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Abstract

Efficiently performing predictive studies of irradiated particle-laden turbulent flows has the potential of
providing significant contributions towards better understanding and optimizing, for example, concentrated
solar power systems. As there are many uncertainties inherent in such flows, conducting uncertainty quantifi-
cation analyses is fundamental to improve the predictive capabilities of the numerical simulations. For large-
scale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution
presents a significant computational challenge as many methods require a large number of high-fidelity, for-
ward model solves. This requirement results in the need for a possibly infeasible number of simulations when
a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost
of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity
approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden
turbulent flow. This method relies on exploiting the low-rank structure of the solution to accelerate the
stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations.
The application of this bi-fidelity approximation results in accurate estimates of the Qol statistics while re-
quiring a small number of high-fidelity model evaluations. It also enables efficient computation of sensitivity
analyses which highlight that epistemic uncertainty plays an important role in the solution of irradiated,
particle-laden turbulent flow.

Keywords: Bi-fidelity approximation; Irradiated particle-laden turbulence; Low-rank approximation;
Non-intrusive; Predictive computational science; Uncertainty quantification

1. Introduction

The ability to quantitatively characterize and reduce uncertainties, in conjunction with model verification
and validation (V&V), plays a fundamental role in increasing the reliability of numerical simulations. These
types of studies are commonly encompassed within the field of uncertainty quantification (UQ), which has
attracted increasing attention in the modeling and simulation community. In this regard, the Predictive
Science Academic Alliance Program (PSAAP) IT at Stanford University [1], focuses on advancing the state-of-
the-art in large-scale, predictive simulations of irradiated particle-laden turbulence relevant to concentrated
solar power (CSP) systems. To this end, physics-based models are developed and the numerical predictions
are validated against data acquired from an in-house experimental apparatus designed to mimic a scaled-
down particle-based solar energy receiver, and for which the quantification of uncertainties is of paramount
importance. A significant challenge, and the scope of this work in particular, is investigating optimal UQ
strategies for this complex, multi-physics flow when many sources of uncertainty are present.

Email addresses: hillary.fairbanks@colorado.edu (Hillary R. Fairbanks), jofre@stanford.edu (Llufs Jofre),
ggeraci@sandia.gov (Gianluca Geraci), jops@stanford.edu (Gianluca Iaccarino), alireza.doostan@colorado.edu (Alireza
Doostan)

Preprint submitted to Elsevier August 1, 2018



20

21

22

23

24

25

26

27

28

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

1.1. Irradiated Particle-Laden Turbulent Flow

Turbulent flow laden with inertial particles, or droplets, in the presence of thermal radiation is encoun-
tered in a wide range of natural phenomena and industrial applications. For instance, it is well established
that turbulence-driven particle inhomogeneity plays a fundamental role in determining the rate of droplet
coalescence and evaporation in ocean sprays [2] and atmospheric clouds [3]. Another example is found
when studying fires, in which turbulence, soot particles, and radiation are strongly interconnected resulting
in very complex physical processes [4]. From an industrial point of view, important applications include
the atomization of liquid fuels in combustion chambers [5], soot formation in rocket engines [6], and more
recently, volumetric particle-based solar receivers for energy harvesting [7].

Even in the simplest configuration, e.g., homogeneous isotropic turbulence, particle-laden turbulent flow
is known to exhibit complex interactions between the carrier and dispersed phases in the form of preferential
concentration and turbulence modulation [8]. Preferential concentration is the phenomenon by which heavy
particles tend to avoid intense vorticity regions and accumulate in regions of high strain rate, while turbulence
modulation refers to the alteration of fluid flow characteristics in the near-field region of particle clusters
as a result of two-way coupling effects, e.g., enhanced dissipation, kinetic energy transfer, or formation
of wakes and vortexes. The physical complexity is further increased by the simple addition of solid walls
as turbophoresis [9], i.e., tendency of particles to migrate towards regions of decreasing turbulence levels,
becomes an important mechanism for augmenting the inhomogeneity in spatial distribution of the dispersed
phase by driving particle accumulation at the walls.

As described above, characterization of particle-laden turbulent flow is a difficult problem; many exper-
imental and numerical research studies have been devoted to this objective over the past decades, see, e.g.,
[10, 11, 12]. However, the problem of interest in this work involves, in addition to particle-flow coupling,
heat transfer from the particles to the fluid through radiation absorption. The practical application moti-
vating the study of this phenomenon is the improvement of energy harvesting in volumetric particle-based
solar receivers. At present, most CSP technologies use surface-based collectors to convert the incident so-
lar radiation into thermal energy. In this type of system, the energy is transferred to the working fluid
downstream of the collection point via heat exchangers, typically resulting in large conversion losses at
high temperatures. By contrast, volumetric solar receivers continuously transfer the energy absorbed by
particles directly to the operating fluid as they are convected through an environment exposed to thermal
radiation. This innovative technology is expected to increase the performance of CSP plants by avoiding
the necessity of heat-exchanging stages, while requiring significantly high radiation-to-fluid energy transfer
ratios. This requirement imposes a very complex design constraint as the physical mechanisms governing
irradiated particle-laden turbulent flow are still not fully comprehended, and therefore is a topic of intense
research, see, e.g., [13, 14].

1.2. Uncertainty Quantification for Complex, Large-Scale, High-Dimensional Systems

The complexity of constructing predictive models of CSP systems is furthered by the fact that there are
many sources of uncertainty inherent in the underlying physical processes, for instance, turbulence models,
particle properties or input radiation. This often high-dimensional uncertainty, in conjunction with large
computational demands of high-fidelity (HF) simulation of irradiated particle-laden turbulence, necessitates
cost-efficient, non-intrusive (i.e., sampling-based) UQ methods that accurately estimate the statistics of
the quantities of interest (Qols). Many widely-used non-intrusive methods, such as stochastic collocation
[15, 16] and polynomial chaos expansions (PCEs) [17, 18, 19], suffer from a rapid (up to exponential) growth
of computational cost as a function of the number of input variables characterizing the uncertainty. On
the other hand, the cost of standard Monte Carlo (MC) sampling methods, while formally independent of
the number of input variables, may be prohibitive when the Qol exhibits large variance and is expensive to
evaluate. Much recent research has targeted developing cost reduction techniques to improve MC sampling
methods.

As a form of cost reduction, there has been growing interest in multilevel and multi-fidelity methods, that
is, methods relying on multiple models with varying levels of accuracy and cost, with the aim of accurately
estimating the Qol statistics in a computationally efficient manner. Relative to (accurate) HF models, these
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models of reduced cost and accuracy are referred to, generally, as low-fidelity (LF) models. Inspired by
multigrid methods [20, 21], multilevel techniques have evolved to not only include UQ methods exploiting
coarser grid resolutions, but also multi-fidelity methods, where levels may correspond to a broader class
of modeling schemes, e.g., simplified physics or reduced time-stepping (the interested reader is directed
to [22, 23] for a review of multi-fidelity methods). Relating to this work, interest is greatest with respect to
multi-fidelity MC methods as we focus on high-dimensional uncertain inputs.

The control variates method [24] is a cost reduction technique that introduces a second, easily simulated,
and correlated variable (to the original Qol) as a means to reduce the variance of the MC estimator of the
Qol’s expected value. This reduced variance results in requiring fewer simulations of the HF model to meet
a desired mean square error. A specific extension of the control variates approach is the multilevel Monte
Carlo (MLMC) method developed first in [25] and extended in [26]. MLMC estimates the expectation of
the target Qol from the coarsest grid (temporal and/or spatial) solutions as well as differences between each
two consecutive grid solutions in a telescoping sum fashion. When the differences corresponding to finer
grids become smaller, fewer MC realizations of finer grid solutions are needed, thus leading to an overall
reduced cost. Applications of MLMC to numerical partial differential equations, as in [27, 28, 29], show the
success of the method for simple mathematical systems, making it ideal for high-dimensional, large-scale
problems in which there exists convergence analysis with regards to the discretization scheme. In the last
decade, several other types of control variates, in the form of multilevel and multi-fidelity, have been studied
which rely on LF models, many of which do not adhere strictly to the coarsening of the spatial or temporal
discretization schemes, e.g., [30, 31, 32, 33, 34]. Importance sampling [24] is another approach to variance
reduction that has been utilized in the context of multi-fidelity UQ, see, e.g., [35, 22]. All of these cost
reduction methods for MC have been shown to significantly improve the computational cost in comparison
to standard MC simulation of the HF model.

