

Bi-fidelity approximation for uncertainty quantification and sensitivity analysis of irradiated particle-laden turbulence

Hillary R. Fairbanks^a, Lluís Jofre^b, Gianluca Geraci^c, Gianluca Iaccarino^b, Alireza Doostan^d

^a*Applied Mathematics and Statistics, University of Colorado Boulder, Boulder, CO 80309, USA*

^b*Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA*

^c*Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185, USA*

^d*Smead Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309, USA*

Abstract

Efficiently performing predictive studies of irradiated particle-laden turbulent flows has the potential of providing significant contributions towards better understanding and optimizing, for example, concentrated solar power systems. As there are many uncertainties inherent in such flows, conducting uncertainty quantification analyses is fundamental to improve the predictive capabilities of the numerical simulations. For large-scale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution presents a significant computational challenge as many methods require a large number of high-fidelity, forward model solves. This requirement results in the need for a possibly infeasible number of simulations when a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden turbulent flow. This method relies on exploiting the low-rank structure of the solution to accelerate the stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations. The application of this bi-fidelity approximation results in accurate estimates of the QoI statistics while requiring a small number of high-fidelity model evaluations. **It also enables efficient computation of sensitivity analyses which highlight that epistemic uncertainty plays an important role in the solution of irradiated, particle-laden turbulent flow.**

Keywords: Bi-fidelity approximation; Irradiated particle-laden turbulence; Low-rank approximation; Non-intrusive; Predictive computational science; Uncertainty quantification

1. Introduction

The ability to quantitatively characterize and reduce uncertainties, in conjunction with model verification and validation (V&V), plays a fundamental role in increasing the reliability of numerical simulations. These types of studies are commonly encompassed within the field of uncertainty quantification (UQ), which has attracted increasing attention in the modeling and simulation community. In this regard, the Predictive Science Academic Alliance Program (PSAAP) II at Stanford University [1], focuses on advancing the state-of-the-art in large-scale, predictive simulations of irradiated particle-laden turbulence relevant to concentrated solar power (CSP) systems. To this end, physics-based models are developed and the numerical predictions are validated against data acquired from an in-house experimental apparatus designed to mimic a scaled-down particle-based solar energy receiver, and for which the quantification of uncertainties is of paramount importance. A significant challenge, and the scope of this work in particular, is investigating optimal UQ strategies for this complex, multi-physics flow when many sources of uncertainty are present.

Email addresses: hillary.fairbanks@colorado.edu (Hillary R. Fairbanks), jofre@stanford.edu (Lluís Jofre), ggeraci@sandia.gov (Gianluca Geraci), jops@stanford.edu (Gianluca Iaccarino), alireza.doostan@colorado.edu (Alireza Doostan)

13 *1.1. Irradiated Particle-Laden Turbulent Flow*

14 Turbulent flow laden with inertial particles, or droplets, in the presence of thermal radiation is encountered
15 in a wide range of natural phenomena and industrial applications. For instance, it is well established
16 that turbulence-driven particle inhomogeneity plays a fundamental role in determining the rate of droplet
17 coalescence and evaporation in ocean sprays [2] and atmospheric clouds [3]. Another example is found
18 when studying fires, in which turbulence, soot particles, and radiation are strongly interconnected resulting
19 in very complex physical processes [4]. From an industrial point of view, important applications include
20 the atomization of liquid fuels in combustion chambers [5], soot formation in rocket engines [6], and more
21 recently, volumetric particle-based solar receivers for energy harvesting [7].

22 Even in the simplest configuration, e.g., homogeneous isotropic turbulence, particle-laden turbulent flow
23 is known to exhibit complex interactions between the carrier and dispersed phases in the form of preferential
24 concentration and turbulence modulation [8]. Preferential concentration is the phenomenon by which heavy
25 particles tend to avoid intense vorticity regions and accumulate in regions of high strain rate, while turbulence
26 modulation refers to the alteration of fluid flow characteristics in the near-field region of particle clusters
27 as a result of two-way coupling effects, e.g., enhanced dissipation, kinetic energy transfer, or formation
28 of wakes and vortexes. The physical complexity is further increased by the simple addition of solid walls
29 as turbophoresis [9], i.e., tendency of particles to migrate towards regions of decreasing turbulence levels,
30 becomes an important mechanism for augmenting the inhomogeneity in spatial distribution of the dispersed
31 phase by driving particle accumulation at the walls.

32 As described above, characterization of particle-laden turbulent flow is a difficult problem; many experimental
33 and numerical research studies have been devoted to this objective over the past decades, see, e.g.,
34 [10, 11, 12]. However, the problem of interest in this work involves, in addition to particle-flow coupling,
35 heat transfer from the particles to the fluid through radiation absorption. The practical application motivating
36 the study of this phenomenon is the improvement of energy harvesting in volumetric particle-based
37 solar receivers. At present, most CSP technologies use surface-based collectors to convert the incident solar
38 radiation into thermal energy. In this type of system, the energy is transferred to the working fluid
39 downstream of the collection point via heat exchangers, typically resulting in large conversion losses at
40 high temperatures. By contrast, volumetric solar receivers continuously transfer the energy absorbed by
41 particles directly to the operating fluid as they are convected through an environment exposed to thermal
42 radiation. This innovative technology is expected to increase the performance of CSP plants by avoiding
43 the necessity of heat-exchanging stages, while requiring significantly high radiation-to-fluid energy transfer
44 ratios. This requirement imposes a very complex design constraint as the physical mechanisms governing
45 irradiated particle-laden turbulent flow are still not fully comprehended, and therefore is a topic of intense
46 research, see, e.g., [13, 14].

47 *1.2. Uncertainty Quantification for Complex, Large-Scale, High-Dimensional Systems*

48 The complexity of constructing predictive models of CSP systems is furthered by the fact that there are
49 many sources of uncertainty inherent in the underlying physical processes, for instance, turbulence models,
50 particle properties or input radiation. This often high-dimensional uncertainty, in conjunction with large
51 computational demands of high-fidelity (HF) simulation of irradiated particle-laden turbulence, necessitates
52 cost-efficient, non-intrusive (i.e., sampling-based) UQ methods that accurately estimate the statistics of
53 the quantities of interest (QoIs). Many widely-used non-intrusive methods, such as stochastic collocation
54 [15, 16] and polynomial chaos expansions (PCEs) [17, 18, 19], suffer from a rapid (up to exponential) growth
55 of computational cost as a function of the number of input variables characterizing the uncertainty. On
56 the other hand, the cost of standard Monte Carlo (MC) sampling methods, while formally independent of
57 the number of input variables, may be prohibitive when the QoI exhibits large variance and is expensive to
58 evaluate. Much recent research has targeted developing cost reduction techniques to improve MC sampling
59 methods.

60 As a form of cost reduction, there has been growing interest in multilevel and multi-fidelity methods, that
61 is, methods relying on multiple models with varying levels of accuracy and cost, with the aim of accurately
62 estimating the QoI statistics in a computationally efficient manner. Relative to (accurate) HF models, these

63 models of reduced cost and accuracy are referred to, generally, as low-fidelity (LF) models. Inspired by
64 multigrid methods [20, 21], multilevel techniques have evolved to not only include UQ methods exploiting
65 coarser grid resolutions, but also multi-fidelity methods, where levels may correspond to a broader class
66 of modeling schemes, e.g., simplified physics or reduced time-stepping (the interested reader is directed
67 to [22, 23] for a review of multi-fidelity methods). Relating to this work, interest is greatest with respect to
68 multi-fidelity MC methods as we focus on high-dimensional uncertain inputs.

69 The control variates method [24] is a cost reduction technique that introduces a second, easily simulated,
70 and correlated variable (to the original QoI) as a means to reduce the variance of the MC estimator of the
71 QoI's expected value. This reduced variance results in requiring fewer simulations of the HF model to meet
72 a desired mean square error. A specific extension of the control variates approach is the multilevel Monte
73 Carlo (MLMC) method developed first in [25] and extended in [26]. MLMC estimates the expectation of
74 the target QoI from the coarsest grid (temporal and/or spatial) solutions as well as differences between each
75 two consecutive grid solutions in a telescoping sum fashion. When the differences corresponding to finer
76 grids become smaller, fewer MC realizations of finer grid solutions are needed, thus leading to an overall
77 reduced cost. Applications of MLMC to numerical partial differential equations, as in [27, 28, 29], show the
78 success of the method for simple mathematical systems, making it ideal for high-dimensional, large-scale
79 problems in which there exists convergence analysis with regards to the discretization scheme. In the last
80 decade, several other types of control variates, in the form of multilevel and multi-fidelity, have been studied
81 which rely on LF models, many of which do not adhere strictly to the coarsening of the spatial or temporal
82 discretization schemes, e.g., [30, 31, 32, 33, 34]. Importance sampling [24] is another approach to variance
83 reduction that has been utilized in the context of multi-fidelity UQ, see, e.g., [35, 22]. All of these cost
84 reduction methods for MC have been shown to significantly improve the computational cost in comparison
85 to standard MC simulation of the HF model.

86 Earlier work on multi-fidelity modeling of parametric/uncertain problems is based on Gaussian process
87 regression, a.k.a kriging or co-kriging in the multivariate case, [36, 37, 38]. In particular, the seminal
88 work in [36] builds a Gaussian process approximation of the QoI based on an autoregressive model trained
89 from nested observations of multiple, less expensive models. Each model of the sequence is related to the
90 lower-fidelity model via a multiplicative constant and an additive Gaussian process correction term that are
91 estimated from the lower-fidelity model evaluations as well as fewer realizations of the model itself.

92 The recent work in [39, 40, 41, 42, 43] builds a reduced basis (or low-rank) approximation of the HF QoI
93 using LF model evaluations and a *small* set of selected HF samples. The HF reduced basis – consisting of
94 realizations of the HF (vector-valued) solution at selected input samples – as well as an interpolation rule in
95 this basis are determined from LF realizations. A practical error estimate of this bi-fidelity (BF) approach is
96 presented in [43], which can be used to determine if a given pair of low- and high-fidelity models will lead to
97 an accurate BF approximation. In the present study, we adopt the BF approach and error estimate of [43]
98 to illustrate their efficacy in UQ of a CSP systems as an instance of a complex, multi-physics engineering
99 application.

100 1.3. Objectives and Organization of the Work

101 The system studied in this work is based on a small-scale apparatus [44] designed to reproduce the oper-
102 ating conditions of volumetric particle-based solar receivers. Physics-based modeling of irradiated particle-
103 laden turbulent flow – as detailed in Section 2 – and its numerical investigation and validation against data
104 obtained from the experimental apparatus – description given in Section 3 – are difficult tasks that intrinsi-
105 cally require several model assumptions, selection of coefficient and parameter values and characterization of
106 initial and boundary conditions. These steps, even if performed carefully, result in potential sources of uncer-
107 tainty that can impact the quantities of interest (QoI). Some examples encompass the incomplete description
108 of particle diameters [45] and thermal radiative properties [46], variability of the incident radiation and its
109 complex interaction with boundaries, and structural uncertainty inherent in the approximations utilized, like
110 for example in terms of turbulence modeling [47]. In addition to the large number of uncertainty sources,
111 accurate predictions of the complex interaction of particle-laden turbulent flow with radiative heat transfer
112 demand the utilization of expensive HF numerical simulations. As an example, the cost of a medium-scale

113 HF calculation of this problem requires approximately 500k core-hours per sample on the Mira supercomputer (ALCF) [48]. Therefore, if brute-force UQ techniques, e.g., MC simulation with $\mathcal{O}(10^3)$ samples, are
 114 to be performed, the total cost is of the order of 500M core-hours, thus motivating the need for accelerated
 115 UQ strategies. In this regard, the objective of this work is to investigate the BF approximation UQ strategy
 116 on large-scale, multi-physics applications based on the PSAAP II solar receiver. In particular, it can be
 117 shown that this BF approximation provides accurate estimates of the QoI statistics, while maintaining a
 118 reduced cost similar to that of LF models for simulations with $\mathcal{O}(10^3)$ samples.

120 The paper is organized as follows. In Section 2, the physical models and numerical method utilized to
 121 simulate irradiated particle-laden turbulent flow are described. The particle-based solar receiver studied is
 122 detailed next, Section 3, in terms of computational setup, input uncertainties, and QoIs considered. The
 123 BF approximation strategy is presented in Section 4, as well as a brief discussion of the associated error
 124 bound. The performance of this BF approximation, with regards to both accuracy and cost is investigated
 125 in Section 5. From these results, comparisons are made between this approximation and alternative LF
 126 models. Finally, the work is concluded and future directions are proposed in Section 6.

127 2. Physics Modeling and Numerical Method

128 The study of volumetric particle-based solar receivers involves the interaction of particles and wall-
 129 bounded turbulent flow in a radiation environment. The equations describing this type of flow are continuity,
 130 Navier-Stokes in the low-Mach-number limit, conservation of energy assuming ideal-gas behavior, Lagrangian
 131 particle transport, and radiative heat transfer. The modeling of these three physical processes – turbulent
 132 flow, particle transport, and radiative heat transfer – and their couplings, are sequentially described in the
 133 subsections below.

134 2.1. Variable-Density Turbulent Flow

The volumetric particle-based solar receiver operates at atmospheric pressure conditions in which air, the carrier fluid, is assumed to follow the ideal-gas equation of state (EoS), $P_{th} = \rho_g R_{air} T_g$, where P_{th} is the thermodynamic pressure, ρ_g is the density, R_{air} is the specific gas constant for air, and T_g is the temperature. As indicated by the EoS, density varies with temperature. However, the Mach number of the flow $Ma = u/c$, with u the local flow velocity and c the speed of sound of the medium, is small ($Ma < 0.03$) for the range of velocities and temperatures considered. Therefore, the low-Mach-number approximation is utilized to separate the hydrodynamic part, $p \ll P_{th}$, from the total pressure, $P_{tot} = P_{th} + p$. This decomposition results in the following equations of fluid motion

$$\frac{\partial \rho_g}{\partial t} + \nabla \cdot (\rho_g \mathbf{u}_g) = 0, \quad (1)$$

$$\frac{\partial (\rho_g \mathbf{u}_g)}{\partial t} + \nabla \cdot (\rho_g \mathbf{u}_g \otimes \mathbf{u}_g) = -\nabla p + \nabla \cdot \left[\mu_g (\nabla \mathbf{u}_g + \nabla \mathbf{u}_g^\top) - \frac{2}{3} \mu_g (\nabla \cdot \mathbf{u}_g) \mathbf{I} \right] + (\rho_g - \rho_0) \mathbf{g} + \mathbf{f}_{TWC}, \quad (2)$$

$$\frac{\partial (\rho_g C_{v,g} T_g)}{\partial t} + \nabla \cdot (\rho_g C_{p,g} T_g \mathbf{u}_g) = \nabla \cdot (\lambda_g \nabla T_g) + S_{TWC}, \quad (3)$$

where \mathbf{u}_g is the gas velocity, ρ_0 is an ambient reference density, \mathbf{I} is the identity matrix, \mathbf{g} is the gravitational acceleration, and μ_g and λ_g are the dynamic viscosity [49] and thermal conductivity [50], respectively. Additionally, $C_{v,g}$ and $C_{p,g}$ are, respectively, the isochoric and isobaric specific heat capacities, and \mathbf{f}_{TWC} and S_{TWC} are two-way coupling terms representing the effect of particles on the fluid and respectively approximated as point sources in the forms

$$\mathbf{f}_{TWC} = \sum_p m_p \frac{\mathbf{u}_p - \mathbf{v}_p}{\tau_p} \delta(\mathbf{x} - \mathbf{x}_p), \quad (4)$$

$$S_{TWC} = \sum_p \pi d_p^2 h (T_p - T_g) \delta(\mathbf{x} - \mathbf{x}_p). \quad (5)$$

135 Here, $m_p = \rho_p \pi d_p^3 / 6$, \mathbf{v}_p are the particle mass and velocity, respectively, \mathbf{u}_p is the gas velocity at the
 136 particle location, $\tau_p = \rho_p d_p^2 / (18\mu_g)$ is the particle relaxation time, d_p is the particle diameter, and $\delta(\mathbf{x} - \mathbf{x}_p)$
 137 is the Dirac delta function concentrated at the particle location \mathbf{x}_p . The expression for the fluid-particle
 138 convection coefficient is $h = Nu\lambda_f/d_p$ with Nu the particle Nusselt number; in the problem studied, particles
 139 are assumed to be isothermal as the Biot number is small, $Bi = hd_p/\lambda_p \ll 1$.

