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Abstract

Efficiently performing predictive studies of irradiated particle-laden turbulent flows has the potential of
providing significant contributions towards better understanding and optimizing, for example, concentrated
solar power systems. As there are many uncertainties inherent in such flows, conducting uncertainty quantifi-
cation analyses is fundamental to improve the predictive capabilities of the numerical simulations. For large-
scale, multi-physics problems exhibiting high-dimensional uncertainty, characterizing the stochastic solution
presents a significant computational challenge as many methods require a large number of high-fidelity, for-
ward model solves. This requirement results in the need for a possibly infeasible number of simulations when
a typical converged high-fidelity simulation requires intensive computational resources. To reduce the cost
of quantifying high-dimensional uncertainties, we investigate the application of a non-intrusive, bi-fidelity
approximation to estimate statistics of quantities of interest associated with an irradiated particle-laden
turbulent flow. This method relies on exploiting the low-rank structure of the solution to accelerate the
stochastic sampling and approximation processes by means of cheaper-to-run, lower fidelity representations.
The application of this bi-fidelity approximation results in accurate estimates of the QoI statistics while re-
quiring a small number of high-fidelity model evaluations. It also enables efficient computation of sensitivity
analyses which highlight that epistemic uncertainty plays an important role in the solution of irradiated,
particle-laden turbulent flow.

Keywords: Bi-fidelity approximation; Irradiated particle-laden turbulence; Low-rank approximation;
Non-intrusive; Predictive computational science; Uncertainty quantification

1. Introduction

2 The ability to quantitatively characterize and reduce uncertainties, in conjunction with model verification
3 and validation (V&V), plays a fundamental role in increasing the reliability of numerical simulations. These
4 types of studies are commonly encompassed within the field of uncertainty quantification (UQ), which has
5 attracted increasing attention in the modeling and simulation community. In this regard, the Predictive
6 Science Academic Alliance Program (PSAAP) II at Stanford University [1], focuses on advancing the state-of-
7 the-art in large-scale, predictive simulations of irradiated particle-laden turbulence relevant to concentrated
8 solar power (CSP) systems. To this end, physics-based models are developed and the numerical predictions
9 are validated against data acquired from an in-house experimental apparatus designed to mimic a scaled-
10 down particle-based solar energy receiver, and for which the quantification of uncertainties is of paramount
11 importance. A significant challenge, and the scope of this work in particular, is investigating optimal UQ
12 strategies for this complex, multi-physics flow when many sources of uncertainty are present.
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13 1.1. Irradiated Particle-Laden Turbulent Flow

14 Turbulent flow laden with inertial particles, or droplets, in the presence of thermal radiation is encoun-
15 tered in a wide range of natural phenomena and industrial applications. For instance, it is well established
16 that turbulence-driven particle inhomogeneity plays a fundamental role in determining the rate of droplet
17 coalescence and evaporation in ocean sprays [2] and atmospheric clouds [3]. Another example is found
18 when studying fires, in which turbulence, soot particles, and radiation are strongly interconnected resulting
19 in very complex physical processes [4]. From an industrial point of view, important applications include
20 the atomization of liquid fuels in combustion chambers [5], soot formation in rocket engines [6], and more
21 recently, volumetric particle-based solar receivers for energy harvesting [7].
22 Even in the simplest configuration, e.g., homogeneous isotropic turbulence, particle-laden turbulent flow
23 is known to exhibit complex interactions between the carrier and dispersed phases in the form of preferential
24 concentration and turbulence modulation [8]. Preferential concentration is the phenomenon by which heavy
25 particles tend to avoid intense vorticity regions and accumulate in regions of high strain rate, while turbulence
26 modulation refers to the alteration of fluid flow characteristics in the near-field region of particle clusters
27 as a result of two-way coupling effects, e.g., enhanced dissipation, kinetic energy transfer, or formation
28 of wakes and vortexes. The physical complexity is further increased by the simple addition of solid walls
29 as turbophoresis [9], i.e., tendency of particles to migrate towards regions of decreasing turbulence levels,
30 becomes an important mechanism for augmenting the inhomogeneity in spatial distribution of the dispersed
31 phase by driving particle accumulation at the walls.
32 As described above, characterization of particle-laden turbulent flow is a difficult problem; many exper-
33 imental and numerical research studies have been devoted to this objective over the past decades, see, e.g.,
34 [10, 11, 12]. However, the problem of interest in this work involves, in addition to particle-flow coupling,
35 heat transfer from the particles to the fluid through radiation absorption. The practical application moti-
36 vating the study of this phenomenon is the improvement of energy harvesting in volumetric particle-based
37 solar receivers. At present, most CSP technologies use surface-based collectors to convert the incident so-
38 lar radiation into thermal energy. In this type of system, the energy is transferred to the working fluid
39 downstream of the collection point via heat exchangers, typically resulting in large conversion losses at
40 high temperatures. By contrast, volumetric solar receivers continuously transfer the energy absorbed by
41 particles directly to the operating fluid as they are convected through an environment exposed to thermal
42 radiation. This innovative technology is expected to increase the performance of CSP plants by avoiding
43 the necessity of heat-exchanging stages, while requiring significantly high radiation-to-fluid energy transfer
44 ratios. This requirement imposes a very complex design constraint as the physical mechanisms governing
45 irradiated particle-laden turbulent flow are still not fully comprehended, and therefore is a topic of intense
46 research, see, e.g., [13, 14].

47 1.2. Uncertainty Quantification for Complex, Large-Scale, High-Dimensional Systems

48 The complexity of constructing predictive models of CSP systems is furthered by the fact that there are
49 many sources of uncertainty inherent in the underlying physical processes, for instance, turbulence models,
50 particle properties or input radiation. This often high-dimensional uncertainty, in conjunction with large
51 computational demands of high-fidelity (HF) simulation of irradiated particle-laden turbulence, necessitates
52 cost-efficient, non-intrusive (i.e., sampling-based) UQ methods that accurately estimate the statistics of
53 the quantities of interest (QoIs). Many widely-used non-intrusive methods, such as stochastic collocation
54 [15, 16] and polynomial chaos expansions (PCEs) [17, 18, 19], suffer from a rapid (up to exponential) growth
55 of computational cost as a function of the number of input variables characterizing the uncertainty. On
56 the other hand, the cost of standard Monte Carlo (MC) sampling methods, while formally independent of
57 the number of input variables, may be prohibitive when the QoI exhibits large variance and is expensive to
58 evaluate. Much recent research has targeted developing cost reduction techniques to improve MC sampling
59 methods.
60 As a form of cost reduction, there has been growing interest in multilevel and multi-fidelity methods, that
61 is, methods relying on multiple models with varying levels of accuracy and cost, with the aim of accurately
62 estimating the QoI statistics in a computationally efficient manner. Relative to (accurate) HF models, these
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63 models of reduced cost and accuracy are referred to, generally, as low-fidelity (LF) models. Inspired by
64 multigrid methods [20, 21], multilevel techniques have evolved to not only include UQ methods exploiting
65 coarser grid resolutions, but also multi-fidelity methods, where levels may correspond to a broader class
66 of modeling schemes, e.g., simplified physics or reduced time-stepping (the interested reader is directed
67 to [22, 23] for a review of multi-fidelity methods). Relating to this work, interest is greatest with respect to
68 multi-fidelity MC methods as we focus on high-dimensional uncertain inputs.
69 The control variates method [24] is a cost reduction technique that introduces a second, easily simulated,
70 and correlated variable (to the original QoI) as a means to reduce the variance of the MC estimator of the
71 QoI's expected value. This reduced variance results in requiring fewer simulations of the HF model to meet
72 a desired mean square error. A specific extension of the control variates approach is the multilevel Monte
73 Carlo (MLMC) method developed first in [25] and extended in [26]. MLMC estimates the expectation of
74 the target QoI from the coarsest grid (temporal and/or spatial) solutions as well as differences between each
75 two consecutive grid solutions in a telescoping sum fashion. When the differences corresponding to finer
76 grids become smaller, fewer MC realizations of finer grid solutions are needed, thus leading to an overall
77 reduced cost. Applications of MLMC to numerical partial differential equations, as in [27, 28, 29], show the
78 success of the method for simple mathematical systems, making it ideal for high-dimensional, large-scale
79 problems in which there exists convergence analysis with regards to the discretization scheme. In the last
80 decade, several other types of control variates, in the form of multilevel and multi-fidelity, have been studied
81 which rely on LF models, many of which do not adhere strictly to the coarsening of the spatial or temporal
82 discretization schemes, e.g., [30, 31, 32, 33, 34]. Importance sampling [24] is another approach to variance
83 reduction that has been utilized in the context of multi-fidelity UQ, see, e.g., [35, 22]. All of these cost
84 reduction methods for MC have been shown to significantly improve the computational cost in comparison
85 to standard MC simulation of the HF model.
86 Earlier work on multi-fidelity modeling of parametric/uncertain problems is based on Gaussian process
87 regression, a.k.a kriging or co-kriging in the multivariate case, [36, 37, 38]. In particular, the seminal
88 work in [36] builds a Gaussian process approximation of the QoI based on an autoregressive model trained
89 from nested observations of multiple, less expensive models. Each model of the sequence is related to the
90 lower-fidelity model via a multiplicative constant and an additive Gaussian process correction term that are
91 estimated from the lower-fidelity model evaluations as well as fewer realizations of the model itself.
92 The recent work in [39, 40, 41, 42, 43] builds a reduced basis (or low-rank) approximation of the HF QoI
93 using LF model evaluations and a small set of selected HF samples. The HF reduced basis — consisting of
94 realizations of the HF (vector-valued) solution at selected input samples — as well as an interpolation rule in
95 this basis are determined from LF realizations. A practical error estimate of this bi-fidelity (BF) approach is
96 presented in [43], which can be used to determine if a given pair of low- and high-fidelity models will lead to
97 an accurate BF approximation. In the present study, we adopt the BF approach and error estimate of [43]
98 to illustrate their efficacy in UQ of a CSP systems as an instance of a complex, multi-physics engineering
99 application.

