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On the probabilistic structure of water age
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Abstract The age distribution of water in hydrologic systems has received renewed interest recently,
especially in relation to watershed response to rainfall inputs. The purpose of this contribution is first to
draw attention to existing theories of age distributions in population dynamics, fluid mechanics and sto-
chastic groundwater, and in particular to the McKendrick-von Foerster equation and its generalizations and
solutions. A second and more important goal is to clarify that, when hydrologic fluxes are modeled by
means of time-varying stochastic processes, the age distributions must themselves be treated as random
functions. Once their probabilistic structure is obtained, it can be used to characterize the variability of age
distributions in real systems and thus help quantify the inherent uncertainty in the field determination of
water age. We illustrate these concepts with reference to a stochastic storage model, which has been used
as a minimalist model of soil moisture and streamflow dynamics.

1. Introduction

The description of the ages of a certain quantity (such as water, chemical compounds or individuals of a
population) is fundamental in many fields. These include the characterization of hydrologic response of
watersheds [McGuire and McDonnell, 2006], ecohydrological systems [Botter et al., 2011], groundwater [Cvet-
kovic and Dagan, 1994; Ginn, 1999] and other geophysical systems [Eriksson, 1971; Goode, 1996; Delhez et al.,
1999], the performance of chemical reactors [Nauman, 1969, 2008], the structure of populations [Kot, 2001;
Murray, 2002; Ginn and Loge, 2007] and the safety of manmade systems [Cox, 1962]. Owing to this wide
interest, the literature on the subject is vast, and the previous references can only be considered as a start-
ing point for more in-depth studies. In the field of watershed hydrology, this topic has witnessed a renewed
interest in the recent years, with several works dealing with both theoretical and experimental aspects of
age distribution of water in soils and watersheds (see e.g., the recent debate article by McDonnell and Beven
[2014] and references therein).

The first goal of this paper is to point to the existence of some well-known literature in population dynamics,
fluid mechanics and stochastic processes, in particular to the McKendrick-von Foerster (MKVF) equation
[M’Kendrick, 1925; von Foerster, 1959; Kot, 2001; Murray, 2002], which is not commonly referenced in the hydro-
logic literature (indeed this was done only in one reference [Ginn and Loge, 2007]). It thus seems to be useful
to briefly review these theories and place them under a common framework so that these results can be easily
used. In particular, the link between the MKVF equation and its spatially explicit version, first proposed by
Ginn [1999] [see also Cvetkovic and Dagan, 1994; Ginn and Loge, 2007; Benettin et al., 2013], is important to
emphasize the internal source of age variability introduced by spatial integration over a finite control volume.

The second goal is to address the role of external (random) hydrologic variability on the resulting age distri-
butions. In fact, whenever hydrologic fluxes are treated stochastically on account of their unpredictable vari-
ability, the age distributions too become random functions and must be treated probabilistically. Thus,
while the solution of the MKVF equation still offers the appropriate description of single realizations of such
distributions (being suitable for any time varying conditions), their complete characterization requires con-
sidering the full ensemble of realizations of the underlying stochastic forcing. This gives rise to a probabilis-
tic description of age distributions, which allows one to quantify their variability among realizations,
thereby providing a starting point to quantify the uncertainty in their experimental determination. As far as
we know this second aspect has not yet been explicitly addressed in the literature.

The paper is organized as follows. In section 2, we review the MKVF equation and connect it to the recent
contributions in the hydrological literature. Section 3 illustrates the solutions of the MKVF equation for a

Special Section:
The 50th Anniversary of Water
Resources Research

Key Points:
� Draw attention to overlooked theory

of age and von Foerster equation
� First treatment of age distribution

with random external forcing
� General results for soil moisture and

streamflow models

Correspondence to:
A. Porporato,
amilcare@duke.edu

Citation:
Porporato, A., and S. Calabrese (2015),
On the probabilistic structure of water
age, Water Resour. Res., 51, 3588–3600,
doi:10.1002/2015WR017027.

Received 2 FEB 2015

Accepted 10 APR 2015

Accepted article online 23 APR 2015

Published online 15 MAY 2015

VC 2015. American Geophysical Union.

All Rights Reserved.