140 *2.2. Lagrangian Particle Transport*

The carrier fluid is transparent to the incident radiation. Hence, micron-sized nickel particles, i.e., the dispersed phase, are seeded into the gas to generate a non-transparent gas-particle mixture that absorbs and transfers the incident radiation from the particles to the gas phase. The diameters of the particles are several orders of magnitude smaller than the smallest significant (Kolmogorov) turbulent scale η , and the density ratio between particles and gas is $\rho_p/\rho_g \gg 1$. As a result, particles are modeled following a Lagrangian point-particle approach with Stokes' drag as the most important force [51]. Their description in terms of position, velocity and temperature is given by

$$\frac{d\mathbf{x}_p}{dt} = \mathbf{v}_p, \quad (6)$$

$$\frac{d\mathbf{v}_p}{dt} = \frac{\mathbf{u}_p - \mathbf{v}_p}{\tau_p} + \mathbf{g}, \quad (7)$$

$$\frac{d(m_p C_{v,p} T_p)}{dt} = \frac{\pi d_p^2 (1 - \omega)}{4} \int_{4\pi} \left(I - \frac{\sigma T_p^4}{\pi} \right) d\Omega - \pi d_p^2 h (T_p - T_g), \quad (8)$$

141 where $C_{v,p}$ is the particle specific isochoric heat capacity, $\omega = Q_s / (Q_a + Q_s)$ is the scattering albedo with
 142 Q_a and Q_s the absorption and scattering efficiencies, respectively, I is the radiation intensity, σ is the
 143 Stefan-Boltzmann constant, and $d\Omega = \sin \theta d\theta d\phi$ is the differential solid angle. In the conservation equation
 144 for particle temperature, (8), the first term on the right-hand-side accounts for the amount of radiation
 145 absorbed by a particle, while the second term represents the heat transferred to its surrounding fluid.

In the point-particle approximation, particle-wall and particle-particle interactions are typically described by one-dimensional collision models based on the balance of total momentum and energy. In the case of collisions involving two objects, A and B , the velocities after impact, v_A and v_B , are given by

$$v_A = [m_A u_A + m_B u_B + m_B C_R (u_B - u_A)] / (m_A + m_B), \quad (9)$$

$$v_B = [m_A u_A + m_B u_B + m_A C_R (u_A - u_B)] / (m_A + m_B), \quad (10)$$

146 where u_A and u_B are the velocities of the objects before impact, m_A and m_B are the mass of the objects,
 147 and $0 \leq C_R \leq 1$ is the restitution coefficient. The limits of C_R correspond to the cases in which the objects
 148 coalesce at impact (0, perfectly inelastic collision) and rebound with the same relative speed as before impact
 149 (1, perfectly inelastic collision); intermediate values represent inelastic collisions in which kinetic energy is
 150 dissipated. The above equations simplify to $v_A = -C_R u_A$ and $v_B = 0$ when object B is a static wall.

151 *2.3. Radiative Heat Transfer*

152 In the problem under consideration, the flow and particle timescales are orders of magnitude larger than
 153 the radiation timescale, which is related to the speed of light. As a consequence, it can be assumed that the
 154 radiation field changes instantaneously with respect to temperature and particle distributions; i.e., radiation
 155 field is quasi-steady. Under this assumption, and considering that air is transparent at all wavelengths and
 156 that absorption and scattering are determined solely by the presence of particles and solid boundaries, the
 157 radiative heat transfer equation becomes

$$\hat{\mathbf{s}} \cdot \nabla I = -\sigma_e I + \sigma_a \frac{\sigma T_p^4}{\pi} + \frac{\sigma_s}{4\pi} \int_{4\pi} I \Phi d\Omega, \quad (11)$$

158 where $\hat{\mathbf{s}}$ is the direction vector, $\sigma_e = \sigma_a + \sigma_s$ is the total extinction coefficient with σ_a and σ_s the absorption
 159 and scattering coefficients, respectively, and Φ is the scattering phase function that describes the directional

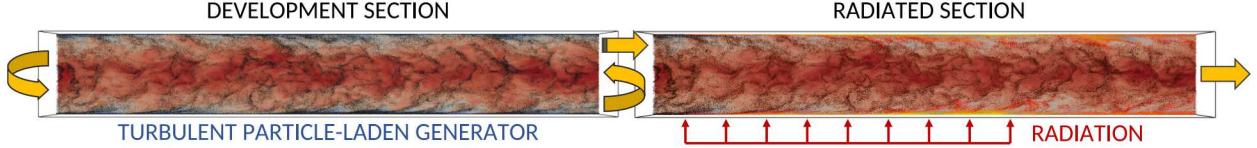


Figure 1: Computational setup of the PSAAP II volumetric particle-based solar energy receiver. An isothermal periodic section (left domain) is utilized to generate fully developed particle-laden turbulent flow, which is used as inflow conditions for the second section (right domain) where the gas-particle mixture is irradiated perpendicularly to the flow direction from one the sides.

160 distribution of scattered radiation. The total extinction coefficient can also be defined in terms of absorption
 161 and scattering efficiencies as $\sigma_e = (Q_a + Q_s) \pi d_p^2 n_p / 4$ with n_p the local number density of particles. More-
 162 over, assuming gray radiation $Q_a + Q_s \approx 1$, which leads to $\omega \approx Q_s$ (see (8)), and as a result $\sigma_a \approx Q_a \pi d_p^2 n_p / 4$
 163 and $\sigma_s \approx Q_s \pi d_p^2 n_p / 4$.

164 2.4. Numerical Method

165 The equations of fluid motion, (1)-(3), are solved following an Eulerian finite-volume discretization im-
 166 plemented in an in-house solver that is second-order accurate in space and suitable to non-uniform meshes.
 167 A fourth-order Runge-Kutta scheme is used for integrating the equations in time, together with a fractional-
 168 step method for imposing conservation of mass [52]. Integration in time of the Lagrangian position, velocity,
 169 and temperature of particles, (6)-(8), is fully coupled with the advancement of the flow equations to ensure
 170 fourth-order accuracy. The transfer of radiative heat, (11), is calculated by means of an in-house discrete
 171 ordinates method (DOM) interfaced to the flow solver via an Eulerian representation of the particles distri-
 172 bution.

173 3. Description of the Particle-Based Solar Receiver

174 3.1. Computational Setup and Physical Parameters

175 Numerical simulations of the volumetric particle-based solar receiver are performed on the computational
 176 setup depicted in Fig. 1. Two square duct domains, with dimensions $1.7L \times W \times W$ ($L = 0.16$ m, $W = 0.04$ m)
 177 in the streamwise (x -axis) and wall-normal directions (y - and z -axis), are utilized to mimic the development
 178 and radiated sections of the experimental apparatus. The development section (left domain) is an isothermal,
 179 T_0 , periodic particle-laden turbulent flow generator that provides inlet conditions for the inflow-outflow
 180 radiated section (right domain). The solid boundaries of the development section (y - and z -sides) are
 181 considered smooth, no-slip, adiabatic walls. Regarding the radiated section, the same boundary conditions
 182 are imposed except for the radiated region in which the y - and z -boundaries are modeled as non-adiabatic
 183 walls accounting for heat fluxes due to the radiation energy absorbed by the glass windows.

184 The bulk Reynolds number of the gas phase at the development section is $Re_b = \rho_g u_b L / \mu_g = 20000$, with
 185 u_b the gas bulk velocity. As characterized by the manufacturer of the particles utilized in the experiments,
 186 the particle size distribution is approximated by 5 different classes (uniformly sampled) with Kolmogorov
 187 Stokes numbers $St_\eta = 6, 8, 10, 12, 17$ (diameters listed in Table 1) and with a total mass loading ratio
 188 (MLR) of $MLR = n_p m_p / \rho_g \approx 20\%$. Detailed values of the development section flow conditions and material
 189 properties are listed in Table 1. The gas-particle mixture, as depicted in Fig. 2, is volumetrically irradiated
 190 through an $L \times W$ glass window starting at $\Delta x = 0.1L$ from the beginning of the radiated section. The
 191 radiation source consists of an array of diodes mounted on a vertical support placed $\Delta y \approx 3W$ from the
 192 radiated window and aligned with the streamwise direction of the flow. The diodes generate a total power
 193 of $P \approx 1$ kW approximately uniform within a 18° cone angle.

Parameter	Value	Parameter	Value
u_b	8 m/s	T_0	300 K
P_{th}	101325 Pa	R_{air}	287 J/(kg·K)
$C_{p,g}$	1012 J/(kg·K)	$C_{v,g}$	723 J/(kg·K)
ρ_p	8900 kg/m ³	$C_{v,p}$	450 J/(kg·K)
d_p	8.4, 9.8, 11.2, 12.2, 14.6 μ m	\mathbf{g}	(9.81, 0, 0) m/s ²

Table 1: Flow conditions at development section and physical properties.

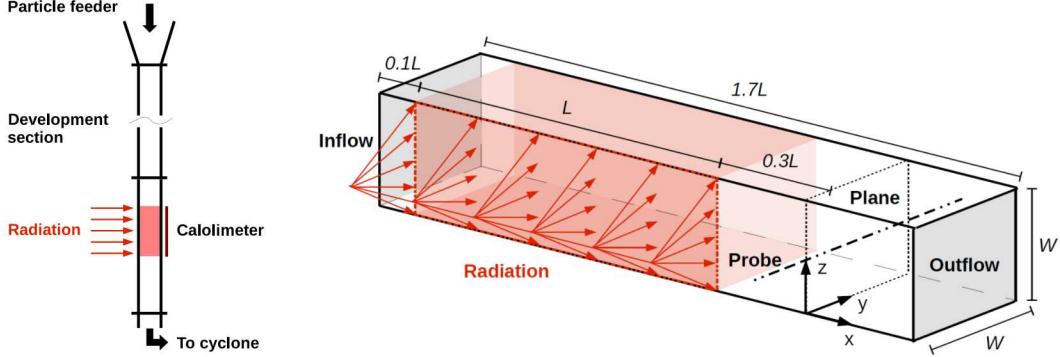


Figure 2: Schematic representation of the experimental and computational setups. Open loop duct and radiation source (left). Detailed configuration of the illuminated computational section (right). The test segment is $1.7L$ long and W width, with a radiated volume of $L \times W \times W$ starting at $0.1L$ from the beginning of the section, and with a probe perpendicular to the flow and located $0.3L$ downstream.

3.2. Uncertainties and Quantities of Interest

In our UQ study, we consider 14 input variables to describe various experiment and parameter uncertainties, as shown in Table 2. These correspond to incertitude in particle restitution coefficient for the different particle classes ($\xi_1 - \xi_5$), correction to Stokes' drag law (ξ_6), particle Nusselt number (ξ_7), mass loading ratio (ξ_8), particle absorption and scattering efficiencies ($\xi_9 - \xi_{10}$), incident radiation flux (ξ_{11}), and heat fluxes from the walls to the fluid ($\xi_{12} - \xi_{14}$).

The intervals of the input variables listed in Table 2 have been carefully characterized on the basis of information provided by the team responsible for conducting the experiments, and by taking into consideration results and conclusions extracted from published studies. In particular, the intervals of the particle restitution coefficients follow the trend observed in experimental investigations by Yang & Hunt [53] in which C_R increases with Stokes number. The expression for Stokes' drag force correction and its coefficient interval is based on the theoretical work by Brenner [54]. The particle Nusselt number range is extracted from numerical studies of heated particles performed by Ganguli & Lele [55, 56]. The intervals for particle absorption and scattering efficiencies are obtained from Mie scattering theory and take into account sensitivity to shape deformation as investigated by Farbar et al. [57]. The long development section of the experiment is modeled in the simulations by means of a periodic domain. This approach reduces the computational cost noticeably, but at expenses of not having direct control of the mass loading ratio. Consequently, the interval for this quantity is carefully characterized based on preliminary comparisons with experimental data for a periodic particle-laden duct flow case without thermal radiation at steady-state conditions. Similarly, the heat fluxes from the walls to the fluid are not fully resolved in the simulations and are instead directly modeled as boundary conditions; their calculation would require the solution of a complex conjugate convective heat transfer problem. In order to properly represent the uncertainty associated with this approximation, comparisons against the experiment were performed for an irradiated turbulent flow case without particles such that the thermal response of the system was fully driven by the fluxes from the walls to the fluid and the intervals for these uncertainties could be obtained. Finally, the variability of the incident radiation is based on the uncertainty in intensity and cone angle of the laser diodes reported by the manufacturer.

Variable	Interval	Variable	Interval
ξ_1 : Prt. rest. coeff. 1	[0.0 : 0.6]	ξ_8 : Mass load. ratio	[18 : 22]%
ξ_2 : Prt. rest. coeff. 2	[0.1 : 0.7]	ξ_9 : Prt. abs. eff.	[0.37 : 0.41]
ξ_3 : Prt. rest. coeff. 3	[0.2 : 0.8]	ξ_{10} : Prt. scatt. eff.	[0.69 : 0.76]
ξ_4 : Prt. rest. coeff. 4	[0.3 : 0.9]	ξ_{11} : Radiation	[1.8 : 2.0] MW/m ²
ξ_5 : Prt. rest. coeff. 5	[0.4 : 1.0]	ξ_{12} : Radiated wall	[1.6 : 6.4] kW/m ²
ξ_6 : Stokes' drag corr.	[1.0 : 1.5]	ξ_{13} : Opposite wall	[1.2 : 4.7] kW/m ²
ξ_7 : Prt. Nusselt num.	[1.5 : 2.5]	ξ_{14} : Side x - y walls	[0.1 : 0.2] kW/m ²

Table 2: List of random inputs ξ_i , $i = 1, \dots, 14$, with the corresponding ranges. All inputs are assumed to be uniformly distributed.

220 The performance of the BF approximation is focused on thermal QoIs at the probe location. As detailed
221 in Fig. 2, the probe is located $\Delta x = 0.3L$ downstream from the radiated perimeter, and is perpendicular to
222 the flow direction along the y -axis at $z = W/2$. Of particular interest in this study is the time-averaged,
223 normalized increment of gas temperature along the y -axis profile, i.e., $Q = (\langle T \rangle - T_0)/T_0 = \Delta T/T_0$, and the
224 average heat flux over the plane at the probe location, i.e., $Q = \int C_{p,g} \langle \rho_g \mathbf{u}_g \Delta T \rangle d\mathbf{S}$.

