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ABSTRACT
A wide range of machine learning problems, including astronomical inference about galaxy
clusters, scene classification, parametric statistical inference, and predictions of public opinion,
can be well-modeled as learning a function on (samples from) distributions. This project explores
problems in learning such functions via kernel methods, particularly for large-scale problems.

When learning from large numbers of distributions, the computation of typical methods scales
between quadratically and cubically, and so they are not amenable to large datasets. We
investigate the approach of approximate embeddings into Euclidean spaces such that inner
products in the embedding space approximate kernel values between the source distributions. We
first improve the understanding of the workhorse methods of random Fourier features: we show
that of the two approaches in common usage, one is strictly superior. We then present a new
embedding for a class of information-theoretic distribution distances, and evaluate it and existing
embeddings on several real-world applications.

INTRODUCTION
Traditional machine learning approaches focus on learning problems defined on vectors,
mapping whatever kind of object we wish to model to a fixed number of real-valued attributes.
Though this approach has been very successful in a variety of application areas, choosing natural
and effective representations can be quite difficult.

In many settings, we wish to perform machine learning tasks on objects that can be viewed as a
collection of lower-level objects or more directly as samples from a distribution. For example:
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• Images can be thought of as a collection of local patches (Póczos et al. 2012); similarly,
videos are collections of frames.

• The total mass of a galaxy cluster can be predicted based on the positions and velocities of
individual galaxies (Ntampaka et al. 2015, Ntampaka et al. (2016))

• Support for a political candidate among various demographic groups can be estimated by
learning a regression model from electoral districts of individual voters to district-level
support for political candidates (Flaxman, Wang, and Smola 2015).

• Documents are made of sentences, which are themselves composed of words, which
themselves can be seen as being represented by sets of the contexts in which they appear.

• Parametric statistical inference problems learn a function from sample sets to model
parameters (discussed later in this report).

• Expectation propagation techniques relay on maps from sample sets to messages norrnally
computed via expensive numerical integration (Jitkrittum et al. 2015).

• Causal arrows between distributions can be estimated from samples (Lopez-Paz et al. 2015).

In order to use traditional techniques on these collective objects, we must create a single vector
that represents the entire set. Though there are various ways to summarize a set as a vector, we
can often discard less information and require less effort in feature engineering by operating
directly on sets of feature vectors.

One method for machine learning on sets is to consider them as samples from some unknown
underlying probability distribution over feature vectors. Each example then has its own
distribution: if we are classifying images as sets of patches, each image is defined as a
distribution over patch features, and each class of clusters is a set of patch-level feature
distributions. We can then define a kernel based on statistical estimates of a distance between
probability distributions. Letting X g le denote the set of possible feature vectors, we thus
define a kernel k: 2X x 2X —) IR. This lets us perform classification, regression, anomaly
detection, clustering, low-dimensional embedding, and any of many other applications with the
well-developed suite of kernel methods. We will shortly discuss several such kernels, and
estimators of them.

When used for a learning problem with N training items, however, typical kernel methods
require operating on an N x N kernel matrix, which requires far too much computation to scale
to datasets with a large number of instances. We discuss here one way to avoid this problem:
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approximate embeddings z: X —) a. la Rahimi and Recht (2007), such that z(x)T z (y) •=,
k(x,y). These embeddings are available for several distributional kernels, and are also evaluated
empirically later.

K( ) z( z(
We approximate kernels between densities pi, pj with random features of sample sets Xi —

Pt, Xi —

This report overviews two major contributions:

• Improvements in the understanding of random Fourier features, in particular the result that
one commonly-used version of their implementation is strictly superior to the other. Proofs
and a more complete analysis are given in Sutherland and Schneider (2015).

• A novel approach for embedding kernels based on the total variation, Jensen-Shannon, and
Hellinger distances, developed in Sutherland et al. (2016).

The following related work was also conducted during this fellowship, but is not discussed in
detail here:

• The application of distribution learning approaches to determining the mass of galaxy
clusters from velocity information. See our papers Ntampaka et al. (2015), Ntampaka et al.
(2016).

• The use of region classifiers in a system for actively seeking out instances of regional
patterns based on point-level observations. See our paper Ma et al. (2015).