100 1.3. Objectives and Organization of the Work

101 The system studied in this work is based on a small-scale apparatus [44] designed to reproduce the oper-
102 ating conditions of volumetric particle-based solar receivers. Physics-based modeling of irradiated particle-
103 laden turbulent flow — as detailed in Section 2— and its numerical investigation and validation against data
104 obtained from the experimental apparatus — description given in Section 3— are difficult tasks that intrinsi-
105 cally require several model assumptions, selection of coefficient and parameter values and characterization of
106 initial and boundary conditions. These steps, even if performed carefully, result in potential sources of uncer-
107 tainty that can impact the quantities of interest (QoI). Some examples encompass the incomplete description
108 of particle diameters [45] and thermal radiative properties [46], variability of the incident radiation and its
109 complex interaction with boundaries, and structural uncertainty inherent in the approximations utilized, like
110 for example in terms of turbulence modeling [47]. In addition to the large number of uncertainty sources,
111 accurate predictions of the complex interaction of particle-laden turbulent flow with radiative heat transfer
112 demand the utilization of expensive HF numerical simulations. As an example, the cost of a medium-scale
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HF calculation of this problem requires approximately 500k core-hours per sample on the Mira supercom-
puter (ALCF) [48]. Therefore, if brute-force UQ techniques, e.g., MC simulation with 0(103) samples, are
to be performed, the total cost is of the order of 500M core-hours, thus motivating the need for accelerated
UQ strategies. In this regard, the objective of this work is to investigate the BF approximation UQ strategy
on large-scale, multi-physics applications based on the PSAAP II solar receiver. In particular, it can be
shown that this BF approximation provides accurate estimates of the QoI statistics, while maintaining a
reduced cost similar to that of LF models for simulations with 0(103) samples.

The paper is organized as follows. In Section 2, the physical models and numerical method utilized to
simulate irradiated particle-laden turbulent flow are described. The particle-based solar receiver studied is
detailed next, Section 3, in terms of computational setup, input uncertainties, and QoIs considered. The
BF approximation strategy is presented in Section 4, as well as a brief discussion of the associated error
bound. The performance of this BF approximation, with regards to both accuracy and cost is investigated
in Section 5. From these results, comparisons are made between this approximation and alternative LF
models. Finally, the work is concluded and future directions are proposed in Section 6.

127 2. Physics Modeling and Numerical Method
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The study of volumetric particle-based solar receivers involves the interaction of particles and wall-
bounded turbulent flow in a radiation environment. The equations describing this type of flow are continuity,
Navier-Stokes in the low-Mach-number limit, conservation of energy assuming ideal-gas behavior, Lagrangian
particle transport, and radiative heat transfer. The modeling of these three physical processes — turbulent
flow, particle transport, and radiative heat transfer — and their couplings, are sequentially described in the
subsections below.

134 2.1. Variable-Density Turbulent Flow

The volumetric particle-based solar receiver operates at atmospheric pressure conditions in which air,
the carrier fluid, is assumed to follow the ideal-gas equation of state (EoS), Pth = pgRairTg, where Pth
is the thermodynamic pressure, pg is the density, Rat, is the specific gas constant for air, and Tg is the
temperature. As indicated by the EoS, density varies with temperature. However, the Mach number of the
flow Ma = u/c, with u the local flow velocity and c the speed of sound of the medium, is small (Ma< 0.03)
for the range of velocities and temperatures considered. Therefore, the low-Mach-number approximation
is utilized to separate the hydrodynamic part, p << Pth, from the total pressure, Ptot = Pth + P.
decomposition results in the following equations of fluid motion
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where ug is the gas velocity, loo is an ambient reference density, I is the identity matrix, g is the gravitational
acceleration, and pg and Ag are the dynamic viscosity [49] and thermal conductivity [50], respectively.
Additionally, C„,9 and Cp,g are, respectively, the isochoric and isobaric specific heat capacities, and fTvvc,
and Siwc, are two-way coupling terms representing the effect of particles on the fluid and respectively
approximated as point sources in the forms

fTIVC = rnp up VP (x— xp) ,

STWC 71 eh (I"P — Tg 
)8(x xp).P 

4
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135 Here, nip = pp7r4/6, vp are the particle mass and velocity, respectively, up is the gas velocity at the
136 particle location, 7-p = ppdp2/(18p,9) is the particle relaxation time, dp is the particle diameter, and 6 (x — xp)
137 is the Dirac delta function concentrated at the particle location xp. The expression for the fluid-particle
138 convection coefficient is h= NuAfldp with Nu the particle Nusselt number; in the problem studied, particles
139 are assumed to be isothermal as the Biot number is small, Bi = hdplAp <1.

140 2.2. Lagrangian Particle Transport

The carrier fluid is transparent to the incident radiation. Hence, micron-sized nickel particles, i.e., the
dispersed phase, are seeded into the gas to generate a non-transparent gas-particle mixture that absorbs
and transfers the incident radiation from the particles to the gas phase. The diameters of the particles
are several orders of magnitude smaller than the smallest significant (Kolmogorov) turbulent scale 7), and
the density ratio between particles and gas is ppl pg » 1. As a result, particles are modeled following a
Lagrangian point-particle approach with Stokes' drag as the most important force [51]. Their description in
terms of position, velocity and temperature is given by

dxp

dt
= vPl (6)

dvp up — v
= 

p 
+ g, (7)dt TP

d (nipC„,pTp) = 7rd?, (1 — co) i' (I '71;4' dll — 74h (Tp — Tg), (8)
dt 4 47, 7r

141 where Cv,p is the particle specific isochoric heat capacity, w = Qs/ (Qa + Qs) is the scattering albedo with
142 Qa and Q, the absorption and scattering efficiencies, respectively, I is the radiation intensity, a is the
143 Stefan-Boltzmann constant, and dli = sin OdOdO is the differential solid angle. In the conservation equation
144 for particle temperature, (8), the first term on the right-hand-side accounts for the amount of radiation
145 absorbed by a particle, while the second term represents the heat transferred to its surrounding fluid.

In the point-particle approximation, particle-wall and particle-particle interactions are typically described
by one-dimensional collision models based on the balance of total momentum and energy. In the case of
collisions involving two objects, A and B, the velocities after impact, vA and vB, are given by

VA = [mAuA + mBuB + TrIRC R (UR — ILA)] 1 (mA + MR),

VB = [mAuA + mBuB + TriACB(UA - ?LB)] 1 (mA + TriB) 7

(9)
(10)

146 where uA and ?LB are the velocities of the objects before impact, mA and mB are the mass of the objects,
147 and 0 < CR < 1 is the restitution coefficient. The limits of CR correspond to the cases in which the objects
148 coalesce at impact (0, perfectly inelastic collision) and rebound with the same relative speed as before impact
149 (1, perfectly inelastic collision); intermediate values represent inelastic collisions in which kinetic energy is
150 dissipated. The above equations simplify to vA = -CRUA and vB = 0 when object B is a static wall.