225 *3.3. Simulation Strategy*

226 In the experimental apparatus, fully developed conditions are achieved using a long duct ($\approx 7\text{m}$) with
227 an aspect ratio of order hundred. To reduce the computational cost of simulating a long duct with inflow-
228 outflow boundary conditions, the computational setup is divided in two domains as described in Section 3.1.
229 First, randomly distributed particles are seeded into the development section with an initial fully developed
230 turbulent velocity field. This system is then evolved in time for 20 flow through times (FTTs), defined
231 as $\text{FTT} = L/u_b$, to achieve fully developed turbulent particle-laden flow conditions as in the experiments.
232 After 20 FTTs, the instantaneous Eulerian and Lagrangian solutions are copied into the second domain,
233 radiative illumination is activated in the radiated region, and the total system (two domains) is integrated in
234 time for 5 additional FTTs intended to flush the thermal transient (1 FTT) and collect statistics (4 FTTs).
235 This procedure is repeated independently for each realization.

236 *3.4. Description of the High- and Low-Fidelity Models*

237 Three model fidelities have been designed to perform the UQ study: one HF model and two LF repre-
238 sentations, denoted LF1 and LF2. All three models use the same description of uncertainty as described
239 in Section 3.2. The HF model corresponds to a point particle direct numerical simulation (PP-DNS) with
240 sufficient resolution ($\approx 55\text{M}$ cells/section) to capture all the significant (integral to Kolmogorov) turbulent
241 scales, while approximating the particles as Lagrangian points ($\approx 15\text{M}$ particles/section) with nonzero mass.
242 The flow grid is uniform in the streamwise direction with spacings in wall units equal to $\Delta x^+ \approx 12$, while
243 stretched in the wall-normal directions with the first grid point at $y^+, z^+ \approx 0.5$ and with resolutions in the
244 range $0.5 < \Delta y^+, \Delta z^+ < 6$. The radiative heat transfer equation is solved on a uniform DOM mesh of
245 $270 \times 160 \times 160$ grid points ($\approx 7\text{M}$ cells) with 350 quadrature points (discrete angles) per element.

246 Based on this HF model, two LF models have been constructed by carefully coarsening the Eulerian
247 and Lagrangian resolutions, resulting in the LF1 and LF2 representations that are, respectively, $\approx 170\times$
248 and $\approx 1300\times$ cheaper to simulate (per sample) than the HF model. The flow and radiation meshes, and
249 quadrature points are uniformly coarsened in each direction by a factor of 5 (LF1) and 10 (LF2), which
250 additionally allows for larger time steps; a schematic of the different fidelity models for the turbulent flow
251 phase is shown in Fig. 3. The discrete phase is coarsened by reducing the number of point particles in the
252 calculation by 5 \times (LF1) and 10 \times (LF2). To preserve the dimensionless parameters of the problem, this is
253 efficiently accomplished by grouping physical particles into parcels representing their total effect [58], viz.
254 surrogate particles [59]. In the case of uniform parcels, the evolution of the N_s surrogate particles can be
255 described with the same set of Lagrangian equations used for the N_p physical particles, (6)-(8), with the

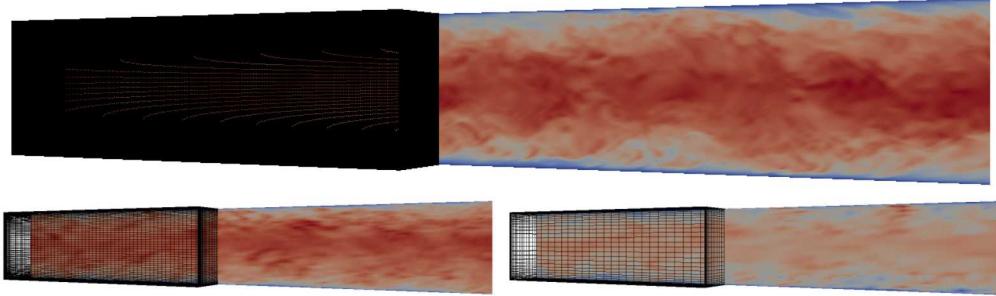


Figure 3: Turbulent gas phase Eulerian resolution of the fidelity levels designed; gas velocity as background. HF $540 \times 320 \times 320$ gridpoints (top), LF1 $108 \times 64 \times 64$ gridpoints (bottom left), LF2 $54 \times 32 \times 32$ gridpoints (bottom right).

only modification of multiplying the physics coupling terms by the ratio $W_s = N_p/N_s$ as

$$\mathbf{f}_{TWC} = \sum_p W_s m_p \frac{\mathbf{u}_p - \mathbf{v}_p}{\tau_p} \delta(\mathbf{x} - \mathbf{x}_p), \quad S_{TWC} = \sum_p W_s \pi d_p^2 h (T_p - T_f) \delta(\mathbf{x} - \mathbf{x}_p), \quad (12)$$

$$\sigma_a \approx W_s Q_a \pi d_p^2 n_p / 4 \quad \text{and} \quad \sigma_s \approx W_s Q_s \pi d_p^2 n_p / 4. \quad (13)$$

246 4. Bi-fidelity Approximation Strategy

247 4.1. Construction of Bi-fidelity Approximation

248 The BF approximation of this work follows the approach of [41, 43, 42], which seeks to identify a low-rank
249 representation of the HF QoI assisted by the realizations of its LF counterpart. While the QoIs in this work
250 are scalar-valued, this BF approximation relies on vector-valued quantities \mathbf{u} that describe the scalar-valued
251 QoI. For example, when the QoI is the time- and spatial-averaged gas temperature along the probe line (see
252 Fig. 2), the elements of \mathbf{u} may be the time-averaged estimates of the gas temperature along this profile.

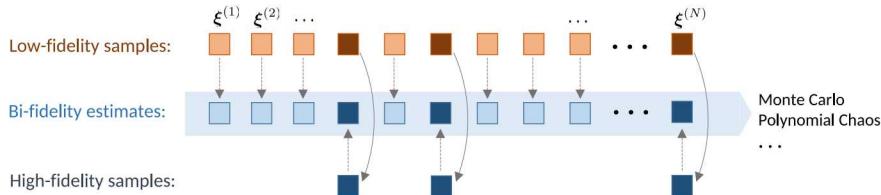


Figure 4: Schematic for the formation of the BF approximation.

253 The construction of the BF approximation is completed in four main steps, as illustrated in Fig. 4. In
254 the first step, N independent samples of the inputs ξ , each denoted by $\xi^{(i)}$, are generated according to
255 their joint probability density function (PDF) and used to form N LF realizations of \mathbf{u} , each referred to as
256 $\mathbf{u}_L^{(i)} \in \mathbb{R}^m$ (see Fig. 4, orange boxes, top row). Here, m is the number of (spatial or temporal) degrees of
257 freedom describing \mathbf{u}_L . These realizations are then organized in an $m \times N$ LF data matrix \mathbf{U}_L such that

$$\mathbf{U}_L := \begin{bmatrix} \mathbf{u}_L^{(1)} & \mathbf{u}_L^{(2)} & \dots & \mathbf{u}_L^{(N)} \end{bmatrix}. \quad (14)$$

Typically N is large, as obtaining many LF samples is computationally feasible, and the value of m corresponds to the spatial degrees of freedom of the numerical solver. In the second step, we seek to identify a subset of realizations of \mathbf{u}_L of size r (and the associated input samples of ξ) that form a basis for the range space of \mathbf{U}_L . To this end, we perform rank $r \ll N$ factorization of \mathbf{U}_L via matrix interpolative decomposition

(MID) [60, 61, 62]. Specifically, the rank r approximation $\hat{\mathbf{U}}_L$ is obtained via column-pivoted (truncated) QR factorization

$$\mathbf{U}_L \mathbf{P} \approx \mathbf{Q} [\mathbf{R}_{11} \quad \mathbf{R}_{12}] \quad (15)$$

$$= \mathbf{Q} \mathbf{R}_{11} [\mathbf{I} \quad \mathbf{R}_{11}^\dagger \mathbf{R}_{12}], \quad (16)$$

where $\mathbf{Q} \in \mathbb{R}^{m \times r}$ has r orthogonal columns, $\mathbf{R}_{11} \in \mathbb{R}^{r \times r}$ is an upper triangular matrix, $\mathbf{R}_{12} \in \mathbb{R}^{r \times N-r}$, $\mathbf{P} \in \mathbb{R}^{N \times N}$ is a permutation matrix, and \dagger indicates the pseudoinverse. It is straight-forward to show that the product $\mathbf{Q} \mathbf{R}_{11}$ in (16) is equal to the left r columns of \mathbf{U}_L , denoted by

$$\mathbf{U}_L^c = [\mathbf{u}_L^{(i_1)} \quad \mathbf{u}_L^{(i_2)} \quad \dots \quad \mathbf{u}_L^{(i_r)}] \quad (17)$$

and referred to as the *column skeleton* of \mathbf{U}_L . In (17), the column indices i_k , $k = 1, \dots, r$, are identified from the permutation matrix \mathbf{P} in (15) and indicate input samples $\xi^{(i_k)}$ corresponding to the LF realizations $\mathbf{u}_L^{(i_k)}$ (see Fig. 4, dark orange boxes, top row). From (16), setting $\mathbf{C}_L = [\mathbf{I} \quad \mathbf{R}_{11}^\dagger \mathbf{R}_{12}] \mathbf{P}$ to be the LF *coefficient matrix*, the rank r MID approximation of \mathbf{U}_L is given as

$$\hat{\mathbf{U}}_L := \mathbf{U}_L^c \mathbf{C}_L, \quad (18)$$

indicating that \mathbf{U}_L^c , or equivalently the LF realizations $\mathbf{u}_L^{(i_k)}$, act as a reduced basis for the range of the LF matrix \mathbf{U}_L .

In the third step, the HF model is simulated at the inputs $\xi^{(i_k)}$ corresponding to the LF reduced basis (see Fig. 4, dark blue boxes, bottom row). This results in the associated HF column skeleton

$$\mathbf{U}_H^c = [\mathbf{u}_H^{(i_1)} \quad \mathbf{u}_H^{(i_2)} \quad \dots \quad \mathbf{u}_H^{(i_r)}]. \quad (19)$$

Note that \mathbf{U}_H^c is $M \times r$, where $M \geq m$ as it corresponds to the number of HF spatial degrees of freedom. For HF models with a finer mesh resolution than the LF model it follows that $M > m$. **However, as is the case in this work, data values may be extracted at equivalent coordinates by using extraction points independent of the grid tessellation, resulting in $M = m$.** In the final step the BF approximation is formed by taking the product of the HF column skeleton in (19) and the LF coefficient matrix

$$\hat{\mathbf{U}}_H := \mathbf{U}_H^c \mathbf{C}_L, \quad (20)$$

where the i -th column of $\hat{\mathbf{U}}_H$, denoted $\hat{\mathbf{u}}_H^{(i)}$, is the BF approximation to \mathbf{u}_H at $\xi^{(i)}$ (see Fig. 4, blue boxes, middle row). Once formed, approximate QoI realizations are calculated directly from the BF realizations $\hat{\mathbf{u}}_H^{(i)}$.

With regards to computational cost, the BF approximation requires N LF simulations, performing rank-revealing QR on \mathbf{U}_L with $\mathcal{O}(rmN)$ floating point operations for basis identification and the coefficient matrix computation, and only r HF simulations to form \mathbf{U}_H^c . Typically, obtaining HF solutions is a bottleneck, and thus limiting the number of HF simulations to small r is of great value and a fundamental component of this approximation.

Remark 1. *By construction of ID, the columns of $\hat{\mathbf{U}}_L$ with indices i_k , $k = 1, \dots, r$, identified by the permutation matrix \mathbf{P} in (15), are exactly the same as the corresponding columns of \mathbf{U}_L . Stated differently, an $r \times r$ sub-matrix of \mathbf{C}_L is a permutation of identity. This, therefore, implies that the columns of the BF matrix $\hat{\mathbf{U}}_H$ with indices i_k (identified from ID of \mathbf{U}_L) are the same as the r HF realizations forming the columns skeleton \mathbf{U}_H^c .*

Remark 2. *While the optimal rank for this BF approximation is not known a priori, the rank of the LF data matrix \mathbf{U}_L may indicate a good selection range. Theoretical results of [60, 61, 62] show the error of the rank r LF approximation in (18) is bounded by a scaling of the $(r+1)$ -th largest singular value of \mathbf{U}_L . This suggests that the decay of singular values of \mathbf{U}_L , specifically, where a significant drop occurs, to be a worthwhile consideration for the value of r .*

292 4.2. Theoretical Error Estimation of Bi-Fidelity Approximation

293 This section briefly presents the theoretical results of [43] that provide a practical error bound on the
 294 spectral norm of $\|\mathbf{U}_H - \hat{\mathbf{U}}_H\|$ that may be used with small cost to assess the suitability of a given pair
 295 of low- and high-fidelity models to produce an accurate BF approximation. Instances of successful BF
 296 approximation via $\hat{\mathbf{U}}_H$ in (20) have been reported in a number of recent studies [39, 40, 41, 42, 43].

297 Following [43], the BF estimate $\hat{\mathbf{U}}_H$ is accurate as long as there exists an $M \times m$ matrix \mathbf{T} , with bounded
 298 norm, such that $\mathbf{U}_H \approx \mathbf{T}\mathbf{U}_L$. For a given pair of low- and high-fidelity problems, the existence of such a
 299 mapping is not always guaranteed. However, [43] shows that such a mapping can be constructed when

$$\epsilon(\tau) = \lambda_{\max}(\mathbf{U}_H^T \mathbf{U}_H - \tau \mathbf{U}_L^T \mathbf{U}_L), \quad \tau \geq 0, \quad (21)$$

300 is small enough and that \mathbf{U}_L (similarly \mathbf{U}_H) has fast decaying singular values. In (21), $\lambda_{\max}(\cdot)$ denotes
 301 the largest eigenvalue of a matrix, and $\mathbf{U}_H^T \mathbf{U}_H$ and $\mathbf{U}_L^T \mathbf{U}_L$ are the Gramians of the HF and LF matrices,
 302 respectively. The following theorem from [43] provides a bound on the BF approximation error. In particular
 303 we note the dependence of the error bound on τ and $\epsilon(\tau)$.

304 **Theorem 4.1** (Theorem 1 of [43]). *Let $\hat{\mathbf{U}}_H$ be the rank r BF approximation, as in (20), to the HF data
 305 matrix \mathbf{U}_H . Let $\hat{\mathbf{U}}_L$ be the rank r MID approximation, given in (18), to the LF data matrix \mathbf{U}_L , where \mathbf{C}_L
 306 is the corresponding coefficient matrix. For $\epsilon(\tau)$, as defined in (21), and $\|\cdot\|$ the spectral norm, it follows
 307 that the BF error may be bounded as*

$$\|\mathbf{U}_H - \hat{\mathbf{U}}_H\| \leq \min_{\substack{k < \text{rank}(\mathbf{U}_L) \\ \tau \geq 0}} \left((1 + \|\mathbf{C}_L\|) \sqrt{\tau \sigma_{k+1}^2 + \epsilon(\tau)} + \|\mathbf{U}_L - \hat{\mathbf{U}}_L\| \sqrt{\tau + \epsilon(\tau) \sigma_k^{-2}} \right), \quad (22)$$

308 where σ_k and σ_{k+1} are the k -th and $(k+1)$ -th largest singular values of \mathbf{U}_L , respectively.