DETAILED DESCRIPTION OF METHOD
LEARNING ON DISTRIBUTIONS
Our previous work (136czos et aL 2012), along with the simultaneous related paper (Muandet et
al. 2012), helped establish as empirically quite effective the following technique for learning on
distributions. Let P be the set of probability distributions under consideration.

1. Choose a distance p: P x P 1ER.

2. Define a Mercer kernel k: P x P IR based on p.
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3. Estimate k based on observed samples with k : 2x x 2x -÷ IR, which should itself be a
kernel on 2x.

4. Use k in a standard kernel method, such as an SVM or Gaussian Process, to perform
classification, regression, collective anomaly detection, or other machine learning tasks.

The typical choice in step 2 is that of a "generalized" Gaussian RBF kernel: k(P ,Q) =

exp (— —2,12 p2 (P, Q)). Sometimes a linear kernel with origin 0, k(P, Q) = -21 (p2 (P , 0) +

P2 (Q, 0) — P2 (P, Q)), is preferred. These kernels are positive semidefinite (for all 0 and a)
precisely when p is Hilbertian, i.e. isometric to an L2 norm (Haasdonk and Bahlmann 2004).

We will consider for now the following distances on distributions:

• L2 distance, given by L2 (p, q) = I f (p(x) — q(x))2dx .

• Hellinger distance, H(p, q) = Z f Gip (x) — q(x))2 dx.

• Total variation distance, TV (p,q) = z f lp(x) — q(x)ld x .

• Jensen-Shannon distance, JS(p, q) = 2 2 2 2K L (p II + K L (q II , where KL is die

well-known Kullback-Liebler divergence KL(p, q) = f p(x)logq(x dx.x)) 

• The maximum mean discrepancy (MMD) (Gretton, Borgwardt, et al. 2012), which is
defined in terms of a base kernel lc as

MMD(P, Q) = X') — , Y) + Eyxf-e(7, Y').

• This corresponds to the difference between the mean embeddings in the reproducing kernel
Hilbert space corresponding to K. We refer to the corresponding linear kernel as
MMK(P, Q) = Y).

P6czos et al. (2012) and Sutherland et al. (2012) considered particular nonparametric estimators
of these and similar distances, and found that approaches similar to the Jensen-Shannon distance
performed best on at least some practical problems.
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The approaches considered there can be powerful, but usually require computing an N x N
matrix of kernel evaluations, which can be infeasible for large datasets. The use of divergences
in Mercer kernels faces an additional challenge, which is that the estimated Gram matrix may not
be PSD, due to estimation error or because some divergences in fact do not induce a PSD kernel.
In general this must be remedied by altering the Gram matrix a "nearby" PSD one. Typical
approaches involve eigendecomposing the Gram matrix, which usually costs 0 (N3) computation
and also presents challenges for traditional inductive learning, where the test points are not
known at training time (Chen et al. 2009).

Instead, we will consider approximate embedding methods, in which we find an embedding
z: 2X —) le such that z(X)T z(Y) •=, k(P, Q). Learning primal models in lie using the z features
can then usually be accomplished in time linear in n, with the models on z approximating the
models on k.

RANDOM FOURIER FEATURES
Recent interest in this type of embedding method was spurred by Rahimi and Recht (2007).
Their approach, known as random Fourier features, assumes a continuous shift-invariant kernel
on Rd, i.e. those that can be written k(x, y) = k (A), where we will use A: = x — y throughout.

In this case, Bochner's theorem (1959) guarantees that the Fourier transform12(.) of k will be a

nonnegative measure; if k (0) = 1, it will be properly normalized. Thus if we define

(x): = ̂I D [sin(wix) cos(w-lx) sin(a)T1 "C)D 2 COS(a)D12,X)]
T
, {COi}i=

D/
i
 np/2

and let (x , y): = (x)T (y), we have that

2
(x , y) =

D /2

i=1

sin (4x)sin(coTy) + cos(4x)cos(wTy) =
D/2

D /2

1

i=1

cos (wiT.6).

Noting that Ecos(coTA) = f 91e'T•md12(w) = 91k(A), we therefore have IE (x , y) = k(x , y).

Note k is the characteristic fiinction of12, and s the empirical characteristic function

corresponding to the samples {wi}.