151 2.3. Radiative Heat Transfer

152 In the problem under consideration, the flow and particle timescales are orders of magnitude larger than
153 the radiation timescale, which is related to the speed of light. As a consequence, it can be assumed that the
154 radiation field changes instantaneously with respect to temperature and particle distributions; i.e., radiation
155 field is quasi-steady. Under this assumption, and considering that air is transparent at all wavelengths and
156 that absorption and scattering are determined solely by the presence of particles and solid boundaries, the
157 radiative heat transfer equation becomes

o-T4 a
A o-• V/ = —,I + aa  

7 
I) ± 

47r 47, 
.1-1. f dQ,

158 where A is the direction vector, cre = cla + o-, is the total extinction coefficient with 6-a and o-, the absorption
159 and scattering coefficients, respectively, and (13 is the scattering phase function that describes the directional
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DEVELOPMENT SECTION RADIATED SECTION

+>.
t t t t t t t t t RADIATIONTURBULENT PARTICLE-LADEN GENERATOR

Figure 1: Computational setup of the PSAAP II volumetric particle-based solar energy receiver. An isothermal periodic
section (left domain) is utilized to generate fully developed particle-laden turbulent flow, which is used as inflow conditions for
the second section (right domain) where the gas-particle mixture is irradiated perpendicularly to the flow direction from one
the sides.

160 distribution of scattered radiation. The total extinction coefficient can also be defined in terms of absorption
161 and scattering efficiencies as a-, = (Qa + Qs) irdlinp/4 with np the local number density of particles. More-
162 over, assuming gray radiation Qa+Q, ,--:.,' 1, which leads to bi P.-.1 Q, (see (8)), and as a result a-a ,•--:_l Qa7r4np/4
163 and a, s--2, (2,74np/4.

164 2.4. Numerical Method

165 The equations of fluid motion, (1)-(3), are solved following an Eulerian finite-volume discretization im-
166 plemented in an in-house solver that is second-order accurate in space and suitable to non-uniform meshes.
167 A fourth-order Runge-Kutta scheme is used for integrating the equations in time, together with a fractional-
168 step method for imposing conservation of mass [52]. Integration in time of the Lagrangian position, velocity,
169 and temperature of particles, (6)-(8), is fully coupled with the advancement of the flow equations to ensure
170 fourth-order accuracy. The transfer of radiative heat, (11), is calculated by means of an in-house discrete
171 ordinates method (DOM) interfaced to the flow solver via an Eulerian representation of the particles distri-
172 bution.

173 3. Description of the Particle-Based Solar Receiver

174 3.1. Computational Setup and Physical Parameters

175 Numerical simulations of the volumetric particle-based solar receiver are performed on the computational
176 setup depicted in Fig. 1. Two square duct domains, with dimensions 1.7L xWxW (L = 0.16 m, W = 0.04 m)
177 in the streamwise (x-axis) and wall-normal directions (y- and z-axis), are utilized to mimic the development
178 and radiated sections of the experimental apparatus. The development section (left domain) is an isothermal,
179 To, periodic particle-laden turbulent flow generator that provides inlet conditions for the inflow-outflow
180 radiated section (right domain). The solid boundaries of the development section (y- and z-sides) are
181 considered smooth, no-slip, adiabatic walls. Regarding the radiated section, the same boundary conditions
182 are imposed except for the radiated region in which the y- and z-boundaries are modeled as non-adiabatic
183 walls accounting for heat fluxes due to the radiation energy absorbed by the glass windows.
184 The bulk Reynolds number of the gas phase at the development section is Reb = pgubL jig = 20000, with
185 lib the gas bulk velocity. As characterized by the manufacturer of the particles utilized in the experiments,
186 the particle size distribution is approximated by 5 different classes (uniformly sampled) with Kolmogorov
187 Stokes numbers Sta = 6, 8, 10, 12, 17 (diameters listed in Table 1) and with a total mass loading ratio
188 (MLR) of MLR = npmpl pg 20%. Detailed values of the development section flow conditions and material
189 properties are listed in Table 1. The gas-particle mixture, as depicted in Fig. 2, is volumetrically irradiated
190 through an L x W glass window starting at Ax = 0.1L from the beginning of the radiated section. The
191 radiation source consists of an array of diodes mounted on a vertical support placed Ay 3W from the
192 radiated window and aligned with the streamwise direction of the flow. The diodes generate a total power
193 of P 1 kW approximately uniform within a 18° cone angle.
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Parameter Value Parameter Value
ub 8 m/s To 300 K

Pth 101325 Pa Razr 287 J/(kg.K)
Cp,p 1012 J/(kg.K) Cv,y 723 J/(kg.K)
pp 8900 kg/m3 Cv ,p 450 J/(kg.K)
dp 8.4, 9.8, 11.2, 12.2, 14.6 pm g (9.81, 0, 0) m/s2

Particle feeder

Development
section

Radiation —.

Table 1: Flow conditions at development section and physical properties.

I Calolimeter

I. To cyclone

Figure 2: Schematic representation of the experimental and computational setups. Open loop duct and radiation source (left).
Detailed configuration of the illuminated computational section (right). The test segment is 1.7L long and W width, with a
radiated volume of LxWxW starting at 0.1L from the beginning of the section, and with a probe perpendicular to the flow
and located 0.3L downstream.

194 3.2. Uncertainties and Quantities of Interest

195 In our UQ study, we consider 14 input variables to describe various experiment and parameter uncertain-
196 ties, as shown in Table 2. These correspond to incertitude in particle restitution coefficient for the different
197 particle classes (6. — G), correction to Stokes' drag law (G), particle Nusselt number (G), mass loading
198 ratio (G), particle absorption and scattering efficiencies (G — 60), incident radiation flux (61), and heat
199 fluxes from the walls to the fluid (6.2 — 6.4)•
200 The intervals of the input variables listed in Table 2 have been carefully characterized on the basis of
201 information provided by the team responsible for conducting the experiments, and by taking into consider-
202 ation results and conclusions extracted from published studies. In particular, the intervals of the particle
203 restitution coefficients follow the trend observed in experimental investigations by Yang & Hunt [53] in which
204 CR increases with Stokes number. The expression for Stokes' drag force correction and its coefficient inter-
205 val is based on the theoretical work by Brenner [54]. The particle Nusselt number range is extracted from
206 numerical studies of heated particles performed by Ganguli & Lele [55, 56]. The intervals for particle ab-
207 sorption and scattering efficiencies are obtained from Mie scattering theory and take into account sensitivity
208 to shape deformation as investigated by Farbar et al. [57]. The long development section of the experiment
209 is modeled in the simulations by means of a periodic domain. This approach reduces the computational cost
210 noticeably, but at expenses of not having direct control of the mass loading ratio. Consequently, the interval
211 for this quantity is carefully characterized based on preliminary comparisons with experimental data for a
212 periodic particle-laden duct flow case without thermal radiation at steady-state conditions. Similarly, the
213 heat fluxes from the walls to the fluid are not fully resolved in the simulations and are instead directly mod-
214 eled as boundary conditions; their calculation would require the solution of a complex conjugate convective
215 heat transfer problem. In order to properly represent the uncertainty associated with this approximation,
216 comparisons against the experiment were performed for an irradiated turbulent flow case without particles
217 such that the thermal response of the system was fully driven by the fluxes from the walls to the fluid and
218 the intervals for these uncertainties could be obtained. Finally, the variability of the incident radiation is
219 based on the uncertainty in intensity and cone angle of the laser diodes reported by the manufacturer.
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220

221

222

223

224

Variable Interval Variable Interval
6_ : Prt. rest. coeff. 1 [0.0 : 0.6] : Mass load. ratio [18 : 22]%

6 Prt. rest. coeff. 2 [0.1 : 0.7] 6 : Prt. abs. eff. [0.37 : 0.41]
6: Prt. rest. coeff. 3 [0.2 : 0.8] 60: Prt. scatt. eff. [0.69 : 0.76]

: Prt. rest. coeff. 4 [0.3 : 0.9] : Radiation [1.8 : 2.0] MW/m2
6: Prt. rest. coeff. 5 [0.4 : 1.0] : Radiated wall [1.6 : 6.4] kW/m2

G : Stokes' drag corr. [1.0 : 1.5] 13 : Opposite wall [1.2 : 4.7] kW/m2
: Prt. Nusselt num. [1.5 : 2.5] : Side x-y walls [0.1 : 0.2] kW/m2

Table 2: List of random inputs i = 1, , 14, with
distributed.

the corresponding ranges. All inputs are assumed to be uniformly

The performance of the BF approximation is focused on thermal QoIs at the probe location. As detailed
in Fig. 2, the probe is located Ax = 0.3L downstream from the radiated perimeter, and is perpendicular to
the flow direction along the y-axis at z = W/2. Of particular interest in this study is the time-averaged,
normalized increment of gas temperature along the y-axis profile, i.e., Q = ((T) - To)ITo = AT/T0, and the
average heat flux over the plane at the probe location, i.e., Q = f Cp,g (pg.% AT)dS.

