing in-situ and has randomized task execution times and failures, surpassing the
limitations of the analytical framework discussed above at the expense of finding representative
executions rather than statistical execution models. However, in our experience the execution of
a given DAG does not change significantly from one representative case to another so long as the
program is appropriately decomposed into small, independent tasks and consists of enough tasks
to be a reasonable representation of actual application code.

The simulator functions by first constructing a task DAG, where edges inform the simulator
of task dependencies and vertices contain information for individual tasks. Vertices provide in-
formation on task execution times, failure probabilities, scheduling behavior, and which (if any)
resiliency methods to apply to the task. This representation enables a skeleton of the program
where the real computation in individual tasks is replaced by a small set of simulation input. The
main body of the simulator then handles assigning tasks to workers, updating dependencies, work-
stealing, and dynamically updating the graph for resiliency tasks; all of the processes for these
actions emulate the respective process in the representative AMT runtime, HClib. Throughout ex-
ecution, vertices are updated to contain execution details on start and end times, as well as failures
and how those interacted with the resiliency methods enabled for a given task. This allows for data
to be selectively pulled from the task graph after the simulation has concluded, permitting analysis
as general or detailed as the situation warrants.

Simulation Model

The simulation model for our AMT simulator differs from other simulators in significant ways. Our
simulator represents a meso-scale simulation that balances compute hardware and communication
hardware simulation to provide a simplified view of both. This allows us, as well as users, to focus
on the scheduling, application, and most importantly resiliency modeling for which the simulator
is built.

There exist several models, such as the LogGOPS [24] model, which simulate the network-
level characteristics of distributed systems. The issue with using these models for AMT and re-
silience simulations is two-fold. First, the parameters of the LogGOPS model are constant across

29



the system. While this is a reasonable approximation in many distributed memory systems, shared
memory and especially shared/distributed memory environments have significant differences in the
LogGOPS parameters depending on which locales are communicating - these are the environments
for which AMT was built, so it is important to be able to accurately model them. Second, imple-
mentations such as LogGOPSim [62] require a DAG that shows the ordering of execution steps.
However, without built-in support for modifying this DAG at runtime, many resilience mechanisms
are impossible to model. Our simulator provides a less detailed view of the network simulation,
with delays caused by communication currently expressed as some factor of the computation time
- this will likely be expanded upon for distributed simulations. However, it has built-in support
for very simply establishing communication groups and the communication parameters between
groups. Further, our simulator has support for the in-situ graph modifications needed for resiliency
methods.

Simulators such as SST [63] (Structural Simulation Toolkit) allow researchers to examine how
their applications will run on a myriad of different hardware configurations and interconnects,
which provides great benefit to some research. However, it also requires configuring (and knowing)
a potentially large amount of detail on the system in order to fit the user's intent. Our simulator
gives less cycle-accurate results, but in exchange it has less simulation work to do and there is less
setup to use the simulator. The way that we are able to maintain accurate results is by providing the
approximate wall-times for tasks which have been run on the target machine; while this takes away
some ability to simulate complex machinery, we simplify the process of finding details specifically
on the impacts of resiliency.

Going forward, we are likely to add some depth to our model. These extra considerations will
take form only on portions of the machine which heavily change the impact of resiliency methods.
For instance, we are likely to include some approximation for cache effects, which have been seen
to reduce the cost of replication significantly in some applications (see Section A.3 for details on
cache effects). In carefully choosing which components are significant for studying resilience, we
are able to create a simulator which has high accuracy with minimal processing overhead. Tailored
use of SST to perform in-depth simulation on only those factors which are important to the study
of resilience is a good candidate for the future, as is the potential of merging resiliency features
into SST.

Software Architecture

The simulator consists of four major components, depicted in Figure 14: (1) the task DAG, (2)
discrete events, (3) workers, and (4) the scheduler.

The task DAG component is implemented with the Boost Graph library [64], which accommo-
dates basic graph operations and algorithms for designing complex graph algorithms and analysis.
This library provides an extensive meta-programming capability supported by modern C++ fea-
tures, enabling integration of simulation parameters and the subset of simulation results. The
vertex property interface of Boost graph library allows any data types, which allows us to keep
task properties such as execution time, start time, completion time, success rate of task execution,

30



locale ID, and epoch. Epoch (set to 0 at initialization) indicates the number of times the task has
been replayed due to failure. Edges represent dependencies between tasks.

0 Done • Running

Task DAG

Scheduler
Queues

Workers

Locales

•
k,r31J*

6 V&I 8

O R

o
0

9

o
1

o
2

o
3

ady O Not Ready

Task ID: 5
Parents: 0
Locale: 0 (Locale of Task #0)
State: Ready
Base Exec Time: 1.45
Start Time: TBD
Complete Time: TBD

Discrete Events

Complete Time: 4.7

Complete Time: 3.4

Complete Time: 3.2

Complete Time: 1.8

Figure 14. Simulator Architecture. Task 0 has been completed.
Tasks 1-4 are being executed and Task 5 is sitting in the ready
queue.

The discrete event component is a priority queue to hold all the tasks being executed by work-
ers. These tasks are ordered based on their completion time, so that the simulation evaluates all
task executions in chronological order of the simulated time. The simulator program iteratively
accesses the task information, and then changes the state of the task DAG, scheduler, and workers
to ensure accurate progress of the execution.

The discrete event component currently uses double-precision variables to store all time infor-
mation. In most cases, a double is sufficiently precise to give accurate results. However, as the
number of workers increases and the per-task execution time decreases there is a greater probability
for tasks to end in small enough time steps that they cannot be accurately represented with a dou-
ble. If we wish to run simulations on greater than approximately 128 workers with task times in the
same order of magnitude as our current experiments, it will be important to implement a more pre-
cise variable for timing information. This is currently being implemented in the simulator; once
complete, users will have the option of using doubles for faster simulations, or multi-precision
floats for simulations accurate to the extreme end of core-count and domain decomposition.

The workers component represents computing elements (threads or cores) that run the tasks
picked from the ready queue in the scheduler component. Each worker, numbered by locale ID,
keeps the information of a task being executed at a given simulated moment. When a task is

31



placed on a worker, the start time and completion time are recorded in the task instance and put
into the discrete event component. The dependent tasks refer to the locale ID of the finished task
to calculate the penalty associated with data movement. These penalties are added to the task
execution time to calculate the finish time. In the current implementation, the workers do not
hold any architecture-specific information except their locale information and the associated data
movement penalty factors.

The scheduler component represents an AMT runtime scheduler that supports multiple queue-
ing and work-stealing options. In the current implementation, the scheduler design is very similar
to the one implemented in HClib [55, 65] with multiple local queues associated with individual
workers. When a discrete event is handled, all of the tasks whose final dependency has been sat-
isfied are added to the ready queue of the worker which ran the finished task (i.e., the worker
which satisfied the final dependency). Then, idle workers access their corresponding ready queue
to launch new tasks and put them into the discrete event component. The order of selecting tasks
from ready queues is determined by the user (FIFO, LIFO, or random). When work-stealing is en-
abled, workers with empty ready queues check other workers' queues for tasks that can be stolen.
The order of selecting tasks to be stolen from ready queues can be configured separately. Follow-
ing HClib implementation, idle workers begin by checking the queues of the workers closest to
them (as described in Figure 18), only checking farther workers if they are unable to find a closer
task to be stolen.

Simulating Resilience

The simulator currently gives verified and validated simulations for two methods of resiliency, task
replay and task replication. These methods are discussed in Section 2.5 and their implementations
in HClib are discussed in Section 4.3. Here, we will explain how the simulator adapts to handle
these resilience methods.

Task replay is the simpler of the two methods from the view of the simulator. In the generic
model, task replay requires a "micro checkpoinr at the beginning of the replay-enabled task, which
saves the input data to the task in case a replay is necessary. However, in the HClib implementation
there is no micro checkpoint. Instead, with the aim to have as lightweight a runtime as possible,
a burden is place upon the user to not modify input data during the execution of the replay task.
This simplifies the implementation of replay tasks within the simulator; rather than needing to add
a micro checkpoint task, the simulator just assumes that the input data is unmodified and requires
no checkpoint/restore process in the event of failure. A runtime that instead implements micro
checkpointing can be simulated by increasing the current parameters in the simulator to account
for the extra costs of both checkpointing and resetting the data. Looking back at Figure 14, if these
were all replay tasks there would need to be no modification to the task DAG. If Task 1 failed, it
would be reset as a ready task and added to the ready queue of the worker that ran it - in this case
Worker 0 - as if it were being launched for the first time. All failures of replay-enabled tasks are
assumed to be soft errors which are caught by the check function.

Implementing task replication in the simulator requires modifying the task DAG at runtime.

32



When a task marked for replication is readied in the simulator, the task DAG is modified as shown
in Figure 15. The third replica of Task A and second copy of the consensus checking task are
only added to the task DAG in the event that a consensus cannot be found between the two initial
replicas of Task A. Similar to task replay, there is the assumption that replica tasks do not directly
modify the task's input data. All failures of replica-enabled tasks are assumed to be soft-errors,
and it is further assumed that if two replicas fail they fail in different ways which will not give a
false consensus.

•

Replication

( «py

Task Task

A A

Consensus?

Yes

Task
B

Yes

Task
A

Consensus?

Fail

Figure 15. A model of how the task DAG is modified for task
replication. Either consensus-checking task successfully finding
consensus may satisfy Task B's dependence on Task A.

Usability

A simulator is only useful if it takes less time to run than the application itself, and/or is much
simpler to configure than the application for various resiliency methods. However, the simulator
must also be able to evaluate a wide array of runtimes, machines, and applications to be useful.
These competing interests make for a fine line to walk when considering how feature-rich and
verbose to make the simulator.

In order to model various machines and potentially various AMT runtimes, the simulator has
a daunting number of input parameters. Fortunately, not all of the input parameters are needed for
every experiment - most parameters are provided with default values which are either "no impact"
(meaning a value is provided which does not consider the effects of certain resiliency/overhead pa-
rameters) or are reasonable for most machines. Additionally, most parameters are "set-and-forget"
and can remain unchanged from run to run. Provided below are tables of the major parameters,
their default values, and their use.

33



Parameter Default
Runtime Specific Parameters

Meaning

schedule_dist decentralized What type of scheduler is used (centralized or decentralized, currently)
schedule_policy LIFO How the scheduler chooses which task to run next
isPreemptive false If recovery tasks preempt non-recovery tasks when they are readied
steal_policy random How the scheduler chooses which task(s) to steal
dCostS chedule 0 The time associated with making scheduler decisions
dLatency 0.5 Runtime overhead to add to every task's execution time

Machine Specific Parameters
Parameter Default Meaning

move_costs [1.0,...,1.0] The amount of overhead associated with moving a task from one locale
to another, based on distance between locales

dReliability 1.0 The reliability of individual tasks
nConcurrentTasks 32 The number of tasks to run at once (the number of workers)

Application Specific Parameters
Parameter Default Meaning
dExecTimeMin 5 Minimum execution time of a task
dExecTimeMax 10 Maximum execution time of a task
nIts 10 The number of iterations to perform
Misc others varies Different applications may require different input parameters to determine

aspects
tors,

specific to that application (domain decomposition, imbalance fac-
etc.)

Parameter Default
Resiliency Specific Parameters

Meaning
doReplay
dDelayReplay

maxNumReplays
dCheckTimeMin
dCheckTimeMax
doReplication
nReplicates
dReplicateOverhead
doMixAl
replcItsPerc

false
0.0

2
o
o
false
3
o
false
0.2

Should the application enable replay on its tasks
The amount of extra overhead to apply to subsequent runs of a task after
failure
The maximum number of times a task may be replayed
The minimum time the correctness check takes for a replay task
The maximum time the correctness check takes for a replay task
Should the application enable replication on its tasks
The number of replicates to check for consensus between
The time to add to replicate launcher tasks
Should the application enable replay followed by replication on its tasks
How many of the iterations should be replication for mixAl

The other concern for the simulator is how long it takes to run the simulator itself and the
resources it requires. Our simulator is single-threaded, so it requires only a single hardware thread
to run at a normal speed. While this means the simulator may be slower than a multi-threaded
implementation, it is rare to want only a single run of the simulator when studying the effects of
changed parameters. This means that several iterations of the simulator may be run at once on a
machine, providing a pleasingly-parallel model for most studies.

34



The simulator's execution time varies primarily based on the number of tasks being simulated,
with some variance associated with the number of workers. The primary cause of different times
for a larger number of workers is the cost of simulating work-stealing for many workers; this is
significantly mitigated by over-decomposing the load over the number of workers, which mini-
mizes the need for work-stealing and is a more common mode of operation. Figure 16 shows the
execution time of the simulator for various task and worker values. While an individual run from
that test took up to 90 seconds, running all of them in parallel on a single node took only 2 minutes.

The timings for Figure 16 were gathered on a single node consisting of four 2.6 GHz Intel
Sandybridge CPUs with 8 cores each. The node has access to 512GB of 1333MHz RAM.

Simulator Execution Times for ID Application

80 -

a -

—AL— 32 workers

64 workers

—4.— 512 workers

1024 workers

500 10100 1500 2000 2500 3000 3500

Tasks per Iteration

Figure 16. Graph of the execution time of the simulator itself.
Each simulation ran 8192 iterations.

Capabilities

4000

It is of great importance for a simulator capable of simulating resilience in AMT models to have a
competence in simulating AMT without resilience. Our simulator has been demonstrated to pro-
vide accurate predictions for execution times with a variety of over-decomposition factors, num-
bers of workers, and numbers of iterations for 1D and 3D stencil applications as well as a sparse
matrix-vector multiplication application. Further, we are able to model the effects of work-stealing
on execution times and scalability for both balanced and imbalanced workloads.

The true purpose of the simulator, however, is to accurately demonstrate the effects of various

35



resiliency methods on the execution patterns and times of applications. Toward this aim, we have
implemented the two resiliency methods available in the resilient-AMT prototype extended from
HClib (see Section 4): task replay and task replication. Task replay represents a fine-grained
implementation of local recovery, discussed in Section 2.3. Task replication is an implementation
of rank replication, described in the same section. For both of these resiliency methods, we have
tested and validated the impact in the absence of failure as well as with several failure rates.

On top of being able to model executions based on provided details for overheads, individual
task execution times, and latency, we are able to use the simulator to discover accurate values
for these overheads when it may be difficult or impossible to measure them. The simulator uses
task overheads and, generally, two types of overhead for the runtime for each resiliency method.
There is overhead which scales proportionally to the task's size, "overhead," and overhead which is
independent of task size, "latency." Overhead and latency together determine the addition to wall-
times for a given resiliency method on a particular machine, while latency alone determines the
way that the task size and over-decomposition level of the problem impact performance By under-
standing the way that these various overheads and latencies interact with application configurations
and wall-times, we can find the only values which will accurately simulate the execution. Often
it would be otherwise impossible to find accurate values for runtime-hidden overheads, although
knowing these values is essential to analyzing their impacts.

Limitations

Modern computing resources represent a vast array of optimization levels, with each typically
working independently from the others. For instance, modern CPUs use a myriad of technologies
to optimize cache accesses and prefetches; these devices are opaque to the application programmer,
and their operation and impact is very complex to model and is highly state based. Although
cache effects may be one of the most important hidden optimizations, accurately simulating how
various applications interact with the cache alone would require significant amounts of research
time. Without considering the impact of cache optimizations, we are seeing some applications
behave differently in actual application runs compared to the simulator - this leads the simulator
to occasionally show incorrect predictions for the most efficient ways to run the application. The
most significant impact of this is that simulations of task replication in the simulator always show
a resilience overhead of 100+%, but in empirical data locality can lower the overhead to 45%.

Resource utilization is also not currently modeled in the simulator. Although an application's
algorithm may theoretically strong-scale linearly, using additionally cores on a single CPU will
tend to hit a limit for performance improvements long before every core is utilized. This is due to
a maximum total amount of memory bandwidth for the CPU, maximum CPU power usage, and
other resources limited more than the cores in a CPU. We do not have current plans to implement
resource usage simulations, however. While it may be interesting to model on-node scaling, most
actual application use-cases fully utilize the CPU (as best they can). Future distributed environment
simulations may find resource utilization a useful thing to model, but for the current tests this has
not been an impactful limitation.

36



Examples

Use of the simulator generally involves constructing a small (typically Python) script to launch
several simulations with various parameters and interpret the output. The following is an example
of using the simulator to match the imbalanced work-stealing cases verfieid against the stencil
application discussed in Section 5.1.

The stencil application is the default application for the simulator, so all we need to do is
specify the dimensions of each stencil iteration, the number of workers, the number of iterations,
and per-task times. On top of that, there are some simple parameters for the simulation that are
useful - for instance, since we only care about the wall-time of the application we can use the
"-printfinalonly" flag to only output the wall-time to the output file. The following command can
be used to run the simulator to mimic the locale-fixed, balanced version of the application.

$ AnalysisDriver —printfinalonly —lfix —nx 512 —ncr 32 —nit 8192
—etmax 0.00042948 —etmin 0.00028632 —move_costs 0 —dynamic —
filename sim . out

The timing information is found through iteratively improving the times to find an accurate
wall-time. The values shown here are ±10% of an average time, generated by the script used to
launch the simulator. Once we've found appropriate per-task times for the locale-fixed code, we
can disable the -lf ix option and see if we get correct work-stealing times as well. Doing so gives
a work-stealing time which is only 0.2% lower than expected. Given that we provided 0 as the
work-stealing penalty, this indicates that work-stealing in the HClib runtime is very cheap.

We can follow this up by testing these results with imbalance added by enabling the parameter
-forceaddedimbalance 8, which randomly selects one task to have all of its iterations run for
8x as long. Further, we can quickly repeat this process for the 1D Case A runs with 128 tiles.
The results of these runs are compared to the real values in Figure 17. This indicates that (1)
some compiler optimization may be occurring during the busy-work of the imbalanced tasks which
causes them to take less time than expected, (2) the cost of work-stealing is minimal in HClib, and
(3) only minimal parameters and information are needed to accurately (within 4%) simulate simple
experiments.

Though the simulator has heretofore only been used for simulating single-node environments
with a maximum of 32 cores, the framework is present for simulating much larger experiments
- even distributed AMT runtimes. Adding further workers is simply a matter of modifying the
passed -ncr value, and configuring a shared or distributed memory system (and even various
network configurations) is simple as well. The texttt-move_costs flag from the previous example
can take an array of doubles, where each value represents the cost of work-stealing from a node
one step farther away. The simulator handles worker distance in a realistic manner as shown in
Figure 18 - this allows the simulator to model different access costs for various cache levels and
distance "groups".