Rahimi and Recht (2007) alternatively proposed
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{(0i)1?-1 "s" 12D, fbi)f=1(x): = [COS(WIx b1) COS(WID.X. + bD)]T, UnifpD3,2,*

Letting (x, y): = (x)T (y), we have

1

D

D

1=1

1
(x, y) =

D

i=1
cos (co-i[x. + bi)cos(wTy + bi)

cos (coT, (x — y)) + cos(toT, (x + y) + 2b,).

Let t: = x + y throughout. Since Ecos(coTt + 2b) = E„ [Ebcos(wIt + 2b)] = 0, we also have
E (x, y) = k(x, y).

Thus, in expectation, both z and '2" work; they are each the average of bounded, independent
terms with the correct mean. For a given embedding dimension, z has half as many terms as
but each of those terms has lower variance; which embedding is superior is, therefore, not
obvious. We will answer this question, as well as giving uniform convergence bounds for each
embedding.

We can in fact find the covariance of the reconstructions:

Coy (-§ (A), -§ (A')) = —
D 
Cov(cos(wT A), cos(wT A'))

= —
D
[lE[cos(wT (A — A')) + cos(wT (A + A'))] — 2IE[cos(wT A)]E[cos(wT A)]]

= 
1 
[k (A — A') + k (A + A') — 2k (A)k (A')] ,

so that

Var (A) = 1,t,[1 + k (2 A) — 2k (A)21.

Similarly,
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Cove§ (x, y), § (x', y'))

and so

1
= —
D 

Cov(cos(coT A) + cos(coTt + 2b), cos((.uTS) + cos((.uTe + 2b))

= —
D

[Cov(cos((.oT A), cos(coT AT + Cov(cos(coTt + 2b), cos(cuTe + 2b))

+Cov(cos(wT A), cos(cuTe + 2b)) + Cov(cos(coTt + 2b), cos(coT AT

0'' 'IS 
1 1 1 1

D

[

2
k (A — A') + —

2
k(A + A') — k(A)k(S) + —

2
k(t — t')] ,

1 [ 1
Var § (x, y) = T) 1 + Ic(2,d) — 46)21.

Thus š. has lower variance than § when k(2.6) < 2k (6)2, i.e.

1 1
Var cos(coTA) = —

2 
+ 

±
(2.6) — 46)2 

1 

.

In this case, the L2 approximation of š. is strictly better than that of š, since the bias is zero in
both cases.

Consider a kernel of the form 46) = exp ( —y11.61113) for any norm and some 161 1. For

example, the Gaussian kernel uses II • 112 andfl = 2, and the Laplacian kernel uses Il• II 1 andfl = 1.
Then

2140 — k(2.6) = 2exp(—y11A1192 — exp(—y112.6119

= 2exp(-2y11A119 — exp(-2fly11.6119

2exp(-2y11.6119 — exp(-2y11.6119 = exp(-2y11.6119 > 0,

and so for these kernels š. has lower variance than š.

This property can also be shown for the Matérn kernel of half-integer order, as can be seen by
rewriting it using equation 4.16 of Rasmussen and Williams (2006) and gather terms
appropriately.
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Sutherland and Schneider (2015) shows furthermore that bounds on the kernel approximation in
terms of Loa error are tighter for s than for š, as well as various other results about the quality of
the approximation.

MAXIMUM MEAN DISCREPANCY EMBEDDING
Armed with an approximate embedding for shift-invariant kernels on le, we now develop our
first embedding for a distributional kernel, . Recall that, given samples Virii_1 Pn and
{Yi}71 Qm, MMK(P, Q) can be estimated as

n
1

MMK(X,Y) = 7‘17,n k (Xi, yi

Sirnply plugging in an approximate ernbedding z(x)Tz(y) k(x, y) yields

n m
MMK(X,Y) VD T z(Yj) = y zgol

n
F— y z(;)I
m 

= (x)-rw),•=•• 
nm i_1 j_1 721

where we defined Z(X):= -nEril_i Z (Xi). This additionally has a natural interpretation as the

direct estimate of in the Hilbert space induced by the feature map z, which approximates the
Hilbert space associated with k.

Note that e-YmmD2 can be approximately embedded with z(Z(.)).

