
U.S. Department of Energy 

Brookhaven National Laboratory 

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under 
Contract No.                                   with the U.S. Department of Energy. The publisher by accepting the 
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, 
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others 
to do so, for United States Government purposes. 

Submitted to the Symposium on International Safeguards: Building Future Safeguards Capabilities Conference
to be held at Vienna, Austria

November 05 - 08, 2018

Y. Cui,

Using Deep Machine Learning to Conduct Object-Based Identification and
Motion Detection on Safeguards Video Surveillance

BNL-207942-2018-COPA

Nonproliferation and National Security Department

USDOE National Nuclear Security Administration (NNSA), Office of Nonproliferation and
Verification Research and Development (NA-22)

DE-SC0012704



DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors. 
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  



CUI et al. 

 
1 

USING DEEP MACHINE LEARNING TO CONDUCT  
OBJECT-BASED IDENTIFICATION AND  
MOTION DETECTION ON  
SAFEGUARDS VIDEO SURVEILLANCE 

 
Y. CUI 
Brookhaven National Laboratory, Upton, USA 
Email: ycui@bnl.gov 
 
Z.N. GASTELUM2, R. REN1, M.R. SMITH2, Y. LIN1, M.A. THOMAS2, S. YOO1, W. STERN1 
1Brookhaven National Laboratory, Upton, USA 
2Sandia National Laboratories, Albuquerque, USA 

 
Abstract 
 
Video surveillance is one of the core monitoring technologies used by the International Atomic Energy Agency 

(IAEA) Department of Safeguards at safeguarded nuclear facilities worldwide.  Current IAEA image-review software has 
functions for scene-change detection, black image detection and missing scene analysis, but their capabilities are not 
optimum.  The current workflow for the detection of safeguards relevant events heavily depends on inspectors’ laborious 
visual examination of surveillance videos, which is a time-consuming process and prone to errors.  To improve the accuracy 
of the process and reduce inspectors’ burden, the paper proposes using deep machine learning to detect objects of interest in 
video streams and to conduct object-based motion detection.  The hypothesis of this work is that deep machine learning will 
reduce the burden on inspectors and reduce errors by automatically locating and identifying objects and activities of interest 
in video streams.  Objects of interest include casks and fuel assemblies that are typically monitored by inspectors.  The 
algorithm being developed in this work is based on a computationally efficient deep machine learning algorithm – You Only 
Look Once (YOLO) – but is further devised to address specific challenges related to the operation of nuclear facilities.  The 
developed model (which is called YOLO-SG – YOLO for Nuclear Safeguards) is evaluated with data sets collected at the 
test facilities at Brookhaven National Laboratory (BNL) and Sandia National Laboratories (SNL).  The initial focus of the 
research is for application at safeguarded nuclear reactors, such as pressurized heavy-water reactors, where video 
surveillance is broadly deployed, but can be extended to other use cases of nuclear safeguards.  The detailed structure of 
YOLO-SG model is introduced and the test results are reported in the paper.   

1. INTRODUCTION 

Containment and surveillance (C/S) are important measures in the implementation of the International 
Atomic Energy Agency (IAEA) safeguards.  Video surveillance systems monitor and record activities at nuclear 
facilities and provides visual evidence of events to support the drawing of safeguards conclusions [1].  During 
review of surveillance video data, inspectors review all the footage with specific focuses, e.g. general checking, 
looking for and examining specific events, and investigating anomalous events recorded by other safeguards 
sensors or equipment.  However, the video surveillance data covers not only safeguards-relevant activities, but 
also daily operation of safeguarded facilities.  The latter doesn’t involve movement of objects of interest, but is a 
large portion of the video surveillance data set, which makes the video-review process time consuming especially 
when the review software cannot help filter out these irrelevant video clips.  Although the IAEA has been 
upgrading its video surveillance system hardware and the Next Generation Surveillance System (NGSS) has 
incorporated the newly designed digital surveillance cameras, surveillance video review still depends on the 
General Advanced Review Station Software (GARS).  Despite the recent improvements in GARS to enable the 
review of records produced by the NGSS, the software has limited functions to automate the review process.  To 
improve the efficiency of surveillance video review, advanced features like object-based scene change detection 
are required. 