This system of work-stealing costs allows you to customize the simulator for most environ-

37



V&V: impact of Work-Stealing on Balanced vs lmbalanced Applications

120 -

100 -

80 -

7, 60 -

40 -

20 -

1DA 1DA Imbalanced 1DB

Application type

MI Pinned

MOW Work-Stealing
r Simulated

1DB Imbalanced

Figure 17. A comparison of measured and simulated wall-times

for tests of work-stealing on balanced and imbalanced applica-
tions.

Distance: 3

Distance: 2 Distance: 2

Distance: 1 Distance: 1 Distance: 1 Distance: 1

Worker D Worker 1 Worker 2 Worker 3 Worker 4 Worker 5 Worker 6 Worker 7

Figure 18. A model of how the simulator finds the "distance"
between workers for 8 workers. This can be used to model an 8-
core CPU by making the L2 cache access cost the work-stealing

cost for the first distance, and setting the distance 2 and 3 values to
an L3 cache access cost.

38



ments. For instance, in a shared memory system you may want to specify that it takes a small
amount of time to steal from workers with which you share access to an L2 cache, but a large
amount of time for workers on a different socket. As an example, the node used to run the simu-
lations has four sockets with eight-core CPUs on each socket. For that system, the array passed to
the -move_costs flag could look something like this: [ 0.001, 0 .002, 0.002, 0.01, 0.01].
The array provided would indicate that a worker stealing from the neighbor it shares an L2 cache
with takes a small amount of overhead, while stealing from the other six on-socket workers has
double the overhead. Finally, stealing from workers on the other three sockets costs ten times as
much overhead.

In our experience, shared memory stealing is lightweight enough that you can provide a single
value for stealing at all levels - or even just ignore it entirely - and still get accurate results. For
future research into distributed systems, this will likely not be the case. Fortunately, to model
distributed memory work-stealing you can simply add more overhead factors to the -move_costs
array. We have not yet begun research on the work-stealing costs or algorithms for distributed AMT
runtimes, so we cannot show validated timings for these. However, we can instead investigate the
maximum attractive work-stealing cost for a distributed system, with the note that real distributed
work-stealing algorithms vary significantly from the shared memory algorithms.

Figure 19 shows the results of that experiment. The parameters were set to emulate a machine
with eight 32-core nodes, where on-node work-stealing has negligible overhead. The application
tested is a 1D stencil with 1024 tasks per iteration, and 8192 iterations. From there, we test vari-
ous inter-node overheads (as a percentage of the stolen task's time) to determine the effect larger
overheads have on the wall-time. In this case, we can see that even with an overhead doubling the
cost of the task there is little effect if the application is balanced. However, adding an imbalance
factor of 10 causes much more interesting results. With some more verification and validation with
a distributed AMT runtime, even more interesting experiments can be run using the simulator.

39



W
a
ll
ti
me
 r
el
at
iv
e 
to
 l
oc

al
e-

fi
xe

d 
eq

ui
va

le
nt

 

Impact of Work-Stealing on Distributed AMT

—0— Balanced

—0— lnibalanced

20. 40 60 80

Work-stealing overhead (%)

160

Figure 19. A plot of the impact various work-stealing overheads
have on the wall-time of a balanced or imbalanced stencil applica-
tion.

40



4 Specification of Resilient-AMT prototype

In this section, we discuss the specification of our resilient-AMT prototype, extended from the
Habanero C++ library (HClib). An overview of HClib and its runtime capability are discussed in
Sections 4.1 and 4.2. Efforts for the extension of HClib, including the reference counting for data
management, are described in Section 4.3. API specifications are covered in Section 4.4, including
our plan to support multiple-task replay through task-based checkpointing. In Section 4.5, we
discuss missing functionalities and future extensions.

4.1 Overview of HClib

HClib [55, 65] is a lightweight, work-stealing, task-based programming model and runtime that
focuses on offering simple tasking APIs with low overhead task creation. HClib is entirely library-
based (i.e., does not require a custom compiler) and supports both a C and C++ API. HClib's
runtime consists of a persistent thread pool, across which tasks are load balanced using lock-free
concurrent deques. HClib also uses runtime-managed, user-level call stacks to allow suspension
of tasks without blocking CPU cores. Locality is a first-class citizen in the HClib runtime, which
uses hierarchical place trees (HPTs) to encourage load balancing with nearby threads.

At the user-facing API level, HClib exposes several useful programming constructs. A brief
summary of the relevant APIs is below:

1. hclib : : async: Dynamic, asynchronous task creation.

2. hclib : : f orasync: Dynamic, bulk, asynchronous task creation (i.e., parallel loops).

3. hc lib : : f inish: Bulk, nested task synchronization. Waits on all tasks spawned within a
given scope.

4. hclib : : future_t and hclib : :promise_t: Standard single-assignment future and promise
objects. Waiting on a future causes a task to suspend, but does not block the underlying
runtime thread.

5. hclib : : launch: Initialize the HClib runtime, including spawning runtime threads.

The async ( 0 { body ; }) API creates a task executing body given through a C++ lambda
expression. The f inish ( 0 { body ; }) API waits for all tasks created in body, including tran-
sitively spawned tasks, before returning. Listing 1 illustrates an example with finish/async.
hclib : : f inish (Line 4) creates a f inish scope in which a new task is spawned (hclib : : async
in Line 6) and the completion of the spawned task can be ensured after this scope (Line 10).

promise/future objects can be used for enabling point-to-point inter-task synchronization.
A promise is a single-assignment, thread-safe container that stores some value. A future is a

41



Listing 1. An HClib code example with f inish/async.

1 int main ( int argc , char

2 hclib : : launch ( ()

3 int ran = 0 ;

4 hclib : : f inish ( () {

5 printf ("Hello \n");

6 hclib : : async ( [=] ()

7 ran = 1 ;

8 });

9 ;

10 assert (ran == 1)

11 1) ;

12

* * argv) {

Listing 2. An HClib code example with promise/future.

1 int main ( int argc , char ** argv) {

2 hclib : : launch ( ()

3 hclib : : promise_t <int> *prom = new hclib : : promise_t <int >0 ;
4 // T1 : Producer Task

5 hclib : : async ( [=] () prom->put (42) ; }) ;

6 // T2: Consumer Task (async + explicit wait)

7 hclib : : async ( [=] ()

8 // explicity waiting on prom->put (42) ;

9 int value = prom ->get_f uture () ->wait () ;

10 assert (value == 42) ;

11 1);
12 // T3 : Consumer Task (async + implicit wait)

13 hclib : : async_await ( [=] {
14 // implicitly waiting on prom->put (42) ;

15 assert (value == 42) ;

16 }, prom->get_future ()) ;

17 1) ;

18

42



Memory

L2

L1

/'
Place4
L2_0

Place()
L1_0

T1

Worker0

Place6
sysmeni

T2

Place1

L1_1

Worker1

Place2 ri
L1_2 LA

Worker2

Place3
L1_3

"1"

T6 u

Worker3

Figure 20. A hierarchical platform model in HClib.

read-only handle on that value. Point-to-point synchronization is done by waiting on a future that
causes a task to suspend until the corresponding promise is sat isf ied, i.e., some value is put to the
promise. Listing 2 shows an example with promise/future. In this example, Task T1 (Lines 4-5)
is a producer task that puts an integer value of 42, and Tasks T2 (Lines 6-11) and T3 (Lines 13-16)
are consumer tasks waiting until the put is complete. As shown in Line 3, a promise object can be
created using standard C++ constructors with a certain type. Also, the future object corresponding
to the promise object can be obtained through getters (Lines 9 and 16). For consumers, there are
two ways to wait on futures: explicit wait by the wait function (future_t : : wait ( ) in Line 9) and
implicit wait by the async_await function (Lines 13-16). While these operations are blocking and
cause a task to suspend, they do not block the underlying runtime thread.

4.2 HClib Runtime

The HClib runtime consists of three components: 1) a platform model, 2) a work-stealing runtime,
and 3) pluggable third-party software modules. A brief summary of each component is as follows:

Platform Modeling with a User-defined JSON file

The HClib platform model offers an abstraction of the homogeneous/heterogeneous hardware re-
sources across which the workload of an application will be distributed. The platform model
consists of an undirected, unweighted graph. Nodes within the graph logically represent hardware
components that software libraries may utilize, and are referred to as "places" (or "locales"). The
graph is implemented as an in-memory graph and is loaded from a JSON-formatted file. Figure
20 depicts an example of a hierarchical place model where each node logically represents memory
components (System memory, L2 cache, and L1 cache) and Listing 3 shows the model in JSON

43



Listing 3. An example platform model in JSON

1 {
2 "nworkers": 4,
3 "declarations": [
4 "sysmem",
5 "L20", "L21",
6 "L1 0", "L1 1", "L1 2", "L1 3"
7 ],
8 "reachability": [
9 Psysmem", "L2_0"1, Psysmem", "L2_1"1,
10 ["L2_0", "L1_0"], ["L2_0", "L1_1"],
11 ["1,2 1", "L1_2"], PL2 1", "L1_3"1
12 1,
13 "pop_paths" : {
14 "default": PL1_$(id)", "L2_$(id/2)", "sysmem"],
15
16 "steal_paths": {
17 "default": PL1_$(id)", "L2_$(id/2)", "sysmem"],

18
19

format. One motivating example of utilizing such a model is that the use of the async_at ( [] {
body ; } , place) API, which creates a task at a specific place, encourages load balancing with
nearby threads, thereby improving data locality.

Generalized Work-stealing with the Platform Model

The HClib runtime employs work-stealing for task execution, which is a common technique for
automatic load balancing across multiple cores. At a high level, work-stealing balances work
across a persistent thread pool by having idle threads steal tasks from work pools belonging to
neighboring threads. The runtime also utilizes the platform information for enabling generalized
work-stealing. To be more specific, in addition to the place information (Lines 3-12 in Listing 3),
users can define the sequence of places a worker thread will traverse when searching for a task to
execute as pop/steal paths (Lines 13-18 in Listing 3).

Figure 21 illustrates how work-stealing works in the runtime. For the purpose of simplicity, let
us suppose there is only one place and are two workers. The place includes two task deques, one
for Worker #0 and another for Worker #1. The ith deque (0 < i < 1) contains only eligible tasks
that are ready to begin executing and which were pushed by Worker #i. Also, tasks in the it h deque
are popped and executed by Worker #i. When there is no task to be popped, the worker tries to
steal tasks from the other workers' deques in the same place. In general, each place in the platform

44



Worker 0

/* pseudo code*/

Worker 1

/* pseudo code*/
1 do { 1 do {
2 task = pop(); 2 task = pop();
3 if (!task) { 3 if (!task) {
4 task = steal(); 4 task = steal();
5 } 5 }
6 if (task) exec(task); 6 if (task) exec(task);
7 } while(1); 7 } while(1);

push pop

tail

head

exec

steal

push pop

tail

head

steal

Figure 21. How work-stealing works in HClib (single-place).

Place0: "sysmem"

Worker#0's Worker#1's
deque deque

Worker#(N-1)'s
deque

"UT

Worker#0's Worker#1's
deque deque

Worker#(N-1)'s
deque

exec

Place N: "L1(N-1)"

Worker#0's Worker#1's
deque deque

Figure 22. Generalized work-stealing with multiple places.

45

Worker#(N-1)'s
deque



model includes N task deques, where N is the number of threads in the persistent thread pool, and,
when there is no task to be popped/stolen in a specific place, a worker searches other places by
traversing the pop/steal paths (Figure 22).

Pluggable Modules

A single pluggable module adds user-visible APIs that can be called to schedule module-specific
tasks on the HClib work-stealing runtime. These tasks may perform arbitrary logic. For example,
the resilience module extends the HClib runtime with functions enabling resiliency features. We
will discuss the resilience module in Section 4.3.

4.3 Resilience Capability in HClib

We added Resiliency as a module on top of HClib. Since HClib is an AMT-based library, the basic
idea is to use a task boundary as the primary location to enable resiliency. The task constructs in
HClib that are of our interest do not involve internal synchronization, i.e., once a task is started, it
runs to completion without blocking or waiting for other tasks. This implies that a task can start
only after it gets all its inputs, and we can publish the results once it is finished; therefore, the task
boundary provides a natural fit as the location around which resiliency can be implemented without
much consideration of the internal task state or the global application state of the execution. This
is in contrast to SPMD programming models where no such boundaries can be easily identified
and, therefore, the global state is mostly required to make it resilient.

Once the program location around which resiliency can be implemented is identified, the next
step is to identify the data that needs to be checked to ensure correctness. A trivial choice is to
ensure the integrity of the whole data used in the program, but this could be very expensive to
implement and also unnecessary. The next obvious choice is to look at data that is live, i.e., data
which is going to be used later and therefore live at the end of task boundary (similar to the idea
of live variables at the end of each data block in compilers). HClib provides promi se and future
to enable transfer of data between tasks along with synchronization to avoid data races. Thus, if
the application programmer uses only promi se-f uture pairs to perform communication between
tasks, then the live data at the task boundary is the data added to the promise using put. This
implies the data that we need to check at the task boundary to ensure correctness is the data added
to a promi se within the same task. Thus, we have identified both the program location and data
that needs to be checked to enable resiliency of applications based on AMT runtimes.

We assume the tasks are non-chaotic, i.e., for the same input dependencies, the task generates
promises with data that is within some known range. Tasks do not need to be entirely deterministic
- random numbers, etc. can be used within tasks so long as errors within the margin of the ran-
domization's effect are permissible. Also, we consider only side effect-free tasks for this exercise.

Matthew: Can someone verify this paragraph? I modified to my knowledge and based on previous text within the report.

46



Reference Counting

HClib requires the user to perform memory management; i.e., the application programmer needs to
explicitly free any data that is allocated in the heap memory. This could be reasonable to manage in
normal HClib programs but, when we introduce resiliency, the manual deallocation poses certain
challenges. Many resiliency techniques such as replication or replay might include multiple exe-
cutions of the task. This would mean that the user needs to keep track of the good vs bad execution
of the task. For the good runs, the data generated by a task would be used later in some consumer
tasks; therefore, they need to be deallocated only after the consumption of the data. For bad runs,
there is no need for the data created in the task and, therefore, they need to be deallocated at the end
of the producer task itself. Keeping track of good vs bad runs and selectively deallocating memory
would create unnecessary complexity in the application code. Therefore, we added the reference
counting capability that will help to deallocate the data automatically once its use is over. Thus,
the user can be freed from doing manual memory management in their code.

We implemented reference counting by extending the basic promise to include the reference
count. Ideally, the reference count specifies the number of tasks dependent on the future as-
sociated with the promise. The reference count is passed on to a promise when it is created as
shown in Listing 4. In other words, the reference count specifies that only count number of tasks
consume data from that promise, and therefore the promise and its data can be freed once count
number of tasks have used it.

Listing 4. Reference Counting Promise creation.

1 auto prom = new hclib::ref_count::promise_t<int*>(count);

Similar to the shared pointer in C++, we need to save the deleter function inside the promise
object. This is because the type of data inside the promise will get erased when it is passed on to
async APIs. Later, when we want to deallocate the data, we need the type of the pointer to the
data because de let e API requires a typed pointer (in contrast to f ree which uses a void pointer).

The future associated with the reference counting promise exposes a release API which the
application programmer can use to decrease the reference count atomically as shown in Listing 5.
When the reference count reaches zero, the data associated with the promise is deleted.

Listing 5. Releasing the promise after usage decreases the refer-
ence count.

1 hclib : : async_await ( [=] ()
2 int* val = prom->get_future ->get ;
3 prom->get_future ->release () ;
4 }, prom->get_future ;

We also provide an automated reference counting functionality. This is done by extending the
task creation API as shown in Listing 6. Once the task finishes execution, it performs a release
on all the f utures on which it depends.

47



Listing 6. Automatic reference counting task created using
hclib::ref_count::async_await

1 hclib : : ref_count : : async_await ( [=]0 {
2 int* val = prom->get_future ()->get () ;
3 I , prom->get_future ()) ;

4.4 Resilient API Specifications

Task Replication

Task replication (also referred as diamond tasks) is the simplest resiliency technique that can be
used by the application programmer. During replication, the runtime creates multiple copies (N
replicas) of the task under consideration and runs them separately on the same input data (not
replicated inputs). Once all the replicas are finished, the outputs from each replica are compared
for equivalence. If at least half of the replicas agree, then the outputs from one replica are used
as the final outputs, and we proceed. If at least half do not agree, then it is reported as an error.
This equivalence check is configurable by the application programmer, and may take into account
some permissible amount of variance. The diamond task signature is the same as that of a regular
task but with only one additional parameter, the result promise, which tells whether the task ran
successfully (one) or not (zero). The replicated diamond task definition is shown in Listing 7.

Listing 7. Diamond Task definition that creates two replicas by
default.

1 diamond : : async_await_check ( lambda , hclib : : promise <int > result ,
2 hclib_future_t *fl, hclib_future_t *f4)

Diamond tasks cannot be nested within other diamond tasks. However, a diamond task allows
the creation of normal tasks within it. Normal tasks created inside diamond tasks need to per-
form some bookkeeping to enable resiliency. Therefore, we included such tasks within a different
namespace called diamond rather than the usual hcl ib namespace as shown in Listing 8.

Listing 8. Creating tasks within a diamond task.

1 diamond::async_await_check<N>( C=7 ()
2
3 diamond : : async_await ( [=] {
4 do_some_computation
5 , nullptr);
6
7 do_some_computation_in_parallel
8 }, out, nullptr);

48



As mentioned before, the only data that gets propagated to dependent tasks are those that are
put to a promi se. With non-resilient tasks, dependent tasks get scheduled for execution once the
necessary put operations have been performed. In order to prevent errors discovered in a diamond
task from propagating to dependent tasks, we do not publish any put operations from a diamond
task until the equality checking of the replicas succeeds.

To hold the put operations until equality checking succeeds, we need additional space within
the pr omi se. The normal promi se can hold only one value that had been added to it using the
put operation. For diamond tasks, however, all replicas perform the put operation and, therefore,
we need N locations within the promi se rather than one. To accommodate this, we extended the
reference counting pr omi se with an array to store N values. During a put operation inside a
diamond task, the ith replica stores the value in the ith location of the array.

We need to collect all the put operations within the diamond task so that they can be checked
for equality after all replicas finish. For this purpose, we extended HClib with task-local storage.
Each put operation in the replica with index zero (we assume all replicas perform the same put
operations) adds the associated promise to the task-local storage. Finally, while merging the
results from the replicas, we fetch the promises from the task-local storage and check for equality
on the data attached to those promises.