309 Evaluating the bound in (22) requires the computation of $\epsilon(\tau)$ for multiple values of τ . Following (21),
 310 this in turn requires access to the entire HF data matrix \mathbf{U}_H , which is not possible as \mathbf{U}_H is never generated
 311 in practice. As an alternative, estimates of $\epsilon(\tau)$ may be calculated using a subset of $R \ll N$ HF and LF
 312 samples via

$$\hat{\epsilon}(\tau) = \frac{N}{R} \lambda_{\max}((\mathbf{U}_H^R)^T \mathbf{U}_H^R - \tau (\mathbf{U}_L^R)^T \mathbf{U}_L^R), \quad (23)$$

313 where the superscript R indicates the number of columns of \mathbf{U}_H and the corresponding columns of \mathbf{U}_L used
 314 to set \mathbf{U}_H^R and \mathbf{U}_L^R , respectively. Stated differently, estimates of $\epsilon(\tau)$ may be obtained using R HF samples,
 315 instead of N . To evaluate the remainder of the bound in (22), MID is applied to the LF data matrix to
 316 obtain values for $\|\mathbf{U}_L - \hat{\mathbf{U}}_L\|$ and $\|\mathbf{C}_L\|$. Combining these estimates and minimizing over identified values
 317 of $(\tau, \hat{\epsilon}(\tau))$ and the singular values of \mathbf{U}_L results in an approximate bound. The numerical results of [43]
 318 show empirically that R slightly larger than the approximation rank r is sufficient to estimate the optimal
 319 pair $(\tau, \epsilon(\tau))$. This therefore suggests the efficacy of (22) in estimating the BF approximation error or in
 320 suitability of a given pair of low- and high-fidelity models for BF modeling.

321 4.3. Using Bi-Fidelity Approximation to Estimate QoI Statistics

322 Our discussion so far has focused on the construction of N BF estimates of a vector-valued QoI using
 323 the corresponding N LF realizations, along with r selected HF realizations. We next turn our attention to
 324 how these BF estimates may be utilized for the purpose of UQ or sensitivity analysis.

325 When the BF approximation achieves the desired accuracy, standard methods such as MC sampling,
 326 stochastic collocation, or sparse PCE may be employed on $\hat{\mathbf{U}}_H$ (more specifically, the columns of $\hat{\mathbf{U}}_H$)
 327 instead of \mathbf{U}_H to estimate the moments and PDF of the QoI, and perform global sensitivity analysis. When
 328 the dimension d of the random inputs is not high, methods such as sparse PCE or stochastic collocation
 329 may be employed. Otherwise, MC sampling methods are preferred. On the other hand, when the BF
 330 approximation does not meet the accuracy requirements but leads to estimates well correlated with the HF

331 data, the BF approximation may serve as a control variate to MC in a single-level [24] or in a multilevel
 332 setting as in [34].

333 In the numerical results of Section 5, we use the ℓ_1 -minimization approach of [19, 63] to build sparse
 334 PCEs of the QoIs as approximate maps between the random inputs ξ and the QoIs. The resulting PCEs
 335 are, in turn, used to estimate the statistics, here, histogram, of the QoIs and perform global sensitivity
 336 analysis. The QoI statistics can be either computed directly via the PC coefficients, e.g., for the mean
 337 and variance, or by sampling the PCE itself in a MC fashion, e.g., for histogram. We follow the latter
 338 approach in the experiments of Section 5 to generate histograms of the QoIs. For global sensitivity analysis,
 339 we perform variance decomposition to compute the so-called Sobol' indices [64], which provide a means to
 340 quantitatively describe the importance of input parameters, by calculating each parameter's contribution
 341 to the total variance of the output QoI. Following the work of [65], we compute the Sobol' indices directly
 342 from the PCE coefficients.

343 5. Numerical Results of Bi-Fidelity Approximation

344 To investigate the performance of the BF approximation, 256 LF2, 128 LF1, and 26 HF simulations were
 345 performed, such that the 26 HF simulations correspond to the first 26 simulations of LF1 and LF2, and the
 346 128 LF1 simulations correspond to the first 128 of the LF2 simulations. From the two LF models, two BF
 347 approximations are formed: bi-fidelity 1 (BF1) approximation and bi-fidelity 2 (BF2) approximation. The
 348 BF1 approximation is formed from $N = 128$ LF1 samples and r HF samples, and the BF2 approximation
 349 is formed from $N = 256$ LF2 samples and r HF samples. The number of HF simulations is left as r , as the
 350 selection of this value will be discussed in the following results.

351 The motivation of this approximation is to form a BF model that accurately predicts the HF data, and
 352 the goal of these results is to investigate whether or not there is an improvement over the performance
 353 of the the LF models. For these tests, two primary time-averaged, i.e., $\langle \cdot \rangle$, thermal QoIs are considered:
 354 (i) heat flux through the plane at the probe location, $Q = \int C_{p,g} \langle \rho_g \mathbf{u}_g \Delta T \rangle d\mathbf{S}$, ($\Delta x = 0.3L$ downstream
 355 from the radiated perimeter) **normalized by the mean QoI estimated from the HF data**, and (ii) **normalized**
 356 **temperature increment**, $\Delta T/T_0 = (\langle T \rangle - T_0)/T_0$, values along the profile at the probe location ($\Delta x = 0.3L$,
 357 downstream from the radiated perimeter at $z = 0.5W$), where focus is placed on spatially-averaged $\Delta T/T_0$,
 358 and point estimates at $y/W = 0.5$, $y/W = 0.1$, and $y/W = 0.05$.

359 For each QoI, five primary tasks are considered: (i) BF rank identification as to best optimize accuracy
 360 and computational cost of the approximation, (ii) BF error bound estimation, to verify the accuracy of
 361 the approximation for a fixed rank, (iii) QoI approximation via available data, (iv) estimation of statistics
 362 via sparse PCE of LF and BF models, and (v) cost analysis to compare approximate core-hours needed to
 363 obtain converged simulations from each model.

364 For a given matrix \mathbf{U} of LF or BF data, we report the relative spectral error, with respect to its HF
 365 counterpart \mathbf{U}_H , defined as

$$\text{relative spectral error} = \frac{\|\mathbf{U}_H - \mathbf{U}\|}{\|\mathbf{U}_H\|}, \quad (24)$$

366 For scalar QoIs, we report the relative ℓ_2 (root mean-square error),

$$\text{relative } \ell_2 \text{ error} = \frac{\sqrt{\sum_{i=1}^N (Q_H^{(i)} - Q^{(i)})^2}}{\sqrt{\sum_{i=1}^N (Q_H^{(i)})^2}}, \quad (25)$$

367 where $Q^{(i)}$ is a LF or BF simulated QoI and $Q_H^{(i)}$ is the corresponding HF realization.

368 5.1. *QoI #1: Heat Flux Through the $\Delta x = 0.3L$ Plane*

369 To estimate the statistics of the heat flux QoI, the BF approximation is formed from realizations \mathbf{u} of
 370 the heat flux values over the entire $\Delta x = 0.3L$ plane. For ease of comparison, these values are extracted as
 371 a 500×500 uniform grid of points for both HF and LF simulations (thus here $m = M$). The scalar-valued
 372 QoI estimates Q are taken to be the **heat flux** determined from all of the elements of \mathbf{u} , normalized by the
 373 mean QoI estimated from the HF data.

374 When forming the BF approximation, the first task is to identify the approximation rank. This is critical
 375 as it will dictate both the computational cost – corresponding to r HF realizations – and accuracy of the
 376 approximation. As a reduced cost relies on minimal number of HF samples, the selected rank must be as
 377 small as possible. However, excessively small approximation ranks may lead to inaccurate BF solutions. To
 378 aid in rank selection, consider the results of Fig. 5. Fig. 5 (a) provides the decay of singular values of LF
 379 and HF matrices. The magnitudes of these singular values decay most rapidly within the first six indices,
 380 indicating that six realizations of heat flux capture most of the information of the LF and HF data. Fig. 5
 381 (b) displays the error bound estimate of the BF approximation matrix as a function of rank r . Note, the
 382 number of simulations to calculate $\hat{\epsilon}(\tau)$ is set to $R = r + 2$; a more thorough assessment of the error bound
 383 will be discussed shortly. The error bound estimate levels out for a conservative value of $r = 6$, which is the
 384 BF approximation rank we use for the rest of the results. For comparison, the LF1 and LF2 spectral errors
 385 are provided (see (24)), indicating that very few HF samples are needed to observe an improvement over
 386 the LF models. The presentation of the corresponding cost analysis is postponed until Section 5.3.

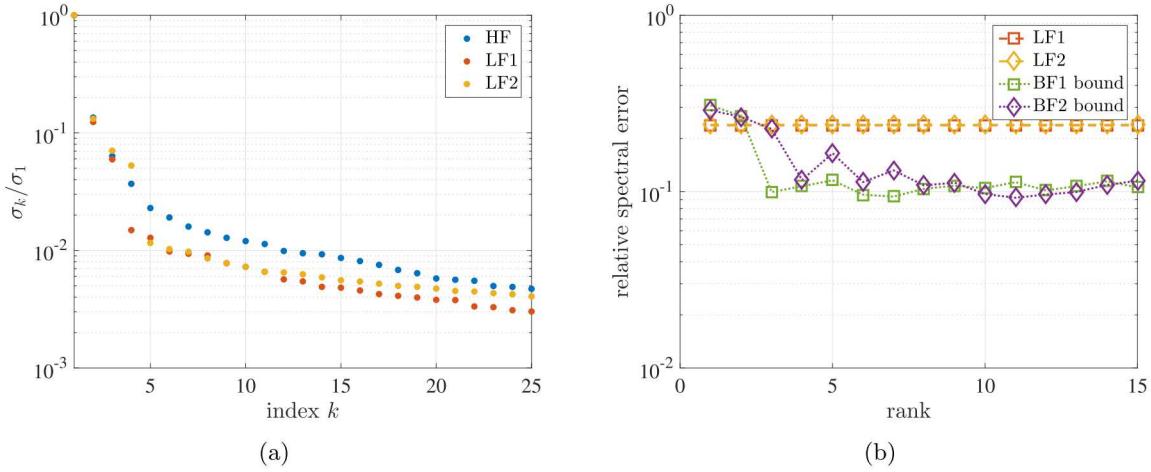


Figure 5: (a) Decay of normalized singular values of LF and HF matrices using available data. (b) Error bound estimates for both BF approximations as a function of rank r . For comparison, relative spectral error of the LF data are provided.

387 While the previous results indicate that the rank $r = 6$ BF approximation more accurately describes the
 388 HF data, the calculated error must be verified by more thoroughly investigating the theoretical error bound
 389 estimates from Section 4.2. Specifically, the bound must be estimated for multiple values of R , the number
 390 of samples used to estimate $\hat{\epsilon}(\tau)$. Fig. 6 provides the error bound estimates as a function of R for the BF1
 391 and BF2 models. Each point represents an error bound estimate calculated from R random columns of
 392 \mathbf{U}_H (out of 26 total columns) and the corresponding columns of \mathbf{U}_L . The solid line represents the average
 393 value of the points at each value of R . Numerical results of [43] suggest a value of $R \approx 2r$ will provide a
 394 true error bound. With rank $r = 6$, these results estimate the error bound to be 0.12 for both BF models.
 395 Recall from Fig. 5 (b) that this error bound estimate is smaller than that of either LF model, indicating
 396 that improvement in accuracy may be estimated without knowledge of the true BF error.

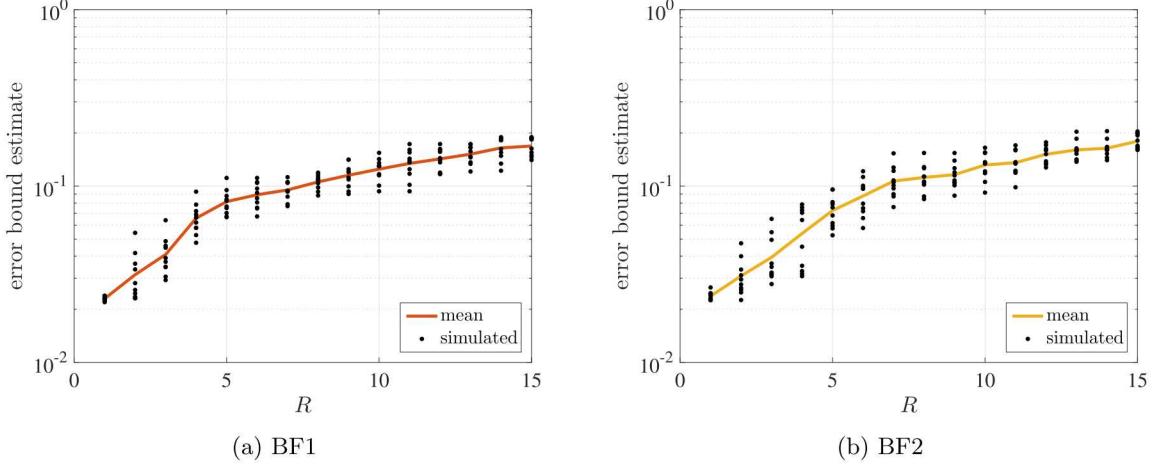


Figure 6: Error bound estimate from (22) using $\hat{e}(\tau)$ and rank $r = 6$ for varying values of R , for (a) BF1 and (b) BF2 models. Values are based on 10 different sets of R columns, where column selection not fully independent due to the small number of available HF samples.

397 To compare the performances of the LF and BF approximations with regards to the heat flux QoI,
398 consider the results of Fig. 7, where 17 simulated values of the heat flux using the HF, LF and BF models
399 are provided. Given the discussion of Remark 1, we exclude the heat flux values corresponding to the r
400 HF realizations used to form the BF approximation. For each simulated value, the BF approximations are
401 significantly more accurate than their LF counterparts. With regards to the relative ℓ_2 error, the BF QoIs are
402 about 7 \times more accurate than the LF QoIs, with both BF1 and BF2 having errors of 0.03, LF1 an error
403 of 0.20, and LF2 an error of 0.22.

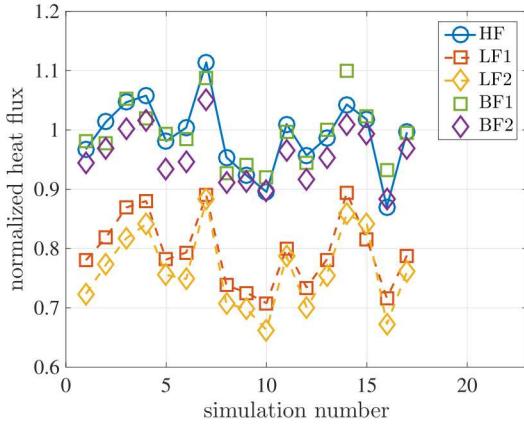


Figure 7: Normalized total heat flux values for 17 independent simulations, from the five different models, where the BF approximation is of rank $r = 6$. The BF approximations are more accurate than either LF QoI data. This data excludes simulations corresponding to the HF realizations used in the BF approximations.