Earlier work on multi-fidelity modeling of parametric/uncertain problems is based on Gaussian process
regression, a.k.a kriging or co-kriging in the multivariate case, [36, 37, 38]. In particular, the seminal
work in [36] builds a Gaussian process approximation of the Qol based on an autoregressive model trained
from nested observations of multiple, less expensive models. Each model of the sequence is related to the
lower-fidelity model via a multiplicative constant and an additive Gaussian process correction term that are
estimated from the lower-fidelity model evaluations as well as fewer realizations of the model itself.

The recent work in [39, 40, 41, 42, 43] builds a reduced basis (or low-rank) approximation of the HF Qol
using LF model evaluations and a small set of selected HF samples. The HF reduced basis — consisting of
realizations of the HF (vector-valued) solution at selected input samples — as well as an interpolation rule in
this basis are determined from LF realizations. A practical error estimate of this bi-fidelity (BF) approach is
presented in [43], which can be used to determine if a given pair of low- and high-fidelity models will lead to
an accurate BF approximation. In the present study, we adopt the BF approach and error estimate of [43]
to illustrate their efficacy in UQ of a CSP systems as an instance of a complex, multi-physics engineering
application.

1.8. Objectives and Organization of the Work

The system studied in this work is based on a small-scale apparatus [44] designed to reproduce the oper-
ating conditions of volumetric particle-based solar receivers. Physics-based modeling of irradiated particle-
laden turbulent flow —as detailed in Section 2— and its numerical investigation and validation against data
obtained from the experimental apparatus —description given in Section 3— are difficult tasks that intrinsi-
cally require several model assumptions, selection of coefficient and parameter values and characterization of
initial and boundary conditions. These steps, even if performed carefully, result in potential sources of uncer-
tainty that can impact the quantities of interest (Qol). Some examples encompass the incomplete description
of particle diameters [45] and thermal radiative properties [46], variability of the incident radiation and its
complex interaction with boundaries, and structural uncertainty inherent in the approximations utilized, like
for example in terms of turbulence modeling [47]. In addition to the large number of uncertainty sources,
accurate predictions of the complex interaction of particle-laden turbulent flow with radiative heat transfer
demand the utilization of expensive HF numerical simulations. As an example, the cost of a medium-scale
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HF calculation of this problem requires approximately 500k core-hours per sample on the Mira supercom-
puter (ALCF) [48]. Therefore, if brute-force UQ techniques, e.g., MC simulation with O(10®) samples, are
to be performed, the total cost is of the order of 500M core-hours, thus motivating the need for accelerated
UQ strategies. In this regard, the objective of this work is to investigate the BF approximation UQ strategy
on large-scale, multi-physics applications based on the PSAAP II solar receiver. In particular, it can be
shown that this BF approximation provides accurate estimates of the Qol statistics, while maintaining a
reduced cost similar to that of LF models for simulations with O(10%) samples.

The paper is organized as follows. In Section 2, the physical models and numerical method utilized to
simulate irradiated particle-laden turbulent flow are described. The particle-based solar receiver studied is
detailed next, Section 3, in terms of computational setup, input uncertainties, and Qols considered. The
BF approximation strategy is presented in Section 4, as well as a brief discussion of the associated error
bound. The performance of this BF approximation, with regards to both accuracy and cost is investigated
in Section 5. From these results, comparisons are made between this approximation and alternative LF
models. Finally, the work is concluded and future directions are proposed in Section 6.

2. Physics Modeling and Numerical Method

The study of volumetric particle-based solar receivers involves the interaction of particles and wall-
bounded turbulent flow in a radiation environment. The equations describing this type of flow are continuity,
Navier-Stokes in the low-Mach-number limit, conservation of energy assuming ideal-gas behavior, Lagrangian
particle transport, and radiative heat transfer. The modeling of these three physical processes — turbulent
flow, particle transport, and radiative heat transfer — and their couplings, are sequentially described in the
subsections below.

2.1. Variable-Density Turbulent Flow

The volumetric particle-based solar receiver operates at atmospheric pressure conditions in which air,
the carrier fluid, is assumed to follow the ideal-gas equation of state (EoS), Py, = pgRairTy, where Py,
is the thermodynamic pressure, p, is the density, R,;. is the specific gas constant for air, and T} is the
temperature. As indicated by the EoS, density varies with temperature. However, the Mach number of the
flow Ma = wu/c, with u the local flow velocity and ¢ the speed of sound of the medium, is small (Ma < 0.03)
for the range of velocities and temperatures considered. Therefore, the low-Mach-number approximation
is utilized to separate the hydrodynamic part, p < Py, from the total pressure, Pi,; = P, + p. This
decomposition results in the following equations of fluid motion

dp

8—; + V- (pguy) =0, )

M+V-( ®uy)=—-Vp+V- |y, (Vug+V T)—2 (V-u )|+ (pg—po)g+f (2)
ot Pglg W Ug) = p Mg \ VUg u, 3:Ug Uy Pg —P0)8 TWC,

9 (pgCu,gTy)

En +V - (pgCpgToug) =V - (A VTy) + Stwe, (3)
where u, is the gas velocity, pg is an ambient reference density, I is the identity matrix, g is the gravitational
acceleration, and pg and A\, are the dynamic viscosity [49] and thermal conductivity [50], respectively.
Additionally, Cy 4 and C, 4 are, respectively, the isochoric and isobaric specific heat capacities, and frwc
and Stwe are two-way coupling terms representing the effect of particles on the fluid and respectively
approximated as point sources in the forms

frwe = Y mp—2—23 (x - X,), 4)
P p

Srwo =Y wd2h (T, — T,) 6 (x —%p) - (5)
p
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Here, m, = ppﬂd?,/& v, are the particle mass and velocity, respectively, u, is the gas velocity at the
particle location, 7, = ppdg /(184) is the particle relaxation time, d,, is the particle diameter, and § (x — x,)
is the Dirac delta function concentrated at the particle location x,. The expression for the fluid-particle
convection coefficient is h = Nuly/d, with Nu the particle Nusselt number; in the problem studied, particles
are assumed to be isothermal as the Biot number is small, Bi = hd,/\, < 1.

2.2. Lagrangian Particle Transport

The carrier fluid is transparent to the incident radiation. Hence, micron-sized nickel particles, i.e., the
dispersed phase, are seeded into the gas to generate a non-transparent gas-particle mixture that absorbs
and transfers the incident radiation from the particles to the gas phase. The diameters of the particles
are several orders of magnitude smaller than the smallest significant (Kolmogorov) turbulent scale », and
the density ratio between particles and gas is p,/ps > 1. As a result, particles are modeled following a
Lagrangian point-particle approach with Stokes’ drag as the most important force [51]. Their description in
terms of position, velocity and temperature is given by

5y

i = Vp, (6)

dvy, u, vy,

P + g (7)

d(mpCopTy) _ 7y (1 - w) / T dQ — nd?h (T, — T,) (8)
dt - 4 A s T p P g4

where C,, , is the particle specific isochoric heat capacity, w = Qs/ (Qq + @) is the scattering albedo with
Q. and @ the absorption and scattering efficiencies, respectively, I is the radiation intensity, ¢ is the
Stefan-Boltzmann constant, and df) = sin 8dfd¢ is the differential solid angle. In the conservation equation
for particle temperature, (8), the first term on the right-hand-side accounts for the amount of radiation
absorbed by a particle, while the second term represents the heat transferred to its surrounding fluid.

In the point-particle approximation, particle-wall and particle-particle interactions are typically described
by one-dimensional collision models based on the balance of total momentum and energy. In the case of
collisions involving two objects, A and B, the velocities after impact, v4 and vp, are given by

va = [mauas +mpup +mpCr (up —ua)l/ (ma +mp), (9)

v = [maug + mpug + maCr (ug —up)]/ (ma+mp), (10)

where u4 and up are the velocities of the objects before impact, m4 and mp are the mass of the objects,
and 0 < Cr < 1 is the restitution coefficient. The limits of Cr correspond to the cases in which the objects
coalesce at impact (0, perfectly inelastic collision) and rebound with the same relative speed as before impact
(1, perfectly inelastic collision); intermediate values represent inelastic collisions in which kinetic energy is
dissipated. The above equations simplify to v4 = —Cgru4 and vg = 0 when object B is a static wall.