We also perform automatic memory management in diamond tasks. This is very important
because, if the application programmer manually wants to perform memory management, they
need to keep track of which replica is used as output and delete the data allocated from other
replicas. Because additional storage for the outputs of each replica is only required from the
point of allocation by the replica up until the equality check has completed, replication with over-
decomposition does not result in a full 2x storage overhead. After the selected output data is used
by any dependent tasks, it needs to be deleted as well.

To perform automatic reference counting, we cannot release the input data eagerly when a task
finishes. This is because, if the equality checking fails, the user may decide to rerun the task and
therefore want access to input data that might have been deleted with the release operation. To
overcome this situation, f utures on which the diamond task and its successor tasks depend are
collected in the task-local storage. When the equality check succeeds, the release is performed on
the futures that were collected.

We used a special case of replication as the default implementation. In this case, two replicas
are run in parallel and their outputs are compared. If the equality check succeeds the result is
assigned and we proceed. Otherwise, we create a third replica and check for equality of at least
two of the three replicas. If the output of two out of three is equal, we declare success and proceed,
otherwise we declare failure.

Equals Operator The equivalence operator used in replication is exposed as an equals func-
tion of the object under consideration. The user needs to extend the resilient object class and
provide an equals function for the data that is added to a promise within the diamond tasks. An
example of such a resilient integer object is shown in Listing 9. Because correctness is judged by

49



only comparing the outputs from multiple replicas, any error that impacts multiple replicas (e.g.,
corruption of cache or input data) could lead to an incorrect consensus.

Listing 9. equals function is used as the equality operator to
determine equivalence during replication.

1 class int_obj : public hclib::resilience::obj {
2 public:
3 int n;
4
5 bool equals(obj* obj2) {
6 return n == ((int_obj*)obj2)->n;
7
8 };

Task Replay

Task replay is another resiliency technique which is more sophisticated than replication but has
much less overhead. In this form of resiliency, the task is replayed (up to N times) on the original
(not duplicated) input if its execution resulted in some errors. In our work, the application program-
mer provides the error checking function so that the runtime can use it to check for correctness.
The replay task signature is similar to that of diamond tasks but with two additional parameters.
One is the error checking function and the second is the data that needs to be passed on to the error
checking function. The application programmer needs to add data that needs to be checked for
errors using the error checking function. The replay task definition is shown in Listing 10.

Listing 10. Replay task definition that is executed once and can
be replayed.

1 replay : : async_await_check ( lambda , hclib : : promise <int > result ,
2 std: : function<int (void*)> error_check_fn , void * params ,
3 hclib_future_t *fl, hclib_future_t *f4)

Similar to diamond tasks, replay tasks can also not be nested within other replay tasks. They
do allow the creation of normal tasks within them, however. Normal tasks created inside replay
tasks need to perform some bookkeeping to enable resiliency. Therefore, we included such tasks
within a different namespace called replay rather than the usual hc I ib namespace as shown in
Listing 11.

Listing 11. Creating tasks within a replay task.

50



1 void *error_chk_data;
2 replay::async_await_check( 1=1 () {
3
4 replay : : async_await ( [=] {
5 do_some_computation
6 , nullptr);
7
8 do_some_computation_in_parallel
9 1, out, check_fn, error_chk_data, nullptr);

Replay tasks also do not publish the output until error checking succeeds. To hold the output
inside the promise until it is published, the replay promise extends the reference counting promise
to include temporary storage. Unlike a diamond promise, which requires an array of temporary
storage, a replay promise needs only one temporary storage space since the replay can happen
sequentially one after another. Replay tasks also collect the promises associated with the put
operations and futures associated with task dependencies within the replay task. As in diamond
tasks, they are collected using the task-local storage. Once the error checking succeeds, values in
the promises are published so that dependent tasks can be scheduled for execution. The futures are
also used to perform automatic memory management using the release operation. The overhead
of replay comes from the cost of the error checking function, the cost of replicating the task lambda,
and the delay in scheduling dependent tasks.

Algorithm-Based Fault Tolerance (ABFT)

Algorithm-Based Fault Tolerance (ABFT) is another resiliency technique which can detect and
correct errors with low overhead. It involves error detection and correction of the output data by
leveraging the numerical properties of the algorithm. Specifically, by using the numerical prop-
erties of the algorithm, it can use checksums or provide alternative formulations to recover from
an error thus ensuring forward progress without redoing the whole computation. Thus the API
designed for an ABFT task should provide a facility to check for errors and if there is an error, a
way to recover from it. Therefore, we extended the replay task API with a recovery facility to use
for ABFT tasks since the replay task API already has the facility for error checking. The ABFT
task definition is shown in Listing 12.

Listing 12. ABFT task definition that is executed once and uses
the recovery procedure if an error is detected.

1 abft : : async_await_check ( lambda , hclib : : promise <int > result ,
2 std : : function <int (void*) > error_check_fn , void * params ,
3 hclib_future_t *fl, hclib_future_t *f4, ABFT_Lambda)

The lambda parameter is the operation to be performed on the input. The error_check_fn
performs the error check on the output of the computation. If no error is detected, the result

51



promise is set to one, indicating success. Otherwise, the application specific recovery computation,
ABFT_Lambda, is invoked and is once again checked for errors using the err or_che ck_f n. If the
error checking succeeds, the result is set to one. Otherwise, the result is set to zero to indicate
failure.

Checkpoint/Restart (C/R)

Checkpointing involves the saving of intermediate program state/outputs on to a secure storage so
that in case of failure, the application can be restarted from the point when the checkpoint was
taken rather than from the beginning of the program's execution. From the context of task based
runtimes, once the error/equality checking succeeds at the end of a task, the output data can be
checkpointed. Later in some following task, if all other resiliency techniques fail, it can re-fetch
the input data from the checkpoint and execute again. This single-level checkpointing can be
extended to multiple levels; i.e., if error checking still fails after re-executing the task with input
from the checkpoint, we can go a level higher and re-execute the parent tasks using its input taken
from checkpoint and so on.

In our current implementation, we use the replay task as the base on which checkpointing is
done (but checkpointing can be implemented on top of other resiliency techniques also). Therefore,
the API signature is same as for a replay task as shown in Listing 13. The task is executed at most
N times (where N can be given as a template parameter) if an error occurs. If all the executions
fail, then input data is fetched from the checkpoint and the task is re-executed. If the execution
succeeds, the output data, i.e., the data that is put on to some promi se within the task, is added to
the checkpoint.

Listing 13. Checkpoint task signature which is executed once
and replayed once in case of error. If replay fails, the inputs are
reacquired from the checkpoint and executed again.

1 checkpoint::async_await_check( lambda, hclib::promisezint> result,
2 std::function<int(void*)> error_check_fn, void * params,
3 hclib_future_t *fl, .., hclib_future_t *f4)

To enable the runtime to work with multiple checkpoint storage systems, we abstracted the
functionalities required for checkpoint store to a class archive_st ore with two APIs to save and
retrieve data as shown in Listing 14.

Listing 14. The checkpoint storage abstraction. Any class that
implements the two API's can be used by the runtime to save the
checkpoint.

1 class archive_store{
2 public:

52



3

4

5 1 ;

virtual void save(void* key, archive_obj* data) {}

virtual archive_obj* retrieve(void* key) {}

To add an object to a checkpoint store, we need to serialize the data contained in the ob-
ject. The user needs to provide the serialization/de-serialization APIs for the data that needs to

be checkpointed. As shown in Listing 14, the checkpoint store accepts a serialized data format,
namely archive_obj . The definition of archive_obj is shown in Listing 15.

Listing 15. Archive object that is accepted by the Archive store.

1 struct archive_obj {

2 int size = -1; //size of object blob

3 void *data = nullptr; //blob of object to be archived

4

5 archive_obj () {}

6

7 archive_obj (archive_obj *ptr) {

8 size = ptr->size;

9 data = malloc(size);

10 memcpy(data, ptr->data, size);

11

12

13 archive_obj {
14 free (data) ;

15

16 };

A sample user object definition using the serialization/de-serialization of ar chive_obj is shown
in Listing 16.

Listing 16. Archive object that is accepted by the Archive store.

1 class int_obj : public checkpoint::obj {

2 int n;

3 public:

4 //De-serialize

5 int_obj(checkpoint::archive_obj* ar_ptr) {

6 n = *( int*) ( ar_ptr ->data) ;

7

8

9 //Serialize

10 checkpoint : : archive_obj* serialize ()

11 auto ar_ptr = new checkpoint : : archive_obj () ;

53



12 ar_ptr->size = sizeof(int);
13 ar_ptr->data = malloc(ar_ptr->size);

14 memcpy(ar_ptr->data, &n, ar_ptr->size);

15 return ar_ptr;
16 }

17 1 ;

Mixing Replication and Replay

We also allow mixing of Replay and Diamond tasks using the same promise type in both types
of tasks. The resilient promi se needs to include temporary storage to keep the data until the
error/equality check succeeds. Since a replay promise has less temporary storage compared to a
diamond promise, a replay promise cannot be used in diamond tasks. A replay promise can only
store the result from one replica. Therefore, we used a design similar to the diamond promise as
the common resilient promise. A comparison of memory usage of various resiliency techniques
with and without mixing is given in Section A.4.

Task Graph Transformation

Our implementation of all the resilience mechanisms listed above, namely Replication, Replay,
Algorithm-based fault tolerance and Checkpointing, do not change the overall structure of the
graph. All transformations to the nodes of the graph happen locally, in the sense that each node
gets replaced by a small sub-graph. If we consider each of these small sub-graphs as a single node,
then the original task graph and the transformed graph after adding resiliency are isomorphic, as
shown in Figure 23.

4.5 Future Work

In this work, we have integrated the task replication and replay interfaces to the benchmark pro-
grams discussed in Section 5, but the ABFT and task-based C/R interfaces need more exploration
to demonstrate their performance characteristics and effectiveness. As for the ABFT interface, the
literature indicates a few applications that can exploit algorithm specific roll-forward recovery [66]
such as Krylov subspace iterative linear system solvers. We could apply the same algorithms in
collaboration with the ongoing ABFT effort at Sandia. The task-based C/R interface needs some
refinement to enable multiple types of secure storage mechanisms (such as multi-level checkpoint-
ing in VeloC [39]) and combined use of other task-based resilience techniques.

The work with the task replication has revealed an interesting question on expressing the cor-
rectness of each task. The current implementation depends on the user-provided equals function to
check for equivalence of data. The equivalence operator for most data objects are trivial to design,
and therefore we can add this equality operator generation ability to the compiler. Another idea is

54



.F\
`.0,?'

Figure 23. The original task graph (ABCD) and the transformed
resilient task graph (AB'C'D) are isomorphic. Node B uses repli-

cation (based on Figure 8) and gets transformed to Node B'. Node
C uses replay (based on Figure 9) and gets transformed to C'.

to combine both replication and replay mechanisms which can be called as an eager replay. Dur-
ing eager replay, if extra resources are available, the replay task can run multiple copies instead of
waiting for the task to finish and perform error checking. Once the tasks finish, we can select the
correct output from the replicas using a select i on function.

55



Machine (126G8 total)

NUMANode P. (63GB)

Package 12220

L3 (401631

L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256.) L2 (253KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB)

Lld (32KB) L10 (220) L1c1(32K8) Lld (32KB) Lld (32KB) LIS (32.1 L1c1 (32KB) Lld (22KB) L10 (22KB) L1c1 (32KB) Lld (32KB) L1c1(32K8) LIS (32.1 Lld (32KB) L1r1 (32KB) LIS (32KB)

LII (32KB) Lli (32KB) Lli (32KB) LII (92KB) Lli (32KB) Lli (22KB) LII (92KB) LII (32KB) Lli (3.51) LII (92KB) LII (92KB) Lli (32KEI) Lli (22KB) Lli (32KB) Lli (9.51) LII (32KB)

Core P#0 Core Pirl Care P222 Core P423 Core P#0 Core P#5 Core P#6 Core P. Core P#8 Core P#9 Core P#10 Care P2211 Core P#12 Core P#13 Core P#13 Core P#15

PU PM0 PU PM]. PU P. PU P#3 PU P. PU PM5 PU PM6 PU PM] PU P. PU PM9 PU PM10 PU Pell PU P#12 PU PM13 PU PM14 PU PM15

PU PM32 PU PM33 PU P#321 PU P#25 PU P#36 PU P2292 PU P2223 PU P#39 PU Pit. PU P#01 PU Pit. PU P#03 PU P#210 PU P#05 PU P#03 PU P2232

NUM.1.5 P#1 (62GB)

Package P#1

L3 (40MB)

a (256KB) L2 (256K131 L2 (256.) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256KB) L2 (256.1 L2 (256KB) L2 (256KB) L2 (256.) a (256KB) L2 (256KB) L2 (256.1 L2 (256KB) L2 (256KB)

Lld (22KB) Lld (32KB) Lld (92KB) Lld (92KB) Lld (32KB) Lld (22KB) Lld (32KB) L1r1 (32KB) Lld (32KB) Lld (32KB) LI61 (32KB) Lld (22KB) Lld (92KB) Lld (92KB) Lld (32KB) Lld (32KB)

L11132K6) Lli 132KB) L11122K61 Lli (32KBI Lli (32KB) L1113201 LII132KBI LII 122KB) L11122.1 Lli (32KB) Lli 132KB) L11132K6) Lli (32K31 L1112201 L1113201 Lli (32KB)

COre P220 COre P#1 COre P. COre .9 Core P. Core P#5 Core P#6 COre P. Core P. COre .9 Core P#10 Core P#11 Core P#12 Core P#13 Core P#10 Core P#15

PU P#16 PU P2212 PU P#13 PU P#19 PU P2220 PU P#21 PU P#22 PU P#23 PU P2226 PU P#25 PU P2226 PU P#27 PU P#28 PU P2229 PU P#30 PU P2231

PU P#218 PU P#219 PU P#50 PU P#51 PU P#52 PUP/252 PU P#521 PU P#55 PU P#56 PU P#52 PU P#58 PU P#59 PU P#60 PU P#31 PU P2262 PU P#63

st: nIc112890

In eyes: physical

0 tei Fri Jul 20 10:55:2 2010

Figure 24. The topology of the evaluated platforms.

5 Empirical Evaluation

This section presents the results of an emprical evaluation of our runtime system on three single-
node platforms.

Purpose: Our goal is to study the performance impact of the HClib-based resilient runtime system.
For that purpose, we evaluated several benchmarks with different resilience policies.

Machines: We present the results on three single-node Intel platforms. Two of the three are located
at Sandia National Laboratories and the other is a single node of the Cori supercomputer located
at NERSC. All three platforms have two sockets, each of which has 16-core Intel Xeon E5-2698
v3 CPUs at 2.30GHz. Each physical core is capable of running 2 SMT threads, resulting in 64
CPU threads per platform. Also, each physical core has a dedicated L 1 cache of 32KB and L2
cache of 256KB. Each socket has an L3 cache of 40MB shared between the sixteen physical cores.
Figure 24 illustrates the topology of the platforms.

Runtime Settings: We used the HClib-based resilient runtime system described in Section 4 for
this evaluation. Each worker of HClib's persistent thread pool was pinned to a specific physical
core by the hwloc-bind[67] command to avoid any uncertainties in the runtime. For example, for
32 workers, hwloc-bind -p socket : 0 .pu: 0-15 socket :1 .pu :16-31 was used to pin the first
16 workers to 16 physical cores of socket 0, and the next 16 workers to 16 physical cores of socket
1. Also, a JSON-formatted platform model for the evaluated machines was prepared and used for

56



exploring better locality control and studying the impact of work-stealing (see Section 4.2).

Benchmarks: Three C++ benchmarks were used in the experiments: StencillD, Stencil3D, and
Unstructured SPMV.

5.1 Explicit Stencil

Our first pair of benchmarks are explicit stencil computations in 1D and 3D. For these benchmarks,
we over-decompose the data into tiles or cubes, respectively, and have a separate task operate on
each tile or cube. Each task depends only on the tiles or cubes containing data it needs to perform
its specific computation. In 1D, each task has three dependencies whereas in 3D each has seven.
There is no global synchronization between iterations.

For our benchmarking experiments, we do not time the problem setup or the setting of the
initial conditions. Instead, we start a timer after initialization, right before spawning all time-
advance tasks, and stop it once all iterations have completed. The execution times we quote,
unless otherwise specified, are the minimum duration of that timed region over at least 25 trials.

Due to significant differences in performance when compiling with different gcc versions, we
switched from gcc 5.5.0 to 7.2.0 during these experiments. Unless otherwise noted, we present
gcc 7.2.0 results obtained on Shiller.

Linear Advection in 1D

For our first benchmark, we solve linear advection (a hyperbolic PDE),

du du n
dt +A dx j̀,

where A is a constant, on a 1D domain with periodic boundary conditions. We implemented this
using the Lax-Wendroff 3-point stencil,

which we rewrite as

= ui — 0.5c[ui+i — ui-1] + .5c2[ui+i — 2ui +1,4_1],

= 0.5(c+ c2)ui_1 + (1.0 c2)/(i + 0.5(62 —

where the prime indicates the time-advanced state and

AAt
c — < 0.5

Ax

for stability.

(1)

(2)

(3)

(4)

We break the domain up into contiguous, non-overlapping tiles each of size N. Each tile will be
time-advanced by an independent task on each iteration to allow for parallelism. Time-advancing

57



the left-most value on each tile requires the right-most previous value from the left neighbor. Sim-
ilarly, time-advancing the right-most value requires the left-most previous value from the right
neighbor. For this reason, a task will be ready to execute once the tasks that generate the previous
data for its own tile and the neighboring tiles to the left and right have completed.

If additional spatial values from neighbors are available, it is possible to time-advance a tile
by more than one step. In the extreme, described to us by Jackson Mayo as the three-to-one tasks
approach, a task inputs the previous state of the tile it will advance as well as the full left and right
neighboring tiles. Using these inputs, a task can time-advance a tile of size N by up to N time steps.
We take this approach but, because duplicate computation is required, allow a task to time-advance
Nt < N time steps. A single iteration, then, consists of time-advancing all tiles by Nt time steps.

We have the freedom to choose and implement any error checking metric that works accurately
and efficiently enough for our particular application. For a stencil, we can detect corruption any-
where on a subdomain using physics-based checksums because conservation requires that the sum
of values over the subdomain only changes by the flux through the subdomain boundary. This
allows the checksum update cost to scale with the boundary size rather than the subdomain size.
When using this technique with tasks that time-advance multiple steps, the subdomain in question
shrinks by two after each time step, ending with the subdomain size matching the tile size. The
flux out of the left and right boundaries, respectively, of the shrinking subdomain is

and

FL = (1 — 0.5c — + 0.5 (c2 — c)ttiL (5)

FR = 0.5(C C2)tliR + (1 + 0.5c — 0.5c2)uiR+1, (6)

where iL and iR are the left-most and right-most cells, respectively, currently inside the subdomain.
We use this approach to detect corruption only when using replay as our task resilience mechanism.