The paper proposes using machine learning algorithms to improve the efficiency of the surveillance video 
review process.  Specifically, the focus of this research is to develop a machine learning algorithm for object 
detection and object-based motion detection.  Currently, machine learning algorithms are used in many domains 
with large amounts of data where it is not feasible for a human to analyse all of the data.  In computer vision, deep 
machine learning algorithms have reached better than human performance in detecting and locating objects in 
images.  By applying these machine learning techniques to surveillance video review, an inspector can more easily 
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review the video with respect to the objects of interest and, hence, the efficiency of video review process can be 
improved significantly. 

Although object detection algorithms have been developed in general, applying the technique to video 
surveillance in an IAEA safeguards environment is still challenging.  First, the setup of nuclear facilities is 
complex and varies from one facility to another.  Although the objects of interest may be similar, the background 
of videos/images can be very different.  Additionally, the objects themselves may also vary in size, colour and 
shape.  Second, in general, performance of machine learning algorithms depends on the quality of the training 
data set from which it learns.  A more representative data set containing a larger number of images with different 
views of object of interest results in better trained models.  However, the number and quality of images of objects 
of interest at a nuclear facility may be limited due to time constraint, physical access or the operator’s proprietary 
information concerns.  Hence, the available training set is small.  Third, ideally the algorithms for this specific 
application should be simple and not need high computational power in order to allow execution of the code on 
inspectors’ laptop computers, and enable field deployment and quick execution in video analysis.  Many current 
algorithms require significant computational power such as graphical-processing unit (GPU) optimized machines, 
which may not be accessible in field, or cloud computing, which may be limited due to information protection 
protocols. 

In the scope of this research, a machine learning algorithm is being developed focusing on object detection, 
which is critical to addressing the above challenges.  This algorithm is based on You-Only-Look-Once (YOLO) 
machine learning model and is referred as YOLO for Nuclear Safeguards or YOLO-SG.  Section 2 provides a 
high-level background of deep machine learning in object detection.  Section 3 discusses the details of YOLO-   
SG, and Section 4 presents the test results of YOLO-SG. 

2. DEEP MACHINE LEARNING FOR OBJECT DETECTION 

Object detection (does an image contain an object?) and localization (where in an image is an object?) have 
been widely studied in computer vision and machine learning.  Initially, features were manually extracted from 
an image edge and contour detection.  These features were often discovered using a convolution, which is a 
mathematical operator that is essentially a function that looks for a given feature in a region of the image.  The 
convolution is examined in all areas of the image.  These features are then provided as input to a machine learning 
algorithm.  One type of machine learning algorithm used was a neural network.  A neural network is inspired by 
neural processing in the brain where nodes representing neurons are arranged in layers.  Typically, neural networks 
contain three layers: an input layer, a hidden layer and an output layer.  This approach was successful but two 
major modifications in neural networks have led to significant improvements in their performance in object 
detection and localization.  First, using multiple hidden layers has significantly improved the performance of 
neural networks and is referred to as deep learning or deep neural networks due to a “deeper” neural network.  
Second, convolutions were encoded in the neural network such that rather than hand crafting the convolutions, 
they were learned by the neural network.  These types of neural networks are deep neural networks and are called 
convolutional neural networks (CNNs). 

CNNs have achieved better than human performance and several benchmark data sets, such as COCO 
[2][3].  However, CNNs often have very high computational cost in training and execution.  The You Only Look 
Once (YOLO) model [4] was designed to speed up the detection and localization of objects in images.  Prior to 
YOLO, other methods [5] - [7] would create several (on the order of thousands) proposals boxes (suggestions that 
an object might be in that region).  All the region proposals were then passed through a trained deep neural network 
to extract features and then a classifier was trained to determine if an object is in that region of the image.  YOLO 
treats localization and classification simultaneously.  It uses a regression model on the feature maps and directly 
obtains bounding box location, size and class scores. 

YOLO provides fast execution times.  However, as with most deep learning approaches, training times can 
be prohibitively large, require large amounts of training data on the order of 1000’s to 10,000’s of images, and 
setting the correct parameters for the algorithms (the number of layers, number of nodes per layer, type of nodes, 
etc.) is difficult.  Transfer learning is an effective approach to train models using a smaller data set [8].  Transfer 
learning is based on the premise that the underlying features in images (edges, contours, shapes, etc.) can be shared 
amongst different tasks.  Transfer learning uses a deep neural network model trained on a different task (e.g. 
detecting birds) with a large number of annotated samples.  In deep neural networks, the last layer is for classifying 
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the objects.  Every previous layer can be viewed as extracting features.  Transfer learning exploits this fact by 
retraining the final layers using a new task (e.g. detecting safeguard relevant objects) that may have only a few 
annotated examples.  Since the common lower level features can be shared, the number of annotated examples 
can be small.  Thus, even with few images of the objects, a new model can be trained efficiently. 