PORPORATO AND CALABRESE PROBABILISTIC WATER AGE 3588

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2015WR017027
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/The 50th Anniversary of Water Resources Research/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/specialsection/The 50th Anniversary of Water Resources Research/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


time varying system with step-change input as well as a steady state system with age-dependent output.
Section 4 discusses the probabilistic aspect of age distributions, when inputs are modeled as stochastic
processes, and section 5 presents an application to a linear stochastic storage system for which the proba-
bility density function (PDF) of the mean age is discussed. The conclusions briefly recapitulate the content
of the paper and outline further open problems, in particular the role of nonlinearities and variability at dif-
ferent time scales.

2. Age Distribution Theory

Consider a control volume X with control surface R in which a substance, non necessarily conservative, is
advected by the fluid velocity and diffused by molecular motion. To describe the age distribution it is useful
to introduce the age-specific density or concentration, cðx; t; sÞ, describing the quantity per volume at a
point x and time t of a given substance having age s. Note that typically c has units of mass per volume per
age but, depending on the quantity under exam, it could also refer to age specific molar density or to age
specific number of individuals/particles. The continuum hypothesis will be assumed to be valid.

A balance equation for c was first proposed by Ginn [1999] (see also Delhez et al. [1999] for a similar equa-
tion in the context of ocean dynamics)

@c
@t

1
@c
@s

52r � ðvc2DrcÞ1r; (1)

where r5 @
@x ;

@
@y ;

@
@z

� �
; v is the velocity field, r is the net source term (due e.g., to chemical reactions or

birth/death processes). The initial condition of the previous equation is the age distribution cðx; 0; sÞ for x
2 X and boundary conditions cðx; t; sÞ for x 2 R. We will make the assumption that age is counted from
the time at which the quantity in consideration has entered the control volume (i.e., the mass is introduced
in the control volume with zero age).

It is important to observe that the previous equation provides a purely kinematic description of age, in
which the advective velocity is assumed to be known or given by coupled equations of motion. In the case
of a hydrological systems, however, this picture typically requires an unattainable amount of information
[McDonnell and Beven, 2014], so that a spatially lumped description over the entire control volume becomes
necessary, along with auxiliary assumptions to surrogate for the lack of knowledge of the velocity field.
Another interesting point regards the fact that both the velocity vector and the net source/sink term in (1)
may also be a function of age, especially in the case of active populations (bacterial, animals, people), or in
hydrological systems where for example transpiration may select water in specific ranges of ages depend-
ing on the overall level of moisture, because of soil-pore heterogeneities.

In case of lack of detailed kinematic description, as is the case of hydrological systems, it is then useful to inte-
grate over the control volume to achieve a spatially lumped formulation for the age distribution function,

nðt; sÞ5
ð

X
cðt; s; xÞdX; (2)

which quantifies the amount of the substance under exam at a given time, in units of mass per age for the
entire control volume. When the local equation (1) is integrated over the control volume using the Gauss
theorem [Ginn and Loge, 2007; Benettin et al., 2013], the MKVF equation [M’Kendrick, 1925; von Foerster,
1959] is readily obtained
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@s

52ln; (3)

with initial condition nðt50; sÞ5bðsÞ for the age distribution and boundary condition nðt; s50Þ5aðtÞ, also
called the birth rate. The so-called mortality rate, or loss term, lðt; sÞ, may be subdivided into different terms
according to the different pathways out of the system (e.g., in surface hydrology, evapotranspiration, perco-
lation, runoff, etc.) and can be considered a nonlinear function the total storage w, to be defined shortly, as
in Gurtin and MacCamy [1974, 1979] and subsequent papers. A direct derivation of the MKVF equation, with-
out going through equation (1), can be found in several books and articles [Trucco, 1965; Keyfitz and Keyfitz,
1997; Kot, 2001; Murray, 2002].
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Before reviewing the solution of (3), it is useful to connect it to the familiar form of the mass balance equa-
tion for a control volume. Indicating as

wðtÞ5
ð1

0
nðt; sÞds; (4)

the total mass in X at time t, integration of (3) gives

dw
dt

5i2o; (5)

where the input and output terms are respectively

iðtÞ5nðt; 0Þ5aðtÞ and oðtÞ5
ð1

0
lnds: (6)

It may also be useful to define the normalized distribution of ages,

/ðt; sÞ5 nðt; sÞ
wðtÞ ; (7)

which can be interpreted as a probability density function (PDF) of the ages when the quantity under
exam is sampled at random in X. It is important to keep in mind that the age variability described by
this distribution here results from the spatially lumped description and reflects the possible complex
streamline structure (e.g., due to turbulence or heterogeneity of the porous medium) within X but
does not stem from the external temporal hydrologic variability, which will be introduced later (see
section 4).