2.3. Radiative Heat Transfer

In the problem under consideration, the flow and particle timescales are orders of magnitude larger than
the radiation timescale, which is related to the speed of light. As a consequence, it can be assumed that the
radiation field changes instantaneously with respect to temperature and particle distributions; i.e., radiation
field is quasi-steady. Under this assumption, and considering that air is transparent at all wavelengths and
that absorption and scattering are determined solely by the presence of particles and solid boundaries, the
radiative heat transfer equation becomes

. O'T;)1 Og
S~VI=—aeI+Ua—+—/ 1PdS2, (11)
m AT Jyn

where § is the direction vector, o, = 0, + 05 is the total extinction coefficient with o, and o the absorption
and scattering coefficients, respectively, and ® is the scattering phase function that describes the directional
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DEVELOPMENT SECTION
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o T

g

TURBULENT PARTICLE-LADEN GENERATOR 1 1 t 1 RADIATION

Figure 1: Computational setup of the PSAAP II volumetric particle-based solar energy receiver. An isothermal periodic
section (left domain) is utilized to generate fully developed particle-laden turbulent flow, which is used as inflow conditions for
the second section (right domain) where the gas-particle mixture is irradiated perpendicularly to the flow direction from one
the sides.

distribution of scattered radiation. The total extinction coefficient can also be defined in terms of absorption
and scattering efficiencies as 0. = (Qq + Qs) denp /4 with n,, the local number density of particles. More-
over, assuming gray radiation Q,+ Qs ~ 1, which leads to w =~ Qs (see (8)), and as a result o, ~ Qawdf,np/él
and oy ~ Q mdan, /4.

2.4. Numerical Method

The equations of fluid motion, (1)-(3), are solved following an Eulerian finite-volume discretization im-
plemented in an in-house solver that is second-order accurate in space and suitable to non-uniform meshes.
A fourth-order Runge-Kutta scheme is used for integrating the equations in time, together with a fractional-
step method for imposing conservation of mass [52]. Integration in time of the Lagrangian position, velocity,
and temperature of particles, (6)-(8), is fully coupled with the advancement of the flow equations to ensure
fourth-order accuracy. The transfer of radiative heat, (11), is calculated by means of an in-house discrete
ordinates method (DOM) interfaced to the flow solver via an Eulerian representation of the particles distri-
bution.

3. Description of the Particle-Based Solar Receiver

3.1. Computational Setup and Physical Parameters

Numerical simulations of the volumetric particle-based solar receiver are performed on the computational
setup depicted in Fig. 1. Two square duct domains, with dimensions 1.7LXW xW (L = 0.16 m, W = 0.04 m)
in the streamwise (z-axis) and wall-normal directions (y- and z-axis), are utilized to mimic the development
and radiated sections of the experimental apparatus. The development section (left domain) is an isothermal,
Ty, periodic particle-laden turbulent flow generator that provides inlet conditions for the inflow-outflow
radiated section (right domain). The solid boundaries of the development section (y- and z-sides) are
considered smooth, no-slip, adiabatic walls. Regarding the radiated section, the same boundary conditions
are imposed except for the radiated region in which the y- and z-boundaries are modeled as non-adiabatic
walls accounting for heat fluxes due to the radiation energy absorbed by the glass windows.

The bulk Reynolds number of the gas phase at the development section is Re, = pyupL/pg = 20000, with
up the gas bulk velocity. As characterized by the manufacturer of the particles utilized in the experiments,
the particle size distribution is approximated by 5 different classes (uniformly sampled) with Kolmogorov
Stokes numbers St, = 6,8,10,12,17 (diameters listed in Table 1) and with a total mass loading ratio
(MLR) of MLR = n,m,/p, ~ 20%. Detailed values of the development section flow conditions and material
properties are listed in Table 1. The gas-particle mixture, as depicted in Fig. 2, is volumetrically irradiated
through an L x W glass window starting at Az = 0.1L from the beginning of the radiated section. The
radiation source consists of an array of diodes mounted on a vertical support placed Ay ~ 3W from the
radiated window and aligned with the streamwise direction of the flow. The diodes generate a total power
of P =~ 1 kW approximately uniform within a 18° cone angle.
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up 8 m/s To 300 K

Pi, 101325 Pa Ruair 287 J/(kg'K)
Cpg 1012 J/(kg'K) Cog 723 J/(kgK)
Py 8900 kg,/m3 G 450 J/(kgK)
d, 84,98, 11.2,12.2, 146 ym g (9.81,0,0) m/s?

Table 1: Flow conditions at development section and physical properties.
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Figure 2: Schematic representation of the experimental and computational setups. Open loop duct and radiation source (left).
Detailed configuration of the illuminated computational section (right). The test segment is 1.7L long and W width, with a
radiated volume of L x W x W starting at 0.1L from the beginning of the section, and with a probe perpendicular to the flow
and located 0.3L downstream.

3.2. Uncertainties and Quantities of Interest

In our UQ study, we consider 14 input variables to describe various experiment and parameter uncertain-
ties, as shown in Table 2. These correspond to incertitude in particle restitution coefficient for the different
particle classes (§; — &5), correction to Stokes’ drag law (&), particle Nusselt number (£7), mass loading
ratio (£g), particle absorption and scattering efficiencies ({9 — £19), incident radiation flux (£11), and heat
fluxes from the walls to the fluid (&1 — £14).

The intervals of the input variables listed in Table 2 have been carefully characterized on the basis of
information provided by the team responsible for conducting the experiments, and by taking into consider-
ation results and conclusions extracted from published studies. In particular, the intervals of the particle
restitution coefficients follow the trend observed in experimental investigations by Yang & Hunt [53] in which
CR increases with Stokes number. The expression for Stokes’ drag force correction and its coefficient inter-
val is based on the theoretical work by Brenner [54]. The particle Nusselt number range is extracted from
numerical studies of heated particles performed by Ganguli & Lele [55, 56]. The intervals for particle ab-
sorption and scattering efficiencies are obtained from Mie scattering theory and take into account sensitivity
to shape deformation as investigated by Farbar et al. [57]. The long development section of the experiment
is modeled in the simulations by means of a periodic domain. This approach reduces the computational cost
noticeably, but at expenses of not having direct control of the mass loading ratio. Consequently, the interval
for this quantity is carefully characterized based on preliminary comparisons with experimental data for a
periodic particle-laden duct flow case without thermal radiation at steady-state conditions. Similarly, the
heat fluxes from the walls to the fluid are not fully resolved in the simulations and are instead directly mod-
eled as boundary conditions; their calculation would require the solution of a complex conjugate convective
heat transfer problem. In order to properly represent the uncertainty associated with this approximation,
comparisons against the experiment were performed for an irradiated turbulent flow case without particles
such that the thermal response of the system was fully driven by the fluxes from the walls to the fluid and
the intervals for these uncertainties could be obtained. Finally, the variability of the incident radiation is
based on the uncertainty in intensity and cone angle of the laser diodes reported by the manufacturer.
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& : Prt. rest. coeff. 1 [0.0: 0.6] &s: Mass load. ratio [18 : 22]%

& : Prt. rest. coeff. 2 [0.1:0.7] & : Prt. abs. eff. [0.37 : 0.41]

& : Prt. rest. coeff. 3 [0.2: 0.8]  &10: Prt. scatt. eff.  [0.69 : 0.76]

&4 : Prt. rest. coeff. 4 [0.3:0.9] &1 : Radiation [1.8 : 2.0] MW /m?
& : Prt. rest. coeff. 5 [0.4: 1.0] &2 : Radiated wall [1.6 : 6.4] kW /m?
&6 : Stokes’ drag corr.  [1.0: 1.5] &3 : Opposite wall (1.2 : 4.7] kW/m?
& : Prt. Nusselt num. [1.5: 2.5] &34 : Side 2-y walls [0.1: 0.2] kW/m?

Table 2: List of random inputs &;, ¢ = 1,...,14, with the corresponding ranges. All inputs are assumed to be uniformly

distributed.