YOLO and transfer learning provide the foundation for addressing the limitations of working within the 
constraints of IAEA-inspected facilities. These are that nuclear facilities and objects of interest vary from one 
facility to another, there is limited available training data, and that an efficient algorithm should allow execution 
on an inspector’s laptop for real-time processing. 

3.  YOLO FOR NUCLEAR SAFEGUARDS 

Building on the foundation principles in Section 2, our algorithm uses a CNN to provide state-of-the-art image 
processing capability, YOLO (a type of an architecture of CNN) for fast execution of object identification, and 
transfer learning to deal with few training examples and to speed up training times, which the team calls YOLO-
SG.  More detail of YOLO-SG is described below. 

3.1. YOLO Model 

For the object detection task of the project, YOLOv3 model was chosen as the starting point due to its 
efficiency and high accuracy [9]. YOLOv3 has incorporated many state-of-the-art techniques, such as residual 
blocks [10], anchor box [7], fully convolutional network [11] and pyramid design [12], which have been proven 
to be effective for multi-scale detections.  Currently, YOLOv3 is state-of-the-art in object detection and in the 
speed in which it can detect and localize the objects.  The key point is its efficiency without lack of performance 
as shown in FIG. 1.  While other methods do achieve slightly better performance (FPN FRCN), that slightly better 
gain in performance comes at an inflated cost in inference time.  More details of YOLO can be found in the 
appendix. 

 Transfer Learning 

As explained in Section 2, due to the data-driven nature of the deep learning method, the performance of a 
model can be improved significantly by simply providing more training data (given enough learning capacity of 
the model).  However, annotating millions of images is an expensive task and is infeasible for safeguards which 
have additional constraints, such as sensitivity policies.  Further, training a high-capacity model with only a few 
data points will lead to over fitting (i.e. the model memorizing the data set) and sub-optimal performance during 
testing.  To address the issue, transfer learning is used [8].  In the computer vision community, there are several 
large open-source benchmark data sets containing thousands of annotated images of everyday objects such as 
dogs, cats, cars, houses, plates, etc.  The team starts with the weights of YOLO that was trained on one of these 
benchmark data sets.  These weights represent the initial settings of the algorithm.  Given the large data set, the 
weights are tuned very well for detecting basic features of objects, e.g. edges and surfaces and basic shapes.  The 

FIG. 1. Inference time vs performance. Lower time (to the left) is better and high performance is better. 
YOLO is by far the fastest and still achieves good results. [9] 
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weights related to advanced features, e.g. object classification, are updated in this development by training on the 
set of images containing annotated images of the safeguards relevant objects. 

 Use Cases 

In conducting surveys with the IAEA safeguards inspectors, it was conveyed that some of the most time-
consuming surveillance review processes that inspectors undertake as part of the in-field safeguards activities are 
related to the transfer of spent nuclear fuel from a wet storage facility (typically the cooling pond immediately 
adjacent to a nuclear reactor core) into dry storage or transportation casks consisting of drying the containers at 
or near wet storage facility, and then moving the containers to a remote storage or processing area.  Challenges to 
this surveillance data review are a result of several factors including, but not limited to: 1) the safeguards-
importance of the material being moved; 2) the busy nature of the scene, with people, cranes, containers, and fuel 
assemblies in motion; 3) the necessity to track objects through multiple camera viewpoints, which is difficult even 
when an object is not in motion; 4) the long duration of the transfer activities, with an individual cask transfer 
taking up to one to two weeks; and, 5) significant time pressure on inspectors to conclude surveillance review 
activities.  The effort to detect and classify objects of safeguards relevance in video surveillance is intended to 
free up inspector time to focus on other activities and increase the likelihood of detecting anomalous events.  In 
this project, two test facilities that simulate the above use cases are being used to produce data for algorithm 
evaluation. 