404 To estimate the moments and PDF, as well as perform sensitivity analysis, a sparse PCE surrogate is
405 formed from available data, as discussed in Section 4.3. Table 3 provides the QoI mean and coefficient of
406 variation (CoV) values determined from the approximate coefficients of each LF and BF surrogate model, as
407 well as the relative error between each QoI mean and the HF QoI mean. Note the HF QoI mean is calculated
408 directly from available data. These results show that the BF1 mean is about 100 \times more accurate than the
409 LF mean values and the BF2 mean is about 10 \times more accurate than the LF mean values, where the BF1
410 model predicts within 0.15% of the HF QoI mean. The LF models, on the other hand, predict to within

411 only 20 – 22% of the HF QoI mean. The CoV is provided for all models as well. The QoI variation for each
 412 fidelity model is comparable to that of the HF model, with that of BF1 most closely describing the HF data.
 413 Since the BF2 CoV is of the same order of magnitude as the respective error, it cannot be completely relied
 414 on as an estimate for the HF CoV. The BF1 error, on the other hand, is significantly smaller than the CoV,
 415 and thus the CoV estimate can be trusted, indicating that the BF1 approximation most closely represents
 416 the HF data.

Model Fidelity	Mean QoI	Rel. Error	CoV
LF1	0.80	20%	0.10
BF1	0.99	0.15%	0.07
LF2	0.78	22 %	0.11
BF2	0.97	2.7%	0.06
HF	1.0	-	0.08

Table 3: Comparison of the mean and CoV the of heat flux estimated by the LF1, LF2, BF1, and BF2 models. These statistics are computed via a sparse PCE surrogate as discussed in Section 4.3.

417 To estimate the QoI PDFs, histograms of the LF and BF data are generated from 100,000 sparse PCE
 418 samples. Fig. 8 provides these normalized histograms for the heat flux QoI to compare with available
 419 HF data. Fig. 8 (a) provides data derived from the LF1 and BF1 models, while Fig. 8 (b) provides the
 420 histograms from LF2 and BF2 data. We observe that the BF histograms more closely follow the histogram
 421 of the HF data.

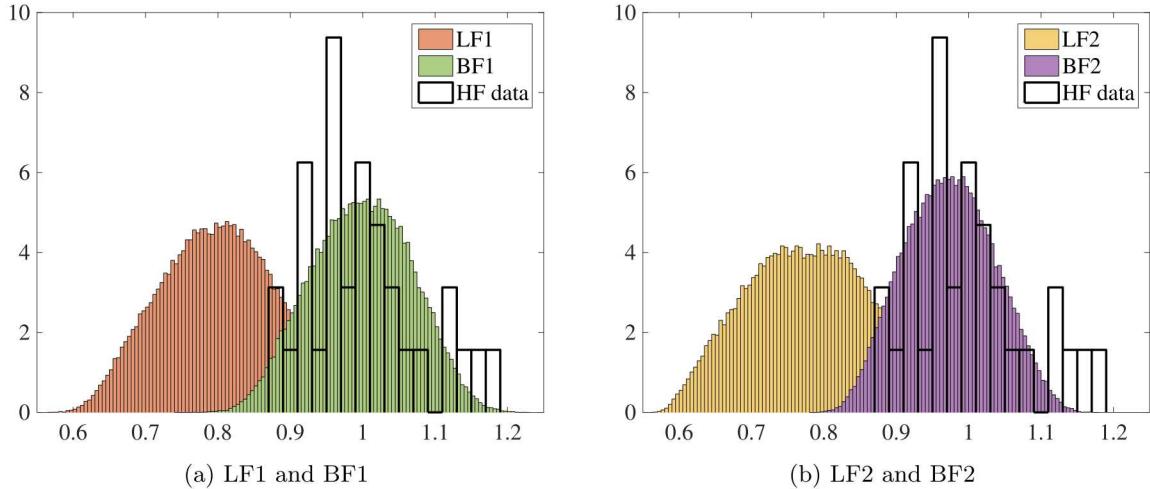


Figure 8: Normalized histogram of the total normalized heat flux through the $\Delta x = 0.3L$ plane based on sparse PCE of (a) LF1 and BF1 and (b) LF2 and BF2 realizations.

422 For the final set of results the **total** Sobol' indices are calculated from the PCE coefficients of the LF and
 423 BF heat flux samples. The relative contribution of each parameter to the variance of the estimated heat flux
 424 is displayed in Fig. 9 (a)-(d). The Sobol' indices determined from all four sets of PCE coefficients clearly
 425 indicate that the inputs representing the uncertainty in the heat fluxes from the radiated wall (ξ_{12}) and its
 426 opposite wall (ξ_{13}) contribute the most to the heat flux variation. Comparatively, the remaining uncertain
 427 parameters are best distinguished from the BF1 results of Fig. 9 (b) based on its accurate CoV estimate.
 428 In particular, the BF1 result indicates that inputs ξ_i with $i = 4 – 9, 11$ are next in terms of contribution to
 429 the total QoI variance, with about 1% of the variance, and ξ_i with $i = 1 – 3, 10$ have the least important

430 contribution, with $< 0.1\%$ of the total variance.

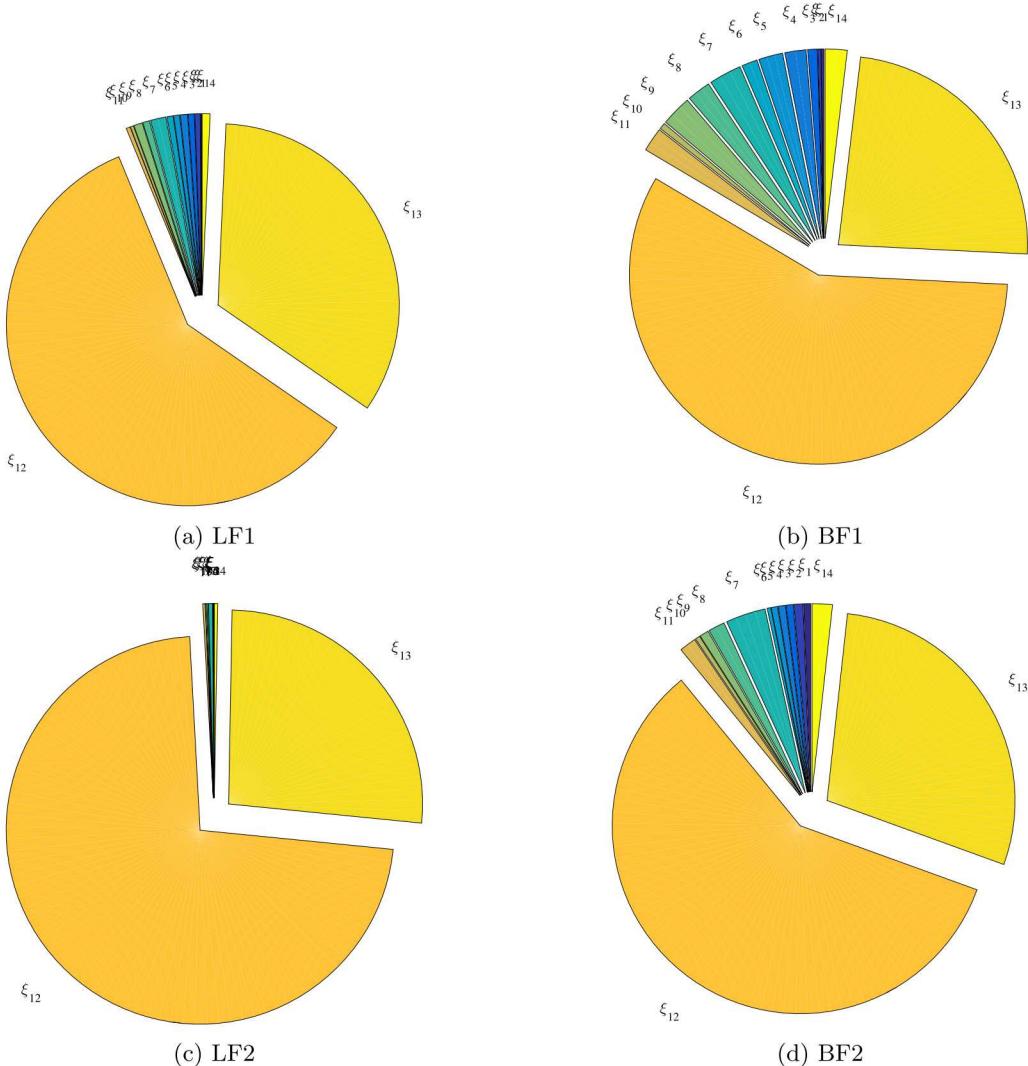


Figure 9: Importance of input parameters calculated from PCE coefficients on the (a) LF1, (b) BF1, (c) LF2, and (d) BF2 heat flux data. Starting with parameter ξ_1 at the top position, importance of each ξ_i is provided in counterclockwise order with respect to increasing i , with corresponding description provided in Table 2. As determined from all four model surrogates, heat flux from the radiated wall (ξ_{12}) and the opposite wall (ξ_{13}) to the fluid contribute the most to the heat flux variability.

431 As the results of this section have shown, both BF approximations are significantly more accurate
 432 than either LF approximation, with the sparse PCE surrogate of the BF1 approximation most accurately
 433 estimating the HF heat flux data. A discussion of cost comparisons between the five models may be found
 434 in Section 5.3.

435 *5.2. QoI # 2: Spatially-Averaged and Point Estimates of $\Delta T/T_0$ Along Profile at Probe Location*

436 Next, time-averaged $\Delta T/T_0 = (T - T_0)/T_0$ along the profile at the probe location is considered. The
 437 BF approximation employs realizations \mathbf{u} of the change in temperature $\Delta T/T_0$ along this profile. After
 438 investigating the estimation of the full temperature profile for all models, focus is placed on estimating
 439 the spatial mean of $\Delta T/T_0$ along the profile, as well as $\Delta T/T_0$ at three points along the profile, namely,
 440 $y/W = 0.5$, $y/W = 0.1$, and $y/W = 0.05$ at the probe location.

Similar to the heat flux QoI, an optimal rank of the BF approximation must be first identified. Fig. 10 (a) shows the decay of the singular values of the LF and HF matrices, indicating that an approximation rank $r \geq 4$ accurately represents the LF1 and LF2 data. Fig. 10 (b) displays the BF approximation error bound and the calculated relative spectral errors (see (24)) for both LF data as a function of rank r . For these error bound estimates, $R = r + 2$ simulations are used to estimate the values of $\hat{\epsilon}(\tau)$. As in QoI #1 above, the error bound estimate for BF1 levels out for the conservative value of $r = 6$ (notice the larger value of the error estimate for $r = 5$). We therefore set the BF1 approximation rank to $r = 6$. While the BF2 bound suggests a rank of $r = 5$, for the interest of a simpler presentation, we chose $r = 6$ for BF2 rank as well.

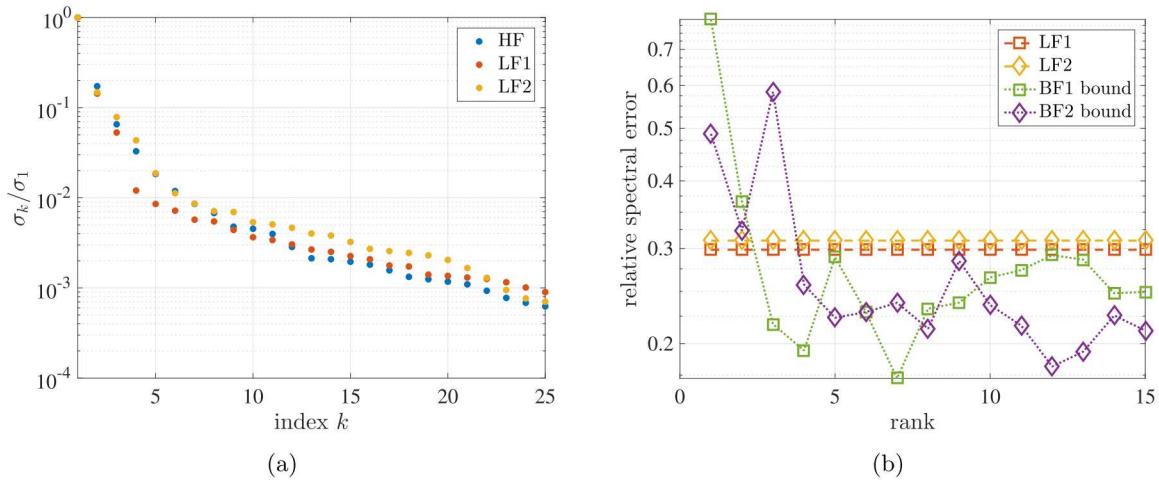


Figure 10: (a) Decay of normalized singular values of LF and HF matrices, using available $\Delta T/T_0$ data along the profile at the probe location. (b) Error bound estimates of the rank r BF approximations for $\Delta T/T_0$ as a function of r . For comparison, the LF1 and LF2 relative spectral errors are included as well.

Fig. 11 provides the error bound estimates for (a) the BF1 model and (b) the BF2 model, as a function of R . Single points indicate individual error bound calculations from R random columns of \mathbf{U}_H and \mathbf{U}_L , out of 26 total columns (and thus not completely independent). The solid line provides the average of these 10 points at each value of R . Notice that the average bound estimate for BF1 results in both Figs. 11 (a) and (b) suggest larger values of R – compared to $R = r + 2$ used in the results of this section – lead to more accurate BF error estimates. In both cases for $R = 15$ the estimated error is larger than the corresponding LF model errors. Naively speaking, this implies that the BF approximation may not lead to significant error improvement over the LF models, unlike in Section 5.1 for the heat flux data. Figure 12 (b) confirms this observation.

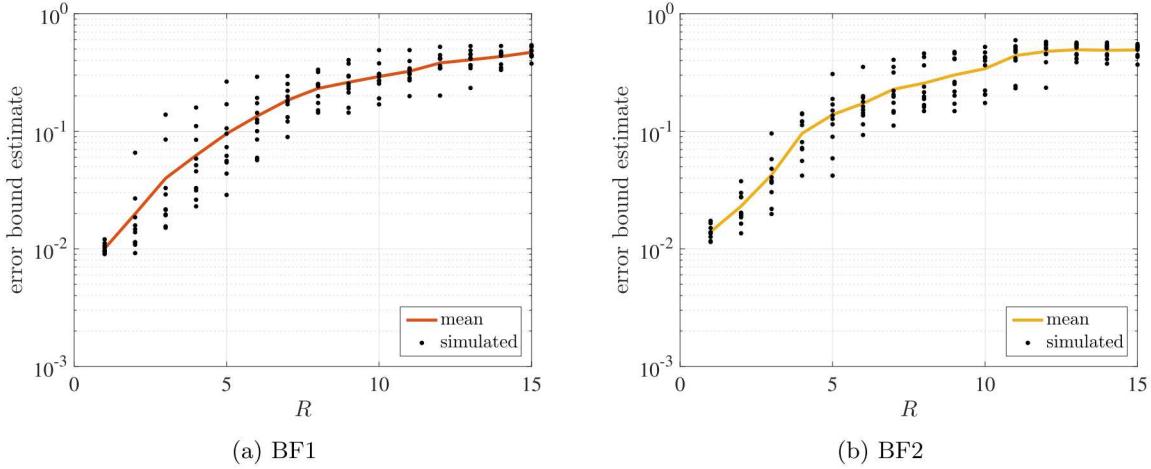


Figure 11: Error bound estimate from (22) using $\hat{\epsilon}(\tau)$ and rank $r = 6$ for varying values of R , for (a) BF1 and (b) BF2 models. Values are based on 10 different sets of R columns, where column selection not fully independent due to limited number of available HF samples.