The performance of our benchmark will depend on tile size, number of tiles, number of itera-
tions, and number of time steps per iteration. A fixed global problem size can be decomposed at
different granularities both spatially and temporally. Increasing the spatial granularity decreases
runtime overhead (fewer tasks), decreases checksum overhead (better boundary to tile size ratio),
changes cache efficiency, increases replay cost in when faults are encountered (larger containment
granularity), and allows delays due to fault mitigation to propagate across the full domain more
quickly (because the delay can propagate one tile per iteration). Increasing the temporal granularity
decreases runtime overhead (fewer tasks), decreases checksum overhead (less frequent recompu-
tation of the checksum over the full tile), increases duplicate computation, increases replay cost
when faults are encountered, and decreases the rate (when expressed as a function of time-advance
steps rather than iterations) at which fault-mitigation delays can propagate across the full domain.

We started with a set of experiments designed to evaluate performance trade-offs and overall
cost in the non-resilient code in order to choose an appropriate base case. For these experiments,
worker 0 spawned all tasks and the runtime used work-stealing to distribute and balance the work-
load. We chose our global domain size for a single iteration to fill about 40% of the L3 cache.
We chose tile sizes in a range where two tiles (input and output) could roughly fit within L 1 or L2
cache. The configurations and their execution times are given in Table 1. The global domain size

58



and number of time steps were constant across configurations. The runs were done with checksums
turned on.

For some of these tests, the number of iterations used was much less than would be needed for
fault-mitigation delays to propagate across the domain many times. In choosing our base cases,
we opted for cases with a smaller number of steps per iteration than the optimal runs because they
performed almost as well and would give us interesting results with less CPU expense. Because
the tile granularity could impact resilience behavior and there were several configurations with
similar performance, we chose two base cases. Case A uses 128 tiles of size 16000 doubles, 128
steps per iteration, and 8192 iterations, giving an over-decomposition factor of 4 with 32 workers.
Case B uses 512 tiles of size 4000 doubles, 128 steps per iteration, and 8192 iterations, giving an
over-decomposition factor of 16 with 32 workers.

Table 1. Cost of different ways of spatially and temporally de-
composing a problem with 2,048,000 cells that need to be time-
advanced 131,072 steps. The time quoted is the fastest execu-
tion time from a set of three runs of each configuration using gcc
5.5.0. These runs were used only to choose an appropriate base
case problem for further experiments.

Tile size
(doubles)

Number of
tiles

Steps per
iteration

Number of
iterations

Time
(seconds)

2000 1024 16 8192 20
2000 1024 32 4096 9.1
2000 1024 64 2048 6.2
2000 1024 128 1024 5.6
2000 1024 256 512 5.9
4000 512 16 8192 9.6
4000 512 32 4096 6.4
4000 512 64 2048 5.5
4000 512 128 1024 5.3
4000 512 256 512 5.6
8000 256 16 8192 7.2
8000 256 32 4096 6.0
8000 256 64 2048 5.4
8000 256 128 1024 5.2
8000 256 256 512 5.3

16000 128 16 8192 6.7
16000 128 32 4096 5.8
16000 128 64 2048 5.4
16000 128 128 1024 5.2
16000 128 256 512 5.1
16000 128 512 256 5.2

59



Heat Diffusion in 3D

For our next benchmark, we solve heat diffusion (a parabolic PDE) on a 3D domain with periodic
boundary conditions using a 7-point stencil,

fij — (1 — 6014i, j + C(u Ui_ j A + + Ui j _1,k Ui J+1,k ,k+1) (7)

where the prime indicates the time-advanced state and

At )2 1
c =D(Ax— < 6 (8)

for stability.

We break the domain up into P3 contiguous, non-overlapping cubes each of size M3. Each
cube will be time-advanced by an independent task on each iteration to allow for parallelism.
Time-advancing a boundary value requires input from one of six immediate neighbors. Therefore,
a task will be ready to execute once the tasks that generate the previous data for its own cube and
the six neighboring cubes have completed. In the 3D case, for simplicity, we only allow a task
to perform a single time-advance. Memory allocations for cubes are (M + 2)3 , large enough to
include the neighboring values necessary to time-advance that one iteration without needing to
allocate temporary memory.

Again, we can detect corruption anywhere on a subdomain using physics-based checksums
because conservation requires that the sum of values over the subdomain only changes by the flux
through the subdomain boundary. This allows the checksum update cost to scale with the cube's
surface area rather than volume. As before, the subdomain in question shrinks by two in each
dimension after each time step in order to catch faults that happen on the boundary. The flux out
of all faces of the shrinking domain is

b b

F = E [(1 - C)Ua_1, j + CUa j + CUb, j + (1 — C)Ub+1,j,k]
k=a j=a

b b

+ E E[(1 CUi,a,k + (1 — c)Iti,b+1,k]
k=a i=a

b b

+ E E[(1-014i,j,a-1 j ,a CUij (1 — Oui,i,b+11
j=ai=a

b+1

+ E [14a-1,a-1,k Ua-1,b+1,k Ub+1,a-1,k ub+1,b+1,k]
k=a-1

b

+ E [Ua_ Ua_1,j ,b+1 Ub+1,j,a-1 4+1, j ,b+11
j=a

b

+ E [Ui,a-1,a-1 Ui,a-1,b+1 tii,b+1,b+1]
i=a

(9)

when the non-overlapping subdomain extends from a < x,y,z < b. Again, we use this approach to
detect corruption only when using replay as our task resilience mechanism.

60



The performance of our benchmark will depend on cube size, number of cubes, and number
of iterations. A fixed global problem size can be decomposed at different granularities spatially,
but not temporally as in 1D. Increasing the spatial granularity decreases runtime overhead (fewer
tasks), decreases checksum overhead (better surface area to volume ratio), changes cache effi-
ciency, increases replay cost when faults are encountered (larger containment granularity), and
allows fault-mitigation delays to propagate across the full domain more quickly (because delays
can propagate one cube per iteration).

We started with a set of experiments designed to evaluate performance trade-offs and overall
cost in the non-resilient code in order to choose an appropriate base case. For these experiments,
a single worker spawned all tasks and the runtime used work-stealing to distribute and balance the
workload.

We chose our global domain size for a single iteration to well exceed the L3 cache size. We
chose cube sizes in a range from fitting easily in L 1 cache to well exceeding L2 cache. The
configurations and their execution times are given in Table 2. The global domain size and number
of time steps were constant across configurations. The runs were done with checksums turned
on. Each ran for 256 iterations, which would only allow early fault-mitigation delays to propagate
across the domain a few times. Detailed performance analyses of the overhead of HClib that
describe this performance trend can be found in Section A.1. Based on this data, our chosen 3D
base case uses 163 cubes each representing a subdomain of size 323 (but requiring 343 doubles)
and runs for 1024 iterations to allow fault-mitigation delays to propagate well. This gives an over-
decomposition factor of 128 on 32 workers.

Table 2. Cost of different ways of spatially decomposing a 5123
problem size. Times quoted are the execution time of a single
trial of each configuration using gcc 5.5.0. These runs were used
only to choose an appropriate base case problem for further exper-
iments.

Subdomain
size

Cube memory
(KB)

Number of
cubes

Time
(seconds)

83 8 643 182
163 46 323 26
323 307 163 13
643 2246 83 23

Impact of Work-Stealing

To better understand the impact of work-stealing, we ran three additional non-resilient experiments
using our 1D and 3D stencils without checksums. In these experiments, we compared the execution
time when work-stealing was enabled to when each task was pinned to a specific worker. In 1D,
the tiles were grouped into 32 contiguous blocks, each assigned to a worker. In 3D, the cubes were

61



grouped into 32 contiguous blocks by dividing the domain by four in the x- and y-directions and
by two in the z-direction. When pinning tasks to a specific worker, they were all spawned by a
single worker but operated on initial conditions that had been created on the same worker where
the time-advance task was pinned.

For the first set of experiments, we did this for a balanced workload, i.e., each tile is of the same
size and does the standard stencil computation. The results are shown in Figure 25. Work-stealing
decreased the execution time for both 1D cases, indicating some source of imbalance was present.
This was corroborated by runtime metrics in the work-stealing case, where the run we analyzed
showed the ratio of the most tasks executed by a worker to the least was 1.86. This imbalance
could have been due to operating system noise, dynamic voltage scaling of cores, or differences
in cache hits between workers. It is also possible that spawning all tasks from a single worker
could have contributed to the imbalance, but this seems unlikely because, in the work-stealing
case we analyzed, that worker executed an above-average number of tasks. Depending on which
machine we used, in 3D we saw that allowing work-stealing resulted in either a slight performance
degradation (on Shiller and Hansen) or an improvement (on Cori). Performance numbers on Cori
can be found in Section A.2.

For the second set of experiments, we created an imbalance in the 1D workload by forcing a
single tile, on every iteration, to loop over its stencil eight times before the task was considered
complete. This had the effect of inflating the execution time of those tasks to be about 7.9x slower
than the other tasks. For the 3D stencil, we forced a single cube to loop over its stencil 50 times,
resulting in an inflated execution time of those tasks of about 33x that of other tasks. With an
over-decomposition factor of 128 for the 3D case, we would expect one worker to have 1.25x as
much work as the others when tasks are pinned. However, the difference in execution time between
the imbalanced and balanced cases with pinning was only 5%. When inflating the cost of a single
task, the average duration of the non-inflated tasks decreased significantly, perhaps due to having
less memory contention. We did not see a drop in non-inflated task cost when work-stealing was
allowed.

As shown in Figure 25, the execution time of the 1D imbalanced case was much higher than
the balanced case when tasks were pinned to workers. With work-stealing turned on, the runtime
was able to mitigate some of the imbalance. For case B, which has the higher over-decomposition
factor, the imbalance was effectively hidden. In 3D, the imbalanced case was slightly more ex-
pensive than the balanced case when comparing either pinned or work-stealing pairs. Turning on
work-stealing in the 3D imbalanced case had either a slight performance degradation (on Shiller
and Hansen) or an improvement (on Cori).

For the third set of experiments, we emulated a slow worker (worker 15) by making all tasks
executed on that worker loop over their stencil computations 50 times. In 1D, that inflated the
execution times of those particular tasks to be 47-50x slower than the unaffected tasks. In 3D,
the inflation was only 38x when tasks were pinned to workers and 27x when work-stealing was
allowed. As shown in Figure 26, the impact on global slowdown was much smaller when work-
stealing was allowed than when tasks were pinned to workers. When tasks were pinned to workers,
the global slowdowns were 23x for 3D, 47x for 1D case A, and 46x for 1D case B. Under work-
stealing, however, the global slowdowns were only 1.07x, 1.3x, and 1.2x, respectively.

62



Impact of Work-Stealing on Balanced vs lrnbalanced Applications

120 -

100 -

80 -

60 -

40 -

20 -

diko

1

►OP

mit Pinned

FANO Work-Stealing

ONit' go
IDA 1DA Irnbalanced 1DB 1DB Imbalanced 3D 3D lmbalanced

Application type

F'

Figure 25. Work-stealing vs. pinning tasks to workers for bal-

anced and imbalanced workloads on Shiller with gcc 5.5.0. There
is a clear benefit to work-stealing with the 1D stencil with both

balanced and imbalanced workloads. We see a small performance
hit from work-stealing in 3D on Shiller and Hansen for both the
balanced and imbalanced cases but saw a gain on Cori (see Sec-
tion A.2).

63



Impacts of work-stealing on a slow worker

40 -

10 -

0

MU Pinned

wria Work-Stealing

3D

1

hiramisim

1D Case A

Application type

Figure 26. Work-stealing vs. pinning tasks to workers when
emulating a slow worker. Work-stealing prevents other workers
from going idle for long periods while waiting on the slow worker,
resulting in a large decrease in execution time compared to when

tasks are pinned to workers. gcc 5.5.0 was used.

64



Resilience in the Absence of Faults

Having found in our non-resilient experiments that work-stealing can have a large benefit with large
imbalance without causing much, if any, slow down otherwise, we began resilience experiments
in the absence of faults with work-stealing turned on. Section A.4 discusses the memory usage of
the 1D stencil under different kinds of resilience. It is worth noting that the memory overhead of
replication is small (much less than 2x) because only the active work requires additional memory
(each replica writes independent output, which is then verified and cleaned up by the runtime).
Figure 27 compares the execution time of non-resilient, replay-resilient, and replication-resilient
runs in the absence of faults.

In 1D, the checksums used for detecting faults under replay were less expensive than the replay
mechanism itself, likely due to allowing tasks to advance multiple time-steps before re-computing
the subdomain checksum. The overhead of adding checksums to the non-resilient code was 1%.
The overhead of replay over the non-resilient code without checksums was 7% and 9%, respec-
tively, for the A and B cases. Contributions to the replay overhead, beyond the checksums, include
copying the lambda expression that defines the task and deferring the publish of the puts. The
overhead of replication was 101% and 100%, respectively, for the A and B cases. We found that
the fault-free overhead of resilience for the two 1D cases was fairly similar despite the different
over-decomposition factors.

In 3D, however, we saw something different for both replay and replication. The checksums,
contributing an 8% overhead, were far more expensive than the replay mechanisms itself. These
two overheads combined were only 9%. We did not attempt to performance-tune our 3D check-
sums and so an unrealized performance gain may have been possible there. Replication, surpris-
ingly, had only a 45% overhead. Additional analysis, described in Section A.3, showed this was
due to not doubling the number of L3 cache misses when going from non-resilient tasks to repli-
cated tasks.

Resilience with Synthetic Fault Injection

For our runs with faults, we inject faults deterministically by inputting a list of specific tasks that
should fail and then flipping a deterministic bit in the tile or cube output from that task. The bit
was carefully chosen to ensure no false positives or false negatives with checksums This was
done for easy simulator validation and is not meant to model real fault behavior. Each task was
independently given some probability of failure in the 0.01% to 1% range. We allowed at most one
replica to fail under replication resilience because triplication requires two out of three replicas to
agree. Under replay resilience, we allowed at most two failed attempts per unique task because
that was the runtime limit; increasing this limit would have increased the memory overhead of
replay resilience. Under these constraints, we built up our list of failed tasks by evaluating whether
each individual task should fail. When running multiple trials to find the fastest execution time,
we used the same failed task list for each trial. When we experimented with alternate failed task
lists (generated using a different random seed), we found results very similar to the ones presented
here.

65



Overhead of resilience in the absence of failures

rdim Na resilience, checksums

MI Replay, checksums

min No resilience, no checksums

ME Replication,

\

no checksums

.
00,

_riii,
3D 1D Case A

Application type

1D Case B

Figure 27. Comparison of execution time for non-resilient,
replay-resilient, and replication-resilient stencils. In 3D, replica-

tion has much less than a 2x overhead due to L3 cache benefits
while the much smaller replay overhead is due almost entirely to
checksum cost. In 1D, the replay overhead was mostly due to the

replay mechanism rather than the checksums. Replication in 1D

had roughly the expected 2x overhead.

66



Figures 28, 29, and 30 show the overhead as a function of fault rate per task of the three
different cases. The physical fault rate for the two 1D cases differed by a factor of four due to the
different over-decomposition factors used. Given the short task execution times, our chosen range
of fault rates all result in more than one fault per second on average. These fault rates have an
impact on execution time roughly proportional to cost of repeating only the failed tasks, which is
very small. For example, when 1% of tasks fail, additional work of 1% must be done, resulting
in roughly a 1% increase in overhead compared to the fault-free case. For a fixed physical fault
rate, choosing a higher over-decomposition factor should lessen the amount of re-work required to
mitigate those faults.

In addition to pure-replay and pure-replication resilience, we also tried mixing replay and repli-
cation. For the configurations we tested, the early iterations all used replay resilience while the later
iterations used replication. A label of x% means that the final x% of iterations used replication and
the rest used replay. We used checksums only for the tasks using replay resilience. The cost of
mixed resilience fell between the costs of replay and replication, as expected.

O
v
e
r
h
e
a
d
 (
%
 N
o
r
m
a
l
i
z
e
d
 t
o
 N
or

-R
es

il
ie

nt
 C
a
s
e
)
 

Resilience

100 -

Overhead with Respect to Failure Rate, ID Case A

80 -

60 -

40 -

20 -

0

•

—s— Replication Only

—*— 30% Replication

—N— 2D% Replication

—,k— 10% Replication

—•— Replay Only

• +

111111110 .9

0 10-4 10-3
Failure Rate

10 -2

Figure 28. Overhead of different resilience strategies for 1D case
A as a function of fault rate per task. The additional overhead of
mitigating faults is roughly the cost of repeating only the failed
tasks.

67



Overhead with Respect to Failure Rate, 1D Case B

-•- Replication Only

-+- 30% Replication

-•- 20% Replication

-i- 10% Replication

-•- Replay Only

A

6 10-4 10-3

Failure Rate

Figure 29. Overhead of different resilience strategies for 1D case
B as a function of fault rate per task. The additional overhead of
mitigating faults is roughly the cost of repeating only the failed
tasks.

68



O
v
e
r
h
e
a
d
 (
%
 N
o
r
m
a
l
i
z
e
d
 t
o
 N
on
-R
es
il
ie
nt
 C
a
s
e
)
 

Resilience Overhead with Respect to Failure Rate, 3D

100 -

80 -

60 -

40 -

20 -

0

—s— Replication Only

—*— 30% Replication

—•— 20% Replication

—,k— 10% Replication

—•— Replay Only

S-_,0,___----11

• 
a 
A 

0— 

a 
•

 .

6 10-4 10-3

Failure Rate

id -2

Figure 30. Overhead of different resilience strategies for 3D as a
function of fault rate per task. The additional overhead of mitigat-
ing faults is roughly the cost of repeating only the failed tasks.

69



5.2 Unstructured SPMV

The stencil application, in its baseline implementation, is perfectly well balanced with each tile and
its corresponding task having exactly the same amount of computational work, reflecting a struc-
tured mesh scenario. For the study it was desirable to also consider an application representative
of unstructured meshes which are inherently imbalanced. A common class of such applications
involve sparse matrix linear algebra and linear system solvers resulting from, say, finite element
discretization of solid/fluid mechanics partial differential equation (PDE) systems. A key com-
putational kernel in the linear system solvers is a sparse matrix vector multiplication operation.
Accordingly, we chose to include a sparse matrix-vector (SPMV) mini-application for the empiri-
cal evaluation.