225 3.3. Simulation Strategy

226

227

228

229

230

231

232

233

234

235

In the experimental apparatus, fully developed conditions are achieved using a long duct 7m) with
an aspect ratio of order hundred. To reduce the computational cost of simulating a long duct with inflow-
outflow boundary conditions, the computational setup is divided in two domains as described in Section 3.1.
First, randomly distributed particles are seeded into the development section with an initial fully developed
turbulent velocity field. This system is then evolved in time for 20 flow through times (FTTs), defined
as FTT = L/ub, to achieve fully developed turbulent particle-laden flow conditions as in the experiments.
After 20 FTTs, the instantaneous Eulerian and Lagrangian solutions are copied into the second domain,
radiative illumination is activated in the radiated region, and the total system (two domains) is integrated in
time for 5 additional FTTs intended to flush the thermal transient (1 FTT) and collect statistics (4 FTTs).
This procedure is repeated independently for each realization.

236 3.4. Description of the High- and Low-Fidelity Models

237

238

239

240

241

242

243

244

245

Three model fidelities have been designed to perform the UQ study: one HF model and two LF repre-
sentations, denoted LF1 and LF2. All three models use the same description of uncertainty as described
in Section 3.2. The HF model corresponds to a point particle direct numerical simulation (PP-DNS) with
sufficient resolution 55M cells/section) to capture all the significant (integral to Kolmogorov) turbulent
scales, while approximating the particles as Lagrangian points 15M particles/section) with nonzero mass.
The flow grid is uniform in the streamwise direction with spacings in wall units equal to Ax+ 12, while
stretched in the wall-normal directions with the first grid point at y+, z+ 0.5 and with resolutions in the
range 0.5 < Ay+ , Az+ < 6. The radiative heat transfer equation is solved on a uniform DOM mesh of
270 x 160 x 160 grid points (=--- 7M cells) with 350 quadrature points (discrete angles) per element.

Based on this HF model, two LF models have been constructed by carefully coarsening the Eulerian
and Lagrangian resolutions, resulting in the LF1 and LF2 representations that are, respectively, 170x
and 1300x cheaper to simulate (per sample) than the HF model. The flow and radiation meshes, and
quadrature points are uniformly coarsened in each direction by a factor of 5 (LF1) and 10 (LF2), which
additionally allows for larger time steps; a schematic of the different fidelity models for the turbulent flow
phase is shown in Fig. 3. The discrete phase is coarsened by reducing the number of point particles in the
calculation by 5x (LF1) and 10x (LF2). To preserve the dimensionless parameters of the problem, this is
efficiently accomplished by grouping physical particles into parcels representing their total effect [58], viz.
surrogate particles [59]. In the case of uniform parcels, the evolution of the N, surrogate particles can be
described with the same set of Lagrangian equations used for the Np physical particles, (6)-(8), with the
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Figure 3: Turbulent gas phase Eulerian resolution of the fidelity levels designed; gas velocity as background. HF 540 x 320 x 320
gridpoints (top), LF1 108 x 64 x 64 gridpoints (bottom left), LF2 54 x 32 x 32 gridpoints (bottom right).

only modification of multiplying the physics coupling terms by the ratio Ws = NpIN, as

_
fTWC = E Wonpup 6 (x xp) , STWC = E Wsirdp2h (7; Tf) (x — xp)

T 

VP
PP P

(12)

aa 147.4a7r4np/4 and as WsQ,74np/4. (13)

246 4. Bi-fidelity Approximation Strategy

247 4.1. Construction of Bi-fidelity Approximation

248 The BF approximation of this work follows the approach of [41, 43, 42], which seeks to identify a low-rank
249 representation of the HF QoI assisted by the realizations of its LF counterpart. While the QoIs in this work
250 are scalar-valued, this BF approximation relies on vector-valued quantities u that describe the scalar-valued
251 QoI. For example, when the QoI is the time- and spatial-averaged gas temperature along the probe line (see
252 Fig. 2), the elements of u may be the time-averaged estimates of the gas temperature along this profile.

Low-fidelity samples:

Bi-fidelity estimates:

High-fidelity samples:

E(2)
• •

♦ 
❑ 1±v 11 •

♦

♦11 •
•

E(N)

• • • • • • •

❑ 11 11 • • • • Monte Carlo

Polynomial Chaos

Figure 4: Schematic for the formation of the BF approximation.

253 The construction of the BF approximation is completed in four main steps, as illustrated in Fig. 4. In
254 the first step, N independent samples of the inputs each denoted by es), are generated according to
255 their joint probability density function (PDF) and used to form N LF realizations of u, each referred to as

256 u(P E Rm (see Fig. 4, orange boxes, top row). Here, m is the number of (spatial or temporal) degrees of
257 freedom describing //L. These realizations are then organized in an m x N LF data matrix UL such that

[IL := L (L1 ) ) • (14)

Typically N is large, as obtaining many LF samples is computationally feasible, and the value of m
corresponds to the spatial degrees of freedom of the numerical solver. In the second step, we seek to identify
a subset of realizations of Ikr, of size r (and the associated input samples of C that form a basis for the range
space of UL. To this end, we perform rank r < N factorization of UL via matrix interpolative decomposition
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(MID) [60, 61, 62]. Specifically, the rank r approximation tIL is obtained via column-pivoted (truncated)
QR factorization

ULP "=.1 Q [R11 R12] (15)

= QR11 [I RI1R12] (16)

258 where Q E IR"' has r orthogonal columns, Rii E Rrx r is an upper triangular matrix, R12 E 111"N—r,
E r IsIx N259 .1 

ID is a permutation matrix, and t indicates the pseudoinverse. It is straight-forward to show that
260 the product QR11 in (16) is equal to the left r columns of UL, denoted by

UF, = [u(11) tt(i2) • • • ul (17)

261 and referred to as the column skeleton of UL. In (17), the column indices ik, k = 1, . . . , r, are identified from

262 the permutation matrix P in (15) and indicate input samples eik) corresponding to the LF realizations 4k)

263 (see Fig. 4, dark orange boxes, top row). From (16), setting CL = [I R1iR12]13 to be the LF coefficient
264 matrix, the rank r MID approximation of UL is given as

UL, := ULCL, (18)

265 indicating that U.Z, or equivalently the LF realizations u(ii,k), act as a reduced basis for the range of the LF
266 matrix UL.
267 In the third step, the HF model is simulated at the inputs eik) corresponding to the LF reduced basis
268 (see Fig. 4, dark blue boxes, bottom row). This results in the associated HF column skeleton

UH = [u(11) u(l2) • • • u(Z)] • (19)

269 Note that UH is M x r, where M > m as it corresponds to the number of HF spatial degrees of freedom. For
270 HF models with a finer mesh resolution than the LF model it follows that M > m. However, as is the case
271 in this work, data values may be extracted at equivalent coordinates by using extraction points independent
272 of the grid tessellation, resulting in M = m. In the final step the BF approximation is formed by taking the
273 product of the HF column skeleton in (19) and the LF coefficient matrix

UH := UTICL, (20)

274 where the i-th column of LIH, denoted 4), is the BF approximation to ttH at ei) (see Fig. 4, blue boxes,
275 middle row). Once formed, approximate QoI realizations are calculated directly from the BF realizations

276 tx.,H .

277 With regards to computational cost, the BF approximation requires N LF simulations, performing rank-
278 revealing QR on UL with O(rmN) floating point operations for basis identification and the coefficient matrix
279 computation, and only r HF simulations to form U. Typically, obtaining HF solutions is a bottleneck,
280 and thus limiting the number of HF simulations to small r is of great value and a fundamental component
281 of this approximation.