459 To compare the abilities of the LF and BF models to reconstruct the $\Delta T/T_0$ temperature profile at the
 460 probe location, the results from Fig. 12 are considered. Fig. 12 (a) displays the average $\Delta T/T_0$ temperature profile
 461 derived from the LF, BF, and HF models. At most points along the profile, the mean BF1 and BF2
 462 $\Delta T/T_0$ are observed to be more accurate than the mean of either LF model. To quantify this error, Fig. 12
 463 (b) provides the ℓ_2 error (see (25)) evaluated at each point along the profile. While the BF models are more
 464 accurate than the LF models at most points, the interior of the profile exhibits the greatest improvement.
 465 Of most interest for UQ analysis are the $\Delta T/T_0$ values near the walls and middle of the profile. As such,
 466 the focus is placed on four different QoIs of $\Delta T/T_0$: the spatial mean of ΔT along the profile, and $\Delta T/T_0$
 467 quantities at points $y/W = 0.5$, $y/W = 0.1$, and $y/W = 0.05$ along the profile.

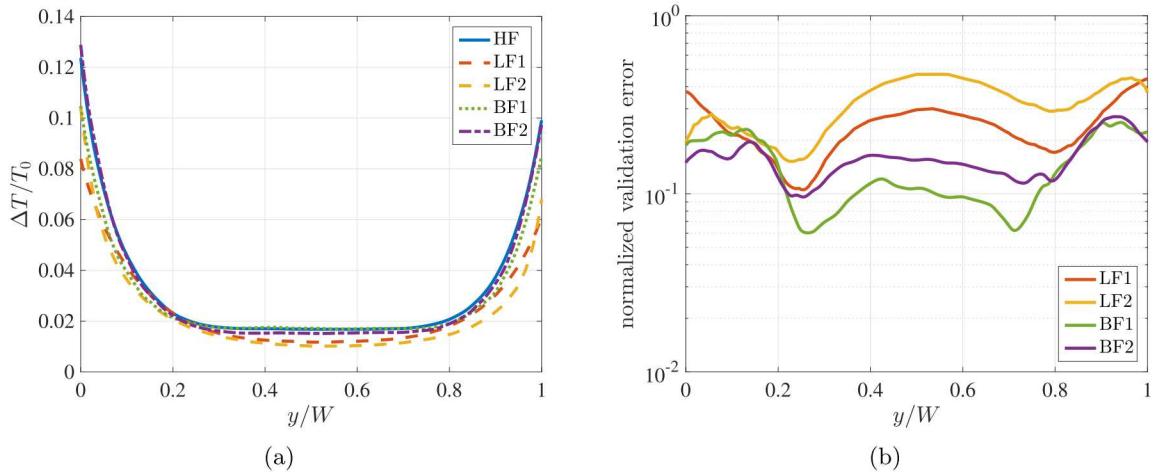


Figure 12: (a) Average $\Delta T/T_0$ profile calculated from available simulations for all five models with rank $r = 6$ for the BF approximations. (b) Error estimates of $\Delta T/T_0$ (from (25)) at each point along the profile.

468 Figures 13 (a)-(d) provide the simulated values of the four $\Delta T/T_0$ QoIs when using the HF, LF, and
 469 BF models. Note these do not include the data used for the BF approximation basis. Fig. 13 (a) and (b),
 470 which provide the mean value of $\Delta T/T_0$ and the value of $\Delta T/T_0$ at $y/W = 0.5$, respectively, show improved
 471 performance of the BF approximation compared to the LF models for all simulations. With regards to the

472 ℓ_2 error of the QoIs, the mean values are about $2\times$ more accurate and the values at $y/W = 0.5$ are $3\times$ more
 473 accurate. On the other hand, in Fig. 13 (c) and (d), which provide the values of $\Delta T/T_0$ at $y/W = 0.1$ and
 474 $y/W = 0.05$, respectively, error improvement does not appear to be significant. For both QoIs, the BF
 475 approximations have a smaller ℓ_2 error than their corresponding LF models; however, the gain is smaller
 476 than $2\times$. These results suggest that the approximation performs well for the mean and $\Delta T/T_0$ QoIs near
 477 the interior of the profile, but accuracy decays for values closer to the walls.

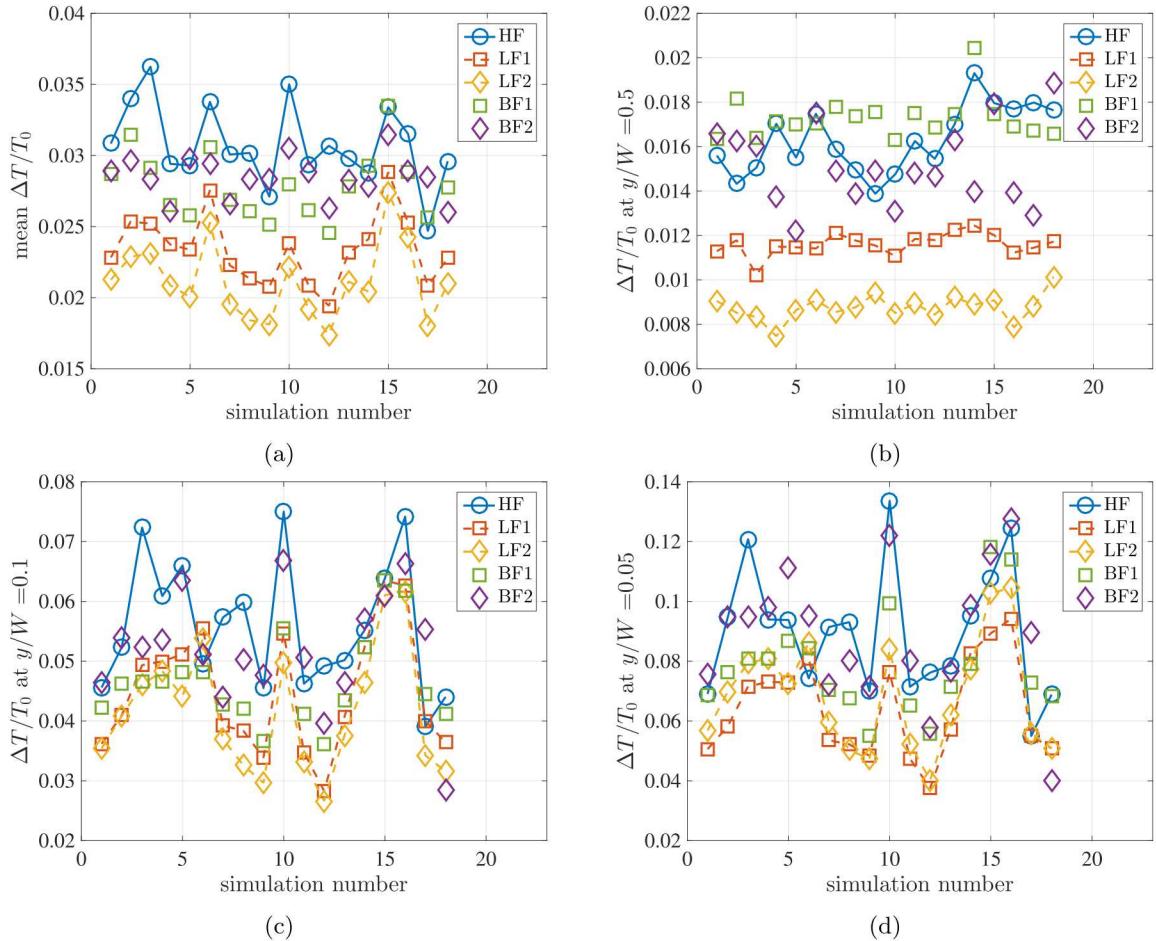


Figure 13: $\Delta T/T_0$ values of 17 independent simulations for the QoI of (a) spatial mean along profile at probe location, and points $y/W = 0.5$ (b), $y/W = 0.1$ (c), and $y/W = 0.05$ (d), along probe profile. Simulated values are from the five different models, where the BF approximation is of rank $r = 6$.

478 While prior temperature results were calculated directly from the simulated values, to estimate the
 479 moments and PDFs, as well as to perform sensitivity analysis, surrogates of the LF and BF models are
 480 formed via sparse PCE approximations. For each of the four temperature QoIs, the mean and CoV estimates
 481 determined from the sparse PCE coefficients are provided in Table 4 (a)-(d), as well as the relative error
 482 between each QoI mean and the HF QoI mean. For each subtable in Table 4, the BF mean estimates are
 483 more accurate than either of the LF estimates, by a factor of $3 - 11$. Between the two BF approximations,
 484 BF2 consistently has a small error. Aside from Table 4 (b), in which BF1 is more accurate (2% error vs.
 485 4% error), the BF2 errors are the smallest for each subtable. In terms of the QoI CoV estimates, the values
 486 of all models are comparable to that of the HF data. In Table 4 (a) and (b) the CoV results are similar to
 487 those of the heat flux results; specifically, since the BF CoV is the same order of magnitude of the respective
 488 errors, it is not necessarily distinguishable and thus can't completely be relied on as an estimate for the

489 HF CoV. However, as the BF approximations exhibit small errors and CoV values, the mean estimates are
 490 reliable. On the other hand, the BF CoV estimates of Table 4 (c) and (d) are larger than the corresponding
 491 error, and therefore are more dependable than the estimates in Table 4 (a) and (b). Because of this, stronger
 492 conclusions may be made when performing global sensitivity analysis.

Model Fidelity	Mean QoI	Rel. Error	CoV
LF1	0.024	21.7%	0.12
BF1	0.028	8.11%	0.11
LF2	0.022	28 %	0.13
BF2	0.029	3.3%	0.07
HF	0.031	-	0.10

Model Fidelity	Mean QoI	Rel. Error	CoV
LF1	0.012	31%	0.04
BF1	0.017	2.0%	0.06
LF2	0.010	40 %	0.09
BF2	0.016	4.4%	0.10
HF	0.017	-	0.08

Model Fidelity	Mean QoI	Rel. Error	CoV
LF1	0.046	16.1%	0.25
BF1	0.047	14.7%	0.21
LF2	0.042	24.0 %	0.27
BF2	0.052	5.1%	0.20
HF	0.055	-	0.20

Model Fidelity	Mean QoI	Rel. Error	CoV
LF1	0.066	27.3%	0.28
BF1	0.081	11.1%	0.24
LF2	0.071	22.6 %	0.30
BF2	0.088	2.8%	0.27
HF	0.091	-	0.25

(a) Spatial mean $\Delta T/T_0$

(b) $\Delta T/T_0$ at $y/W = 0.5$

(c) $\Delta T/T_0$ at $y/W = 0.1$

(d) $\Delta T/T_0$ at $y/W = 0.05$

Table 4: Statistics from sparse PCE

493 To estimate the PDFs of the four $\Delta T/T_0$ QoIs, histograms of the LF and BF sparse PCE surrogates
 494 are formed using 25,000 samples. These results are provided in Fig. 14, where the left column results are
 495 associated with LF1 and BF1 surrogates, and the right column results are associated with LF2 and BF2
 496 surrogates. For comparison available simulated HF data are provided as well. With the exception of Fig. 14
 497 (e) and (g), where the LF1 and BF1 results are closely overlaid, all of the histograms show the BF results
 498 more accurately approximating the HF data than the LF results. This significance is observed more so for
 499 Fig. 14 (a)-(d), which displays the QoI histograms of the spatial mean of $\Delta T/T_0$ and $\Delta T/T_0$ at the center
 500 of the profile. In Fig. 14 (c)-(h), which shows the $\Delta T/T_0$ QoIs at specific points along the profile, the BF
 501 surrogates are consistently accurate. The LF surrogates are the least accurate in the center of the profile
 502 (Fig. 14 (c) and (d)), and improve for QoI point estimates near the wall (Fig. 14 (e)-(h)).

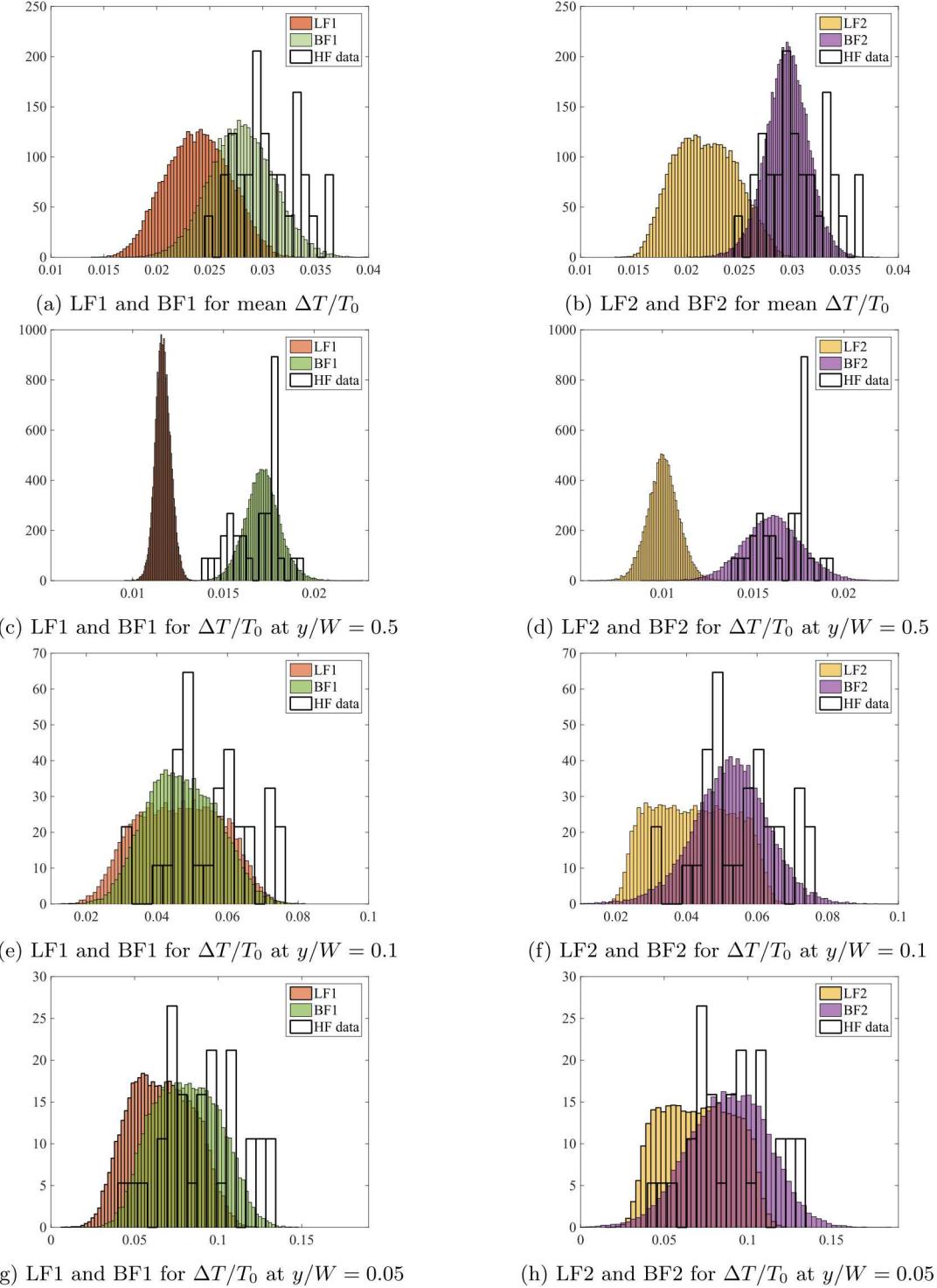


Figure 14: Normalized histograms of the LF1 and BF1 surrogate models (left column) and LF2 and BF2 surrogate models (right column) for the four $\Delta T/T_0$ QoIs: mean ((a) and (b)), $y/W = 0.5$ ((c) and (d)), $y/W = 0.1$ ((e) and (f)), and $y/W = 0.05$ ((g) and (h)). Histograms formed from 25,000 samples of the sparse PCE surrogates.