The mean age is defined as

aðtÞ5
ð1

0
s/ðt; sÞds5

ð1
0

snðt; sÞds

wðtÞ 5
mðtÞ
wðtÞ (8)

and similarly for higher order moments. Solving (7) for n and substituting into (3) one obtains the equation
of Botter et al. [2011], also used by Harman [2014]. While being of course an exact consequence of the
MKVF equation, this resulting equation is in reality less convenient for solution (note that van der Velde et al.
[2012] instead write directly the MKVF equation, although they attribute it to Botter et al. [2011]). In this
paper we will basically only refer to the age distribution nðt; sÞ, its normalized pdf version /ðt; sÞ and its first
moment a(t). Other important related quantities, such as the residence time and the survival time distribu-
tions [Nauman, 1969; Cox, 1962; Niemi, 1977], along with their link to the the survival equation and renewal
theory [Cox, 1962], will be discussed elsewhere. We will only recall, as already noted by von Foerster [1959]
[see also Manzoni et al., 2009], that in steady state (we use the suffix * to emphasize this fact) the age distri-
bution, suitably normalized by the constant input, gives the survivor function of the system [Cox, 1962; Daly
and Porporato, 2006a],

u�ðsÞ5 n�ðsÞ
i

: (9)

In turn, the negative of its derivative with respect to age directly provides the distribution of life span or
transit times in the system,

w�ðsÞ52
du�ðsÞ

ds
: (10)

It is important to emphasize that these quantities are in general different for time-varying conditions and
that here we will mostly focus on the age distributions.

Returning to the MKVF equation, its solution can be obtained using the method of characteristics, which is
defined by ds

dt 51 [Trucco, 1965; Murray, 2002], expressing the obvious fact that age increases at the same
rate as time. The solution is [Trucco, 1965]
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nðt; sÞ5
bðs2tÞ e2

Ð t
0 lðu;s2t1uÞdu t < s

aðt2sÞ e2

Ð s
0 lðt2s1u;uÞdu t > s:

8<
: (11)

We specifically refer to the case in which the ‘‘mortality’’ term is only a function of age and time, lðt; sÞ, but
not of the total quantity w (this is the nonlinear case dealt with by Gurtin and MacCamy [1974, 1979]). When
the input is in form of instantaneous pulses (i.e., Dirac deltas), in which case the age distribution is also a sin-
gular function, it may be convenient to introduce the auxiliary functions

uðt; sÞ5
ð1

s
nðt; s0Þds0 (12)

and

vðt; sÞ5
ðt

21
nðt0; sÞdt0; (13)

being uðt; sÞ the total amount of the quantity having age greater than s at time t (when the integral starts
from 0, it is equal to w(t), see (4)), and vðt; sÞ the cumulative amount of substance, from the beginning to
time t, having had age equal to s.

Finally, a useful hierarchy of equations for the moments of n can be also obtained, similarly to what was
done in Rotenberg [1972], Varni and Carrera [1998], and Duffy [2010] for the point equation (1). Focusing
in particular on the mean age, we can first multiply (3) by s and then integrate with respect to age to
write

dm
dt

5w2h; (14)

where h5
Ð1

0 slnds (this could be interpreted as the first moment of the age distribution at exit or death).
An interesting equation for the mean age a5m=w can then be obtained by differentiating the definition
and using the previous equations (5) and (14),

da
dt

512a
h
m

1
i

w
2

o
w

� �
: (15)

In the case of age-independent mortality, say l5g5const:, then

da
dt

512a
i

w
: (16)

While obviously not in closed form, being coupled to (5), this equation is however quite instructive for it
shows how with age-independent outputs the system simply ages with time in the absence of input, which
in turn acts to ‘‘dilute’’ the overall age of the system, whereas the term w brings the whole history of the
input into the dynamics of the mean age.

3. Examples

In this section, we present three simple applications to illustrate the previous theory. The first one empha-
sizes the effect of time varying input as a prelude to its randomization in section 5, while the second and
third applications focus on the role of age-dependence in the mortality term.