 Waste Repackaging and Storage 

A scenario of waste repackaging and storage was identified at BNL and is being used to simulate the waste 
transfer process within a reactor hall.  FIG. 2 shows the high-bay building where the radioactive waste materials 
are packaged.  Two main objects are showed in the insertion of the figure.  The pig container (a) is used to transfer 
radioactive waste from laboratories to the packaging facility.  Another container, a 55-gallon drum, is used for 
waste packaging.  When the waste is transferred and the 55-gal container is sealed, the container is stored in the 
storage area in the same building until it is shipped out.  There are also other containers with different shapes in 
this operation area, which can be used to simulate the busy nature of nuclear facilities.  Also captured in the photo 
is the crane to move these heavy objects.  One NGSS camera and one commercial off-the-shelf (COTS) camera 
are used to cover the waste transfer area.  Another COTS camera is used to monitor the waste storage area.    

 Move Dry Storage or Transportation Casks  

To support more efficient processing of the safeguard surveillance data surrounding cask transfer, SNL has 
developed an experiment that mimics some aspects of the cask transfer activity. In the experiment, distinct white 
drums, shown in FIG. 3a, serve as proxies to nuclear spent fuel casks.  These are moved into and out of a large, 
concrete floor vault (3.0 m (W) × 4.6 m (L) × 7.6 m (D)) using a combination of pallet jacks and facility and 
gantry cranes (FIG. 3b). Early experimental campaigns will feature a dry floor vault, which will give the team 
experience with the test equipment and test procedures, as shown in FIG. 3c.  In later campaigns, the vault will be 

FIG. 2. Waste packaging facility. Shown in the insertion: (a) waste transfer 
container and (b) 55-gallon container for packaging 
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filled with water to produce a more realistic environment of a spent fuel pond at a nuclear reactor. Video cameras, 
including NGSS cameras and a secondary system of commercial off-the-shelf (COTS) cameras, are deployed 
around the floor vault in a manner simulating the setup of surveillance cameras at a safeguarded operational 
nuclear power reactor.  Specifically, the NGSS cameras are setup to capture this use case from multiple angles 
(perspectives) and to eliminate any areas (dead zones) where the container could not be seen by any of the cameras.    

4.  METHOD 

4.1. Dataset 

The more annotated data that is available for training, the better the trained model will be. However, the 
IAEA identified data confidentiality and model training in externally-controlled environments as problematic, 
which drove the team’s data collection methodology.  To have high fidelity with the real-world constraints, the 
team used digital cameras to capture images and videos of objects of interests from different orientations and 
distance inside and outside of the testing facilities. This is analogous to situations where images of the objects of 
interest may be available, but not within the actual facility.  Depending on the availability, photos with different 
background were also taken for some objects of interest.  These images and videos were labelled and used as the 
training data set.  In total, about 650 images have been taken and labelled in the current development. 

Selected videos from the NGSS cameras and COTS cameras were labelled using VitBAT software [13], a 
software package that specifically supports annotating video and tracking items across image sequences.  This 
data set is used as test data during algorithm evaluation. 

 Evaluation Metrics 

The most common metric for measuring the performance of object detection models is mean average 
precision (mAP), which is widely used by benchmarks of object detection in the computer vision community. The 
average precision (AP) is measured per object class, which is the area under the precision-recall curve.  Here 
precision and recall are defined as the followings. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

Where TP, FP and FN are true positive, false positive and false negative value respectively.  The data 
points are ranked by their confidence scores. It can be viewed as a summary of the precision-recall curve. The 
mean AP is the average over all object classes.  

 Results 

FIG. 4 shows the example images collected at the testing facilities and annotated by the YOLO-SG 
algorithm.  FIG. 4(a) is a photo of waste repackaging facility and has three classes of objects detected, 55-gallon 
drum, white plastic containers and yellow box containers.  FIG. 4(b) and (c) show images where objects are 

FIG. 3. (a) Proxy spent fuel cask, (b) overhead crane, and (c) dry simulated spent fuel pool. 
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identified at simulated spent fuel pool.  As can be seen, YOLO-SG is able to detect and localize the objects of 
interest after being trained on fewer than 300 images.  Bounding boxes around the objects of interest, such as 
those produced in our results, should significantly increase the efficiency of review for an inspector. 

FIG. 5(a) shows the mAP values of the evaluation results at waste repackaging facility.  An averaged value 
of 0.80 is measured.  FIG. 5(b) shows the detailed precision-recall curves for each object class.  Further 
investigation shows that the precision-recall curve and the mAP value is closely related to labelling of data set.  
For data set in which objects’ boundaries are labelled precisely, a higher mAP value can be achieved.  Given this 
finding, the data set for this evaluation is being re-visited.  A guidance of labelling images for this project will be 
generated based on re-evaluation results, which will facilitate the transfer of the algorithm from development 
phase to real deployment. 