We implemented a "tilecr sparse matrix-vector multiplication application in Habanero. The
sparse matrix, encoded in the compressed sparse row (CSR) format, and the vector are divided into
a set of row tiles where each tile is assigned an equal number of contiguous full rows (for the case
where the number of rows is not divisible by the number of tiles, the lower index tiles get an extra
row each). Each tile object has member data structures that contain the full dependency informa-
tion: a list of vector tiles whose elements are needed by this tile, for each such vector tile a further
list of subset element indices specifically needed (since the rows are sparse the dependency is not
on entire vector tile) and a count of remote row tiles that need this vector tile (for reference count-
ing purposes). The computation represents multiple iterations of the matrix-vector multiplication
and the task granularity is one task per tile.

In each iteration, each tile task accesses futures of the vector tiles it needs (solution at the previ-
ous iteration), "gets" the pointer (through the corresponding promise), accesses the required subset
of the vector, performs multiplication and "puts" the result of its vector tile into a separate promise
(to be accessed in the next iteration). This approach eliminates any extra copies of any of the vector
tiles (or any subsets thereof) but involves other trade-offs. Given a fixed global problem size, in-
creasing over-decomposition implies that the matrix is decomposed into increasingly smaller tiles
and each tile requires increasingly larger numbers of remote vector tiles, i.e., the number of futures
depended on increases on average. Conversely, each tile will also be accessed simultaneously by
a larger number of row tiles in each iteration, leading to the possibility of poor cache performance
due to simultaneous contentious access. In the extreme decomposition limit of exactly one row per
tile, the number of dependencies for each task will be equal the number of non zeros in that row.
However, as our experiments show, Habanero was able to hide the overhead of such aspects and
the execution times were nearly independent of over-decomposition factor.

Unlike structured mesh problems, data parallelism arising from domain decomposition of un-
structured meshes is case specific and not generalizable. Hence, a mini-application can only be
made to correspond to a specific example. The repository of sparse matrices "SuiteSparse" [68]
contains an open collection of sparse matrices arising from real applications, made available for
the purpose of "development and performance evaluation of sparse matrix algorithms!' From this
collection, we chose the sparse matrix titled crankseg_l since it had the desired attributes: (a)
the matrix corresponded to a solid mechanics problem, (b) the matrix sparsity was not banded
and had no discernible structure, and (c) it had 52,804 rows/columns and a total of 10,614,210

70



Figure 31. The computational domain/mesh corresponding to
the cranksegi matrix example (left), and its sparsity distribution
(right).

non-zeros which represents a relatively high average number of non-zeros per row (201) which
leads to higher computational intensity when decomposed. Figure 31 shows the computational
domain/mesh corresponding to this example, and an illustration of its sparsity distribution.

In order for the matrix-vector multiplication iterations to proceed sensibly (not produce NaNs)
the vector was initialised to be the leading eigen vector of the matrix (computed separately in
Matlab). At the end of each iteration, the multiplication result is normalized by the corresponding
eigen value such that the final result becomes equal to the eigen vector. This ensures that the
multiplication/normalization results in the same vector (within numerical precision) irrespective of
the number of iterations performed. This also allows a correctness check for the application.

The application was benchmarked to study what parameters affected the execution time. As
described above, since the global problem size is fixed, increasing over-decomposition could hurt
performance beyond a point, if the runtime is unable to hide the overheads due to the increas-
ing number of dependencies and simultaneous access. This, potentially adverse effect of over-
decomposition is illustrated in Figure 32 which shows the number of dependencies and number
of non-zeros, on a per tile/task basis, for two levels of decomposition: 32 and 128 tiles. As the
decomposition is increased, the number of dependencies increases and the number of non-zeros
per tile decreases. The inherent load imbalance in the application is also clearly evident in these
plots since both the number of non-zeros and the number of dependencies will have a bearing on
task execution times. As it turns out, Habanero did a very good job of minimizing the overhead
of over-decomposition, by effectively hiding it behind the load balancing. Figure 33 shows the
execution time per iteration, averaged over 100 iterations, for the matrix-vector multiplication for
various over-decomposition factors (ODFs). The execution times improve when ODF is increased
beyond 1 but remain fairly constant for higher ODFs, up to 8.

The final aspect of the benchmarking was to measure what parameters the task execution times
depended on. This information is necessary for the setup of the simulator experiments for this
application. Our measurements showed that the execution time of each individual task depended
mostly on the number of non-zeros and almost imperceptibly on the number of dependencies.

71



crankseg_l, 32 tiles

30 -

25 -

20 -

15

1C:

dependencies

10 15 20 25 30

tile index

crankseg_l, 32 tiles

600000 -

500000 -

400000 -

300000 -

200000

100000 -

0

Non-zeros

10 15 20
tile index

25 30

80

60

40

20

0

160000

140000

120000

100000

80000

60000

40000

20000

0

crankseg_1, 128 tiles

M dependencies

20 40 60 80

ile inde

crankseg_1, 128 tiles

100 120

Non-zeros

20 40 60 80 100 120
tile index

Figure 32. The influence of over-decomposition on number of
task dependencies (top) and number of non zeros (bottom) on a
per tile/task basis for the cranksegi matrix-vector multiplication
example. The plots on the left show the case of 32 tiles and on the
right show 128 tiles.

Figure 34 shows the execution times of each individual tile-task plotted against the corresponding
number of non-zeros for both the 32 and 128 tiles cases. A strong linear correlation is evident
suggesting that this was the main parameter influencing task execution times.

Resilience in the Absence of Faults

The physics of the stencil application allowed a light-weight low overhead checksum to be de-
ployed as a fault detection mechanism, which can trigger a task replay. More importantly, this
checksum operated only on the information on the local sub-domain and its ghost points, mak-
ing it a scalable and cost-effective approach. Unfortunately, such a fault detection approach was
not immediately apparent for the matrix-vector multiplication application. Algorithm-based fault

72



Execution times per iteration at varying ODF levels

3 4 5 6

Overdecomposition factor (ODF)

7

Figure 33. Influence of over-decomposition on task execu-
tion times of the crankseg _1 matrix-vector multiplication example.
Minimum/average/maximum execution time per iteration, mea-
sured over 100 iterations, are reported from 25 trials at various
ODF levels.

tolerance schemes have been proposed for matrix operations [48] and for iterative linear solvers
[69], but neither of these were immediately applicable to detect faults in the resulting vector of a
matrix-vector multiplication. Moreover, we hypothesize that detection mechanisms are desirable
only if they are low overhead, and hence their details should not influence the measurement of the
runtime overhead for resilience mechanisms.

Accordingly, we implemented a simplistic variant of the SPMV application, with replay and
replication turned on but no actual faults, to measure only the runtime overhead. In the case
of replay there is no additional work done, and the additional cost is purely that of the runtime
(whereas, in the stencil application, the checksums represent additional fault detection overhead).
For the replication case, all tasks are duplicated, and no task is triplicated since no faults occur.
The execution times for the three cases, i.e., no faults, no faults with replay API and no faults
with replication (i.e., default duplication) are shown in Figure 35 for the crankseg_l case with 128
tiles and 500 iterations. As is evident, the replay API incurs marginal overhead (-,--2, 3%), whereas
invoking replication incurs overhead commensurate with the amount of additional work (z-z, 100%).

73



Task execution times vs number of non zeros per tile for 32 tiles

0.016 -

0.015 -

0.014 -

77;

0.013 -

2 0.012 -

0.008 -

• • Measured times

— linear fit, R2=0.59

•

4 •
•
• •

•
•

.

•

•
•

•

200000 300000 400000 500000

number of non zeros

Task execution times vs number of non zeros per tile for 128 tiles

0.0050

0.0045

1-';" 0.0040

g 0.0035

0.0030

0.0025

0.0020

600000 40000 60000 80000 100000 120000 140000 160000

number of non zeros

• Measured times

— linear fit, R2=0.77

Figure 34. The execution time for each individual task plotted
against the number of non-zeros in the corresponding tile for the
cranksegi matrix-vector multiplication example, for the 32 tiles
(left) and 128 tiles (right) cases. The R2 value for a linear correla-
tion fit is also shown.

Resilience with Synthetic Fault Injection

As with the stencil application, experiments were performed with synthetic fault injection by trig-
gering a pre-determined set of tasks to "fair which further trigger the replay/replication actions
as the case may be. Each task is assigned an independent probability to fail and a given overall
failure rate translates to a certain subset of tasks (unique combinations of tile index and iteration
number) to be deemed as failed. The same restrictions as in the stencil case, i.e., in the replay
scenario at most two failed attempts per unique task and in the replication scenario at most one
replica task failure were allowed. This set up results in the number of failed tasks in either case to
be proportional to the overall failure rate.

Figure 36 shows the execution time overheads for the replay-resilient and replication-resilient
implementations for three failure rates in the range 10-3 to 10-2, compared with the no failure
case. As is evident from the results, the increase in execution time for recovering from failed tasks
is proportional to the failure rate, which is the best that can be achieved by any optimal and efficient
fault tolerance framework. This is a testament to the ability of Habanero to efficiently load balance
additional work arising out of the resilience actions upon a subset of failed tasks, and shows that
the promise of an AMT runtime in efficiently handling faults and incorporating fault tolerance
is fulfilled even for an inherently imbalanced application. The identical experiments were also
performed with the AMT simulator, as a verification and validation exercise for the simulator tool,
which is described in the next subsection.

74



Overhead of resilience in the absence of failures

10 -

No Resilience Replay Replication

Resilience Method

Figure 35. Comparison of execution time for non-resilient,
replay-resilient and replication-resilient matrix-vector multiplica-
tion application in the absence of failures. The times correspond
to the cranksegi case with 128 tiles and 500 iterations. All exe-
cution times are taken to be the minimum of 25 trials.

5.3 Simulator Verification and Validation

Creating the simulations

Though the math and computation varies significantly across the experiments, the creation of the
task DAGs for the simulator is largely the same. Since computation blocks are represented simply
as an amount of computation time, construction of the DAG only requires knowledge of the time
and dependencies of a given task. Each task is constructed as a vertex within the DAG, and edges
are added to describe dependencies.

In each simulation, the task DAG begins with a launcher task - representative of the main
function of the C++ applications - with negligible time and outward edges to each of the tasks
for the first iteration of the application. From there, each iteration has outward edges to the tasks
in the following iteration which have data dependencies. For the stencil applications, this is the
next iteration of the same task, along with the next iteration of the task's direct neighbors (IE not
diagonal neighbors). For the SPMV application this is found by inspecting the location of the non-
zeros in the matrix file. The tasks of the last iteration then has an outward edge to a final join task,
again with negligible time.

75



O
v
e
r
h
e
a
d
 [

!o
- N
o
r
m
a
l
i
z
e
d
 t
o 
No
n-
Re
si
li
en
t 
C
a
s
e
]
 

Resilience Overhead with Respect to Failure Rate, SPMV

100 -

80 -

60 -

40 -

20 -

o

•
,

—A— Replication Only

—0— Replay Only

•

10-3

Failure Rate

10-,

Figure 36. Comparison of execution time overhead for replay-
resilient and replication-resilient matrix-vector multiplication ap-
plication for three failure rates: 0 (no failures), 10-3 and 10-2.
The results correspond to the crankseg_1 case with 128 tiles and
500 iterations. All execution times are taken to be the minimum of
25 trials.

The primary difference in setup for the stencil and SPMV simulations lies in how the task
times are calculated. For the stencil applications, the task time parameters passed are used directly,
with the time of each task being uniformly distributed across the minimum and maximum values
provided. However, the times provided for the SPMV application are considered per-non-zero
rather than per-task - this means that the simulator must access the matrix being worked upon to
find the number of non-zeros each task has. From there, the per-task times are calculated by finding
a per-non-zero time (which is similarly uniformly distributed between the minimum and maximum
parameters passed) and multiplying by the number of non-zeros the task will work on.

During the creation of the task DAG, minimal modifications are needed for implementing re-
siliency methods - further, none of these require changing the structure of the graph. Instead, graph
vertexes have flags for enabling replay or replication, and some parameters for details such as the
maximum number of replays/replicas. For replay tasks, any additional overhead added to the task
due to checking the data for accuracy needs to be added during the task DAG creation. Further
changes such as adding replica tasks, triggering failures, and modifying the graph as needed to
handle failures are handled automatically by the discrete event component of the simulator.

76



Tuning the Shnulator

The simulator requires specific data on the individual task costs as well as a potentially large num-
ber of overhead values. Getting accurate values for timing without impacting the time can be
difficult for many experiments. To simplify this, most simulator experiments start with rough es-
timates for task timings, which are then refined through an iterative process with the goal being
to find the values which provide accurate wall-times. An example of this iterative tuning process
is described in the examples subsection of Section 3.2 A flaw of this system is that we are gen-
erally finding 'relatively correct' values, which will be discussed more further on. First, we will
investigate how the simulator was tuned for each experiment.

A simulator is worthless if it has to be tuned for each data point that it finds - much of the point
of a simulator is to get accurate data for otherwise unperformable experiments. With this in mind,
the simulator was tuned a minimal amount for each experiment. Typically, this took the form of
tuning for the extremes of an experiment, making experiments with several intermediary points the
most telling.

Looking at the simulated wall-times for an application with and without the resilience methods,
for instance, generally says little about the accuracy of the simulator. This is because the data
must be tuned to each data point - there is no effective way of knowing the inclusive overhead of
using check tasks to put into the simulator without tuning the simulator to the most appropriate
value. However, tests such as Figures 37, 38, and 39 give much more room for the simulator
to extrapolate unknown information. For those tests, the simulator was tuned only to the four
extremes of resilience method (replay only and replication only) and failure rate (no failure and
1% failure). The difference in execution between replay-only and replication-only runs provided
the difference in runtime overhead between the two methods - this coupled with being able to
extract a base time for tasks using one or the other resiliency method allowed the simulator to
extrapolate all of the rest of the values. Another good example for the accuracy of the simulator is
Figure 17. As the description in Section 3.2, this entire figure's simulations were tuned to only a
single data point for each application (1DA/1DB balanced) and the results are accurate within 4%.

Simulator Accuracy

The accuracy of the simulator is a two-faceted question. First, we look at the accuracy of the
outputs of the simulator. Second, we have to question the accuracy of the inputs of the simulator.
If the only way to get accurate outputs is by providing nonsensical inputs, there is clearly something
wrong with the simulator.

For most studies the simulator provides results accurate within 5% - including studies of work-
stealing, imbalance, over-decomposition, failure, and task replay. To see a more detailed compar-
ison between empirical and simulated data, refer to Figures 40. As discussed above, the minimal
simulator tuning means that not only can the simulator be forced to give correct outputs, but it is
modeling the workings of AMT resilience accurately enough to extrapolate to un-tuned simula-
tions. The restriction to this accuracy lies in task replication.

77



V&V: Simulating Mixed Resilience and Failure, 1D Case A

Experimental Simulated

10-4 10-2
Failure Rate

•
•

-•- Replication Only

-10- 30% Replication

20% Replication

-a- 10% Replication

-6- Replay Only

•

 •

 •

 •

 •

itr4 10-3

Figure 37. Comparison of simulated and empirical execution

times as a function of fault rate for different kinds of resilience for

Stencil 1D case A.

V&V: Simulating Mixed Resilience and Failure, 1D Case B

Experimental Simulated

Failure Rate

10-2

-•- Replication Only

-•- 30% Replication

-N- 20% Replication

- 10% Replication

-•- Replay Only

 •

•

10-3

Figure 38. Comparison of simulated and empirical execution

times as a function of fault rate for different kinds of resilience for

Stencil 1D case B.

78

10-2



V&V: Simulating Mixed Resilience and Failure, 3D

Experimental

10-2
Failure Rate

Simulated

•

■ 

—•— Replication Only

-4- 30% Replication
20% Replication

—a— 10% Replication

—•— Replay Only

•

MN

 •

•

 •

 •

20-3

Figure 39. Comparison of simulated and empirical execution
times as a function of fault rate per iteration for different kinds of
resilience for Stencil 3D. The simulator predictions are way off be-
cause the simulator can't predict the L3 cache benefit of replicating
tasks.

10-2

While a simulator with almost nonexistent hardware modeling is sufficient for most resilience
studies, task replication benefits from cache effects that require some degree of cache simulation
to model. Figure 39 demonstrates the difference in the empirical and simulated penalties for task
replication in the 3D stencil experiments. For more detail on how this depends on the cache, see
Section A.3. Looking at Figures 37 and 38, we see that some applications and configurations do
not benefit from these cache effects. There are two possible methods of handling this with the
simulator going forward: (1) we can do some high-level modeling of the cache, or (2) we can add
a parameter which scales the cost of replica tasks by some factor. The benefit of (2) is that the
simulator has less work to do, but the draw-back is that real-life studies must be conducted to find
that scaling factor - this is not always possible.

Beyond caring only about the output of the simulator, we must also ensure that the inputs to
the simulator are reasonable. Looking once again at Figure 39, it would be possible to erroneously
tune the simulator on the same data points and get outputs which match the empirical studies just
as well. This is because there is no usage of a non-resilient task to reference to, so by the data
provided it is possible that the non-resilient task takes significantly less time than the check task.
By setting the non-resilient tasks to take little time, we can get the replication only simulations to
line up with the empirical data, then we can add an unreasonable amount of check-task overhead
to get the replay only simulations to fit as well. Figure 41 demonstrates the better match found by
inaccurately manipulating the input to the simulator. The importance of avoiding this is that while
it can demonstrate accuracy for the parameters explicitly tuned for, if we tried including mixed
non-resilient and resilient runs using these same parameters the values would be significantly off.
Thus, we can see that ensuring the correct outputs only occur with reasonable inputs can help
us determine if something is incorrectly modeled in the simulator. Fortunately, the only instance

79



100

80

• 60

40

20

0

120

100

80

E
E 60

40

20

0

0

V&V: Cost of failure for 1D stencil Case A

ma Measured Replay

mai Measured Replication

Simulated

0.0001 0.001

Failure Rate

V&V: Cost of failure for 3D stencil

0.01

=Pi Measured Replay

Measured Rephcation

Simulated

0.0001 0.001

Failure Rate

0.01

V&V: Cost of failure for 1D stencil Case B

100 -

BO -

E
• 60 -

40

20 -

14

mis Measured Replay

Measured Replication

=I Simulated

1 1 1
0.0001 0.001

Failure Rate

V&V: Cost of failure for SPMV

0.01

0.001

Failure Rate

Figure 40. A comparison of simulated and empirical data for var-
ious applications' wall-times with replay-enabled and replication-
enabled runs at a range of failure rates.

ms Measured Replay

mg Measured Replication

Simulated

0.01

where incorrect inputs are required to match outputs is in the case of task replication - an already
understood inaccuracy of the simulator.