The performance of the BF approximation is focused on thermal Qols at the probe location. As detailed
in Fig. 2, the probe is located Az = 0.3L downstream from the radiated perimeter, and is perpendicular to
the flow direction along the y-axis at z = W/2. Of particular interest in this study is the time-averaged,
normalized increment of gas temperature along the y-axis profile, i.e., Q = ((T') — Tp)/To = AT/Ty, and the
average heat flux over the plane at the probe location, i.e., Q = [ C} 4{p,u,AT)dS.

3.8. Simulation Strategy

In the experimental apparatus, fully developed conditions are achieved using a long duct (=~ 7m) with
an aspect ratio of order hundred. To reduce the computational cost of simulating a long duct with inflow-
outflow boundary conditions, the computational setup is divided in two domains as described in Section 3.1.
First, randomly distributed particles are seeded into the development section with an initial fully developed
turbulent velocity field. This system is then evolved in time for 20 flow through times (FTTs), defined
as FTT = L/uy, to achieve fully developed turbulent particle-laden flow conditions as in the experiments.
After 20 FTTs, the instantaneous Eulerian and Lagrangian solutions are copied into the second domain,
radiative illumination is activated in the radiated region, and the total system (two domains) is integrated in
time for 5 additional FTTs intended to flush the thermal transient (1 FTT) and collect statistics (4 FTTs).
This procedure is repeated independently for each realization.

3.4. Description of the High- and Low-Fidelity Models

Three model fidelities have been designed to perform the UQ study: one HF model and two LF repre-
sentations, denoted LF1 and LF2. All three models use the same description of uncertainty as described
in Section 3.2. The HF model corresponds to a point particle direct numerical simulation (PP-DNS) with
sufficient resolution (= 55M cells/section) to capture all the significant (integral to Kolmogorov) turbulent
scales, while approximating the particles as Lagrangian points (= 15M particles/section) with nonzero mass.
The flow grid is uniform in the streamwise direction with spacings in wall units equal to Axz™ ~ 12, while
stretched in the wall-normal directions with the first grid point at y*, 2" ~ 0.5 and with resolutions in the
range 0.5 < AyT,AzT < 6. The radiative heat transfer equation is solved on a uniform DOM mesh of
270 x 160 x 160 grid points (~ 7TM cells) with 350 quadrature points (discrete angles) per element.

Based on this HF model, two LF models have been constructed by carefully coarsening the Eulerian
and Lagrangian resolutions, resulting in the LF1 and LF2 representations that are, respectively, ~ 170x
and ~ 1300x cheaper to simulate (per sample) than the HF model. The flow and radiation meshes, and
quadrature points are uniformly coarsened in each direction by a factor of 5 (LF1) and 10 (LF2), which
additionally allows for larger time steps; a schematic of the different fidelity models for the turbulent flow
phase is shown in Fig. 3. The discrete phase is coarsened by reducing the number of point particles in the
calculation by 5x (LF1) and 10x (LF2). To preserve the dimensionless parameters of the problem, this is
efficiently accomplished by grouping physical particles into parcels representing their total effect [58], viz.
surrogate particles [59]. In the case of uniform parcels, the evolution of the N surrogate particles can be
described with the same set of Lagrangian equations used for the N, physical particles, (6)-(8), with the
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Figure 3: Turbulent gas phase Eulerian resolution of the fidelity levels designed; gas velocity as background. HF 540 x 320 x 320
gridpoints (top), LF1 108 x 64 X 64 gridpoints (bottom left), LF2 54 x 32 X 32 gridpoints (bottom right).

only modification of multiplying the physics coupling terms by the ratio W, = N,,/N; as

u, — Vv

frwe = Z Wsmp%é (x—x%p), Srtwc= Z Word2h (T, — Tf) 6 (x — %), (12)
P B P

0o & WSQawdf,np/él and o, ~ WSQsﬂ'dinp/él. (13)

4. Bi-fidelity Approximation Strategy

4.1. Construction of Bi-fidelity Approximation

The BF approximation of this work follows the approach of [41, 43, 42], which seeks to identify a low-rank
representation of the HF Qol assisted by the realizations of its LF counterpart. While the Qols in this work
are scalar-valued, this BF approximation relies on vector-valued quantities w that describe the scalar-valued
Qol. For example, when the Qol is the time- and spatial-averaged gas temperature along the probe line (see
Fig. 2), the elements of u may be the time-averaged estimates of the gas temperature along this profile.

eV (@ e
Low-fidelity samples: EEEEEERNEDEMEMD--- .\
| | Yo \
| | \ \ \
v Vv v \ v Vv v v \
g . \ \ | Monte Carlo
Bi-fidelity estimates: OO0 n :‘ O] ! ‘ 1l --- 1 Polynomial Chaos
A s *
High-fidelity samples: .' .'f .'

Figure 4: Schematic for the formation of the BF approximation.

The construction of the BF approximation is completed in four main steps, as illustrated in Fig. 4. In
the first step, N independent samples of the inputs £, each denoted by &%), are generated according to
their joint probability density function (PDF) and used to form N LF realizations of u, each referred to as
u%) € R™ (see Fig. 4, orange boxes, top row). Here, m is the number of (spatial or temporal) degrees of
freedom describing wy. These realizations are then organized in an m x N LF data matrix Uy, such that

Upi=[uf o - o). (14)

Typically N is large, as obtaining many LF samples is computationally feasible, and the value of m
corresponds to the spatial degrees of freedom of the numerical solver. In the second step, we seek to identify
a subset of realizations of uy, of size r (and the associated input samples of £€) that form a basis for the range
space of Ur. To this end, we perform rank r <« N factorization of Uy, via matrix interpolative decomposition

9
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(MID) [60, 61, 62]. Specifically, the rank 7 approximation U, is obtained via column-pivoted (truncated)
QR factorization

U.P~Q[Ri1 Ry (15)
=QRy I RLRIQ} ) (16)

where @ € R™*" has r orthogonal columns, Ry; € R"™*" is an upper triangular matrix, Rjy € R"™*N "

P c RV*N ig a permutation matrix, and T indicates the pseudoinverse. It is straight-forward to show that
the product QRy; in (16) is equal to the left r columns of Uy, denoted by

Ut = [uf® uf® . ufr)] (17)
and referred to as the column skeleton of Uy,. In (17), the column indices i, k = 1,...,r, are identified from

the permutation matrix P in (15) and indicate input samples & (i) corresponding to the LF realizations u(Li’“)
(see Fig. 4, dark orange boxes, top row). From (16), setting C;, = [I R, R12]P to be the LF coefficient

matriz, the rank » MID approximation of Uy, is given as
le = IJ—EC’L7 (18)
indicating that U}, or equivalently the LF realizations u Ll )
matrix Up,.
In the third step, the HF model is simulated at the inputs £(**) corresponding to the LF reduced basis
(see Fig. 4, dark blue boxes, bottom row). This results in the associated HF column skeleton

, act as a reduced basis for the range of the LF

U = [ul uf o o], (19)

Note that Uy, is M x r, where M > m as it corresponds to the number of HF spatial degrees of freedom. For
HF models with a finer mesh resolution than the LF model it follows that M > m. However, as is the case
in this work, data values may be extracted at equivalent coordinates by using extraction points independent
of the grid tessellation, resulting in M = m. In the final step the BF approximation is formed by taking the
product of the HF column skeleton in (19) and the LF coefficient matrix

Uy :=U§Cy, (20)
where the i-th column of ﬁH, denoted ﬁ;}% is the BF approximation to uy at £ (see Fig. 4, blue boxes,
middle row). Once formed, approximate Qol realizations are calculated directly from the BF realizations
alh.

With regards to computational cost, the BF approximation requires N LF simulations, performing rank-
revealing QR on Uy, with O(rmN) floating point operations for basis identification and the coefficient matrix
computation, and only » HF simulations to form Uf;. Typically, obtaining HF solutions is a bottleneck,
and thus limiting the number of HF simulations to small 7 is of great value and a fundamental component
of this approximation.

Remark 1. By construction of ID, the columns of U, with indices iy, k = 1,...,r, identified by the
permutation matriz P in (15), are exactly the same as the corresponding columns of Uy,. Stated differently,
an v X r sub-matriz of C, is a permutation of identity. This, therefore, implies that the columns of the BF
matriz Uy with indices iy, (identified from ID of Up) are the same as the r HF realizations forming the
columns skeleton Ug;.