5.  CONCLUSION 

For the spent fuel transfer model, a proof-of-concept implementation of the YOLOv3 model was 
implemented using the full dataset for training and testing to evaluate basic operability of the model which the 
team refers to as YOLO-SG. Initial results are promising and work continues as of this writing.  YOLO-SG 
addresses the problem of localizing objects of interest in images within the constraints of a lack of training data 
(due to confidentiality issues) and fast execution time.  Successful demonstration of this algorithm will help bridge 
state-of-the-art computer vision techniques with safeguards video review and continue to make the review process 
more efficient and less error prone. 

FIG. 5: Test results of YOLO-SG. (a) The Average Precision score per class with the mean-AP of 
80.66%. (b) The precision-recall curves per class. 

(a) 

(b) 

(a)                                                          (b)                                           (c) 
FIG. 4. Examples of images annotated by YOLO-SG. (a) Waste repackaging facility. (b-c) Simulated 
spent fuel pool. 
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The overall network architecture of YOLOv3 consists of three components: feature extractor network, 
feature pyramid network, and detection and classification heads, as seen in FIG. A and are described in the 
following.  The entire YOLOv3 network is trained in an end-to-end fashion. 

The feature extractor network is to transform the raw image input to a feature tensor, using a series of 
convolution and non-linear activation functions.  The term “features” refers to the useful information extracted 
from the image that may be used to characterize objects.  Before the deep learning revolution, the features are 
extracted by applying carefully hand-crafted operators or functions called kernels.  With the reinvention of the 
neural networks, especially convolutional neural networks, the kernels became learnable parameters.  The state-
of-the-art feature extractors are the residual networks [10] and its variations, which help tackle the “vanishing 
gradient problem” when the neural network becomes very deep. The feature extractor network of YOLOv3 
contains 23 residual blocks of various filter sizes, intermediated by five down-sampling convolution layers. This 
architecture is effective in extracting features as shown by its good performance in image classification tasks on 
ImageNet, and efficient comparing to much deeper residual networks (ResNet-101).   

The feature pyramid network brings the feature tensor to different scales using convolution layers for 
down-sampling and plain up-sampling.  Compared with the YOLO v2, the most prominent modification of 
YOLOv3 is its ability to detect objects at different scales.  The architecture is very similar to the feature pyramid 
network [12].  After the last layer of the feature extractor network, the features are abstract - the highest filter sizes 
yet the smallest spatial dimensions.  Hence, the output is good for classification tasks, but not for detection because 
subtle changes of locations and postures have been abstracted out, and small objects shrink to one single pixel.  
To tackle this problem, the feature pyramid network up-samples the most abstract features and concatenate with 
the features multiple layers earlier where the more details are preserved. As shown in FIG. A, YOLOv3 has three 
stages of the pyramid network for small, medium and large objects.  The flexible design of the model allows 
adding more pyramid network stages for more various scales to fit specific applications.   

The last component of the YOLOv3 model is the detection head responsible for making decisions based 
on the extracted features. Each detection head has three convolution layers connected to each stage of the pyramid 
network, as seen in FIG. A.  Anchor boxes are pre-defined stereotypes of bounding boxes with different aspect 
ratios.  For each “pixel”, or coordinate in spatial dimension of the features, B different anchor boxes are bounded. 
One of the tasks is to regress the deviation (adjustment) of the box centres and sizes (4 scalars in total). The model 
also dedicates one scalar as the “objectiveness” score. In addition, C scalars represent classification classes. 
Therefore, in total, there are B×(4+1+C) output scalars per “pixel” in feature space. The spatial dimensions of the 
features depend on the design of the network and the stage of the pyramid networks. For example, if a YOLOv3 
configuration decides to take the input of size 416-by-416, after going through the feature extractor, the spatial 
dimension is down-sampled 32-fold, resulting a 13-by-13-by-filter_size feature tensors. For each of the 13-by-13 
“pixel”, the detection head outputs a vector of size B×(4+1+C). 

 

FIG A. A residual block consists of two convolution layers and a shortcut connection from the input 
to the output. (b) The YOLOv3 network consists of three components 1) the feature extractor network 
(blue), 2) the feature pyramid network (orange), and 3) the detection heads (green).  