3.1. Time-Varying Input
We first consider the case of constant mortality rate g, which corresponds to the classical linear system,
extensively used in hydrology [e.g., Singh, 1992]. Starting from an initial condition nð0; sÞ5n0ðsÞ, the system
proceeds with constant input i0, until at time t1 the input is suddenly switched to a new value i1. From
equation (11), the transient solution is

nðt; sÞ5
n0ðs2tÞ e2gt t < s

i0ðt2sÞ e2gs t1 > t > s

i1ðt2sÞ e2gs t > t1

8>><
>>:

(17)

which, for t !1, tends to an exponential steady state solution. The behavior of the various solutions is
shown in Figure 1 for a uniform initial condition over the age range ð0;w0=n0Þ. Note the steady state value
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of the mean age, equal to 1=g, independent of the input rate, which for this linear case is also the mean life
span (as follows from (10) and the fact that both /� and u� are exponential distributions). However, for the pur-
posed of this paper, it is important to emphasize that in the time-varying case these are in general different
distributions.

3.2. Age-Dependent Loss
This application regards a system that reaches steady state under constant input but age-dependent loss
term. The loss term is chosen in the form of a power law,

lðsÞ5 s
11c

� �c
; (18)

(c > 21), representing for example the effects of an age-dependent plant water uptake in soils, where the
parameters c could be related to the pore size distribution and tortuosity of the flow paths, as in power-law
soils [Brutsaert, 2005].

Figure 2 shows the temporal evolution of the various terms on the right hand side of equation (15) for this
case. At steady state, the age distribution is

n�ðsÞ5iexp 2
s

11c

� �11c
� �

; (19)

whose integral with respect to s from 0 to1 gives

w�5iC
1

11c

� �
; (20)

while the mean age is,

a�5ð11cÞ
C 2

11c

� �
C 1

11c

� � : (21)

Finally, using (10) one obtains

w�ðsÞ5 s
11c

� �c
exp 2

s
11c

� �11c
� �

; (22)

which is a Weibull distribution with scale parameter and shape parameter both equal to 11c. The mean of
w�, the mean residence time, is Cð 1

11cÞ, always greater than a� , as expected in this case [Bolin and Rodhe,
1973; Bj€orkstr€om, 1978], and the variance is 2ð11cÞCð 2

11cÞ2ðCð 1
11cÞÞ

2. The Weibull distribution is frequently
used in renewal theory [Cox, 1962; Daly and Porporato, 2006a] and, as well known, is one of the Extreme
Value distributions [Kottegoda and Rosso, 1997; Sornette, 2006].

Figure 1. Time evolution of the soil water age distribution (black) driven by step change of the input (red). The total storage w(t) is plotted
in blue on the vertical plane on the left, while the mean age a(t) is on the horizontal plane in brown. The dashed blue line represents the
variable uðt; sÞ for a given t and the dotted green lines show the decays along the characteristic curves (dashed straight lines on the hori-
zontal plane). i152i252 � 1022 [w]d– 1 and g50:1 d– 1.
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3.3. Heavy Tails in Age Distributions
In this last example, we show how a partic-
ular form of age-dependence in the loss
function may be related to the observed
different time scales in the hydrologic
response of watersheds and give rise to
heavy tails in the water age distributions
[see e.g., McDonnell and Beven, 2014; Kirch-
ner et al., 2000; Rodhe et al., 1996]. If one
chooses a hyperbolic behavior of the loss
function with age, such that there is a
strong preference for young water to be
lost, coupled with a very slow decay of the
loss function at large ages,

lðsÞ5 1

r �ðs2lÞ
r 11

� � ; (23)

the survivor function u�ðsÞ and life span distribution w�ðsÞ are then,

u�ðsÞ5 �ðs2lÞ
r

11

� �21=�

(24)

w�ðsÞ5 1
r

�ðs2lÞ
r

11

� �2 1
�11ð Þ

: (25)

The function w�ðsÞ is a Generalized Pareto distribution [Pareto, 1964; Kottegoda and Rosso, 1997], with mean
and variance respectively equal to l1 r

12� and r2

ð12�Þ2ð122�Þ. It belongs to the class of Heavy-tailed distributions.
As shown in Figure 3b, both the survivor and transit time distributions are characterized by the presence of alge-
braic decays in the tail behavior (i.e., heavy tails). Differently from the previous example, the loss function here is

such that the mean age is greater than
mean transit time [Bolin and Rodhe, 1973].

4. Effect of External
Stochasticity

From the previous discussion it is evident
that the age distribution presented before
reflects the integration of a flow field over
the control volume. This variability can
thus be called ‘‘internal.’’ In the case of
hydrological systems, however, the effect
of random ‘‘external’’ forcing should also
be taken into account, since it may be at
least as important as the internal one. In
what follows we will limit our analysis to
the more important case of stochastic
inputs, while considering outputs as
deterministic. As discussed by Daly and
Porporato [2006b], the rainfall-induced
variability in fact tends to dominate over
the variability in the outputs (e.g., evapo-
transpiration, percolation, and runoff).