Remark 2. While the optimal rank for this BF approzimation is not known a priori, the rank of the LF
data matriz Uy, may indicate a good selection range. Theoretical results of [60, 61, 62] show the error of
the rank r LF approzimation in (18) is bounded by a scaling of the (r + 1)-th largest singular value of Uy,.
This suggests that the decay of singular values of Uy, specifically, where a significant drop occurs, to be a
worthwhile consideration for the value of r.
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4.2. Theoretical Error Estimation of Bi-Fidelity Approzimation

This section briefly presents the theoretical results of [43] that provide a practical error bound on the
spectral norm of |[Uyg — U || that may be used with small cost to assess the suitability of a given pair
of low- and high-fidelity models to produce an accurate BF approximation. Instances of successful BF
approximation via Ug in (20) have been reported in a number of recent studies [39, 40, 41, 42, 43].

Following [43], the BF estimate Uy is accurate as long as there exists an M x m matrix T', with bounded
norm, such that Uy ~ TUj,. For a given pair of low- and high-fidelity problems, the existence of such a
mapping is not always guaranteed. However, [43] shows that such a mapping can be constructed when

e(r) = /\maX(UgUH — TUEUL), >0, (21)

is small enough and that Uy, (similarly Up) has fast decaying singular values. In (21), Amax(-) denotes
the largest eigenvalue of a matrix, and U5Uy and U} U}, are the Gramians of the HF and LF matrices,
respectively. The following theorem from [43] provides a bound on the BF approximation error. In particular
we note the dependence of the error bound on 7 and €(7).

Theorem 4.1 (Theorem 1 of [43]). Let Uy be the rank r BF approzimation, as in (20), to the HF data
matriz Ug. Let Uy, be the rank r MID approzimation, given in (18), to the LF data matriz Uy, where Cp,
is the corresponding coefficient matriz. For e(7), as defined in (21), and || - || the spectral norm, it follows
that the BF' error may be bounded as

U~ Ol < ,_min (@ +1Cayroke +e(r) + 10 - Oulyfr + o) (22

>0
where oy, and o1 are the k-th and (k + 1)-th largest singular values of Uy, respectively.

Evaluating the bound in (22) requires the computation of e(7) for multiple values of 7. Following (21),
this in turn requires access to the entire HF data matrix Uy, which is not possible as Uy is never generated
in practice. As an alternative, estimates of €¢(7) may be calculated using a subset of R < N HF and LF

samples via
N

1) = FAmax(UR) U = 7(UL)UL), (23)
where the superscript R indicates the number of columns of Uy and the corresponding columns of Uy, used
to set Uﬁ and Uf, respectively. Stated differently, estimates of €(7) may be obtained using R HF samples,
instead of N. To evaluate the remainder of the bound in (22), MID is applied to the LF data matrix to
obtain values for |[Uy — UL| and ||Cy||. Combining these estimates and minimizing over identified values
of (1,€é(7)) and the singular values of Uy, results in an approximate bound. The numerical results of [43]
show empirically that R slightly larger than the approximation rank r is sufficient to estimate the optimal
pair (7,€(7)). This therefore suggests the efficacy of (22) in estimating the BF approximation error or in
suitability of a given pair of low- and high-fidelity models for BF modeling.

4.8. Using Bi-Fidelity Approximation to Estimate Qol Statistics

Our discussion so far has focused on the construction of N BF estimates of a vector-valued Qol using
the corresponding N LF realizations, along with r selected HF realizations. We next turn our attention to
how these BF estimates may be utilized for the purpose of UQ or sensitivity analysis.

When the BF approximation achieves the desired accuracy, standard methods such as MC sampling,
stochastic collocation, or sparse PCE may be employed on Uy (more specifically, the columns of U )
instead of Uy to estimate the moments and PDF of the Qol, and perform global sensitivity analysis. When
the dimension d of the random inputs is not high, methods such as sparse PCE or stochastic collocation
may be employed. Otherwise, MC sampling methods are preferred. On the other hand, when the BF
approximation does not meet the accuracy requirements but leads to estimates well correlated with the HF
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data, the BF approximation may serve as a control variate to MC in a single-level [24] or in a multilevel
setting as in [34].

In the numerical results of Section 5, we use the ¢;-minimization approach of [19, 63] to build sparse
PCEs of the Qols as approximate maps between the random inputs £ and the Qols. The resulting PCEs
are, in turn, used to estimate the statistics, here, histogram, of the Qols and perform global sensitivity
analysis. The Qol statistics can be either computed directly via the PC coefficients, e.g., for the mean
and variance, or by sampling the PCE itself in a MC fashion, e.g., for histogram. We follow the latter
approach in the experiments of Section 5 to generate histograms of the Qols. For global sensitivity analysis,
we perform variance decomposition to compute the so-called Sobol’ indices [64], which provide a means to
quantitatively describe the importance of input parameters, by calculating each parameter’s contribution
to the total variance of the output Qol. Following the work of [65], we compute the Sobol’ indices directly
from the PCE coefficients.

5. Numerical Results of Bi-Fidelity Approximation

To investigate the performance of the BF approximation, 256 LF2, 128 LF1, and 26 HF simulations were
performed, such that the 26 HF simulations correspond to the first 26 simulations of LF1 and LF2, and the
128 LF1 simulations correspond to the first 128 of the LF2 simulations. From the two LF models, two BF
approximations are formed: bi-fidelity 1 (BF1) approximation and bi-fidelity 2 (BF2) approximation. The
BF'1 approximation is formed from N = 128 LF1 samples and r HF samples, and the BF2 approximation
is formed from N = 256 LF2 samples and r HF samples. The number of HF simulations is left as r, as the
selection of this value will be discussed in the following results.

The motivation of this approximation is to form a BF model that accurately predicts the HF data, and
the goal of these results is to investigate whether or not there is an improvement over the performance
of the the LF models. For these tests, two primary time-averaged, i.e., (), thermal Qols are considered:
(i) heat flux through the plane at the probe location, @ = [ C} 4(p,usAT)dS, (Az = 0.3L downstream
from the radiated perimeter) normalized by the mean Qol estimated from the HF data, and (ii) normalized
temperature increment, AT /Ty = ((T') — Tp)/To, values along the profile at the probe location (Az = 0.3L
downstream from the radiated perimeter at z = 0.5W), where focus is placed on spatially-averaged AT /Ty,
and point estimates at y/W = 0.5, y/W = 0.1, and y/W = 0.05.

For each Qol, five primary tasks are considered: (i) BF rank identification as to best optimize accuracy
and computational cost of the approximation, (ii) BF error bound estimation, to verify the accuracy of
the approximation for a fixed rank, (iii) Qol approximation via available data, (iv) estimation of statistics
via sparse PCE of LF and BF models, and (v) cost analysis to compare approximate core-hours needed to
obtain converged simulations from each model.

For a given matrix U of LF or BF data, we report the relative spectral error, with respect to its HF
counterpart Uy, defined as

Uy -U
relative spectral error = ”H—”7 (24)
1UH|l
For scalar Qols, we report the relative ¢5 (root mean-square error),
N .
%;( W - Q)2
relative £y error = +—— , (25)

(@)

o

i=1

where Q) is a LF or BF simulated Qol and QEY? is the corresponding HF realization.
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5.1. Qol #1: Heat Fluz Through the Ax = 0.3L Plane

To estimate the statistics of the heat flux Qol, the BF approximation is formed from realizations u of
the heat flux values over the entire Ax = 0.3L plane. For ease of comparison, these values are extracted as
a 500 x 500 uniform grid of points for both HF and LF simulations (thus here m = M). The scalar-valued
Qol estimates ) are taken to be the heat flux determined from all of the elements of u, normalized by the
mean Qol estimated from the HF data.

When forming the BF approximation, the first task is to identify the approximation rank. This is critical
as it will dictate both the computational cost — corresponding to » HF realizations — and accuracy of the
approximation. As a reduced cost relies on minimal number of HF samples, the selected rank must be as
small as possible. However, excessively small approximation ranks may lead to inaccurate BF solutions. To
aid in rank selection, consider the results of Fig. 5. Fig. 5 (a) provides the decay of singular values of LF
and HF matrices. The magnitudes of these singular values decay most rapidly within the first six indices,
indicating that six realizations of heat flux capture most of the information of the LF and HF data. Fig. 5
(b) displays the error bound estimate of the BF approximation matrix as a function of rank r. Note, the
number of simulations to calculate é(7) is set to R = r + 2; a more thorough assessment of the error bound
will be discussed shortly. The error bound estimate levels out for a conservative value of » = 6, which is the
BF approximation rank we use for the rest of the results. For comparison, the LF1 and LF2 spectral errors
are provided (see (24)), indicating that very few HF samples are needed to observe an improvement over
the LF models. The presentation of the corresponding cost analysis is postponed until Section 5.3.