This natural approximation, or its equivalents, have been considered many times quite recently
(Mehta and Gray 2010, Li and Tsang (2011), Zhao and Meng (2014), Flaxman, Wang, and
Smola (2015), Jitkrittum et al. (2015), Lopez-Paz et al. (2015), Chwialkowski et al. (2015),
Sutherland and Schneider (2015)).

L2 DISTANCE EMBEDDING
Oliva et al. (2014) gave an embedding for e-YLi, by first embedding L2 with orthonormal
projections and then applying random Fourier features. We omit the details here for the sake of
brevity; it is in fact similar to the MMD embedding when using a Gaussian RBF kernel for lc, but
using a fixed design instead of random sampling for the Fourier frequencies.

HOMOGENEOUS DENSITY DISTANCE EMBEDDING
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We will now show how to extend this general approach to a class of information theoretic
distances that includes total variation, Jenson-Shannon divergence, and squared Hellinger.

We consider a class of metrics that we term (HDDs):

p2 (p, q) =  K (p (x), q(x)) dxf
0,1y/

where K: 118+ x 118+ —> 118+ is a 1-homogenous negative-type kernel. That is, K(tx, ty) = tK(x, y)
for all t > 0, and there exists some Hilbert space with Ilx — y112 = K(x, y). Some important
squared HDDs include:

• Jensen-Shannon distance, where K(p(x), q(x)) = 1)(x) log( 21)(x) ) + q(x) log( 2c1(x)
2 p(x)+q(x) 2 p(x)+q(x)

chi 
and d/.2(2.) =

cosh(70.)(1+.1.2).

• Squared Hellinger distance, where K(p(x), q(x)) = (✓p (x) — ✓q (x))2NI  and d/.2(2.) =

6(2. = 1)0_
2

• Total Variation distance, with K(p(x), (x)) = lp (x) — q(x)1 and dp(2.) = 
2  chi

1+4.1.2.

Vedaldi and Zisserman (2012) studied embeddings of a similar class of kernels, also using the
key result of Fuglede (2005) we employ, but for discrete distributions only.

Fuglede (2005) shows that K corresponds to a bounded measure /2(2) by

1 1
+ ffA. 

2
—

K(X, y) = f +nA — — y2 (AKA).

Let Z: = µ(1k0) and cA: = (— + + fa); then

K(X , y) = gA(x) — gA(y) 12 where 9,1(x): = ci(xV-il' — 1).

We approximate the expectation with an empirical mean. Let 2.j for j E {1, , M}; then
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Hence, the squared hdd is

p2 (13, q)

where

IPA/ (X) 9/1/ (Y) I •

= f K (p (x), q (x)) dx
[0,1]d

= [oma lg A(p(x)) — g A(q(x))12 dxf 
M

((93.(g /1; (p (x))) — 91(g A1(q (x))))
2 

+ (3(g Al(p(x))) — 5:5(g (q (x))))Z)dx
j_i [0,1yi

_ml M= 2 2

114 + °PIA' —

(x): = 91(gA(p(x))), pIA(x): = c:S (g A(p(x))).

Each pA function is in L2([0,1]d), so we can approximate e P2 (Thq) with the d embedding of
Oliva et al. (2014); let

A(P): = (1311)T (13L)T 
)T

so that the kernel is estimated by z (A (P)) .

However, the projection coefficients of the p A functions do not have simple forms as before;
instead, we directly estimate the density as p using a technique such as kernel density estimation
(KDE), and then estimate d (pA) for each 2 with numerical integration. Denote the estimated

features as A (p).

For small d , simple Monte Carlo integration is sufficient.

In higher dimensions, three problems arise: (i) density estimation becomes statistically difficult,
(ii) the embedding dimension increases exponentially, and (iii) accurate numerical integration
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becomes expensive. We can attempt to address (i) and (ii) with sparse nonparametric graphical
models (Lafferty, Liu, and Wasserman 2012), and (iii) with MCMC integration. High-
dimensional multimodal integrals remain particularly challenging to current MCMC techniques,
though some progress is being made (Betancourt 2015); (Lan, Streets, and Shahbaba 2014) give
a heuristic algorithm.