We can ensure that we are providing reasonable inputs by (1) applying simplified mathematical
models to the empirical wall-times and finding the approximate values of the simulator parameters
in the basic cases, (2) roughly reasoning about the relative cost of various actions, and/or (3)
verifying the simulator's outputs on more classes of experiments.

80



Incorrect V&V: Simulating Mixed Resilience and Failure, 3D

Experimental Simulated

HO
Failure Rate

•_,.____0 -411,

-0- Replication Only

-.- 30% Replication

-M- 20% Replication

-ii- 10% Replication

-•- Replay Only

. .................10

•

10-3

Figure 41. An example of how incorrect inputs can show seem-
ingly correct outputs.

81

10-2



6 Conclusion

We have analyzed resilience techniques enabled by asynchronous many-task (AMT) programming
models. The rest of the section provides a summary of the work, the outcome, and recommenda-
tions for future work in the ASC program.

6.1 Summary

In Section 3, our study starts with a survey of analytical models for deriving the execution time and
reliability of task graphs. The literature suggests no practical model for analyzing ASC application
workload. This motivated us to build a discrete-event resilient-AMT program simulation frame-
work facilitated by a number of performance parameters for tuning the quality of simulations. Our
simple task-DAG and work-stealing scheduler model successfully predicts the performance behav-
ior of our 1D stencil code. The drawback of our simulator approach is the lack of a data locality
model, leading to the poor prediction of task replication performance in the 3D stencil cases, as
discussed in Section 5. Adding a better locality model would improve the prediction quality and
its capability beyond on-node AMT program execution.

In Section 4, the design of the resilient-AMT programming model is discussed. Our prototype
is extended from the HClib library in collaboration with Georgia Institute of Technology and Rice
University. The original APIs of HClib provide ways to instantiate tasks with data dependencies
expressed by publish (promise) and fetch (future) semantics, and we leveraged these to accom-
modate readily usable resilient task APIs (replication, replay and ABFT). The replication incurs
extra computation and its correctness is checked by the equivalence of the published data. The
correctness-checking exploits the equivalence operator of the associated data type (class) to sup-
port application-agnostic correctness. When the task does not guarantee the determinism of output
under the same input, this equivalence operator needs to tolerate the differences between the repli-
cated tasks. This can happen for certain algorithms and accelerator architectures with massive
hardware threads, which may not guarantee computing reproducibility under the same input. The
task replay API accommodates inexpensive resilient operations with a few extra input parameters
over the original task instantiation API, and these extra parameters enable generic and application-
specific failure detection. The algorithm-based fault tolerance (ABFT) API has the same spirit as
the task replay API. Instead of replaying the same task, a user-defined ABFT task is spawned for
forward or more application-specific recovery. Additionally, we have discussed our proposal of a
checkpoint and restart capability as an extension of the task replay API. This requires an abstrac-
tion of persistent storage to allow any platform-specific implementations. The checkpoint data is
fed to the publish and fetch semantics of promise and future to unify all resilience techniques in
the same AMT programming framework.

The empirical evaluation in Section 5 covers three application instances representing explicit
PDE solvers to assess the overhead and performance trade-offs of task replay and task replication,
and the capability of the runtime to handle delays from task recovery or system failures. With
synthetic failure injection, we have observed that work-stealing is essential to mitigate slowdowns

82



due to recovery or system failure. The runtime overhead of task replication is expensive (up to
101% of the non-resilient code) but it does not necessarily double the execution time when the
replicated tasks are scheduled to exploit temporal locality of task input. The runtime overhead of
task replay is 3%-9%, depending on the error-detection overhead and granularity of the task itself,
under the absence of faults. The additional overhead of the recovery from task failures exhibits a
linear growth with increasing frequency. In the 1D and 3D stencil cases, the execution time only
increases by approximately 1% from the non-failure case to the 1% failure frequency, which is
equivalent to hundreds of task failures in a second. These results demonstrate the scalability of
AMT-based resilience. We have observed similar growth in the task replication cases.

6.2 Outcome of the Work

There are three major lessons learned from this work, as follows:

1. Resilience techniques derived from an AMT programming framework (HClib) allow
efficient and scalable recovery under frequent failures.

2. Work-stealing is an essential technique for AMT scheduling in order to mitigate the
delay from recovery and unexpected system faults.

3. The task and data abstraction in the AMT paradigm enables (a) abstraction of re-
silience patterns, (b) performance predictions with a simulator, and (c) readily usable
APIs for application resilience.

The traditional checkpoint/restart (C/R) approach is intended for the bulk-synchronous MPI pro-
gramming model under the that assumption failure is a rare event. It targets hard failures, where
the detection is relatively straightforward through the MPI runtime or HPC middleware, and is the
method of choice for ASC applications today. However, C/R is not a great mitigation technique
for high-frequency failures and unexpected system slowdowns; its bulk-synchronous execution
pattern prevents forward progress when additional failures occur within the recovery window on
any resource. Introducing our resilient-AMT idea to ASC applications mitigates the shortcom-
ing of traditional C/R, and thus allows scalable failure mitigation. Task decomposition allows
localization and isolation of failures in our resilient-AMT framework, and thus keeps the recovery
inexpensive. Although it is not the center of the discussion in the report, introduction of AMT
has already been proven beneficial for some ASC application workloads that do not fit into the
SPMD/CSP paradigm [15, 21]. Our report has demonstrated additional benefits to introding the
AMT programming model to a larger class of ASC applications.

Additionally, our work realizes the four resilience programming concepts suggested by Her-
oux [70]. This work was originally aimed at exploring the Local Failure Local Recovery concept
for scalable application recovery. Interestingly, our resilient-AMT prototype already covers the
other three concepts. The task replication and replay APIs allow selective reliability; the use of
replication and replay on individual tasks is at the user's discretion. The task replay and ABFT

83



APIs enable skeptical programming in which user-defined inexpensive error detection is inte-
grated. The response to the error is either task replay (rollback) or recovery (application-specific
correction). The AMT execution model apparently relaxes the assumption of bulk-synchrony
of conventional parallel programs. Despite the progress of system-based load balancing such as
fine-grained thermal throttling and DVFS to control the performance of individual computing cores
and memory subsystems, the work-stealing scheduling mitigates unexpected performance variabil-
ity far better than the system-based approach.

6.3 Recommendations for Future Work

Resilience of MPI+AMT models

With the increasing complexity of node architecture, the flat-MPI (MPI-only) model may not con-
tinue to scale on modern HPC systems. One alternate approach is the MPI+X model, where X
stands for node-level parallel programming. Today, OpenMP and Kokkos serve as X to bring data
parallelism at the node level, but task-parallelism (AMT) is emerging to better handle interaction
between threads and message passing to interleave communication and computation. Better inte-
gration of MPI and node programming models has been a major research topic both in the MPI
and programming model communities [71, 72]. Despite its emerging importance, resilience and
fault tolerance for this hybrid model have yet to be studied. To this end, we propose to extend our
resilient-AMT approach to support MPI or its equivalent. One approach is to encapsulate mes-
sage passing calls in a task so that their resilience is managed by task replay or replication. This
task-based abstraction potentially mitigates the complexity of asynchronous checkpoint protocols
[41, 44].

Resilience extension of Kokkos

Kokkos[22] provides an abstraction of application data (arrays) and on-node parallel program exe-
cution patterns to realize performance portability across multiple platforms. Kokkos now provides
a new tool, called partition master, to allow multiple "master threads to act independently rather
than being limited to strictly data-parallel execution. A per-node independent thread opens the
door to seamless integration with external AMT programming model and runtime systems, and
our resilient-AMT prototype could leverage this new capability.

The outcome of our work also suggests possible extension of Kokkos to support resilience. The
data representation of Kokkos (Kokkos : :View) is a templated, light-weight C++ class to handle
reference counting, storage allocation, data layout, and replica management specific to heteroge-
neous node architecture. It is possible to extend Kokkos : :View to adapt the prornise and future
syntax of our resilient-AMT framework. In particular, a lack of idempotency means some refac-
toring of the internals would be needed, although the interface extension can done through new
template parameters. Another option is to provide an AMT-specific data representation to import
Kokkos : :View as a class member, and leave the new class to operate on the data using the method

84



calls supported by Kokkos : :View.

Another direction is extending Kokkos' parallel computing (loop) patterns, such as parallel_for,
interface to support replication, replay and algorithm-based fault tolerance in data-parallel compu-
tation. One approach is to integrate our resilient-AMT as the back-end of Kokkos' data-parallel
computation framework, quickly enabling explorations of many real applications written with
Kokkos. However, this brings an issue with the existing interoperability of Kokkos with other
popular runtime software such as OpenMP. Another issue is the overhead of the AMT runtime
that might be unnecessary for data-parallel computation. For a long term solution, careful design
exploration is required.

Resilience of distributed AMT models

Distributed AMT programming models such as HPX [73] and DARMA [21] are aimed at coarse-
grain tasking executed across multiple computing nodes. This involves a global runtime scheduler
for orchestrating the tasks and data, which requires a non-trivial protocol of meta-data management
and the exchange of data instances between computing nodes. This is due to the substantially
high overhead of data movement across the network. Adding resilience capability faces the same
challenge of minimizing the data movement overhead. To this end, protocols such as work-stealing
need extra care to avoid data movement to remote nodes, and most recovery operations should
be preferably performed within a single node.

Before significant prototyping of a resilient distributed AMT framework, we recommend the
following investigations: (1) identifying the types of errors and failures unique to distributed
AMT settings, (2) refinement of our resilient-AMT simulator to support distributed recovery
protocols and (3) simulator-based prediction of the performance penalties and trade-offs of
resilience techniques in the on-node AMT and distributed AMT models. We anticipate that
items (2) and (3) need macro-scale network delay and data locality models integrated into the
simulator for accurate performance predictions.

Furthermore, it is desirable to address the resilience of hard failures such as node failures/losses,
which further complicates the resilience protocol of a distributed AMT runtime, in particular re-
dundancy management of data instances. The persistent data abstraction idea discussed in Section
4 would help the design of replica management to shield users from the complexity of data man-
agement.

Simulator-assisted performance modeling of on-node parallel programming models

As discussed in the distributed AMT case, our simulator can be refined by adding better hard-
ware performance models to predict the performance of applications and resilience operations
more accurately. To keep the simulation time reasonable, we recommend using "macro" perfor-
mance of hardware components (cache, memory and ALUs) rather than precise "micro" models
for simulating applications at the clock-cycle level. A possible direction is to integrate our simu-

85



lator capability with SST [63] as a new capability component. We anticipate our on-node runtime
performance model to complement SST's macro-scale network-wide and micro-scale chip-level
simulation capabilities.

Abstraction of error and fault notification in the systern layer

Since the genesis of this project, we have explored programming models to mitigate errors and fail-
ures manifested to the application layer. This manifestation often involves the assistance of other
runtime and system software. For example, we have leveraged the fault-tolerant MPI prototype
that abstracts the failure notification of network and remote processes (nodes) [7] in the past. In
this work, we leave the user responsible for defining errors and failures based on application data.
This user-level error and failure detection would be improved with a common API to query the
health status of the system and hardware, in particular on-node components such as cores, cache,
and memory. This feature exists in the middleware layer or system management tools of large scale
HPC systems [74], but there is no mechanism for the application layer to access this type of in-
formation. On the other hand, several APIs and libraries have been developed to allow abstraction
and accessing the system layer for resource allocation and power management such as hwloc [67]
and PowerAPI [75]. Similar APIs to access node status and health with a good abstraction would
enable the user to design more effective error and failure detection. This system-level information
would also assist the runtime layer to proactively respond to the faults and errors before they are
manifested in application data. For example, the runtime scheduler can change the task assignment
and data allocation to avoid faulty resources on a particular core or NUMA region, or automatically
enable more resilience enhancement to those tasks and data instances potentially damaged by the
specific faults and errors at the system level.

86



A Detailed Performance Analyses on NERSC's Cori

A.1 Impact of Task Creation Overhead in HClib

To study the runtime overhead of HClib, we ran the 3D stencil code with different cube sizes
keeping the same number of data points (128M points). Also, we prepared two synthetic bench-
marks that create the same number of 1) empty tasks and 2) empty tasks + promises. Note that
the latter has the same dependencies as the original stencil 3D code. The performance numbers
are summarized in Table A.1. The table shows that the performance numbers vary greatly even
though the data size is the same. The primary cause is due to task/promise creation overhead in
HClib, particularly when a massive number of tasks is created. For example, the 643 cube count
case creates 67 million tasks(/promises), and the synthetic benchmark numbers show the runtime
overhead accounts for most of the execution time (i.e., the 643 and 323 cube count cases). While
our prior study [65] indicates that HClib's runtime overhead is small enough, the results emphasize
the importance of spawning a reasonable number of tasks.

Subdomain Cube memory
(KB)

Number of
cubes

Stencil 3D
Performance Cache Misses

Synthetic Benchmark
async+promise async onlysize

83 8 643 156 sec 20.5% 147 sec 115 sec

163 46 323 22.0 sec 26.1% 18.1 sec 13.6 sec

323 307 163 10.4 sec 20.4% 2.23 sec 1.79 sec

643 2246 83 16.5 sec 29.6% 0.27 sec 0.22 sec

Table A.1. Performance numbers for 32 workers with different
cube sizes (3D stencil, 128M points, step = 256) on Cori. gcc 7.1.0
was used.

Also, while the runtime overhead decreases as the number of spawned tasks decreases as shown
in Table A.1, the 83 cube count case is not the fastest. This trend is because the size of the working
set increases as the number of spawned tasks decreases, which can affect cache access efficiency.
To study this trend, we measured the overall cache miss rate by using the perf command and the
results are shown in the "Cache Misses" column. The results clearly show a strong correlation
between the cache miss rates and the overall performance numbers (except the 643 cube count
case, where the task/promise creation overhead is dominant).

A.2 Impact of Work-Stealing

Table A.2 shows 3D stencil's performance numbers for 32 workers with different worker-cube
mapping policies on Cori. The "pinned" variant pins each worker to specific tiles and there is no
work-stealing, whereas the "work-stealinr variants perform work-stealing but differ in its policy
(allowing both inter- and intra-socket work-stealing vs. allowing intra socket work-stealing only).
Overall, the results show that the work-stealing variants show better performance than the pinned

87



CPU Frequency
Workloads How tiles are pinned to workers default 1.2 GHz 1.8GHz 2.3 GHz
balanced pinned 35.0 sec 56.3 sec 42.6 sec 37.5 sec

work-stealing (inter+intra socket) 33.5 sec 52.5 sec 40.1 sec 35.0 sec
work-stealing (intra socket only) 32.3 sec 51.3 sec 39.0 sec 34.0 sec

imbalanced pinned 38.7 sec 69.7 sec 50.7 sec 42.4 sec
work-stealing (inter+intra socket) 34.0 sec 53.1 sc 40.4 sec 35.7 sec
work-stealing (intra socket only) 32.8 sec 52.4 sec 39.6 sec 34.6 sec

Table A.2. Performance numbers for 32 workers with different
worker-cube mapping policies on Cori (3D stencil). gcc 7.1.0 was
used.

variant where tasks are properly load balanced. Also, the results show that avoiding inter-socket
work-stealing gives additional speedups.

To study how Intel's Turbo Boost Technology affects the overall performance, we also ran the
code at different CPU frequencies ranging from 1.2GHz to 2.3GHz, which are valid frequencies
that can be specified through the --cpu-f req=<frequency in KHz> option for the srun job. In
summary, while the performance degrades as CPU frequency decreases, the performance trends
remain the same - i.e. the work-stealing variants outperform the pinned variant. This is in contrast
to the experiments performed on the Shiller cluster, even though they have the same CPUs and
node topology (shown in Figure 24). Figure A.1 illustrates the difference in the impact of work-
stealing for the two machines, with both machines using the default frequencies and inter-socket
work-stealing.

It is worth noting that the default variant (w/o specifying CPU frequency) shows even bet-
ter performance than the 2.3GHz variant, which is the highest possible frequency which can be
specified manually. Performance analyses with Intel VTune Amplifier indicate that, in the default
variant, the CPU frequency of each are scaled to 1.2x (approximately 2.76GHz).

A.3 Impact of Cache in HClib's Resilient Runtimes

While the replication runtime executes tasks two times, the results shown in Figure 27 show that the
replication variant is not always 2x slower than the variants that execute each task only once (e.g.,
normal execution and replay without any faults). We analyzed the reason using HPCToolkit ([76],
Fig. A.2), which enables sampling-based performance measurements with low-overhead, on Cori.
For accurate performance analyses, we configured and built HPCToolkit with PAPI [77], which
allows us to collect measurements based on hardware performance monitoring unit (PMU). With
the HPCToolkit enabled with the sampling frequency of 750Hz, we ran the 3D stencil code with
163 cubes, each of which has 323 points, and 1024 time steps, and collected the following PAPI
events: L 1 data misses (PAPI_L1_DCM), L2 cache misses, (PAPI_L2_TCM), and L3 cache misses

88



_ 30

E
To

20

10

Impact of Work-Stealing an Different Machines, Same Hardware

nm Pinned

WA Work-Stealing

p ,

1

10, 
1

, 11
1

3D, Cori 3D lrnbalanced, Cori 3D, Shiller 3D lrnbalanced, Shiller

Application type, Machine

Figure A.1. A chart showing the difference in the impact of
work-stealing between the Cori and Shiller machines.

Total Execution Time PAPLLLDCM PAPLL2_TCM PAPLL3_TCM
Replay (no fault, once) 40.58 sec 7.97E+ 10 3.32E+ 10 6.21E+ 08
Replication (duplicates) 73.18 sec 1.61E+ 11 6.36E+ 10 9.19E+ 08

Table A.3. Performance numbers with the sampled PAPI events
on Cori.

PAPI_L3_TCM. Table A.3 includes the performance numbers and performance counter numbers
for 1) the replay runtime without any failures, resulting in executing each task just once, and 2)
the replication runtime in which each task is executed twice. Table A.3 indicates that, while the
replication runtime doubles the number of L 1/L2 cache misses, it does not double the number of
L3 cache misses compared to the replay runtime because most of the cubes reside on the L3 cache.
That is why the replication variant is not 2x slower than the variants that execute each task only
once. This effect was not seen with the 1D stencil due to the smaller problem size fitting better
within L3 cache.