10 10 T
e HF - LF1
e LF1 LF2
LF2 & ~[+-BF1 bound
A 2 ¢~ BF2 bound
SN 5) - 8§ -3 - G U - -5
10 = L W
o . 14 - B OV e g B A
& o z
e & 2 % LY g
10° Cog,  teee,, =
o =
LIRL I 4N 1 ) a8 : : ® o0 ?—j
1073 ‘ : : ‘ 107 : :
5 10 15 20 25 0 5 10 15
index k rank
(a) (b)

Figure 5: (a) Decay of normalized singular values of LF and HF matrices using available data. (b) Error bound estimates for
both BF approximations as a function of rank r. For comparison, relative spectral error of the LF data are provided.

While the previous results indicate that the rank r = 6 BF approximation more accurately describes the
HF data, the calculated error must be verified by more thoroughly investigating the theoretical error bound
estimates from Section 4.2. Specifically, the bound must be estimated for multiple values of R, the number
of samples used to estimate é(7). Fig. 6 provides the error bound estimates as a function of R for the BF1
and BF2 models. Each point represents an error bound estimate calculated from R random columns of
Uy (out of 26 total columns) and the corresponding columns of Uy. The solid line represents the average
value of the points at each value of R. Numerical results of [43] suggest a value of R = 2r will provide a
true error bound. With rank r = 6, these results estimate the error bound to be 0.12 for both BF models.
Recall from Fig. 5 (b) that this error bound estimate is smaller than that of either LF model, indicating
that improvement in accuracy may be estimated without knowledge of the true BF error.
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Figure 6: Error bound estimate from (22) using é(7) and rank r = 6 for varying values of R, for (a) BF1 and (b) BF2 models.
Values are based on 10 different sets of R columns, where column selection not fully independent due to the small number of
available HF samples.

To compare the performances of the LF and BF approximations with regards to the heat flux Qol,
consider the results of Fig. 7, where 17 simulated values of the heat flux using the HF, LF and BF models
are provided. Given the discussion of Remark 1, we exclude the heat flux values corresponding to the r
HF realizations used to form the BF approximation. For each simulated value, the BF approximations are
significantly more accurate than their LF counterparts. With regards to the relative /5 error, the BF Qols
are about 7x more accurate than the LF Qols, with both BF1 and BF2 having errors of 0.03, LF1 an error
of 0.20, and LF2 an error of 0.22.

12 : : : :
-©-HF
-3 LF1
L1r LF2|]
é 1 BF1
o 1r { BF2|/
®
L
=
2 09r .
8
=
£ 08} ]
S
0.7+ 1
0.6 I 1 1 I
0 5 10 15 20

simulation number

Figure 7: Normalized total heat flux values for 17 independent simulations, from the five different models, where the BF
approximation is of rank » = 6. The BF approximations are more accurate than either LF Qol data. This data excludes
simulations corresponding to the HF realizations used in the BF approximations.

To estimate the moments and PDF, as well as perform sensitivity analysis, a sparse PCE surrogate is
formed from available data, as discussed in Section 4.3. Table 3 provides the Qol mean and coefficient of
variation (CoV) values determined from the approximate coefficients of each LF and BF surrogate model, as
well as the relative error between each Qol mean and the HF Qol mean. Note the HF Qol mean is calculated
directly from available data. These results show that the BF1 mean is about 100x more accurate than the
LF mean values and the BF2 mean is about 10x more accurate than the LF mean values, where the BF1
model predicts within 0.15% of the HF Qol mean. The LF models, on the other hand, predict to within
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only 20 — 22% of the HF Qol mean. The CoV is provided for all models as well. The Qol variation for each
fidelity model is comparable to that of the HF model, with that of BF1 most closely describing the HF data.
Since the BF2 CoV is of the same order of magnitude as the respective error, it cannot be completely relied
on as an estimate for the HF CoV. The BF1 error, on the other hand, is significantly smaller than the CoV,
and thus the CoV estimate can be trusted, indicating that the BF1 approximation most closely represents
the HF data.

Model Mean Rel. CoV
Fidelity | Qol Error

LF1 0.80 20% 0.10
BF1 0.99 0.15% | 0.07
LF2 0.78 22 % 0.11
BEF2 0.97 2.7% 0.06
HF 1.0 - ‘0.08 ‘

Table 3: Comparison of the mean and CoV the of heat flux estimated by the LF1, LF2, BF1, and BF2 models. These statistics
are computed vis a sparse PCE surrogate as discussed in Section 4.3.

To estimate the Qol PDFs, histograms of the LF and BF data are generated from 100, 000 sparse PCE
samples. Fig. 8 provides these normalized histograms for the heat flux Qol to compare with available
HF data. Fig. 8 (a) provides data derived from the LF1 and BF1 models, while Fig. 8 (b) provides the
histograms from LF2 and BF2 data. We observe that the BF histograms more closely follow the histogram
of the HF data.

10 T T T T T T T 10 T T T T T T T
[ILF1 [ ILE2
[ IBF1 BF2
8t [JHF data| 8t [JHF data|-
6 6

4t 4t

2| ||\ 2|

0 0 b ||
0.7 0.6 0.7 0.8 0.9 1 1.1 1.2

(a) LF1 and BF1 (b) LF2 and BF2

Figure 8: Normalized histogram of the total normalized heat flux through the Az = 0.3L plane based on sparse PCE of (a)
LF1 and BF1 and (b) LF2 and BF2 realizations.

For the final set of results the total Sobol’ indices are calculated from the PCE coefficients of the LF and
BF heat flux samples. The relative contribution of each parameter to the variance of the estimated heat flux
is displayed in Fig. 9 (a)-(d). The Sobol’ indices determined from all four sets of PCE coefficients clearly
indicate that the inputs representing the uncertainty in the heat fluxes from the radiated wall ({12) and its
opposite wall (£13) contribute the most to the heat flux variation. Comparatively, the remaining uncertain
parameters are best distinguished from the BF1 results of Fig. 9 (b) based on its accurate CoV estimate.
In particular, the BF1 result indicates that inputs &; with i =4 — 9,11 are next in terms of contribution to
the total Qol variance, with about 1% of the variance, and &; with ¢ = 1 — 3,10 have the least important
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Figure 9: Importance of input parameters calculated from PCE coefficients on the (a) LF1, (b) BF1, (c) LF2, and (d) BF2
heat flux data. Starting with parameter £; at the top position, importance of each §; is provided in counterclockwise order
with respect to increasing ¢, with corresponding description provided in Table 2. As determined from all four model surrogates,
heat flux from the radiated wall (£12) and the opposite wall (£13) to the fluid contribute the most to the heat flux variability.

As the results of this section have shown, both BF approximations are significantly more accurate
than either LF approximation, with the sparse PCE surrogate of the BF1 approximation most accurately
estimating the HF heat flux data. A discussion of cost comparisons between the five models may be found
in Section 5.3.

5.2. Qol # 2: Spatially-Averaged and Point Estimates of AT /Ty Along Profile at Probe Location

Next, time-averaged AT /Ty = (T — Tp) /T, along the profile at the probe location is considered. The
BF approximation employs realizations w of the change in temperature AT/Ty along this profile. After
investigating the estimation of the full temperature profile for all models, focus is placed on estimating
the spatial mean of AT/T; along the profile, as well as AT /T, at three points along the profile, namely,
y/W =0.5, y/W = 0.1, and y/W = 0.05 at the probe location.
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Similar to the heat flux Qol, an optimal rank of the BF approximation must be first identified. Fig. 10
(a) shows the decay of the singular values of the LF and HF matrices, indicating that an approximation
rank r > 4 accurately represents the LF1 and LF2 data. Fig. 10 (b) displays the BF approximation error
bound and the calculated relative spectral errors (see (24)) for both LF data as a function of rank r. For
these error bound estimates, R = r + 2 simulations are used to estimate the values of é(7). As in Qol #1
above, the error bound estimate for BF1 levels out for the conservative value of r = 6 (notice the larger
value of the error estimate for r = 5). We therefore set the BF1 approximation rank to 7 = 6. While the
BF2 bound suggests a rank of r = 5, for the interest of a simpler presentation, we chose r = 6 for BF2 rank

as well.
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Figure 10: (a) Decay of normalized singular values of LF and HF matrices, using available AT /T, data along the profile at
the probe location. (b) Error bound estimates of the rank r BF approximations for AT /Ty as a function of r. For comparison,
the LF1 and LF2 relative spectral errors are included as well.