Sutherland et al. (2016) bound the error probability for this estimator for a pair of distributions
P , Q satisfying certain smoothness properties.

RESULTS
We now turn to case studies of the application of distributional kernels to real machine learning
tasks.

MIXTURE ESTIMATION
Statistical inference procedures can be viewed as functions from distributions to the reals; we can
therefore consider learning such procedures. Jitkrittum et al. (2015) trained -based GP regression
for the messages computed by numerical integration in an expectation propagation system, and
saw substantial speedups by doing so. We, inspired by Oliva et al. (2014), consider a problem
where we not only obtain speedups over traditional algorithms, but actually see far superior
results. Specifically, we consider predicting the number of components in a Gaussian mixture.
We generate mixtures as follows:

1. Draw the number of components Yi for the ith distribution as Yi Unif{1, ,10}.

2. For each component, select a mean /.4i) Unif[-5,5]Z and covariance Ei(,i) =

c4i) A(ki) A(kirr + , where a — Unif[1,4], v) Unif[-1,1], and Bi,i) is a diagonal

2 x 2 matrix with Bi,i)(u, u) Unif[0,1].

3. Draw a sample X(i) from the equally-weighted mixture of these components.

Shown below is an example of the density function of a 9-component mixture distribution, along
with a sample of size n = 200 drawn from it. Predicting the number of components is difficult
even for humans.
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Density with 9 Components
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We compare generalized RBF kernels based on the , L2, and HDD embeddings, as well as the
embedding of Vedaldi and Zisserman (2012) and the full Gram matrix techniques of Póczos et
al. (2012) applied to the KL divergence estimator of Wang, Kulkarni, and Verdi' (2009), as in
Ntampaka et al. (2015).

We now presents results for predicting with ridge regression the number of mixture components
if, given a varying number of sample sets Xi, with lxi E {200,800}; we use D = 5 000. The
HDD-based kernels achieve substantially lower error than the L2 and MMD kernels in both
cases. They also outperform the histogram kernels, especially with lXi = 200, and the KL
kernel. Note that fitting mixtures with EM and selecting a number of components using AIC
(Akiake 1973) or BIC (Schwarz 1978) performed much worse than regression; only AIC with

lXi = 800 outperformed the best constant predictor. Linear versions of the L2 and MMD
kernels were also no better than the constant predictor.
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The three points on each line correspond to training set sizes of 4K, 8K, and 16K; error is on the
fixed test set of size 2K. The first image shows results for sample sets of size 200, the second for
800. Note the logarithmic scale on the time axis. The kernel for sets of size 800 and 16K training
sets was too slow to run. AIC-based predictions achieved RMSEs of 2.7 (for 200 samples) and
2.3 (for 800); BIC errors were 3.8 and 2.7; a constant predictor of 5.5 had RIVISE of 2.8.

The HDD embeddings were more computationally expensive than the other embeddings, but
much less expensive than the KL kernel, which grows at least quadratically in the number of
distributions. Note that the histogram embeddings used an optimized C implementation by the
paper's authors (Vedaldi and Fulkerson 2008), and the KL kernel used the fairly optimized
implementation of skl-groups, whereas the HDD embeddings used a simple Matlab
implementation.

SCENE CLASSIFICATION
For the last several years, modern computer vision has become overwhelmingly based on deep
neural networks. Image classification networks typically broadly follow the architecture of
Krizhevsky, Sutskever, and Hinton (2012), i.e. several convolutional and pooling layers to
extract complex features of input images followed by one or two fully-connected layers to
classify the images.

The activations are of shape n x h x w, where n is the number of filters; each unit corresponds
to an overlapping patch of the original image. We can therefore treat the activations as a sample
of size hw from an n-dimensional distribution. Wu, Gao, and Liu (2016) set accuracy records on
several scene classification datasets with a particular method of extracting features from
distributions. That method, however, resorts to ad-hoc statistics; we compare to our more
principled alternatives here.