282 Remark 1. By construction of ID, the columns of UL with indices ik, k = 1,... , r, identified by the
283 permutation matrix P in (15), are exactly the same as the corresponding columns of UL. Stated differently,
284 an r x r sub-matrix of CL is a permutation of identity. This, therefore, implies that the columns of the BF
285 matrix UH with indices ik (identified from ID of UL) are the same as the r HF realizations forming the
286 columns skeleton U.

287 Remark 2. While the optimal rank for this BF approximation is not known a priori, the rank of the LF
288 data matrix UL may indicate a good selection range. Theoretical results of [60, 61, 62] show the error of
289 the rank r LF approximation in (18) is bounded by a scaling of the (r + 1)-th largest singular value of UL.
290 This suggests that the decay of singular values of UL, specifically, where a significant drop occurs, to be a
291 worthwhile consideration for the value of r.
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292 4.2. Theoretical Error Estimation of Bi-Fidelity Approximation

293 This section briefly presents the theoretical results of [43] that provide a practical error bound on the

294 spectral norm of 11UH — (1H11 that may be used with small cost to assess the suitability of a given pair
295 of low- and high-fidelity models to produce an accurate BF approximation. Instances of successful BF
296 approximation via UH in (20) have been reported in a number of recent studies [39, 40, 41, 42, 43].

297 Following [43], the BF estimate UH is accurate as long as there exists an M x m matrix T, with bounded
298 norm, such that UH %--Z.-% TUL. For a given pair of low- and high-fidelity problems, the existence of such a
299 mapping is not always guaranteed. However, [43] shows that such a mapping can be constructed when

6(7) = Arnax(ULUH — TUrUL), T > 0, (21)

300 is small enough and that UL (similarly UH) has fast decaying singular values. In (21), Amax() denotes
301 the largest eigenvalue of a matrix, and ULUH and LITUL are the Gramians of the HF and LF matrices,
302 respectively. The following theorem from [43] provides a bound on the BF approximation error. In particular
303 we note the dependence of the error bound on T and E(7).

304 Theorem 4.1 (Theorem 1 of [43]). Let UH be the rank r BF approximation, as in (20), to the HF data

305 matrix UH. Let UL be the rank r MID approximation, given in (18), to the LF data matrix UL, where C I,
306 is the corresponding coefficient matrix. For e(r), as defined in (21), and II '11 the spectral norm, it follows
307 that the BF error may be bounded as

MUH —(11111 min ((1 + IICL, ID ,V7c4+1 + e(r) + 11UL — 0L II \/1- + €(7-)a0) , (22)
k<rank(Uf)

T>0

308 where al, and a k+1 are the k-th and (k + 1)-th largest singular values of UL, respectively.

309 Evaluating the bound in (22) requires the computation of e(7) for multiple values of T. Following (21),
310 this in turn requires access to the entire HF data matrix UH, which is not possible as UH is never generated
311 in practice. As an alternative, estimates of 6(7) may be calculated using a subset of R < N HF and LF
312 samples via

E(T) = —
R
Amax (Wih 7' 01 — T(UnTUT), (23)

313 where the superscript R indicates the number of columns of UH and the corresponding columns of UL used
314 to set LTI7 and up, respectively. Stated differently, estimates of e(7) may be obtained using R HF samples,
315 instead of N . To evaluate the remainder of the bound in (22), MID is applied to the LF data matrix to

316 obtain values for MUL — UL  and 11CL 11. Combining these estimates and minimizing over identified values
317 of (7-, e(r)) and the singular values of UL results in an approximate bound. The numerical results of [43]
318 show empirically that R slightly larger than the approximation rank r is sufficient to estimate the optimal
319 pair (7,6(7)). This therefore suggests the efficacy of (22) in estimating the BF approximation error or in
320 suitability of a given pair of low- and high-fidelity models for BF modeling.

321 4.3. Using Bi-Fidelity Approximation to Estimate QoI Statistics

322 Our discussion so far has focused on the construction of N BF estimates of a vector-valued QoI using
323 the corresponding N LF realizations, along with r selected HF realizations. We next turn our attention to
324 how these BF estimates may be utilized for the purpose of UQ or sensitivity analysis.
325 When the BF approximation achieves the desired accuracy, standard methods such as MC sampling,
326 stochastic collocation, or sparse PCE may be employed on UH (more specifically, the columns of UH)
327 instead of UH to estimate the moments and PDF of the QoI, and perform global sensitivity analysis. When
328 the dimension d of the random inputs is not high, methods such as sparse PCE or stochastic collocation
329 may be employed. Otherwise, MC sampling methods are preferred. On the other hand, when the BF
330 approximation does not meet the accuracy requirements but leads to estimates well correlated with the HF
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331 data, the BF approximation may serve as a control variate to MC in a single-level [24] or in a multilevel
332 setting as in [34].
333 In the numerical results of Section 5, we use the .e1-minimization approach of [19, 63] to build sparse
334 PCEs of the QoIs as approximate maps between the random inputs and the QoIs. The resulting PCEs
335 are, in turn, used to estimate the statistics, here, histogram, of the QoIs and perform global sensitivity
336 analysis. The QoI statistics can be either computed directly via the PC coefficients, e.g., for the mean
337 and variance, or by sampling the PCE itself in a MC fashion, e.g., for histogram. We follow the latter
338 approach in the experiments of Section 5 to generate histograms of the QoIs. For global sensitivity analysis,
339 we perform variance decomposition to compute the so-called Sobol' indices [64], which provide a means to
340 quantitatively describe the importance of input parameters, by calculating each parameter's contribution
341 to the total variance of the output QoI. Following the work of [65], we compute the Sobol' indices directly
342 from the PCE coefficients.

343 5. Numerical Results of Bi-Fidelity Approximation

344 To investigate the performance of the BF approximation, 256 LF2, 128 LF1, and 26 HF simulations were
345 performed, such that the 26 HF simulations correspond to the first 26 simulations of LF1 and LF2, and the
346 128 LF1 simulations correspond to the first 128 of the LF2 simulations. From the two LF models, two BF
347 approximations are formed: bi-fidelity 1 (BF1) approximation and bi-fidelity 2 (BF2) approximation. The
348 BF1 approximation is formed from N = 128 LF1 samples and r HF samples, and the BF2 approximation
349 is formed from N = 256 LF2 samples and r HF samples. The number of HF simulations is left as r, as the
350 selection of this value will be discussed in the following results.
351 The motivation of this approximation is to form a BF model that accurately predicts the HF data, and
352 the goal of these results is to investigate whether or not there is an improvement over the performance
353 of the the LF models. For these tests, two primary time-averaged, i.e., (.), thermal QoIs are considered:
354 (i) heat flux through the plane at the probe location, Q = f cp,g (pgugAT)c1S, (Ax = 0.3L downstream
355 from the radiated perimeter) normalized by the mean QoI estimated from the HF data, and (ii) normalized
356 temperature increment, AT/T0 = ((T) — T0)/T0, values along the profile at the probe location (Ax = 0.3L
357 downstream from the radiated perimeter at z = 0.5W), where focus is placed on spatially-averaged AT/T0,
358 and point estimates at y/W = 0.5, y/W = 0.1, and y/W = 0.05.
359 For each QoI, five primary tasks are considered: (i) BF rank identification as to best optimize accuracy
360 and computational cost of the approximation, (ii) BF error bound estimation, to verify the accuracy of
361 the approximation for a fixed rank, (iii) QoI approximation via available data, (iv) estimation of statistics
362 via sparse PCE of LF and BF models, and (v) cost analysis to compare approximate core-hours needed to
363 obtain converged simulations from each model.
364 For a given matrix U of LF or BF data, we report the relative spectral error, with respect to its HF
365 counterpart UH, defined as

relative spectral error = IIUH — 

366 For scalar QoIs, we report the relative £2 (root mean-square error),

relative £2 error =

N

(Q(;) - Q(i))2i=i

(Qn2i=i

367 where Q(i) is a LF or BF simulated QoI and Q(1.1) is the corresponding HF realization.
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368 5.1. QoI #1: Heat Flux Through the Ax = 0.3L Plane