Fig. 11 provides the error bound estimates for (a) the BF1 model and (b) the BF2 model, as a function
of R. Single points indicate individual error bound calculations from R random columns of Uy and Uy,
out of 26 total columns (and thus not completely independent). The solid line provides the average of these
10 points at each value of R. Notice that the average bound estimate for BF1 results in both Figs. 11 (a)
and (b) suggest larger values of R — compared to R = r 4 2 used in the results of this section — lead to more
accurate BF error estimates. In both cases for R = 15 the estimated error is larger than the corresponding
LF model errors. Naively speaking, this implies that the BF approximation may not lead to significant error
improvement over the LF models, unlike in Section 5.1 for the heat flux data. Figure 12 (b) confirms this
observation.
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Figure 11: Error bound estimate from (22) using é(7) and rank r = 6 for varying values of R, for (a) BF1 and (b) BF2 models.
Values are based on 10 different sets of R columns, where column selection not fully independent due to limited number of
available HF samples.

To compare the abilities of the LF and BF models to reconstruct the AT /T temperature profile at the
probe location, the results from Fig. 12 are considered. Fig. 12 (a) displays the average AT/T; temperature
profile derived from the LF, BF, and HF models. At most points along the profile, the mean BF1 and BF2
AT/T, are observed to be more accurate than the mean of either LF model. To quantify this error, Fig. 12
(b) provides the ¢5 error (see (25)) evaluated at each point along the profile. While the BF models are more
accurate than the LF models at most points, the interior of the profile exhibits the greatest improvement.
Of most interest for UQ analysis are the AT /T, values near the walls and middle of the profile. As such,
the focus is placed on four different Qols of AT /Ty: the spatial mean of AT along the profile, and AT /T,
quantities at points y/W = 0.5, y/W = 0.1, and y/W = 0.05 along the profile.
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Figure 12: (a) Average AT/Tp profile calculated from available simulations for all five models with rank r = 6 for the BF
approximations. (b) Error estimates of AT /Ty (from (25)) at each point along the profile.

Figures 13 (a)-(d) provide the simulated values of the four AT/T, Qols when using the HF, LF, and
BF models. Note these do not include the data used for the BF approximation basis. Fig. 13 (a) and (b),
which provide the mean value of AT /T and the value of AT/Ty at y/W = 0.5, respectively, show improved
performance of the BF approximation compared to the LF models for all simulations. With regards to the
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45 error of the Qols, the mean values are about 2x more accurate and the values at y/W = 0.5 are 3x more
accurate. On the other hand, in Fig. 13 (¢) and (d), which provide the values of AT /Ty at y/W = 0.1
and y/W = 0.05, respectively, error improvement does not appear to be significant. For both Qols, the BF
approximations have a smaller /5 error than their corresponding LF models; however, the gain is smaller
than 2x. These results suggest that the approximation performs well for the mean and AT /T, Qols near
the interior of the profile, but accuracy decays for values closer to the walls.
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Figure 13: AT/Ty values of 17 independent simulations for the Qol of (a) spatial mean along profile at probe location, and
points y/W = 0.5 (b), y/W = 0.1 (c), and y/W = 0.05 (d), along probe profile. Simulated values are from the five different
models, where the BF approximation is of rank r» = 6.

While prior temperature results were calculated directly from the simulated values, to estimate the
moments and PDFs, as well as to perform sensitivity analysis, surrogates of the LF and BF models are
formed via sparse PCE approximations. For each of the four temperature Qols, the mean and CoV estimates
determined from the sparse PCE coefficients are provided in Table 4 (a)-(d), as well as the relative error
between each Qol mean and the HF Qol mean. For each subtable in Table 4, the BF mean estimates are
more accurate than either of the LF estimates, by a factor of 3 — 11. Between the two BF approximations,
BF2 consistently has a small error. Aside from Table 4 (b), in which BF1 is more accurate (2% error vs.
4% error), the BF2 errors are the smallest for each subtable. In terms of the Qol CoV estimates, the values
of all models are comparable to that of the HF data. In Table 4 (a) and (b) the CoV results are similar to
those of the heat flux results; specifically, since the BF CoV is the same order of magnitude of the respective
errors, it is not necessarily distinguishable and thus can’t completely be relied on as an estimate for the
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HF CoV. However, as the BF approximations exhibit small errors and CoV values, the mean estimates are
reliable. On the other hand, the BF CoV estimates of Table 4 (¢) and (d) are larger than the corresponding
error, and therefore are more dependable than the estimates in Table 4 (a) and (b). Because of this, stronger
conclusions may be made when performing global sensitivity analysis.

Model Mean Rel. CoV Model Mean Rel. CoV
Fidelity | Qol Error Fidelity | Qol Error
LF1 0.024 21.7% | 0.12 LF1 0.012  31% 0.04
BF1 0.028 8.11% | 0.11 BF1 0.017  2.0% 0.06
LF2 0.022 28% 0.13 LF2 0.010 40 % 0.09
BF2 0.029 3.3% 0.07 BF2 0.016  4.4% 0.10
| HF [ 0.031 - [ 0.10 | | HF [ 0.017 - [ 0.08 |
(a) Spatial mean AT /Ty (b) AT /Ty at y/W = 0.5
Model Mean Rel. CoV Model Mean Rel. CoV
Fidelity | Qol Error Fidelity | Qol Error
LF1 0.046 16.1% | 0.25 LF1 0.066  27.3% | 0.28
BF1 0.047 14.7% | 0.21 BF1 0.081 11.1% | 0.24
LF2 0.042 24.0% | 0.27 LF2 0.071 22.6 % | 0.30
BF2 0.052  5.1% 0.20 BEF2 0.088  2.8% 0.27
| HF [ 0.055 - [ 0.20 | | HF [ 0.091 - [ 0.25 ]
(¢) AT/T, at y/W =0.1 (d) AT /Ty at y/W = 0.05

Table 4: Statistics from sparse PCE

To estimate the PDFs of the four AT/Ty Qols, histograms of the LF and BF sparse PCE surrogates
are formed using 25,000 samples. These results are provided in Fig. 14, where the left column results are
associated with LF1 and BF1 surrogates, and the right column results are associated with LF2 and BF2
surrogates. For comparison available simulated HF data are provided as well. With the exception of Fig. 14
(e) and (g), where the LF1 and BF1 results are closely overlaid, all of the histograms show the BF results
more accurately approximating the HF data than the LF results. This significance is observed more so for
Fig. 14 (a)-(d), which displays the Qol histograms of the spatial mean of AT/Ty and AT/Ty at the center
of the profile. In Fig. 14 (c¢)-(h), which shows the AT/Ty Qols at specific points along the profile, the BF
surrogates are consistently accurate. The LF surrogates are the least accurate in the center of the profile
(Fig. 14 (c) and (d)), and improve for Qol point estimates near the wall (Fig. 14 (e)-(h)).
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Figure 14: Normalized histograms of the LF1 and BF1 surrogate models (left column) and LF2 and BF2 surrogate models
(right column) for the four AT/Ty Qols: mean ((a) and (b)), y/W = 0.5 ((c) and (d)), y/W = 0.1 ((e) and (f)), and y/W = 0.05
((g) and (h)). Histograms formed from 25,000 samples of the sparse PCE surrogates.