Also, it is worth noting that the HPCtoolkit can not collect the all the PAPI preset events due
to hardware restrictions. Tables A.4 shows a part of the available PAPI events on Cori.

89



a• • 
2-heaUd_sirnpleepp

hpcviewer

0

169 chk_(0.0),
170 chkos,(0.0), chkxp_(0.0), chkri_(0.0), chkyp_(0.0),
1711 chkzp_(0.8), do_checksues_(do_checkswe)
172 {
173 // compute assumed checksum at the end of construction
174 if (do_checksums_){
175 chk_ self-ochk_ wn-vchkxp_ s op-ochlaus_ yrs-ochkyp_

%.2-CallingCoMsadVieve(Mmt3tAimpl05.2-CalleimviewOleaL3dsimple) E3 I Ti..241st‘nevi(hest_Bd.simole)1 - 0

11-3 6114 RTI 0,XA-
Scope PAPI_Ll_DCM:Sum v PAPI_L2_TCM:Sum (I) PAPI_L3_TCM:Sum REALTIME (usec):Sum CYCLES:Sum (1)
.execute_task 1.79e+11 99.4% 4.33e+10 99.78 8.67e+09 100.0 1.30e+09 97.3% 3.49e+12 97.0%

1.41714:crt_work_loop 1.75e+11 97.1% 4.22e+10 97.1% 8.44e+09 97.38 1.26e+09 94.2% 3.38e+12 93.9%
1.421251:hclib_end_finish 4.09e+09 2.3% 1.11e+09 2.5% 2.30e+08 2.7% 4.15e+07 3.1% 1.11e+11 3.1%

.[noperator0 1.79e+11 99.3% 4.32e+10 99.3% 8.63e+09 99.5% 1.25e+09 93.5% 3.44e+12 95.4%
P.hclib::calljambda<std::enablejf<(1)==(7),voidx:typehclib:sesilience::rei 1.79e+11 99.3% 4.32e+10 99.3% 8.63e+09 99.5% 1.24e+09 93.0% 3.42e+12 95.0%
1.[Qasync_await_sync<advance_file(Tile_t&,Tile_t&,Tile_t&,Tile_t&,THe_t&, 1.79e+11 99.0% 4.26e+10 98.1% 8.47e+09 97.7% 1.22e+09 91.3% 3.37e+12 93.5%
,illOperat00) 1.79e+11 98.9% 4.24e+10 97.6% 8.46e+09 97.58 1.22e+09 91.5% 3.37e+12 93.6%
.crt_work_looP 1.77e+11 97.7% 4.24e+10 97.54 8.44e+09 97.3% 1.29e+09 96.9% 3.49e+12 96.9%
.Tile3M:apply_stencil 9.86e+10 54.6% 8.83e+09 20.3% 6.00e+06 0.1% 5.86e+08 44.0% 1.70e+12 47.1%
.[1] Tile3D::Tile3D(Tile3D const., Tile3D const., Tile3D const., Tile3D const 7 . 9 7 e+10 44.1% 3.32e+10 76.4% 8.41e+09 97.0% 6.21e+08 46.6% 1.65e+12 45.75

1.49694: [1]Operator0 7.97e+10 44.1% 3.32e+10 76.4% 8.41e+09 97.08 6.21e+08 46.6% 1.65e+12 45.7%
.InTile3D=opy_z_plane(std:wector<double,std::aHocator<double»cons 3.83e+10 21.2% 1.67e+10 38.3% 2.14e+09 24.7% 1.96e+08 14.7% 5.09e+11 14.1%
•[I] _gnu_cxx::_normaljterator<double", std::vector<double, std::allocator. 3. 7 7 e+10 20.9% 1.72e+10 39.5% 3.00e+09 34.6% 2.10e+08 15 . 8% 5.20e+11 14.4%
•[I] _gnu_cxx::_normaLiterator<double., std::vector<double, std::allocator. 3.77 e+10 20.9% 1.72e+10 39.581 3.00e+09 34.6%12.106+08 15.8%15.20e+11 14.48

tit 1-CalbaCom.ctView(hmet_3&.MmaW) It,l-CellemView(leatActsimple) 1.16 14URView(MmUcLaimple)1 0

I it 3 6 114 71 If A-
smm
•execute_tasK

PAPLU_DCM SUIT1
4.00e+11 99.86

PAPU2JCM Sum 10
9.18e+10 99.89

PAPLIAJCM Sum (9
9.50e+09 99.9%

REALTIME (us.0 Sum (9
2.35e+09 98.7%

CWMES Sum 10
6.49e+12 98.5%

3.99e+11 99.6% 9.17e+10 99.7% 9.48e+09 99.6% 2.33e+09 98.1% 6.45e+12 98.0%
•[I] operator() 3.57e+11 89.09 8.18e+10 89.0% 9.24e+09 97.2% 2.12e+09 89.3% 5.87e+12 89.18
•hclib::calljambda <void hclib::resilience::diamond::async_await <advancel 3.57e+11 89.04 8.19e+10 89.18 9.24e+09 97.2% 2.11e+09 88.98 5.84e+12 88.88
,.[1] operator() 3.57e+11 89.09 8.16e+10 88.8% 9.23e+09 97.0% 2.12e+09 89.1% 5.86e+12 88.96
•hclib::calljambda<std::enable jf <(2)==((3)-(1)), void>;:type hclib::resilier 3.34e+11 83.3% 7.64e+10 83.1% 8.92e+09 93.8% 1.93e+09 81.2% 5.32e+12 80.8%
•[I] operator() 3.34e+11 83.3% 7.64e+10 83.1% 8.92e+09 93.8% 1.93e+09 81.2% 5.32e+12 80.88
•[I] hclib::finish(std::function<void ()>&&) 2.92e+11 72.88 6.75e+10 73.4% 8.72e+09 91.7% 1.74e+09 73.38 4.78e+12 72.68

2.92e+11 72.79 6.72e+10 73.08 8.72e+09 91.7% 1.74e+09 73.3% 4.78e+12 72.78
•Tile3DzapPly_stencil 1.95e+11 48.8% 1.72e+10 18.7% 2.00e+07 0.2% 1.18e+09 49.8% 3.21e+12 48.7%

ile a cons Ile a const ile a cons ile a conS 1.61 e+11 40.18 6.360+10 69.2% 9.19e+09 96.7% 9.180+08 38.69 2.600+12 39.58
.MTile3D::copy_z_plane(Md:wector<double,st&allocator<double»con: 7.86e+10 19.6% 3.05e+10 33.1% 2.50e+09 26.3% 3.61e+08 15.2% 1.03e+12 15.6%
PTLAnu_cxx::_normaLitemtor<double., Mthwector<double,std::allocator 7.70e+10 19.2% 3.16e+10 34.4% 3.39e+09 35.6% 3.67e+08 15.48 9.84e+11 15.0%
.ULAnu_cxx::_normaLitemtor<double,Mdzvector<double,std::allocator 7.70e+10 19.28 3.16e+10 34.4% 3.39e+09 35.6% 3.67e+08 15.4% 9.84e+11 15.0%
.Wdoublestd::_copy_move<false,tnm,std:sandorn_access_iterator_tag: 7.70e+10 19.2% 3.16e+10 34.4% 3.39e+09 35.6% 3.67e+08 15.4% 9.84e+11 15.0%
.[I]doublestd::_copy_move_a<false,doubk:const",double">(doublecor 7.70e+10 19.2% 3.16e+10 34.4% 3.39e+09 35.6% 3.67e+08 15.4% 9.84e+11 15.0%
I._memmove_avx_unaligned 7.34e+10 18.3% 2.95e+10 32.1% 3.31e+09 34.8% 3.40e+08 14.3% 9.13e+11 13.9%
oUboolhchb,resiliencezdiamond=heckjesult_helper<void.>(hclib::resn 4.13e+10 10.38 7.94e+09 8.6% 5.60e+07 0.6% 1.66e+08 7.0% 4.79e+11 7.3%
..[I]hclitrxesilience::diamicmd::promase_t<void.>::eguM(intint) 4.13e+10 10.3% 7.94e+09 8.6% 5.60e+07 0.6% 1.66e+08 7.06 4.79e+11 7.38
•[I] Tile3D::equals(hclib::resilience::obj.) 4.13e+10 10.3%,7.94e+09 8.6% 5.60e+07 0.6% 1.66e+08 7.0%,4.79e+11 7.3%

12*of 375M V

Figure A.2. HPC Toolkit

90



Name Profilable Description
PAPI_L1_DCM Yes Level 1 data cache misses
PAPI_L1_ICM Yes Level 1 instruction cache misses
PAPI_L2_DCM No Level 2 data cache misses
PAPI_L2_ICM Yes Level 2 instruction cache misses
PAPI_L1_TCM No Level 1 cache misses
PAPI_L2_TCM Yes Level 2 cache misses
PAPI_L3_TCM Yes Level 3 cache misses

Table A.4. A part of the profilable PAPI preset events on Cori.

Listing 17. A synthetic HClib program for the heap profiling.

1 int main (int argc, char
2 hclib::launch(M) (
3 // do nothing
4 });

5 1

A.4 Heap Profiling Results

* * argv) {

We measured how much heap memory the resilient runtimes use by using Massif, which is a heap
profiler from the valgrind suite. In this experiment, with massif enabled, we ran 1) a synthetic
program that only executes an empty task (Listing 17) on a vanilla HClib runtime and 2) the 1D
stencil program with 128 tiles, each of which has 16,000 points, 1,048,576 time steps on the vanilla
and resilient runtimes. For the 1D stencil measurements, we profiled each resilient variant for 5
mins because the full profiling took over ten hours; within the time we profiled, the heap usage had
reached a steady state.

Table A.5 shows the heap profiling results on Cori. First, the results indicate that the allocated
memory size increases as the number of workers increases. This is because the HClib runtime
creates N deques per place, where N is the number of workers, and there are 99 places in the plat-
form. For example, the vanilla HClib runtime consumes 6.1 GB of heap memory with 32 workers
even when no task is executed. Second, by comparing the synthetic and Stencil 1D numbers on
the vanilla runtime, we identified that Stencil 1D used approximately 500MB. Third, we also iden-
tified that the replay and replication runtimes used approximately 350MB and the mix of them
additionally consumed 60MB.

The first source of the overhead of a resilient task is that we save the lambda inside the resilient
runtime. Replay-promise uses one additional pointer and diamond-promise uses three additional
pointers per promise. Another source of overhead is the use of a promise to return the result of
error checking. Finally, the replay task involves some additional variables such as an error checking

91



Synthetic Stencil 1D
vanilla vanilla Replay Replication Mix Replay Mix Replication

1 worker 0.19 GB 0.67 GB 1.02 GB 0.98 GB 1.08 GB 1.05 GB
32 workers 6.19 GB 6.67 GB 7.02 GB 6.99 GB 7.08 GB 7.05 GB

Table A.5. Heap profiling results for 1) a synthetic benchmark
and 2) Stencil 1D on Cori.

Subdomain Number of
cubes

HClib (vanilla)
1 worker 2 workers 4 workers 8 workers 16 workers 32 workerssize

123 323 108 sec 60.0 sec 35.7 sec 20.9 sec 11.9 sec 16.8 sec
243 163 79.9 sec 41.2 sec 23.6 sec 13.1 sec 7.22 sec 4.01 sec

483 83 67.8 sec 35.1 sec 19.8 sec 11.1 sec 6.54 sec 3.37 sec

963 43 60.0 sec 33.9 sec 20.2 sec 15.7 sec 15.8 sec 8.01 sec

Table A.6. The scalability of the 3D stencil code with different
cube sizes (54M points, step = 200) on the vanilla HClib runtime
on Cori. gcc 7.1.0 was used.

function and its parameter. These variables get saved as a part of the lambda thereby making the
lambda bigger.

Another point to note is that replication does not double the memory requirement at any point
in time during execution. This is because we are over-decomposing the problem and only a few of
the tiles, equal to the number of workers, at any given time. Replication runs for double the amount
of time, thereby doubling the total amount of data allocated and deallocated, but not the amount
of data at any single snapshot. The additional replicated copies generated during the execution of
resilient tasks get deallocated as soon as equality checking is done thereby removing the need for
additional memory.

A.5 Scalability Study

To study the scalability of HClib, we ran the 3D stencil code with different datasets and resilient
variants on Cori. The performance numbers are summarized in Table A.6, Table A.7, and Ta-
ble A.8. Overall, the results show good scalability except for the 323 cube count cases, where the
task/promise creation overhead is dominant as discussed in Section A.1. Note that the configura-
tions studied here differ from those presented in Section 5.1.

92



Subdomain
size

Number of
cubes

HClib (replay,
1 worker

no fault)
2 workers 4 workers 8 workers 16 workers 32 workers

123 323 122 sec 65.9 sec 41.9 sec 26.4 sec 18.8 sec 27.8 sec

243 163 81.4 sec 41.6 sec 23.8 sec 13.6 sec 7.41 sec 4.30 sec

483 83 68.5 sec 35.0 sec 20.0 sec 11.2 sec 6.65 sec 3.40 sec

963 43 61.2 sec 33.7 sec 20.5 sec 15.8 sec 15.8 sec 8.03 sec

Table A.7. The scalability of the 3D stencil code with different
cube sizes (54M points, step = 200) on HClib's replay runtime
without failure on Cori. gcc 7.1.0 was used.

Subdomain
size

Number of
cubes

HClib (replication,
1 worker

duplicates)
2 workers 4 workers 8 workers 16 workers 32 workers

123 323 207 sec 111 sec 64.7 sec 37.5 sec 21.5 sec 27.8 sec

243 163 154 sec 78.6 sec 43.6 sec 24.3 sec 13.1 sec 6.91 sec

483 83 132 sec 67.2 sec 37.3 sec 21.1 sec 12.8 sec 6.52 sec

963 43 120 sec 66.8 sec 42.3 sec 33.7 sec 34.0 sec 16.9 sec

Table A.8. The scalability of the 3D stencil code with different
cube sizes (54M points, step = 200) on HClib's replication runtime
without failure on Cori. gcc 7.1.0 was used.

93



References

[1] O. Subasi, J. Arias, O. Unsal, J. Labarta, and A. Cristal, "Nanocheckpoints: A task-based
asynchronous dataflow framework for efficient and scalable checkpoint/restart," in 2015 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based Process-
ing, March 2015, pp. 99-102.

[2] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir, "Toward Exascale
Resilience: 2014 Update," Supercomput. Front. Innov.: Int. J., vol. 1, no. 1, pp. 5-28, Apr.
2014. [Online]. Available: http://dx.doi.org/10.14529/jsfi140101

[3] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji, J. Belak,
P. Bose, F. Cappello, B. Carlson, A. A. Chien, P. Coteus, N. A. Debardeleben,
P. C. Diniz, C. Engelmann, M. Erez, S. Fazzari, A. Geist, R. Gupta, F. Johnson,
S. Krishnamoorthy, S. Leyffer, D. Liberty, S. Mitra, T. Munson, R. Schreiber, J. Stearley,
and E. V. Hensbergen, "Addressing failures in exascale computing," Int. J. High
Perform. Comput. Appl., vol. 28, no. 2, pp. 129-173, May 2014. [Online]. Available:
http ://dx. doi . org/10.1177/1094342014522573

[4] "Update on the Exascale Computing Project (ECP)," https://exascaleproject.org/wp-
content/uploads/2017/04/Messina-ECP-Presentation-HPC-User-Forum-2017-04-18.pdf, ac-
cessed: 2017-05-31.

[5] G. Sun, Exploring Memory Hierarchy Design with Emerging Memory Technologies,
ser. Lecture Notes in Electrical Engineering. Springer, 2013. [Online]. Available:
https://books.google.es/books?id=DaHjAAAAQBAJ

[6] K. Teranishi and M. A. Heroux, "Toward local failure local recovery resilience model
using mpi-ulfm," in Proceedings of the 21st European MPI Users' Group Meeting, ser.
EuroMPI/ASIA '14. New York, NY, USA: ACM, 2014, pp. 51:51-51:56. [Online].
Available: http://doi.acm.org/10.1145/2642769.2642774

[7] M. Gamell, R. F. V. der Wijngaart, K. Teranishi, and M. Parashar, "Specification of fenix mpi
fault tolerance library, version 1.0.1," Sandia National Laboratories, Tech. Rep. SAND2016-
9171, May 2016.

[8] M. Gamell, K. Teranishi, M. A. Heroux, J. Mayo, H. Kolla, J. Chen, and M. Parashar,
"Local recovery and failure masking for stencil-based applications at extreme scales," in
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC '15. New York, NY, USA: ACM, 2015, pp. 70:1-70:12.
[Online] . Available: http ://doi. acm. org/10.1145/2807591.2807672

[9] H. Kaiser, M. Brodowicz, and T. Sterling, "Parallex an advanced parallel execution model
for scaling-impaired applications," in 2009 International Conference on Parallel Processing
Workshops, Sept 2009, pp. 394-401.

94



[10] C. Augonnet, S. Thibault, R. Namyst, and R-A. Wacrenier, "Starpu: a unified platform for
task scheduling on heterogeneous multicore architectures," Concurrency and Computation:
Practice and Experience, vol. 23, no. 2, pp. 187-198, 2011. [Online]. Available:
http://dx.doi.org/10.1002/cpe.1631

[11] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, "Legion: Expressing locality and
independence with logical regions," in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC '12. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012, pp. 66:1-66:11. [Online]. Available:
hap ://d1. acm. org/citation. cfm?id=2388996.2389086

[12] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J. Dongarra, "PaR-
SEC: Exploiting Heterogeneity to Enhance Scalability," Computing in Science Engineering,
vol. 15, no. 6, pp. 36-45, Nov 2013.

[13] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Martorell, and
J. Planas, "Ompss: a proposal for programming heterogeneous multi-core architectures,"
Parallel Processing Letters, vol. 21, no. 2, pp. 173-193, 2011. [Online]. Available:
https://doi.org/10.1142/S0129626411000151

[14] A. Fernández, V. Beltran, X. Martorell, R. M. Badia, E. Ayguadé, and J. Labarta, "Task-
based programming with ompss and its application," in Euro-Par 2014: Parallel Process-
ing Workshops: Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26,
2014, Revised Selected Papers, Part II, L. Lopes, J. Zilinskas, A. Costan, R. G. Cascella,
G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia,
S. Hunold, S. L. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, and M. Alexander,
Eds. Springer International Publishing, 2014, pp. 601-612.