369 To estimate the statistics of the heat flux QoI, the BF approximation is formed from realizations u of
370 the heat flux values over the entire Ax = 0.3L plane. For ease of comparison, these values are extracted as
371 a 500 x 500 uniform grid of points for both HF and LF simulations (thus here m = M). The scalar-valued
372 QoI estimates Q are taken to be the heat flux determined from all of the elements of u, normalized by the
373 mean QoI estimated from the HF data.
374 When forming the BF approximation, the first task is to identify the approximation rank. This is critical
375 as it will dictate both the computational cost — corresponding to r HF realizations — and accuracy of the
376 approximation. As a reduced cost relies on minimal number of HF samples, the selected rank must be as
377 small as possible. However, excessively small approximation ranks may lead to inaccurate BF solutions. To
378 aid in rank selection, consider the results of Fig. 5. Fig. 5 (a) provides the decay of singular values of LF
379 and HF matrices. The magnitudes of these singular values decay most rapidly within the first six indices,
380 indicating that six realizations of heat flux capture most of the information of the LF and HF data. Fig. 5
381 (b) displays the error bound estimate of the BF approximation matrix as a function of rank r. Note, the
382 number of simulations to calculate E(T) is set to R = r + 2; a more thorough assessment of the error bound
383 will be discussed shortly. The error bound estimate levels out for a conservative value of r = 6, which is the
384 BF approximation rank we use for the rest of the results. For comparison, the LF1 and LF2 spectral errors
385 are provided (see (24)), indicating that very few HF samples are needed to observe an improvement over
386 the LF models. The presentation of the corresponding cost analysis is postponed until Section 5.3.
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Figure 5: (a) Decay of normalized singular values of LF and HF matrices using available data. (b) Error bound estimates for
both BF approximations as a function of rank r. For comparison, relative spectral error of the LF data are provided.

387 While the previous results indicate that the rank r = 6 BF approximation more accurately describes the
388 HF data, the calculated error must be verified by more thoroughly investigating the theoretical error bound
389 estimates from Section 4.2. Specifically, the bound must be estimated for multiple values of R, the number
390 of samples used to estimate e(T). Fig. 6 provides the error bound estimates as a function of R for the BF1
391 and BF2 models. Each point represents an error bound estimate calculated from R random columns of
392 UH (out of 26 total columns) and the corresponding columns of U.L. The solid line represents the average
393 value of the points at each value of R. Numerical results of [43] suggest a value of R 2r will provide a
394 true error bound. With rank r = 6, these results estimate the error bound to be 0.12 for both BF models.
395 Recall from Fig. 5 (b) that this error bound estimate is smaller than that of either LF model, indicating
396 that improvement in accuracy may be estimated without knowledge of the true BF error.
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R

(a) BF1

R

(b) BF2

Figure 6: Error bound estimate from (22) using e(T) and rank r = 6 for varying values of R, for (a) BF1 and (b) BF2 models.
Values are based on 10 different sets of R columns, where column selection not fully independent due to the small number of
available HF samples.

397 To compare the performances of the LF and BF approximations with regards to the heat flux QoI,
398 consider the results of Fig. 7, where 17 simulated values of the heat flux using the HF, LF and BF models
399 are provided. Given the discussion of Remark 1, we exclude the heat flux values corresponding to the r
400 HF realizations used to form the BF approximation. For each simulated value, the BF approximations are
401 significantly more accurate than their LF counterparts. With regards to the relative f2 error, the BF QoIs
402 are about 7x more accurate than the LF QoIs, with both BF1 and BF2 having errors of 0.03, LF1 an error
403 of 0.20, and LF2 an error of 0.22.

5 10 15
simulation number

20

Figure 7: Normalized total heat flux values for 17 independent simulations, from the five different models, where the BF
approximation is of rank r = 6. The BF approximations are more accurate than either LF QoI data. This data excludes
simulations corresponding to the HF realizations used in the BF approximations.

404 To estimate the moments and PDF, as well as perform sensitivity analysis, a sparse PCE surrogate is
405 formed from available data, as discussed in Section 4.3. Table 3 provides the QoI mean and coefficient of
406 variation (CoV) values determined from the approximate coefficients of each LF and BF surrogate model, as
407 well as the relative error between each QoI mean and the HF QoI mean. Note the HF QoI mean is calculated
408 directly from available data. These results show that the BF1 mean is about 100x more accurate than the
409 LF mean values and the BF2 mean is about lOx more accurate than the LF mean values, where the BF1
410 model predicts within 0.15% of the HF QoI mean. The LF models, on the other hand, predict to within
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411 only 20 — 22% of the HF QoI mean. The CoV is provided for all models as well. The QoI variation for each
412 fidelity model is comparable to that of the HF model, with that of BF1 most closely describing the HF data.
413 Since the BF2 CoV is of the same order of magnitude as the respective error, it cannot be completely relied
414 on as an estimate for the HF CoV. The BF1 error, on the other hand, is significantly smaller than the CoV,
415 and thus the CoV estimate can be trusted, indicating that the BF1 approximation most closely represents
416 the HF data.

Model

Fidelity

Mean Rel.

QoI Error

CoV

LF1 0.80 20% 0.10

BF1 0.99 0.15% 0.07

LF2 0.78 22 % 0.11

BF2 0.97 2.7% 0.06

HF 1.0 - 0.08

Table 3: Comparison of the mean and CoV the of heat flux estimated by the LF1, LF2, BF1, and BF2 models. These statistics
are computed vis a sparse PCE surrogate as discussed in Section 4.3.

417 To estimate the QoI PDFs, histograms of the LF and BF data are generated from 100, 000 sparse PCE
418 samples. Fig. 8 provides these normalized histograms for the heat flux QoI to compare with available
419 HF data. Fig. 8 (a) provides data derived from the LF1 and BF1 models, while Fig. 8 (b) provides the
420 histograms from LF2 and BF2 data. We observe that the BF histograms more closely follow the histogram
421 of the HF data.

10 10
LF1 I I LF2
BF1 BF2

8 =HF data 8 =HE' data

6 6

4 4

2 2

0
0.6 07 08 09

(a) LF1 and BF1

.2 0.6 07 08 09 1

(b) LF2 and BF2

1.2

Figure 8: Normalized histogram of the total normalized heat flux through the Ax = 0.3L plane based on sparse PCE of (a)
LF1 and BF1 and (b) LF2 and BF2 realizations.

422 For the final set of results the total Sobol' indices are calculated from the PCE coefficients of the LF and
423 BF heat flux samples. The relative contribution of each parameter to the variance of the estimated heat flux
424 is displayed in Fig. 9 (a)-(d). The Sobol' indices determined from all four sets of PCE coefficients clearly
425 indicate that the inputs representing the uncertainty in the heat fluxes from the radiated wall (62) and its
426 opposite wall (63) contribute the most to the heat flux variation. Comparatively, the remaining uncertain
427 parameters are best distinguished from the BF1 results of Fig. 9 (b) based on its accurate CoV estimate.
428 In particular, the BF1 result indicates that inputs with i = 4 — 9, 11 are next in terms of contribution to
429 the total QoI variance, with about 1% of the variance, and with i = 1 — 3, 10 have the least important
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430 contribution, with < 0.1% of the total variance.

(a) LF1

ei64

(c) LF2 (d) BF2

Figure 9: Importance of input parameters calculated from PCE coefficients on the (a) LF1, (b) BF1, (c) LF2, and (d) BF2
heat flux data. Starting with parameter 6_ at the top position, importance of each 6 is provided in counterclockwise order
with respect to increasing i, with corresponding description provided in Table 2. As determined from all four model surrogates,
heat flux from the radiated wall (6_2) and the opposite wall (6_3) to the fluid contribute the most to the heat flux variability.

431 As the results of this section have shown, both BF approximations are significantly more accurate
432 than either LF approximation, with the sparse PCE surrogate of the BF1 approximation most accurately
433 estimating the HF heat flux data. A discussion of cost comparisons between the five models may be found
434 in Section 5.3.

435 5.2. QoI # 2: Spatially-Averaged and Point Estimates of ATIT0 Along Profile at Probe Location

436 Next, time-averaged AT/To = (T — To)/To along the profile at the probe location is considered. The
437 BF approximation employs realizations u of the change in temperature AT/To along this profile. After
438 investigating the estimation of the full temperature profile for all models, focus is placed on estimating
439 the spatial mean of AT/To along the profile, as well as ATIT0 at three points along the profile, namely,
440 y/W = 0.5, y/W = 0.1, and y/W = 0.05 at the probe location.
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441 Similar to the heat flux QoI, an optimal rank of the BF approximation must be first identified. Fig. 10
442 (a) shows the decay of the singular values of the LF and HF matrices, indicating that an approximation
443 rank r > 4 accurately represents the LF1 and LF2 data. Fig. 10 (b) displays the BF approximation error
444 bound and the calculated relative spectral errors (see (24)) for both LF data as a function of rank r. For
445 these error bound estimates, R = r + 2 simulations are used to estimate the values of "(1-). As in QoI #1
446 above, the error bound estimate for BF1 levels out for the conservative value of r = 6 (notice the larger
447 value of the error estimate for r = 5). We therefore set the BF1 approximation rank to r = 6. While the
448 BF2 bound suggests a rank of r = 5, for the interest of a simpler presentation, we chose r = 6 for BF2 rank
449 as well.
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Figure 10: (a) Decay of normalized singular values of LF and HF matrices, using available AT/To data along the profile at
the probe location. (b) Error bound estimates of the rank r BF approximations for AT/To as a function of r. For comparison,
the LF1 and LF2 relative spectral errors are included as well.