503 The last result considered is global sensitivity analysis via Sobol’ indices, as calculated from the sparse
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PCE coeflicients. From these estimates, two sets of results are presented: comparisons between the four
models and comparisons between the four Qols. To compare the four models, sensitivity analysis is completed
for the spatial mean AT /Ty Qol. Fig. 15 provides the decomposition of important parameters from the (a)
LF1, (b) BF1, (c¢) LF2, and (d) BF2 models. All pie charts suggest that heat flux from the radiated wall
to the fluid (&;2) is the most important parameter affecting the Qol variance. However, it is important to
note the results of Table 4 (a); specifically, the LF1 and LF2 errors are larger than the corresponding CoV
estimates, indicating that the associated sensitivity analysis is not necessarily reliable. The BF1 and BF2
data, on the other hand, have an error that is smaller than the CoV, but on the same order of magnitude.
As such, Fig. 15 (b) and (c) show that the heat flux from the radiated wall and opposite wall to the fluid
(€12 and &13, respectively) are the two most important input parameters. Further conclusions cannot be
made with regard to the remaining parameters as the CoV estimates of Table 4 (a) are of the same order
as the error.

¢, 5§§3 & § &,

&, & &

(¢) LF2 mean (d) BF2 mean

Figure 15: Importance of input parameters for the spatial mean AT /Ty Qol from sparse PCE coefficients of the (a) LF1 (b)
BF1, (¢) LF2, and (d) BF2 surrogate models. Starting with parameter £; at the top position, importance of each &; is provided
in counterclockwise order with respect to increasing i, with corresponding description provided in Table 2.

Based on the moment estimations of Table 4 and histograms of Fig. 14, it is clear that the BF approxi-
mations provide improved information of the HF Qols than the corresponding LF models. As a consequence,
Fig. 16 provides the importance of input parameters of the four Qols as determined by the BF2 sparse PCE
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coefficients. The BF2 model is selected as it consistently has a low error (see Table 4), and does so with
lower cost than the BF1 surrogate model. Fig. 16 (a)-(d) shows how the importance of parameters changes
with the four Qols. From Fig. 16 (a)-(d), the heat flux from the radiated wall to the fluid (£12) is the most
important parameter for the mean AT/Ty Qol, as well as the two point Qols near the radiated wall (Figs.
16 (a), (b), and (c), respectively); in contrast, heat flux from the opposite wall to the fluid (£;3) is the most
important parameter for the AT /Ty Qol in the middle of the profile (see Fig. 16 (d)). This suggests that,
over the whole profile, variations in the heat flux from the radiated wall will greatly affect the AT /Tj values,
but more so at points close to the radiated wall. For points further from this wall, the variations in this
heat flux will play less of a role in the variations of AT /Tp.

In terms of the remaining parameters, the results of Table 4 (a) and (b) indicate that there is lack of
sufficient precision in the variance estimate to conclude the importance of the remaining parameters for Fig.
16 (a) and (b). However, the CoV estimates in 4 (c) and (d) are significantly larger than the corresponding
error estimates for the BF2 models, allowing for further conclusions to be made from the sensitivity analysis
results. Specifically, the data of Fig. 16 (c) and (d) show that the remaining parameters contribute equally
to the variance of the AT/Ty Qols near the radiated wall.

(a) BF2, spatial mean
& an

o

(c) BF2, y/W = 0.1 (d) BF2, y/W = 0.05

Figure 16: Importance of input parameters from sparse PCE coefficients from the BF2 model for the AT/Ty Qols of (a)
spatial mean along profile at probe location (b) y/W = 0.5 along profile at probe location, (c) y/W = 0.1 along profile at probe
location, and (d) y/W = 0.05 along profile at probe location. Starting with parameter £; at the top position, importance of
each &; is provided in counterclockwise order with respect to increasing i, with corresponding description provided in Table 2.

The AT/Ty results of this section show that the BF approximations provide a more accurate reduced
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model than either of the LF models, with greatest improvements for mean AT /T, and AT /T; at the interior
of the profile. In addition, theoretical error results guarantee that the BF approximations will be at least
as accurate as the corresponding LF data. As will be shown in the following, the cost of this approximation
is close to that of the LF models when many simulations are required.

5.8. Computational Cost Comparisons of the Five Models

The final component necessary to justify this BF approximation is to perform a cost comparison of
all five models. Fig. 17 provides the approximate number of core-hours needed to generate N converged
simulations from the HF, LF, and rank » = 6 BF models, extrapolated to large values of N. The number of
simulations generated in this study are indicated by markers. For the BF1, the cost to generate NV = 128
samples is 20x less expensive than the HF model, and for the BF2, the cost to generate N = 256 samples
is 50x less expensive than the HF model. In comparison, the LF1 and LF2 models are 170x and 1300x
less expensive, respectively; however, as shown in the results, they are poor approximations to the HF
data. As the r HF simulations greatly affect the cost of the BF approximation, significant cost reduction is
observed for larger values of N. For O(10%) samples, which corresponds to values of N that are of interest
in the context of the application studied in this work, the computational cost of the BF models more closely
aligns with the cost of the LF models. While N = 10® HF simulations is approximately 500M core-hours,
obtaining the equivalent number of simulations is approximately 6M and 3.5M core-hours for the BF1 and
BF2 approximations, respectively. This drastic cost improvement, without a significant loss of accuracy that
is observed with the LF models, makes the BF approximation a powerful tool to perform UQ for large-scale
problems.

10
-©-HF
-3 LF1
LF2
10%|-@-BF1
% -&-BF2
z
< 108
2
o
(5]
w0ty -7
10

number samples N

Figure 17: Number of core-hours on Mira (ALCF) [48] to obtain N simulated values from each model. Markers provide number
of core-hours for N = 128 and N = 256, to provide the cost of the simulated values generated for this study.

6. Conclusions

As the results of this work show, when solutions to large-scale parametric/stochastic problems exhibit
a low-rank structure, i.e., lending themselves to a reduced basis representation, models with lower fidelities
(cheaper to simulate) may be utilized to generate accurate approximations of the solution with significantly
lower computational cost. An instance of such a BF approximation was utilized to quantify the uncertainty
in thermal solutions of interest (time-averaged heat flux and temperature near the outflow boundary) of
a particle-based solar receiver model involving turbulence, particle transport, and radiative heat transfer,
an example of large-scale, multi-physics systems. The sources of uncertainty included particle properties
(restitution coefficient, Nusselt number, absorption and scattering efficiencies), thermal boundary conditions,
mass loading ratio, among others. A single HF simulation of the problem, consisting of DNS flow model,
Lagrangian particle transport, and highly resolved DOM discretization of the radiative transfer equations,
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requires about half a million core-hours. This, in conjunction with the relatively large number of uncertain
inputs, renders standard UQ techniques infeasible.

To tackle the computational cost issue, two lower-fidelity models of the problem were constructed based
on coarsening the fluid and DOM grids, as well as by reducing the number of particles. These models were
used to identify a reduced basis and an interpolation rule for the thermal Qols of the HF model. As a result,
only a small number of HF model realizations (e.g., six) at selected samples of uncertain parameters were
needed to generate BF samples of the Qols, which were in turn used for a PCE-based estimation of the
Qol statistics and sensitivity analysis. All simulations were performed using the same computational code
and in a black box fashion. The errors in predicting the Qols and their statistics via these BF models were
computed and compared to those of their LF counterpart. It was observed that the BF solutions, while
requiring a small number of HF realizations, were considerably (as high as 100x for the mean of heat flux)
more accurate than the LF estimates. The adopted BF strategy features an error bound which uses a small
number of HF realizations (along with LF samples) to estimate the error with respect to the HF model.
The efficacy of the bound in determining the number of required HF samples and estimating the BF error
was also demonstrated on the thermal Qols.

The construction of the BF models enabled to efficiently carry out sensitivity analyses via PCE-based
Sobol” indices. The results indicate that the thermal Qols considered in this work are extremely sensitive to
the heat fluxes from the walls to the gas-particle mixture resulting from the interaction between radiation
and non-ideal transparent walls. The importance of this effect is amplified in wall-bounded, particle-laden
turbulent flows as turbophoretic mechanisms tend to accumulate particles at the walls where the importance
of non-ideal transmissivity is the highest. The analysis also extracted that uncertainty in particle properties,
which is typically disregarded in computational studies of irradiated particle-laden turbulence, plays an
important role in the solution outcome that may result in large variability in, otherwise, robust first- and
second-order statistics.

Ongoing and future work focuses on exploring the performance of the BF approximation under more
challenging physical conditions in terms of turbulent intensities, particle loading, and radiation intensity. Of
notable interest is also the assessment of the approach in predicting higher order statistics, e.g., particles and
temperature fluctuations, and more complex physical phenomena, such as particle clustering and turbulence
modulation.
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