503 The last result considered is global sensitivity analysis via Sobol' indices, as calculated from the sparse

504 PCE coefficients. From these estimates, two sets of results are presented: comparisons between the four
 505 models and comparisons between the four QoIs. To compare the four models, sensitivity analysis is completed
 506 for the spatial mean $\Delta T/T_0$ QoI. Fig. 15 provides the decomposition of important parameters from the (a)
 507 LF1, (b) BF1, (c) LF2, and (d) BF2 models. All pie charts suggest that heat flux from the radiated wall
 508 to the fluid (ξ_{12}) is the most important parameter affecting the QoI variance. However, it is important to
 509 note the results of Table 4 (a); specifically, the LF1 and LF2 errors are larger than the corresponding CoV
 510 estimates, indicating that the associated sensitivity analysis is not necessarily reliable. The BF1 and BF2
 511 data, on the other hand, have an error that is smaller than the CoV, but on the same order of magnitude.
 512 As such, Fig. 15 (b) and (c) show that the heat flux from the radiated wall and opposite wall to the fluid
 513 (ξ_{12} and ξ_{13} , respectively) are the two most important input parameters. Further conclusions cannot be
 514 made with regard to the remaining parameters as the CoV estimates of Table 4 (a) are of the same order
 as the error.

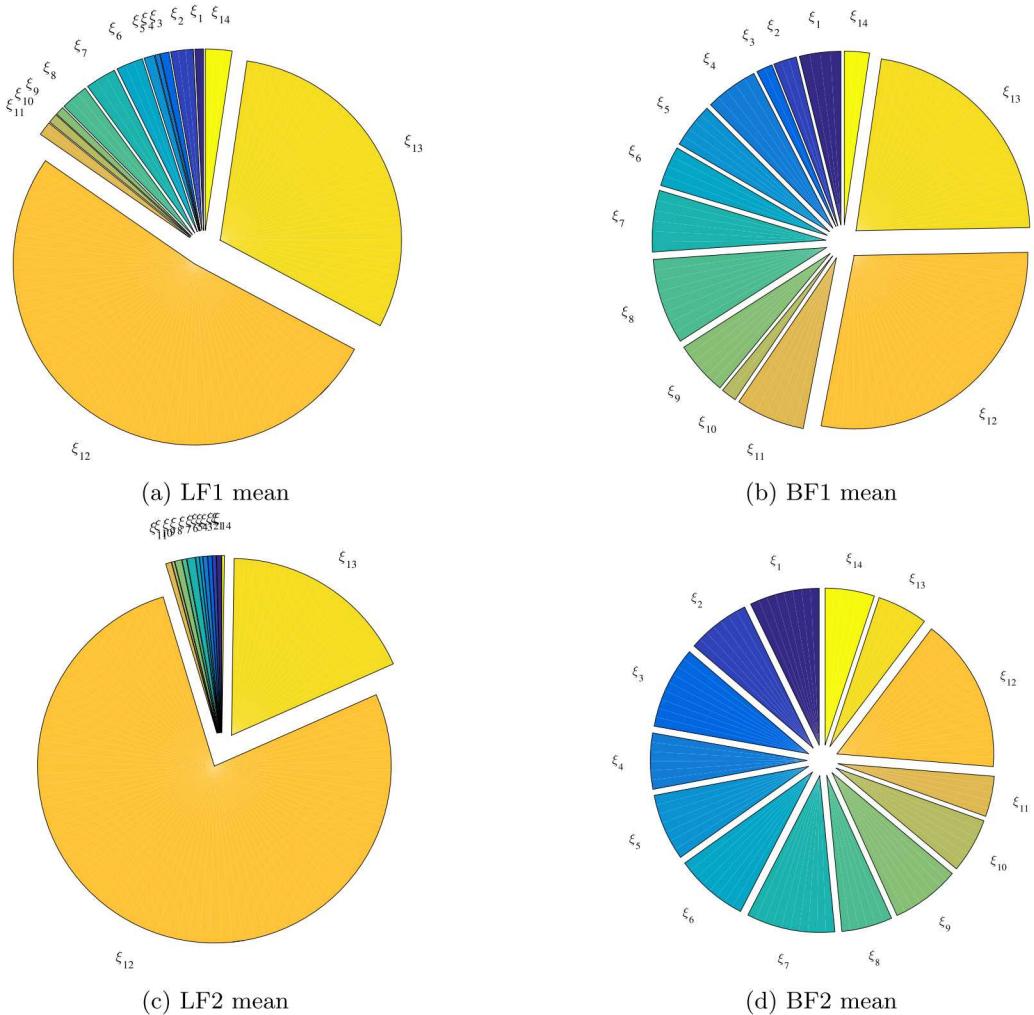


Figure 15: Importance of input parameters for the spatial mean $\Delta T/T_0$ QoI from sparse PCE coefficients of the (a) LF1 (b) BF1, (c) LF2, and (d) BF2 surrogate models. Starting with parameter ξ_1 at the top position, importance of each ξ_i is provided in counterclockwise order with respect to increasing i , with corresponding description provided in Table 2.

515
 516 Based on the moment estimations of Table 4 and histograms of Fig. 14, it is clear that the BF approximations
 517 provide improved information of the HF QoIs than the corresponding LF models. As a consequence,
 518 Fig. 16 provides the importance of input parameters of the four QoIs as determined by the BF2 sparse PCE

519 coefficients. The BF2 model is selected as it consistently has a low error (see Table 4), and does so with
 520 lower cost than the BF1 surrogate model. Fig. 16 (a)-(d) shows how the importance of parameters changes
 521 with the four QoIs. From Fig. 16 (a)-(d), the heat flux from the radiated wall to the fluid (ξ_{12}) is the most
 522 important parameter for the mean $\Delta T/T_0$ QoI, as well as the two point QoIs near the radiated wall (Figs.
 523 16 (a), (b), and (c), respectively); in contrast, heat flux from the opposite wall to the fluid (ξ_{13}) is the most
 524 important parameter for the $\Delta T/T_0$ QoI in the middle of the profile (see Fig. 16 (d)). This suggests that,
 525 over the whole profile, variations in the heat flux from the radiated wall will greatly affect the $\Delta T/T_0$ values,
 526 but more so at points close to the radiated wall. For points further from this wall, the variations in this
 527 heat flux will play less of a role in the variations of $\Delta T/T_0$.

528 In terms of the remaining parameters, the results of Table 4 (a) and (b) indicate that there is lack of
 529 sufficient precision in the variance estimate to conclude the importance of the remaining parameters for Fig.
 530 16 (a) and (b). However, the CoV estimates in 4 (c) and (d) are significantly larger than the corresponding
 531 error estimates for the BF2 models, allowing for further conclusions to be made from the sensitivity analysis
 532 results. Specifically, the data of Fig. 16 (c) and (d) show that the remaining parameters contribute equally
 to the variance of the $\Delta T/T_0$ QoIs near the radiated wall.

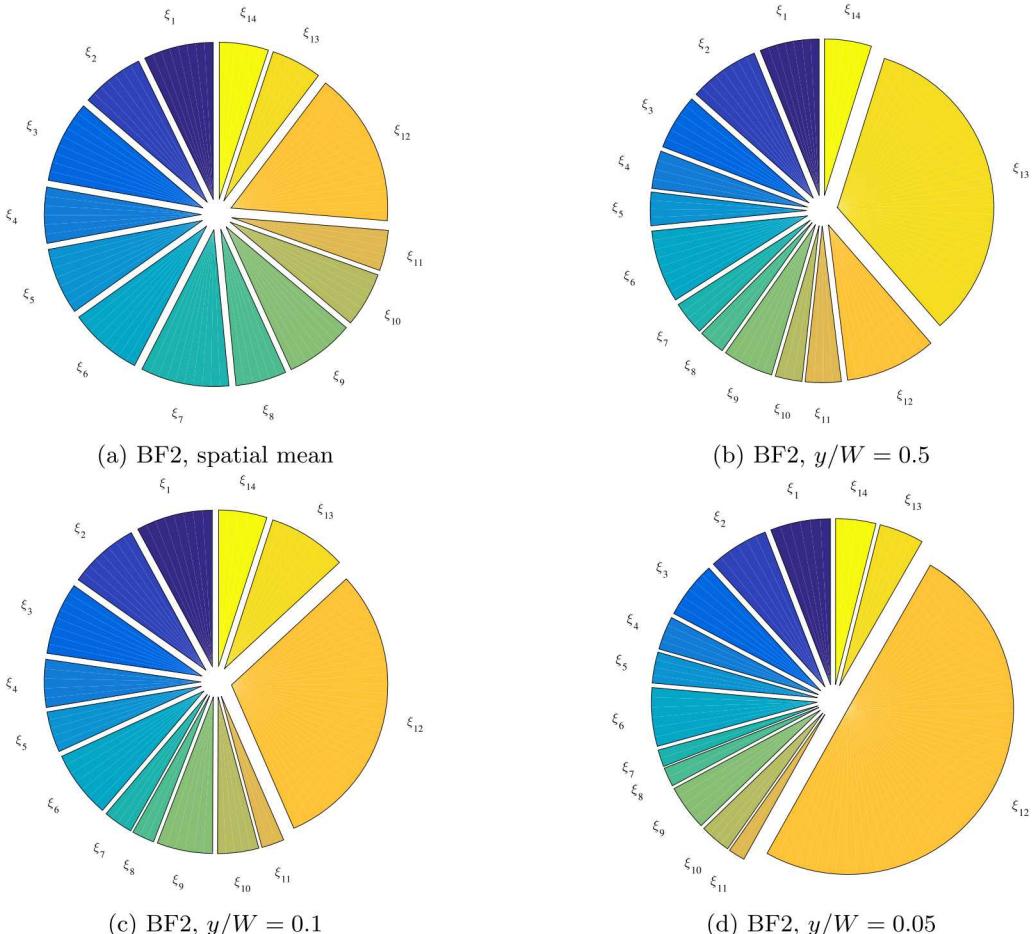


Figure 16: Importance of input parameters from sparse PCE coefficients from the BF2 model for the $\Delta T/T_0$ QoIs of (a) spatial mean along profile (b) $y/W = 0.5$ along profile at probe location, (c) $y/W = 0.1$ along profile at probe location, and (d) $y/W = 0.05$ along profile at probe location. Starting with parameter ξ_1 at the top position, importance of each ξ_i is provided in counterclockwise order with respect to increasing i , with corresponding description provided in Table 2.

533 The $\Delta T/T_0$ results of this section show that the BF approximations provide a more accurate reduced
 534

535 model than either of the LF models, with greatest improvements for mean $\Delta T/T_0$ and $\Delta T/T_0$ at the interior
 536 of the profile. In addition, theoretical error results guarantee that the BF approximations will be at least
 537 as accurate as the corresponding LF data. As will be shown in the following, the cost of this approximation
 538 is close to that of the LF models when many simulations are required.

539 *5.3. Computational Cost Comparisons of the Five Models*

540 The final component necessary to justify this BF approximation is to perform a cost comparison of
 541 all five models. Fig. 17 provides the approximate number of core-hours needed to generate N converged
 542 simulations from the HF, LF, and rank $r = 6$ BF models, extrapolated to large values of N . The number of
 543 simulations generated in this study are indicated by markers. For the BF1, the cost to generate $N = 128$
 544 samples is $20\times$ less expensive than the HF model, and for the BF2, the cost to generate $N = 256$ samples
 545 is $50\times$ less expensive than the HF model. In comparison, the LF1 and LF2 models are $170\times$ and $1300\times$
 546 less expensive, respectively; however, as shown in the results, they are poor approximations to the HF
 547 data. As the r HF simulations greatly affect the cost of the BF approximation, significant cost reduction is
 548 observed for larger values of N . For $\mathcal{O}(10^3)$ samples, which corresponds to values of N that are of interest
 549 in the context of the application studied in this work, the computational cost of the BF models more closely
 550 aligns with the cost of the LF models. While $N = 10^3$ HF simulations is approximately 500M core-hours,
 551 obtaining the equivalent number of simulations is approximately 6M and 3.5M core-hours for the BF1 and
 552 BF2 approximations, respectively. This drastic cost improvement, without a significant loss of accuracy that
 553 is observed with the LF models, makes the BF approximation a powerful tool to perform UQ for large-scale
 554 problems.

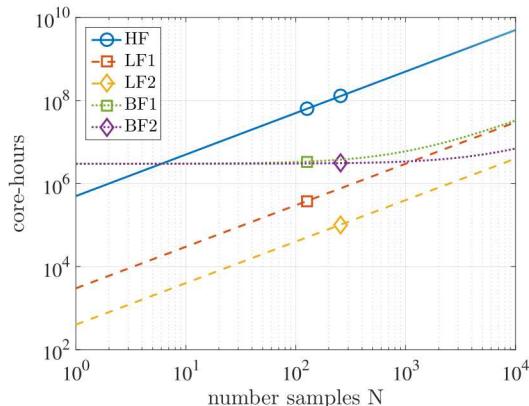


Figure 17: Number of core-hours on Mira (ALCF) [48] to obtain N simulated values from each model. Markers provide number of core-hours for $N = 128$ and $N = 256$, to provide the cost of the simulated values generated for this study.

555 **6. Conclusions**

556 As the results of this work show, when solutions to large-scale parametric/stochastic problems exhibit
 557 a low-rank structure, i.e., lending themselves to a reduced basis representation, models with lower fidelities
 558 (cheaper to simulate) may be utilized to generate accurate approximations of the solution with significantly
 559 lower computational cost. An instance of such a BF approximation was utilized to quantify the uncertainty
 560 in thermal solutions of interest (time-averaged heat flux and temperature near the outflow boundary) of
 561 a particle-based solar receiver model involving turbulence, particle transport, and radiative heat transfer,
 562 an example of large-scale, multi-physics systems. The sources of uncertainty included particle properties
 563 (restitution coefficient, Nusselt number, absorption and scattering efficiencies), thermal boundary conditions,
 564 mass loading ratio, among others. A single HF simulation of the problem, consisting of DNS flow model,
 565 Lagrangian particle transport, and highly resolved DOM discretization of the radiative transfer equations,

566 requires about half a million core-hours. This, in conjunction with the relatively large number of uncertain
567 inputs, renders standard UQ techniques infeasible.