450 Fig. 11 provides the error bound estimates for (a) the BF1 model and (b) the BF2 model, as a function
451 of R. Single points indicate individual error bound calculations from R random columns of UH and UL,
452 out of 26 total columns (and thus not completely independent). The solid line provides the average of these
453 10 points at each value of R. Notice that the average bound estimate for BF1 results in both Figs. 11 (a)
454 and (b) suggest larger values of R — compared to R = r + 2 used in the results of this section — lead to more
455 accurate BF error estimates. In both cases for R = 15 the estimated error is larger than the corresponding
456 LF model errors. Naively speaking, this implies that the BF approximation may not lead to significant error
457 improvement over the LF models, unlike in Section 5.1 for the heat flux data. Figure 12 (b) confirms this
458 observation.
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Figure 11: Error bound estimate from (22) using e(r) and rank r = 6 for varying values of R, for (a) BF1 and (b) BF2 models.
Values are based on 10 different sets of R columns, where column selection not fully independent due to limited number of
available HF samples.

459 To compare the abilities of the LF and BF models to reconstruct the AT/To temperature profile at the
460 probe location, the results from Fig. 12 are considered. Fig. 12 (a) displays the average AT/To temperature
461 profile derived from the LF, BF, and HF models. At most points along the profile, the mean BF1 and BF2
462 AT/To are observed to be more accurate than the mean of either LF model. To quantify this error, Fig. 12
463 (b) provides the f2 error (see (25)) evaluated at each point along the profile. While the BF models are more
464 accurate than the LF models at most points, the interior of the profile exhibits the greatest improvement.
465 Of most interest for UQ analysis are the AT/To values near the walls and middle of the profile. As such,
466 the focus is placed on four different QoIs of AT/To: the spatial mean of AT along the profile, and AT/To
467 quantities at points y/W = 0.5, y/W = 0.1, and y/W = 0.05 along the profile.
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Figure 12: (a) Average AT/To profile calculated from available simulations for all five models with rank r = 6 for the BF
approximations. (b) Error estimates of AT/To (from (25)) at each point along the profile.

468 Figures 13 (a)-(d) provide the simulated values of the four AT/To QoIs when using the HF, LF, and
469 BF models. Note these do not include the data used for the BF approximation basis. Fig. 13 (a) and (b),
470 which provide the mean value of AT/To and the value of AT/To at y/W = 0.5, respectively, show improved
471 performance of the BF approximation compared to the LF models for all simulations. With regards to the

18



472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

F2 error of the QoIs, the mean values are about 2x more accurate and the values at y/W = 0.5 are 3x more
accurate. On the other hand, in Fig. 13 (c) and (d), which provide the values of AT/T0 at y/W = 0.1
and y/W = 0.05, respectively, error improvement does not appear to be significant. For both QoIs, the BF
approximations have a smaller £2 error than their corresponding LF models; however, the gain is smaller
than 2x . These results suggest that the approximation performs well for the mean and AT/T0 QoIs near
the interior of the profile, but accuracy decays for values closer to the walls.
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Figure 13: AT/To values of 17 independent simulations for the QoI of (a) spatial mean along profile at probe location, and
points y/W = 0.5 (b), y/W = 0.1 (c), and y/W = 0.05 (d), along probe profile. Simulated values are from the five different
models, where the BF approximation is of rank r = 6.

While prior temperature results were calculated directly from the simulated values, to estimate the
moments and PDFs, as well as to perform sensitivity analysis, surrogates of the LF and BF models are
formed via sparse PCE approximations. For each of the four temperature QoIs, the mean and CoV estimates
determined from the sparse PCE coefficients are provided in Table 4 (a)-(d), as well as the relative error
between each QoI mean and the HF QoI mean. For each subtable in Table 4, the BF mean estimates are
more accurate than either of the LF estimates, by a factor of 3 — 11. Between the two BF approximations,
BF2 consistently has a small error. Aside from Table 4 (b), in which BF1 is more accurate (2% error vs.
4% error), the BF2 errors are the smallest for each subtable. In terms of the QoI CoV estimates, the values
of all models are comparable to that of the HF data. In Table 4 (a) and (b) the CoV results are similar to
those of the heat flux results; specifically, since the BF CoV is the same order of magnitude of the respective
errors, it is not necessarily distinguishable and thus can't completely be relied on as an estimate for the
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489 HF CoV. However, as the BF approximations exhibit small errors and CoV values, the mean estimates are
490 reliable. On the other hand, the BF CoV estimates of Table 4 (c) and (d) are larger than the corresponding
491 error, and therefore are more dependable than the estimates in Table 4 (a) and (b). Because of this, stronger
492 conclusions may be made when performing global sensitivity analysis.

Model

Fidelity

Mean Rel.

QoI Error

CoV

LF1 0.024 21.7% 0.12

BF1 0.028 8.11% 0.11

LF2 0.022 28 % 0.13

BF2 0.029 3.3% 0.07

HF 0.031 - 0.10

(a) Spatial mean AT/To
Model

Fidelity

Mean Rel.

QoI Error

CoV

LF1 0.046 16.1% 0.25

BF1 0.047 14.7% 0.21

LF2 0.042 24.0 % 0.27

BF2 0.052 5.1% 0.20

HF 0.055 - 0.20

(c) AT /To at y/W = 0.1

Model

Fidelity

Mean Rel.

QoI Error

CoV

LF1 0.012 31% 0.04

BF1 0.017 2.0% 0.06

LF2 0.010 40 % 0.09

BF2 0.016 4.4% 0.10

HF 0.017 - 0.08

(b) AT /To at y/W = 0.5

Model

Fidelity

Mean Rel.

QoI Error

CoV

LF1 0.066 27.3% 0.28

BF1 0.081 11.1% 0.24

LF2 0.071 22.6 % 0.30

BF2 0.088 2.8% 0.27

HF 0.091 - 0.25

(d) AT IT0 at y/W = 0.05

Table 4: Statistics from sparse PCE

493 To estimate the PDFs of the four AT/T0 QoIs, histograms of the LF and BF sparse PCE surrogates
494 are formed using 25, 000 samples. These results are provided in Fig. 14, where the left column results are
495 associated with LF1 and BF1 surrogates, and the right column results are associated with LF2 and BF2
496 surrogates. For comparison available simulated HF data are provided as well. With the exception of Fig. 14
497 (e) and (g), where the LF1 and BF1 results are closely overlaid, all of the histograms show the BF results
498 more accurately approximating the HF data than the LF results. This significance is observed more so for
499 Fig. 14 (a)-(d), which displays the QoI histograms of the spatial mean of AT/T0 and AT/T0 at the center
500 of the profile. In Fig. 14 (c)-(h), which shows the AT/T0 QoIs at specific points along the profile, the BF
501 surrogates are consistently accurate. The LF surrogates are the least accurate in the center of the profile
502 (Fig. 14 (c) and (d)), and improve for QoI point estimates near the wall (Fig. 14 (e)-(h)).
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Figure 14: Normalized histograms of the LF1 and BF1 surrogate models (left column) and LF2 and BF2 surrogate models
(right column) for the four AT /To QoIs: mean ((a) and (b)), y/W = 0.5 ((c) and (d)), y/W = 0.1 ((e) and (f)), and y/W = 0.05
((g) and (h)). Histograms formed from 25,000 samples of the sparse PCE surrogates.