From the mathematical point of view, the
presence of a random input makes (5) a

Figure 2. Time evolution toward steady state of the terms h
m ;

i
w and o

w from
equation (15) for the case of age-dependent loss.

Figure 3. Steady state solutions for the survivor functions u�ðsÞ, the transit
time distributions w�ðsÞ, shown along with the loss functions of (a) equation
(18) with parameter c 5 2 and (b) equation (23), in log-log scale, with parame-
ters l 5 0, r 5 100, and �5 10.

Water Resources Research 10.1002/2015WR017027

PORPORATO AND CALABRESE PROBABILISTIC WATER AGE 3593



stochastic differential equation (SDE). While the MKVF equation is still perfectly suitable, in that a single real-
ization of the random input is just a special form of time varying input entering through the boundary con-
ditions at age zero, it is important to keep in mind that the age distribution too becomes a random
function, changing for each realization of the stochastic input. Thus, to move beyond a single realization
and obtain a complete probabilistic description, one needs to consider the ensemble of all possible realiza-
tions of the random input and introduce related probability distributions.

To emphasize the randomness resulting from the stochastic forcing, we will use capital letters for ran-
dom variables, as usual in statistics. Accordingly, one can define the random function N(t,s), and con-
sider its ensemble average hNðt; sÞi, whose equation follows directly from the MKVF (when l does not
depend on N or W),

@hNi
@t

1
@hNi
@s

52lhNi; (26)

driven by the ensemble average of the random input, entering as the s 5 0 boundary condition. However,
there is no need to resort to the previous equation, because the general solution (11) is still valid, as long as
one considers the randomly varying input, I(t), as boundary condition,

Nðt; sÞ5
bðs2tÞ e2

Ð t
0 lðu;s2t1uÞdu t < s

Iðt2sÞ e2

Ð s
0 lðt2s1u;uÞdu t > s

;

8<
: (27)

where the initial age distribution can be considered as an assigned random function with its own probabil-
istic structure. This solution is interesting for it shows that for a given time and age, the age density is just
the rescaled in time version of the random input. Thus for the one-time, one-age PDF of N, which is formally
connected to N by ensemble average of its fine grained PDF [Stratonovich, 1967; Pope, 2000],
pNðn; t; sÞ5hdðNðt; sÞ2nÞi, and represents the infinitesimal probability to observe an amount between n
and n 1 dn with age s at time t, one can write (for t > s)

pNðn; t; sÞ5e
Ð t

0 lðu;s2t1uÞdupIðne
Ð t

0 lðu;s2t1uÞdu; t2sÞ; (28)

where pIði; tÞ is the one time PDF of the input.

One can also define W5
Ð1

0 Nðt; sÞ and write, thanks to the linear operations of averaging,

hWðtÞi5
ð
hNðt; sÞids; (29)

and similarly for the auxiliary variables Uðt; sÞ and Vðt; sÞ, see (12) and (13).

The mean age,

AðtÞ5 MðtÞ
WðtÞ5

ð1
0

sNðt; sÞds
ð1

0
Nðt; sÞds

; (30)

also acquires random variability, governed by the SDE version of equation (15). A general and relatively sim-
ple solution for the harmonic mean of the mean age A can be obtained by dividing by M the SDE equivalent
of (14), i.e.,

dln M
dt

5
W
M

2
H
M

(31)

where H5

ð1
0

slNds. In conditions of statistical steady state, taking ensemble average, this gives the exact
result

�
1
A

	21

5

�
H
M

	21

: (32)
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For a linear system l5g5const:, then immediately

�
1
A

	21

5
1
g
: (33)

5. Stochastic Linear Storage

We apply the previous concepts to the stochastic linear water balance equation

dW
dt

5I2gW; (34)

where g is a constant and the input I is the formal time derivative of a marked Poisson process with rate (fre-
quency of occurrence) k and exponentially distributed marks with mean 1=c (a realization of the input is shown
in the left vertical plane of Figure 4). This SDE has been used as a minimalist model of both soil moisture, in
conditions when evapotranspiration losses dominate over percolation and runoff [Isham et al., 2005; Viola et al.,
2008], and streamflow dynamics [Weiss, 1977; Botter et al., 2007]. An example of a realization of the process
W(t), a sequence of exponential jumps and exponential decays of exponential duration, is shown in the left ver-
tical plane of Figure 5. The one time PDF, pWðw; tÞ, is a hypergeometric function, which becomes a gamma dis-
tribution in stochastic steady state [Viola et al., 2008]. It may be useful to warn the reader not to confuse the
deterministic steady state condition discussed in sections 2 and 3 with the statistical steady state discussed
here, where time varying conditions induced by the external forcing are always present.