568 To tackle the computational cost issue, two lower-fidelity models of the problem were constructed based
569 on coarsening the fluid and DOM grids, as well as by reducing the number of particles. These models were
570 used to identify a reduced basis and an interpolation rule for the thermal QoIs of the HF model. As a result,
571 only a small number of HF model realizations (e.g., six) at selected samples of uncertain parameters were
572 needed to generate BF samples of the QoIs, which were in turn used for a PCE-based estimation of the
573 QoI statistics and sensitivity analysis. All simulations were performed using the same computational code
574 and in a black box fashion. The errors in predicting the QoIs and their statistics via these BF models were
575 computed and compared to those of their LF counterpart. It was observed that the BF solutions, while
576 requiring a small number of HF realizations, were considerably (as high as 100 \times for the mean of heat flux)
577 more accurate than the LF estimates. The adopted BF strategy features an error bound which uses a small
578 number of HF realizations (along with LF samples) to estimate the error with respect to the HF model.
579 The efficacy of the bound in determining the number of required HF samples and estimating the BF error
580 was also demonstrated on the thermal QoIs.

581 The construction of the BF models enabled to efficiently carry out sensitivity analyses via PCE-based
582 Sobol' indices. The results indicate that the thermal QoIs considered in this work are extremely sensitive to
583 the heat fluxes from the walls to the gas-particle mixture resulting from the interaction between radiation
584 and non-ideal transparent walls. The importance of this effect is amplified in wall-bounded, particle-laden
585 turbulent flows as turbophoretic mechanisms tend to accumulate particles at the walls where the importance
586 of non-ideal transmissivity is the highest. The analysis also extracted that uncertainty in particle properties,
587 which is typically disregarded in computational studies of irradiated particle-laden turbulence, plays an
588 important role in the solution outcome that may result in large variability in, otherwise, robust first- and
589 second-order statistics.

590 Ongoing and future work focuses on exploring the performance of the BF approximation under more
591 challenging physical conditions in terms of turbulent intensities, particle loading, and radiation intensity. Of
592 notable interest is also the assessment of the approach in predicting higher order statistics, e.g., particles and
593 temperature fluctuations, and more complex physical phenomena, such as particle clustering and turbulence
594 modulation.

595 Acknowledgments

596 This work was funded by the United States Department of Energy's National Nuclear Security Ad-
597 ministration under the Predictive Science Academic Alliance Program II at Stanford University, Grant
598 DE-NA-0002373. The fifth author acknowledges funding by the US Department of Energy's Office of Sci-
599 ence Advanced Scientific Computing Research, Award DE-SC0006402 and National Science Foundation
600 Grant CMMI-145460. Sandia National Laboratories is a multimission laboratory managed and operated
601 by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell
602 International Inc., for the U.S. Department of Energys National Nuclear Security Administration under
603 contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective
604 views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S.
605 Department of Energy or the United States Government.

606 An award of computer time was provided by the ASCR Leadership Computing Challenge program. This
607 research used resources of the Argonne Leadership Computing Facility, which is a Department of Energy's
608 Office of Science User Facility supported under contract DE-AC02-06CH11357. This research also used
609 resources of the Oak Ridge Leadership Computing Facility, which is a Department of Energy's Office of
610 Science User Facility supported under contract DE-AC05-00OR22725.

611 References

612 [1] Exascale Computing Engineering Center. Predictive Science Academic Alliance Program (PSAAP) II, Stanford University,
613 2017.

614 [2] F. Veron, Ocean spray, *Annual Review of Fluid Mechanics* 47 (2015) 507–538.

615 [3] R. A. Shaw, Particle-turbulence interactions in atmospheric clouds, *Annual Review of Fluid Mechanics* 35 (2003) 183–227.

616 [4] S. R. Tieszen, On the fluid mechanics of fires, *Annual Review of Fluid Mechanics* 33 (2001) 67–92.

617 [5] J. C. Lasheras, E. J. Hopfinger, Liquid jet instability and atomization in a coaxial gas stream, *Annual Review of Fluid*
618 *Mechanics* 32 (2000) 275–308.

619 [6] V. Raman, R. O. Fox, Modeling of fine-particle formation in turbulent flames, *Annual Review of Fluid Mechanics* 48
620 (2016) 159–190.

621 [7] C. K. Ho, Advances in central receivers for concentrating solar applications, *Solar Energy* 152 (2017) 38–56.

622 [8] S. Balachandar, J. K. Eaton, Turbulent dispersed multiphase flow, *Annual Review of Fluid Mechanics* 42 (2010) 111–133.

623 [9] M. Caporaloni, F. Tampieri, F. Trombetti, O. Vittori, Transfer of particles in nonisotropic air turbulence, *Journal of*
624 *Atmospheric Sciences* 32 (1975) 565–568.

625 [10] K. D. Squires, J. K. Eaton, Preferential concentration of particles by turbulence, *Physics of Fluids* 3 (1991) 1169–1178.

626 [11] Q. Wang, K. D. Squires, Large eddy simulation of particle-laden turbulent channel flow, *Physics of Fluids* 8 (1996)
627 1207–1223.

628 [12] G. Sardina, P. Schlatter, L. Brandt, F. Picano, Wall accumulation and spatial localization in particle-laden wall flows,
629 *Journal of Fluid Mechanics* 699 (2012) 50–78.

630 [13] R. Zamansky, F. Coletti, M. Massot, A. Mani, Radiation induces turbulence in particle-laden fluids, *Physics of Fluids* 26
631 (2014) 071701.

632 [14] A. Frankel, H. Pouransari, F. Coletti, A. Mani, Settling of heated particles in homogeneous turbulence, *Journal of Fluid*
633 *Mechanics* 792 (2016) 869–893.

634 [15] L. Mathelin, M. Y. Hussaini, A stochastic collocation algorithm for uncertainty analysis, Technical Report NASA
635 1.26:212153; NASA/CR-2003-212153, NASA Langley Research Center, 2003.

636 [16] D. Xiu, J. S. Hesthaven, High-order collocation methods for differential equations with random inputs, *SIAM Journal on*
637 *Scientific Computing* 27 (2005) 1118–1139.

638 [17] R. Ghanem, P. Spanos, *Stochastic finite elements: a spectral approach*, Dover, 2002.

639 [18] D. Xiu, G. M. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations, *SIAM Journal on*
640 *Scientific Computing* 24 (2002) 619–644.

641 [19] A. Doostan, H. Owhadi, A non-adapted sparse approximation of PDEs with stochastic inputs, *Journal of Computational*
642 *Physics* 230 (2011) 3015–3034.

643 [20] A. Brandt, Multi-level adaptive solutions to boundary-value problems, *Mathematics of computation* 31 (1977) 333–390.

644 [21] W. L. Briggs, V. E. Henson, S. F. McCormick, *A multigrid tutorial* (2000).

645 [22] B. Peherstorfer, K. Willcox, M. Gunzburger, Survey of multifidelity methods in uncertainty propagation, inference, and
646 optimization (2016).

647 [23] M. G. Fernández-Godino, C. Park, N. H. Kim, R. T. Haftka, Review of multi-fidelity models, arXiv preprint
648 arXiv:1609.07196 (2016).

649 [24] S. Asmussen, P. Glynn, *Stochastic simulation: algorithms and analysis*, volume 57, Springer Science & Business Media,
650 2007.

651 [25] S. Heinrich, Multilevel Monte Carlo methods, in: *Large-scale scientific computing*, Springer, 2001, pp. 58–67.

652 [26] M. B. Giles, Multilevel Monte Carlo path simulation, *Operations Research* 56 (2008) 607–617.

653 [27] K. A. Cliffe, M. B. Giles, R. Scheichl, A. L. Teckentrup, Multilevel Monte Carlo methods and applications to elliptic pdes
654 with random coefficients, *Computing and Visualization in Science* 14 (2011) 3–15.

655 [28] A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo finite element method for elliptic pdes with stochastic
656 coefficients, *Numerische Mathematik* 119 (2011) 123–161.

657 [29] A. L. Teckentrup, R. Scheichl, M. B. Giles, E. Ullmann, Further analysis of multilevel Monte Carlo methods for elliptic
658 pdes with random coefficients, *Numerische Mathematik* 125 (2013) 569–600.

659 [30] A. Speight, A multilevel approach to control variates, *Journal of Computational Finance*, Forthcoming (2009).

660 [31] F. Nobile, F. Tesei, A multi level Monte Carlo method with control variate for elliptic pdes with log-normal coefficients,
661 *Stochastic Partial Differential Equations: Analysis and Computations* 3 (2015) 398–444.

662 [32] F. Vidal-Codina, N. C. Nguyen, M. B. Giles, J. Peraire, A model and variance reduction method for computing statistical
663 outputs of stochastic elliptic partial differential equations, *Journal of Computational Physics* 297 (2015) 700–720.

664 [33] G. Geraci, M. Eldred, G. Iaccarino, A multifidelity control variate approach for the multilevel Monte Carlo technique,
665 *Center for Turbulence Research Annual Research Briefs*, Stanford University (2015).

666 [34] H. R. Fairbanks, A. Doostan, C. Ketelsen, G. Iaccarino, A low-rank control variate for multilevel Monte Carlo simulation
667 of high-dimensional uncertain systems, *Journal of Computational Physics* 341 (2017) 121–139.

668 [35] B. Peherstorfer, T. Cui, Y. Marzouk, K. Willcox, Multifidelity importance sampling, *Computer Methods in Applied*
669 *Mechanics and Engineering* 300 (2016) 490–509.

670 [36] M. C. Kennedy, A. O'Hagan, Predicting the output from a complex computer code when fast approximations are available,
671 *Biometrika* 87 (2000) 1–13.

672 [37] Z. Qian, C. C. Seepersad, V. R. Joseph, J. K. Allen, C. F. J. Wu, Building surrogate models based on detailed and
673 approximate simulations, *Journal of Mechanical Design* 128 (2006) 668–677.

674 [38] J. Laurenceau, P. Sagaut, Building efficient response surfaces of aerodynamic functions with kriging and cokriging, 2008.

675 [39] A. Narayan, C. Gittelson, D. Xiu, A stochastic collocation algorithm with multifidelity models, *SIAM Journal on Scientific*
676 *Computing* 36 (2014) A495–A521.

677 [40] X. Zhu, A. Narayan, D. Xiu, Computational aspects of stochastic collocation with multifidelity models, *SIAM/ASA*
678 *Journal on Uncertainty Quantification* 2 (2014) 444–463.

679 [41] A. Doostan, G. Geraci, G. Iaccarino, A bi-fidelity approach for uncertainty quantification of heat transfer in a rectangular
 680 ribbed channel, in: ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Society
 681 of Mechanical Engineers, pp. V02CT45A031–V02CT45A031.

682 [42] R. W. Skinner, A. Doostan, E. L. Peters, J. A. Evans, K. E. Jansen, An evaluation of bi-fidelity modeling efficiency on a
 683 general family of naca airfoils, in: 35th AIAA Applied Aerodynamics Conference, p. 3260.

684 [43] J. Hampton, H. R. Fairbanks, A. Narayan, A. Doostan, Practical error bounds for a non-intrusive bi-fidelity approach to
 685 parametric/stochastic model reduction, *Journal of Computational Physics* 368 (2018) 315–332.

686 [44] L. Villafañe, A. Banko, C. Elkins, J. K. Eaton, Gas heating by radiation absorbing inertial particles in a turbulent duct
 687 flow, *CTR Annu. Res. Briefs* (2017) 35–47.

688 [45] M. Rahmani, G. Geraci, G. Iaccarino, A. Mani, Effects of particle polydispersity on radiative heat transfer in particle-laden
 689 turbulent flows, *Int. J. Multiph. Flow* 104 (2018) 42–59.

690 [46] A. Frankel, G. Iaccarino, Efficient control variates for uncertainty quantification of radiation transport, *Journal of
 691 Quantitative Spectroscopy and Radiative Transfer* 189 (2017) 398–406.

692 [47] L. Jofre, S. P. Domino, G. Iaccarino, A framework for characterizing structural uncertainty in large-eddy simulation
 693 closures, *Flow Turbulence and Combustion* 100 (2018) 341–363.

694 [48] Mira, Argonne Leadership Computing Facility, 2017.

695 [49] W. Sutherland, LII. the viscosity of gases and molecular force, *Philosophical Magazine* 36 (1893) 507–531.

696 [50] R. C. Weast, M. J. Astle, W. H. Beyer, *Handbook of chemistry and physics*, CRC Press, 1989.

697 [51] M. R. Maxey, J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, *Physics of Fluids* 26 (1983)
 698 883–889.

699 [52] M. Esmaily, L. Jofre, A. Mani, G. Iaccarino, A scalable geometric multigrid solver for nonsymmetric elliptic systems with
 700 application to variable-density flows, *Journal of Computational Physics* 357 (2018) 142–158.

701 [53] F.-L. Yang, M. L. Hunt, Dynamics of particle-particle collisions in a viscous liquid, *Physics of Fluids* 18 (2006) 121506.

702 [54] H. Brenner, Effect of finite boundaries on the Stokes resistance of an arbitrary particle, *Journal of Fluid Mechanics* 12
 703 (1962) 35–48.

704 [55] S. Ganguli, S. K. Lele, Drag of a heated sphere at low Reynolds numbers. Part I. Absence of buoyancy, *J. Fluid Mech.*
 705 Under review (2018).

706 [56] S. Ganguli, S. K. Lele, Drag of a heated sphere at low Reynolds numbers. Part II. Presence of buoyancy, *J. Fluid Mech.*
 707 Under review (2018).

708 [57] E. Farbar, I. D. Boyd, M. Esmaily-Moghadam, Monte Carlo modeling of radiative heat transfer in particle-laden flow,
 709 *Journal of Quantitative Spectroscopy and Radiative Transfer* 184 (2017) 146–160.

710 [58] S. Subramaniam, Lagrangian-Eulerian methods for multiphase flows, *Progress in Energy and Combustion Science* 39
 711 (2013) 215–245.

712 [59] A. Amsden, P. J. O'Rourke, T. D. Butler, KIVA-II: a computer program for chemically reactive flows with sprays,
 713 LA-12503-MS, LANL (1989).

714 [60] M. Gu, S. C. Eisenstat, Efficient algorithms for computing a strong rank-revealing QR factorization, *SIAM Journal on
 715 Scientific Computing* 17 (1996) 848–869.

716 [61] H. Cheng, Z. Gimbutas, P. G. Martinsson, V. Rokhlin, On the compression of low rank matrices, *SIAM Journal on
 717 Scientific Computing* 26 (2005) 1389–1404.

718 [62] P. G. Martinsson, V. Rokhlin, M. Tygert, A randomized algorithm for the decomposition of matrices, *Applied and
 719 Computational Harmonic Analysis* 30 (2011) 47–68.

720 [63] J. Hampton, A. Doostan, Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling
 721 strategies, *Journal of Computational Physics* 280 (2015) 363–386.

722 [64] I. M. Sobol', Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, *Math.
 723 Comput. Simul.* 55 (2001) 271–280s.

724 [65] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, *Reliability Engineering & System Safety* 93
 725 (2008) 964–979.