We consider here the Scene-15 dataset (Lazebnik, Schmid, and Ponce 2006), which contains
4 485 natural images in 15 categories based on location. We follow Wu, Gao, and Liu (2016) in
extracting features from the last convolutional layer of the model . We replace that layer's
rectified linear activations with sigmoid squashing to [0,1].1 After resizing the images so the
shortest edge is at least 314 pixels, and the longest at most 1120, as did Wu, Gao, and Liu

1 We used piecewise-linear weights such that 0 maps to 0.5, the 90th percentile of the positive
observations maps to 0.9, and the lOth percentile of the negative observations to 0.1, for each
filter. Ideally, we would use a model with sigmoid or similar scaling, to avoid this change.
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(2016), hw ranges from 400 to 1 000. There are 512 filter dimensions; we concatenate features

2(pi) extracted from each independently.

We select 100 images from each class for training, and test on the remainder; the figure below
shows the results of 10 random splits. We do not add any spatial information to the model, unlike
Wu, Gao, and Liu (2016); still, we match the best prior published performance of 91.59 ± 0.48,
using a deep network trained on a large scene classification dataset Zhou et al. (2014). Adding
spatial information brought the D3 method of Wu, Gao, and Liu (2016) slightly above 92%
accuracy; their best hybrid method obtained 92.9%. Using these features, however, our methods
match or beat MMD and substantially outperform D3, L2, and the histogram embeddings.

93%

92%

91%

90%

89%

88%

87%

f 
10 25 50

JS TV Hel 2(7 a 2a N
D3 L2 HDDs MMD Hist JS

The figure shows mean and standard deviation accuracies on the Scene-15 dataset. The left,
black lines show performance with linear features; the right, blue lines show generalized RBF
embedding features. D3 refers to the method of Wu, Gao, and Liu (2016). bandwidths are
relative to a, the median of pairwise distances; histogram methods use varying numbers of bins.
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DISCUSSION
ADVANTAGES OF EMBEDDINGS
It is worth emphasizing here that, in modern large-scale distributed systems, embeddings such as
those discussed here have an additional advantage over traditional pairwise metheds: the
embedding can be computed with 0(1) communication between nodes storing the data, merely
by transmitting a single random seed to each node. Learning operations would then, of course,
require more data, but in that case only simple and well-understood learning algorithms are
needed, whose distributed variants have been thoroughly studied and efficiently implemented.

RANDOM FOURIER FEATURES
Our full paper presents substantially more analysis of random Fourier features (Sutherland and
Schneider 2015), showing the superiority of the 2 embedding to '2 as well as evaluating the
various bounds shown in that paper. The practical gap in performance depends on the problem:
for some problems, the difference is insignificant, but in some cases the gap between the two
embeddings is nontrivial.

In terms of the theoretical analysis, Sriperumbudur and Szabó (2015) later gave a more powerful
analysis which they showed to be rate-optimal in terms of both the dependence on n and the
dependence on the diameter of the input space. In practice, though, the values of the simpler
bound given by Rahimi and Recht (2007) and tightened in Sutherland and Schneider (2015) are
sometimes tighter.

HDD EMBEDDINGS
The results section demonstrated that on two practical problems, the HDD embedding obtained
superior learning performance to alternative embeddings at somewhat increased computational
cost. The amount of the improvement in performance seems to vary from problem to problem,
but it seems that on some practical problems the tradeoff between computational limits and
performance requirements will favor HDD embeddings over histogram-based approaches, the L2
embedding of Oliva et al. (2014), or the MMD embedding using a Gaussian RBF base kernel.

Theoretically, the reason for the gap in performance between HDDs and other approaches is not
clear. Some learning theoretic results have been established for learning based on L2 (Oliva et al.
2014) and MMD (Szabó et al. 2014), but neither allows one to easily establish a relationship
between the rates of one technique to the rates of another in any particular problem. Results
similar to those of (Oliva et al. 2014) could surely be obtained for learning with HDD
embedding, but this would not necessarily improve the state of understanding of this difference:
such rates assume that the learning problem is representable in the class of distributions
distinguishable by the distance function at hand. Although some aspects of the relationship
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between these distance functions can be understood, the way that those properties connect to
learning in practice -- and indeed which properties matter for learning rates -- is unclear.

In their current form, however, HDD embeddings are limited to low-dimensional problems.
Their requirement of both explicit density estimation and numerical integration is a substantial
drawback in certain circumstances. We have begun to explore some approaches along these
lines, based on ideas related to random projections explaiting the central limit theorem as well as
integration with high-dimensional sparse nonparametric density estimators (Lafferty, Liu, and
Wasserman 2012).