503 The last result considered is global sensitivity analysis via Sobol' indices, as calculated from the sparse
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504 PCE coefficients. From these estimates, two sets of results are presented: comparisons between the four
505 models and comparisons between the four QoIs. To compare the four models, sensitivity analysis is completed
506 for the spatial mean AT/T0 QoI. Fig. 15 provides the decomposition of important parameters from the (a)
507 LF1, (b) BF1, (c) LF2, and (d) BF2 models. All pie charts suggest that heat flux from the radiated wall
508 to the fluid (62) is the most important parameter affecting the QoI variance. However, it is important to
509 note the results of Table 4 (a); specifically, the LF1 and LF2 errors are larger than the corresponding CoV
510 estimates, indicating that the associated sensitivity analysis is not necessarily reliable. The BF1 and BF2
511 data, on the other hand, have an error that is smaller than the CoV, but on the same order of magnitude.
512 As such, Fig. 15 (b) and (c) show that the heat flux from the radiated wall and opposite wall to the fluid
513 (62 and 63, respectively) are the two most important input parameters. Further conclusions cannot be
514 made with regard to the remaining parameters as the CoV estimates of Table 4 (a) are of the same order

as the error.
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Figure 15: Importance of input parameters for the spatial mean AT/To QoI from sparse PCE coefficients of the (a) LF1 (b)
BF1, (c) LF2, and (d) BF2 surrogate models. Starting with parameter 6. at the top position, importance of each 6, is provided
in counterclockwise order with respect to increasing i, with corresponding description provided in Table 2.

515

516 Based on the moment estimations of Table 4 and histograms of Fig. 14, it is clear that the BF approxi-
517 mations provide improved information of the HF QoIs than the corresponding LF models. As a consequence,
518 Fig. 16 provides the importance of input parameters of the four QoIs as determined by the BF2 sparse PCE
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519 coefficients. The BF2 model is selected as it consistently has a low error (see Table 4), and does so with
520 lower cost than the BF1 surrogate model. Fig. 16 (a)-(d) shows how the importance of parameters changes
521 with the four QoIs. From Fig. 16 (a)-(d), the heat flux from the radiated wall to the fluid (62) is the most
522 important parameter for the mean AT/To QoI, as well as the two point QoIs near the radiated wall (Figs.
523 16 (a), (b), and (c), respectively); in contrast, heat flux from the opposite wall to the fluid (63) is the most
524 important parameter for the AT/To QoI in the middle of the profile (see Fig. 16 (d)). This suggests that,
525 over the whole profile, variations in the heat flux from the radiated wall will greatly affect the AT/To values,
526 but more so at points close to the radiated wall. For points further from this wall, the variations in this
527 heat flux will play less of a role in the variations of AT/To.
528 In terms of the remaining parameters, the results of Table 4 (a) and (b) indicate that there is lack of
529 sufficient precision in the variance estimate to conclude the importance of the remaining parameters for Fig.
530 16 (a) and (b). However, the CoV estimates in 4 (c) and (d) are significantly larger than the corresponding
531 error estimates for the BF2 models, allowing for further conclusions to be made from the sensitivity analysis
532 results. Specifically, the data of Fig. 16 (c) and (d) show that the remaining parameters contribute equally

to the variance of the AT/To QoIs near the radiated wall.
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Figure 16: Importance of input parameters from sparse PCE coefficients from the BF2 model for the AT/To QoIs of (a)
spatial mean along profile at probe location (b) y/W = 0.5 along profile at probe location, (c) y/W = 0.1 along profile at probe
location, and (d) y/W = 0.05 along profile at probe location. Starting with parameter 6. at the top position, importance of
each 6 is provided in counterclockwise order with respect to increasing i, with corresponding description provided in Table 2.

533

534 The AT/To results of this section show that the BF approximations provide a more accurate reduced
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535 model than either of the LF models, with greatest improvements for mean AT/T0 and AT/T0 at the interior
536 of the profile. In addition, theoretical error results guarantee that the BF approximations will be at least
537 as accurate as the corresponding LF data. As will be shown in the following, the cost of this approximation
538 is close to that of the LF models when many simulations are required.

539 5.3. Computational Cost Comparisons of the Five Models

540 The final component necessary to justify this BF approximation is to perform a cost comparison of
541 all five models. Fig. 17 provides the approximate number of core-hours needed to generate N converged
542 simulations from the HF, LF, and rank r = 6 BF models, extrapolated to large values of N. The number of
543 simulations generated in this study are indicated by markers. For the BF1, the cost to generate N = 128
544 samples is 20x less expensive than the HF model, and for the BF2, the cost to generate N = 256 samples
545 is 50x less expensive than the HF model. In comparison, the LF1 and LF2 models are 170x and 1300x
546 less expensive, respectively; however, as shown in the results, they are poor approximations to the HF
547 data. As the r HF simulations greatly affect the cost of the BF approximation, significant cost reduction is
548 observed for larger values of N. For O(103) samples, which corresponds to values of N that are of interest
549 in the context of the application studied in this work, the computational cost of the BF models more closely
550 aligns with the cost of the LF models. While N = 103 HF simulations is approximately 500M core-hours,
551 obtaining the equivalent number of simulations is approximately 6M and 3.5M core-hours for the BF1 and
552 BF2 approximations, respectively. This drastic cost improvement, without a significant loss of accuracy that
553 is observed with the LF models, makes the BF approximation a powerful tool to perform UQ for large-scale
554 problems.
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Figure 17: Number of core-hours on Mira (ALCF) [48] to obtain N simulated values from each model. Markers provide number
of core-hours for N = 128 and N = 256, to provide the cost of the simulated values generated for this study.

555 6. Conclusions

556 As the results of this work show, when solutions to large-scale parametric/stochastic problems exhibit
557 a low-rank structure, i.e., lending themselves to a reduced basis representation, models with lower fidelities
558 (cheaper to simulate) may be utilized to generate accurate approximations of the solution with significantly
559 lower computational cost. An instance of such a BF approximation was utilized to quantify the uncertainty
560 in thermal solutions of interest (time-averaged heat flux and temperature near the outflow boundary) of
561 a particle-based solar receiver model involving turbulence, particle transport, and radiative heat transfer,
562 an example of large-scale, multi-physics systems. The sources of uncertainty included particle properties
563 (restitution coefficient, Nusselt number, absorption and scattering efficiencies), thermal boundary conditions,
564 mass loading ratio, among others. A single HF simulation of the problem, consisting of DNS flow model,
565 Lagrangian particle transport, and highly resolved DOM discretization of the radiative transfer equations,
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566 requires about half a million core-hours. This, in conjunction with the relatively large number of uncertain
567 inputs, renders standard UQ techniques infeasible.
568 To tackle the computational cost issue, two lower-fidelity models of the problem were constructed based
569 on coarsening the fluid and DOM grids, as well as by reducing the number of particles. These models were
570 used to identify a reduced basis and an interpolation rule for the thermal QoIs of the HF model. As a result,
571 only a small number of HF model realizations (e.g., six) at selected samples of uncertain parameters were
572 needed to generate BF samples of the QoIs, which were in turn used for a PCE-based estimation of the
573 QoI statistics and sensitivity analysis. All simulations were performed using the same computational code
574 and in a black box fashion. The errors in predicting the QoIs and their statistics via these BF models were
575 computed and compared to those of their LF counterpart. It was observed that the BF solutions, while
576 requiring a small number of HF realizations, were considerably (as high as 100x for the mean of heat flux)
577 more accurate than the LF estimates. The adopted BF strategy features an error bound which uses a small
578 number of HF realizations (along with LF samples) to estimate the error with respect to the HF model.
579 The efficacy of the bound in determining the number of required HF samples and estimating the BF error
580 was also demonstrated on the thermal QoIs.
581 The construction of the BF models enabled to efficiently carry out sensitivity analyses via PCE-based
582 Sobol' indices. The results indicate that the thermal QoIs considered in this work are extremely sensitive to
583 the heat fluxes from the walls to the gas-particle mixture resulting from the interaction between radiation
584 and non-ideal transparent walls. The importance of this effect is amplified in wall-bounded, particle-laden
585 turbulent flows as turbophoretic mechanisms tend to accumulate particles at the walls where the importance
586 of non-ideal transmissivity is the highest. The analysis also extracted that uncertainty in particle properties,
587 which is typically disregarded in computational studies of irradiated particle-laden turbulence, plays an
588 important role in the solution outcome that may result in large variability in, otherwise, robust first- and
589 second-order statistics.
590 Ongoing and future work focuses on exploring the performance of the BF approximation under more
591 challenging physical conditions in terms of turbulent intensities, particle loading, and radiation intensity. Of
592 notable interest is also the assessment of the approach in predicting higher order statistics, e.g., particles and
593 temperature fluctuations, and more complex physical phenomena, such as particle clustering and turbulence
594 modulation.
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