[15] J. Bennett, R. Clay, G. Baker, M. Gamell, D. Hollman, S. Knight, H. Kolla, G. Sjaardema,
N. Slattengren, K. Teranishi, J. Wilke, M. Bettencourt, S. Bova, K. Franko, P. Lin, R. Grant,
S. Hammond, S. Olivier, L. Kale, N. Jain, E. Mikida, A. Aiken, M. Bauer, W. Lee, E. Slaugh-
ter, S. Treichler, M. Berzins, T. Harman, A. Humphrey, J. Schmidt, D. Sunderland, P. Mc-
Cormick, S. Gutierrez, M. Schulz, A. Bhatele, D. Boehme, P.-T. Bremer, and T. Gamblin,
"ASC ATDM Level 2 Milestone #5325: Asynchronous Many-Task Runtime System Analy-
sis and Assessment for Next Generation Platform," Sandia National Laboratories, Tech. Rep.
SAND2015-8312, September 2015.

[16] T. G. Mattson, R. Cledat, V. Cav, V. Sarkar, Z. Budimli, S. Chatterjee, J. Fryman, I. Ganev,
R. Knauerhase, M. Lee, B. Meister, B. Nickerson, N. Pepperling, B. Seshasayee, S. Tasirlar,
J. Teller, and N. Vrvilo, "The open community runtime: A runtime system for extreme scale
computing," in 2016 IEEE High Performance Extreme Computing Conference (HPEC), Sept
2016, pp. 1-7.

[17] W. Ma and S. Krishnamoorthy, "Data-driven fault tolerance for work stealing computations,"
in Proceedings of the 26th ACM International Conference on Supercomputing, ser.
ICS '12. New York, NY, USA: ACM, 2012, pp. 79-90. [Online]. Available:
http://doi.acm.org/10.1145/2304576.2304589

95



[18] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta, "A runtime heuristic to selec-
tively replicate tasks for application-specific reliability targets," in 2016 IEEE International
Conference on Cluster Computing (CLUSTER), Sept 2016, pp. 498-505.

[19] O. Subasi, T. Martsinkevich, F. Zyulkyarov, O. Unsal, J. Labarta, and F. Cap-
pello, "Unified fault-tolerance framework for hybrid task-parallel message-passing
applications," The International Journal of High Performance Computing Ap-
plications, vol. 0, no. 0, p. 1094342016669416, 2016. [Online]. Available:
http ://dx.doi . org/10.1177/1094342016669416

[20] T. Martsinkevich, O. Subasi, O. Unsal, F. Cappello, and J. Labarta, "Fault-tolerant protocol
for hybrid task-parallel message-passing applications," in 2015 IEEE International Confer-
ence on Cluster Computing, Sept 2015, pp. 563-570.

[21] J. C. Bennett, M. T. Bettencourt, R. L. Clay, H. C. Edwards, M. W. Glass, D. S. Hollman,
H. Kolla, J. J. Lifflander, D. J. Littlewood, A. H. Markosyan, S. G. Moore, S. L. Olivier, J. A.
Perez, E. T. Phipps, F. Rizzi, N. L. Slattengren, D. Sunderland, and J. J. Wilke, "ASC ATDM
Level 2 Milestone #6015: Asynchronous Many-Task Software Stack Demonstration," Sandia
National Laboratories, Tech. Rep. SAND2017-9980, September 2017.

[22] H. C. Edwards, C. R. Trott, and D. Sunderland, "Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns," Journal of Parallel
and Distributed Computing, vol. 74, no. 12, pp. 3202 — 3216, 2014, domain-Specific
Languages and High-Level Frameworks for High-Performance Computing. [Online].
Available: http://www. sciencedirect.com/science/article/pii/S0743731514001257

[23] J. T. Daly, "A higher order estimate of the optimum checkpoint interval for restart dumps,"
Future Gener. Comput. Syst., vol. 22, no. 3, pp. 303-312, Feb. 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.future.2004.11.016

[24] S. Levy, B. Topp, K. B. Ferreira, D. Arnold, T. Hoefler, and P. Widener, "Using simulation to
evaluate the performance of resilience strategies at scale," in High Performance Computing
Systems. Performance Modeling, Benchmarking and Simulation, S. A. Jarvis, S. A. Wright,
and S. D. Hammond, Eds. Cham: Springer International Publishing, 2014, pp. 91-114.

[25] P. D. Marinescu and G. Candea, "LFI: A practical and general library-level fault injector," in
2009 IEEE/IFIP International Conference on Dependable Systems Networks, June 2009, pp.
379-388.

[26] V. C. Sharma, A. Haran, Z. Rakamaric, and G. Gopalakrishnan, "Towards formal approaches
to system resilience," in 2013 IEEE 19th Pacific Rim International Symposium on Depend-
able Computing, Dec 2013, pp. 41-50.

[27] I. Laguna, M. Schulz, D. F. Richards, J. Calhoun, and L. Olson, "Ipas: Intelligent
protection against silent output corruption in scientific applications," in Proceedings
of the 2016 International Symposium on Code Generation and Optimization, ser.
CGO '16. New York, NY, USA: ACM, 2016, pp. 227-238. [Online] Available:
http ://doi. acm. org/10.1145/2854038 .2854059

96



[28] Q. Guan, N. BeBardeleben, P. Wu, S. Eidenbenz, S. Blanchard, L. Monroe, E. Baseman,
and L. Tan, "Design, use and evaluation of P-FSEFI: A parallel soft error fault injection
framework for emulating soft errors in parallel applications," in Proceedings of the 9th
EAI International Conference on Simulation Tools and Techniques, ser. SIMUTOOLS'16.
ICST, Brussels, Belgium, Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2016, pp. 9-17. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3021426.3021429

[29] P. Rech, L. L. Pilla, F. Silvestri, P. O. A. Navaux, and L. Carro, "Neutron sensitivity and
software hardening strategies for matrix multiplication and FFT on graphics processing
units," in Proceedings of the 3rd Workshop on Fault-tolerance for HPC at extreme scale,
jointly held with the 22nd International Symposium on High-Performance Parallel and
Distributed Computing, HPDC'13, New York, NY, USA, June 18, 2013, 2013, pp. 13-20.
[Online] . Available: http ://doi. acm. org/10.1145/2465813 .2465816

[30] T. J. Dell, "A White Paper on the Benefits of Chipkill-Correct ECC for PC Server Main
Memory," http://www.eee.umd.edu/courses/enee759h.S2003/references/ibm_chipkill.pdf,
accessed: 2017-05-31.

[31] M. L. Shooman, Reliability of Computer Systems and Networks: Fault Toler-
ance,Analysis,and Design. New York, NY, USA: John Wiley & Sons, Inc., 2002.

[32] N. El-Sayed and B. Schroeder, "Reading between the lines of failure logs: Understanding
how hpc systems fair in 2013 43rd Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks (DSN), June 2013, pp. 1-12.

[33] F. Shoji, "The K Computer and its failrues," May 2016, Workshop on Fault Tolerance
for eXtreme scale Systems (FTXS2016), Invited Presentation. [Online]. Available:
https://drive.google.com/file/d/OB8kTs8rf047FTkltTzJDeEEyNFU/view

[34] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer, "Top 500." [Online]. Available:
http://www.top500.org

[35] C. D. Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and W. Kramer, "Lessons
learned from the analysis of system failures at petascale: The case of blue waters," in
Proceedings of the 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, ser. DSN '14. Washington, DC, USA: IEEE Computer Society,
2014, pp. 610-621. [Online]. Available: http://dx.doi.org/10.1109/DSN.2014.62

[36] C. D. Martino, W. Kramer, Z. Kalbarczyk, and R. Iyer, "Measuring and understanding
extreme-scale application resilience: A field study of 5,000,000 hpc application runs," in
2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, June 2015, pp. 25-36.

[37] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, "Design, modeling,
and evaluation of a scalable multi-level checkpointing system," in Proceedings of the
2010 ACM/IEEE International Conference for High Performance Computing, Networking,

97



Storage and Analysis, ser. SC '10. Washington, DC, USA: IEEE Computer Society, 2010,
pp. 1-11. [Online]. Available: https://doi.org/10.1109/SC.2010.18

[38] P. H. Hargrove and J. C. Duell, "Berkeley lab checkpoint/restart (blcr) for linux clusters,"
Journal of Physics: Conference Series, vol. 46, no. 1, p. 494, 2006. [Online]. Available:
http://stacks.iop.org/1742-6596/46/i=1/a=067

[39] F. Cappello, K. Mohror, B. Nicolae, R. Gupta, S. Di, A. Moody, E. Gonsiorowski, and
G. Becker, "VeloC," https://veloc.readthedocs.io/en/latest/, 2018.

[40] B. Bouteiller, F. Cappello, T. Herault, K. Krawezik, P. Lemarinier, and M. Magniette,
"MPICH-V2: a Fault Tolerant MPI for Volatile Nodes based on Pessimistic Sender Based
Message Logging," in Supercomputing, 2003 ACM/IEEE Conference, Nov 2003, pp. 25-25.

[41] A. Bouteiller, G. Bosilca, and J. Dongarra, "Redesigning the message logging model for
high performance," Concurr. Comput. : Pract. Exper., vol. 22, no. 16, pp. 2196-2211, Nov.
2010. [Online]. Available: http://dx.doi.org/10.1002/cpe.v22:16

[42] J. Lifflander, E. Meneses, H. Menon, P. Miller, S. Krishnamoorthy, and L. Kale, "Scalable
Replay with Partial-Order Dependencies for Message-Logging Fault Tolerance," in Proceed-
ings of IEEE Cluster 2014, Madrid, Spain, September 2014.

[43] T. Ropars and C. Morin, "Active optimistic and distributed message logging for message-
passing applications," Concurrency and Computation: Practice and Experience, vol. 23,
no. 17 , pp. 2167-2178, 2011. [Online] Available: http://dx.doi.org/10.1002/cpe.1775

[44] A. Guermouche, T. Ropars, M. Snir, and F. Cappello, "HydEE: Failure containment without
event logging for large scale send-deterministic mpi applications," in Proceedings of the
2012 IEEE 26th International Parallel and Distributed Processing Symposium, ser. IPDPS
'12. Washington, DC, USA: IEEE Computer Society, 2012, pp. 1216-1227. [Online].
Available: http://dx.doi.org/10.1109/IPDPS.2012.111

[45] T. Ropars, T. V. Martsinkevich, A. Guermouche, A. Schiper, and F. Cappello, "SPBC: Lever-
aging the characteristics of MPI HPC applications for scalable checkpointing," in 2013 SC -
International Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC), Nov 2013, pp. 1-12.

[46] R. Riesen, K. Ferreira, D. Da Silva, P. Lemarinier, D. Arnold, and P. G. Bridges, "Alleviating
scalability issues of checkpointing protocols," in Proceedings of the International Conference
on High Peiformance Computing, Networking, Storage and Analysis, ser. SC '12. Los
Alamitos, CA, USA: IEEE Computer Society Press, 2012, pp. 18:1-18:11. [Online].
Available: http://dLacm.org/citation.cfm?id=2388996.2389021

[47] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H. Yoon, L. Kaplan,
and M. Erez, "Containment domains: A scalable, efficient, and flexible resilience
scheme for exascale systems," in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, ser. SC '12. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2012, pp. 58:1-58:11. [Online]. Available:
http://dLacm.org/citation.cfm?id=2388996.2389075

98



[48] K.-H. Huang and J. A. Abraham, "Algorithm-based fault tolerance for matrix operations,"
IEEE Transactions on Computers, vol. C-33, no. 6, pp. 518-528, June 1984.

[49] J. S. Plank, Y. Kim, and J. J. Dongarra, "Algorithm-based diskless checkpointing for fault
tolerant matrix operations," in Twenty-Fifth International Symposium on Fault-Tolerant Com-
puting. Digest of Papers, June 1995, pp. 351-360.

[50] Z. Chen, "Algorithm-based recovery for iterative methods without checkpointing," in
Proceedings of the 20th International Symposium on High Peiformance Distributed
Computing, ser. HPDC '11. New York, NY, USA: ACM, 2011, pp. 73-84. [Online].
Available: http://doi.acm.org/10.1145/1996130.1996142

[51] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz, "Fault resilience of the
algebraic multi-grid solver," in Proceedings of the 26th ACM International Conference on
Supercomputing, ser. ICS '12. New York, NY, USA: ACM, 2012, pp. 91-100. [Online].
Available: http://doi.acm.org/10.1145/2304576.2304590

[52] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B. Debusschere, O. LeMaitre, and
O. Knio, "Ulfm-mpi implementation of a resilient task-based partial differential equations
preconditioner," in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at
Extreme Scale, ser. FTXS '16. New York, NY, USA: ACM, 2016, pp. 19-26. [Online].
Available: http ://doi. acm. org/10.1145/2909428 .2909429

[53] M. Salloum, J. R. Mayo, and R. C. Armstrong, "In-situ mitigation of silent data corruption in
pde solvers," in Proceedings of the ACM Workshop on Fault-Tolerance for HPC at Extreme
Scale, ser. FTXS '16. New York, NY, USA: ACM, 2016, pp. 43-48. [Online]. Available:
http ://doi. acm. org/10.1145/2909428 .2909433

[54] H. C. Edwards and B. A. Ibanez, "Kokkos' Task DAG Capabilities," Sandia National Labo-
ratories, Tech. Rep. SAND2017-10464, September 2017.

[55] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, "A pluggable framework for
composable hpc scheduling libraries," in 2017 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), May 2017, pp. 723-732.

[56] O. Subasi, G. Yalcin, F. Zyulkyarov, O. Unsal, and J. Labarta, "Designing and modelling se-
lective replication for fault-tolerant hpc applications," in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), May 2017, pp. 452-457.

[57] S. Gupta, T. Patel, C. Engelmann, and D. Tiwari, "Failures in large scale systems:
Long-term measurement, analysis, and implications," in Proceedings of the International
Conference for High Peiformance Computing, Networking, Storage and Analysis, ser.
SC '17. New York, NY, USA: ACM, 2017, pp. 44:1-44:12. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126937

[58] R. A. Sahner and K. Trivedi, "Performance and reliability analysis using directed acyclic
graphs," IEEE Transactions on Software Engineering, vol. SE-13, no. 10, pp. 1105-1114-
193, 1987.

99



[59] J. Valdes, R. E. Tarjan, and E. L. Lawler, "The recognition of series parallel digraphs"," SIAM
J. Comput., vol. 11, no. 2, pp. 298-313, 1982.

[60] J. T. Robinson, "Some analysis techniques for asynchronous multiprocessoer algorithms,"
IEEE Transactions on Software Engineering, vol. SE-5, no. 1, pp. 24-31, 1979.

[61] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert, "Reliability of task graph schedules
with transient and fail-stop failures: complexity and algorithms," Journal of Scheduling,
vol. 15, no. 5, pp. 615-627, Oct 2012. [Online]. Available: https://doi.org/10.1007/s10951-
011-0236-y

[62] T. Hoefler, T. Schneider, and A. Lumsdaine, "Loggopsim: simulating large-scale applications
in the loggops model," in HPDC, 2010.

[63] "The Structural Simulation Toolkit," http://sst-simulator.org.

[64] J. G. Siek, L.-Q. Lee, and A. Lumsdaine, The Boost Graph Libraryy: User Guide and Refer-
ence Manual. Addison Wesley, 2001.

[65] A. Hayashi, S. R. Paul, M. Grossman, J. Shirako, and V. Sarkar, "Chapel-on-x: Exploring
tasking runtimes for pgas languages," in Proceedings of the Third International Workshop on
Extreme Scale Programming Models and Middleware, ser. ESPM2' 17. New York, NY, USA:
ACM, 2017, pp. 5:1-5:8. [Online] Available: http://doi.acm.org/10.1145/3152041.3152086

[66] L. Jaulmes, M. Casas, M. Moretó, E. Ayguadé, J. Labarta, and M. Valero, "Exploiting
asynchrony from exact forward recovery for due in iterative solvers," in Proceedings of
the International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC '15. New York, NY, USA: ACM, 2015, pp. 53:1-53:12. [Online].
Available: http://doi.acm.org/10.1145/2807591.2807599

[67] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier, S. Thibault,
and R. Namyst, "hwloc: A Generic Framework for Managing Hardware Affinities in HPC
Applications," in 2010 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing, Feb 2010, pp. 180-186.

[68] "SuiteSparse Matrix Collection," https://sparse.tamu.edu.

[69] P. G. Bridges, K. B. Ferreira, M. A. Heroux, and M. Hoemmen, "Fault-tolerant linear solvers
via selective reliability," arXiv preprint arXiv: 1206.1390, 2012.

[70] M. A. Heroux, "Toward Resilient Algorithms and Applications,"
http://arxiv.org/abs/1402.3809, 2014.

[71] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cav, M. Chabbi, M. Grossman, V. Sarkar, and
Y. Yan, "Integrating asynchronous task parallelism with mpi," in 2013 IEEE 27th Interna-
tional Symposium on Parallel and Distributed Processing, May 2013, pp. 712-725.

[72] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and C. T. Vaughan, "Early
experiences co-scheduling work and communication tasks for hybrid mpi+x applications," in
2014 Workshop on Exascale MPI at Supercomputing Conference, Nov 2014, pp. 9-19.

100



[73] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey, "Hpx: A task
based programming model in a global address space," in Proceedings of the 8th
International Conference on Partitioned Global Address Space Programming Models,
ser. PGAS '14. New York, NY, USA: ACM, 2014, pp. 6:1-6:11. [Online]. Available:
http://doi.acm.org/10.1145/2676870.2676883

[74] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile, S. Monk,
N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, "The lightweight distributed metric service: A scalable infrastructure for continu-
ous monitoring of large scale computing systems and applications," in SC '14: Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2014, pp. 154-165.

[75] J. H. L. III, R. E. Grant, M. Levenhagen, S. Olivier, K. Pedretti, L. Ward, and A. J. Younge,
"High Performance Computing - Power Application Programming Interface Specification
Version 2.0," Sandia National Laboratories, Tech. Rep. SAND2017-2684, March 2017.

[76] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and
N. R. Tallent, "Hpctoolkit: Tools for performance analysis of optimized parallel programs
http://hpctoolkit.org," Concurr. Comput. : Pract. Exper., vol. 22, no. 6, pp. 685-701, Apr.
2010. [Online] . Available: http ://dx. doi. org/10.1002/cpe .v22: 6

[77] D. Terpstra, H. Jagode, H. You, and J. Dongarra, "Collecting performance data with papi-c,"
in Tools for High Performance Computing 2009, M. S. Miller, M. M. Resch, A. Schulz, and
W. E. Nagel, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 157-173.

101



DISTRIBUTION:

1 MS 0899 Technical Library, 8944 (electronic copy)



v1.40

103



Sandia National Laboratories

104