Compared to these approaches, however, another allows for more flexibility in terms of
operating on different (non-vectorial) input structures and allowing for the modeling of complex
relationships among inputs, without requiring explicit density estimation and (sometimes) having
a very simple embedding: the maximum mean discrepancy. Its performance was sometimes
lackluster in the results discussed above and related problems, but those results considered only
base kernels from the Gaussian RBF family, and indeed did not even fully optimize the
bandwidth of the kernel there, since doing so is relatively expensive. Given a more complex
embeddable kernel class and an effective method for choosing a kernel from it, it seems highly
likely that embeddings based on the MMD would match or outperform the results of HDDs in
the problems considered here, and perhaps more importantly allow for the application of
distribution embeddings to settings where directly-defined distances are less meaningful. This
would improve the applicability of distribution learning methods and reduce the amount of
required hand-tuning on the part of a machine learning practitioner. Though there are challenges
in doing so, this seems a more fruitful path for future work than to extend the applicability of
HDD embeddings to higher-dimensional spaces.

ANTICIPATED IMPACT
The immediate continuation of this work is to, as just discussed, extend the MMD embeddings to
more complex kernel classes. In particular, one can view the representations learned through
deep learning as a form of kernel learning, and indeed one that provides a direct embedding for
the learned kernel and so avoids the need for Fourier-type features.

The most immediate place of application is as follows: In the scene classification experiment
considered above, we used the features learned by a standard convolutional deep network as
samples from an image-level distribution of local features, and classified images based on those
sets of features. Here features are trained using fully-connected final layers as the learning
model, but then used in a separate distributional kernel model.
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We can instead make a coherent model which combines feature extraction with a learning model
based on a distributional kernel, by treating the approximate distributional embedding as a layer
in the network. With the mean map-based embedding, gradients propagate through this layer
easily, and so standard stochastic gradient algorithms can be used either to fine-tune features
trained on a different task or to learn features well-suited to distributional kernel models from the
start.

In doing so, we learn features for an MMD kernel based on a convolutional network through
standard deep learning techniques. This line of inquiry was begun in Oliva et al. (2015); it
showed some initial promise, but it seems that substantial improvements to the empirical results
of image classification networks (which are of course extremely widely studied in recent years)
will require a somewhat different approach to the features used in earlier layers of the network as
well. Perhaps simply larger filter sizes and other such minor changes would help, but evaluating
that question requires a substantial amount of effort and computer time as it is trained on large
image datasets.

A simpler architecture in which empirical work is ongoing is the setting of Flaxman, Wang, and
Smola (2015), where person-level demographic features are combined into regional features and
used to model voting behavior. In this case, more complex demographic similarities than the
simple equally-weighted Gaussian RBF used in that paper could both improve the quality of the
modeling of the paper and help political scientists in their interpretation of the resulting model,
by (depending on the structure of the network used) flagging important variables and interactions
and dropping ones unimportant to the final prediction.

NATURAL LANGUAGE PROCESSING
This framework could also prove applicable to natural language processing. Until recently, much
work treated words as unique symbols, e.g. with "one-hot" vectors, where the ith word from a
vocabulary of size V is represented as a vector with ith component 1 and all other components 0.
It has recently become widely accepted that applications can benefit from richer word
embeddings which take into account the similarity between distinct words, and much work has
been done on dense word embeddings so that distances or inner products between word
embeddings represent word similarity in some way (e.g. Collobert and Weston 2008, Turian,
Ratinov, and Bengio (2010), Mikolov et al. (2013)). These embeddings can be learned in various
ways, but often involve optimizing the representation's performance in some supervised learning
task.

First, it is worth noting that although this breaks the traditional "bag of words" text model
(where documents can be represented simply by the sum of the words' one-hot encodings), we
can represent documents by viewing them as sample sets of word vectors.

Sandia National Laboratories
U.S. DEPARTMENT OF

ENERGY



LABORATORY DIRECTED RESEARCH & DEVELOPMENT

Kusner et al. (2015) recently adopted this model, using kNN classifiers based on the Earth
Mover's Distance (EMD) between documents, and obtained excellent empirical results. EMD,
however, is expensive to compute even for each pair of documents when the vocabulary is large,
and additionally must be computed pairwise between documents; an approximate embedding is
not known.

Yoshikawa, Iwata, and Sawada (2014), in their empirical results, considered this model with
MMD-based kernels (but computing pairwise kernel values rather than approximate
embeddings). Their main contribution, however, is to optimize the word embedding vectors for
final classification performance; by doing so with random initializations, they saw mild
performance improvements over MMD kernels using substantially less training data for the
embeddings but at much higher computational cost. Yoshikawa, Iwata, and Sawada (2015)
extend the approach to Gaussian process regression models, but do not compare to separately-
learned word embeddings.

Future work that empirically compares these embedding methods, particularly on larger datasets,
could establish whether the bag-of-words document representation is best implemented with
these techniques. Also, fine-tuning word embeddings learned on a standard dataset
simultaneously with learning the model for a particular application, as is common in deep
learning models for computer vision, could see advances in the state of the art of document topic
classification and similar tasks.

In fact, embedding words as a single vector does not allow for as rich a word representation as
we might wish. Vilnis and McCallum (2015) embed words instead as Gaussian distributions, and
use the KL divergence between word embeddings to measure asymmetric hypernym
relationships: for example, their embedding for the word Bach is "include& in their embeddings
for famous and man, and mostly included in composer. Gaussian distributions, of course, are still
fairly limiting; for example, a multimodal embedding might be able to capture word sense
ambiguity, whereas a Gaussian embedding would be forced to attempt to combine both senses in
a single broad embedding.

We can thus consider richer, nonparametric classes of word embeddings: perhaps by
representing a word as a (possibly weighted) set of latent vectors. Comparisons could then be
performed either with an -based kernel, when symmetry is desired, or with KL estimators (or
similar) when not.

One approach would be to choose these vectors arbitrarily, optimizing them for the output of
some learning problem: this would be implemantionally similar to the approach of Yoshikawa,
Iwata, and Sawada (2014) and Yoshikawa, Iwata, and Sawada (2015) for MMD distances, or
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somewhat like that of Vilnis and McCallum (2015) but with greater computational cost, and
greater flexibility, for KL distances.

Another approach is inspired by the classic distributional hypothesis of Harris (1954), that the
semantics of words are characterized by the contexts in which it appears. Many word embedding
approaches can be viewed as matrix factorizations of a matrix M with rows corresponding to
words, columns to some notion of context, and entries containing some measure of association
between the two; the factorization M = WCT then typically discards the matrix C and uses the
rows of W as word vectors. This approach is sometimes taken explicitly; interestingly, the
popular method of Mikolov et al. (2013) can be seen as approximating this form as well (Levy
and Goldberg 2014). This view inspires a natural alternative: treat each word as the sample set of
contexts in which it appears, representing each context via the learned context vectors. This is
perhaps the most direct instantiation of the distributional hypothesis: compare words by
comparing the distribution of contexts in which they appear.

TWO-SAMPLE TESTING
Another, related area under progress now is in the choice of kernels for two-sample tests, the
more traditional use of MMD (Gretton, Borgwardt, et al. 2012). Such tests are, like
classification, reliant on a good based kernel to get good results at reasonable sample sizes.
Current work is extending the kernel selection criterion of Gretton, Sriperumbudur, et al. (2012)
to quadratic-time tests (which are much more powerful than the linear-time tests considered in
that paper in the limited-data regime) and applying it to optimizing deep kernels. Initial results
along those lines are promising.

CONCLUSION
This work substantially furthers the understanding of approximate embeddings for kernels on
distributions. After establishing a framework for learning on distributions, we improved our
understanding of the random Fourier features key to most approximate kernel embeddings on
any domain, including on distributions. We then presented the first nonlinear embedding of
density functions for quickly computing HDD-based kernels, including kernels based on the
popular total variation, Hellinger and Jensen-Shanon divergences. Nonparametric uses of kernels
with these divergences previously necessitated the computation of a large N x N Gram matrix,
prohibiting their use in large datasets. Our embeddings allow one to work in a primal space while
using information theoretic kernels. We analyze the approximation error of our embeddings, and
show their quality on several synthetic and real-world datasets.
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