Because of the intermittent nature of the input, when considering only one realization, the water in the sys-
tem only has ages corresponding to the times of previous input occurrences, while there will be no water
for all other ages. As a result, in the present case, N(t,s) is a singular function, being the exponentially modu-
lated version of the time derivative of the marked Poisson input (i.e., a sequence of instantaneous infinite
spikes). This is shown in Figure 5. A convenient way to avoid handling such singular functions is to refer to
their integrated auxiliary variables, U and V, also shown in Figure 5. Note that Uðt; 0Þ5WðtÞ, so that its distri-
bution is expected to be a hypergeometric function, at least for s 5 0, while Vðt; sÞ is the exponentially
rescaled version of the total rainfall up to that time (whose distribution is known to be a Bessel function).
These distributions of pUðu; t; sÞ and pVðv; t; sÞ are derived in detail in Appendix A. An example of their
shapes is shown in Figure 6, along with some realizations.

As for the mean age, A5M=W , we already know from (33) that its harmonic mean is equal to 1=g. However,
to obtain its full distribution one should first derive the joint distribution of W and M, pWMðw;m; tÞ, and then
use the formula for the quotient of random variables [Kottegoda and Rosso, 1997],

Figure 4. Time evolution of soil water age distribution (solid gray line) along with the marked Poisson process inputs (red line in the verti-
cal plane on the left) with mean depth 1=c52 mm and mean frequency k50:4 d– 1. The ensemble average age distribution hNi is plotted
at t 5 75 d (dashed blue line), while the mean age is plotted in brown on the horizontal plane. Note that for graphical purposes I and N
are plotted using the size of the marks, while in theory they are singular functions made of infinitely high spikes (Dirac deltas).
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PAða; tÞ5
ð1

21

zpMWðaz; z; tÞdz: (35)

Thus, starting from the coupled SDEs

dW
dt

5I2gW

dM
dt

5W2gM;

8>>><
>>>:

(36)

the Chapman-Kolmogorov equation for the joint PDF can be written as in Botter et al. [2008],

@pWM

@t
5

@

@w
ðwgpWMÞ1

@

@M
ððgm2wÞpWMÞ2kpWM1kc

ðw

0

pWMðx;m; tÞe2cðw2xÞdx: (37)

Figure 5. For the same realization of Figure 4, W(t) is plotted on the left vertical plane (solid black line). The variables U(t), and V(t) (solid
green and brown lines, respectively) are also shown. Parameters as in Figure 4.

Figure 6. Traces of realizations of U (a) as a function of ~s as defined in Appendix A, equation (A1) and V (c) as a function of time t. Probabil-
ity density functions pUðu; t; sÞ (b) for t 5 75 d and ~s560 d, and pV ðv; t; sÞ (d) for t 5 60 d and s 5 15 d.
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While the moments of the joint distribution can be readily computed through the moment generating func-
tion (Laplace transform), see e.g., Botter et al. [2008], the full joint distribution is unfortunately very difficult
to obtain. An alternative, approximate route will be followed here. Starting from the equation for A, see (16),
and by making the approximation W � hWi, so that the equation becomes closed and Markovian,

dA
dt

512
A
hWi

�I; (38)

where the symbol 8 underlines the fact that in this SDE the multiplication of the random variable A by the
white noise I should be interpreted in the sense of Stratonovich [Gardiner, 2009; Suweis et al., 2011] in order
to preserve the ordinary rules of calculus which are used to derive the equation for A as a derivative of a
quotient, A5M=W . Then, being hWi5k=ðcgÞ and using the transformation B5ln A, an additive noise SDE for
B can be obtained as

dB
dt

5e2B2
c
k

I; (39)

whose solution in steady state can be found as in Suweis et al. [2010]. Reverting to the PDF of A using the
random-variable function theorem, results in the approximate PDF of A in the form of a gamma
distribution,

pAðaÞ5
k

k
g11

Cðkg 11Þ
a

k
ge2ka; (40)

with mean

hAi5 1
g

1
1
k
; (41)

variance

varA5
1
k

1
g

1
1
k

� �
; (42)

and mode

modeA5
1
g
: (43)

Figure 7. Time evolution of the variables (a) W(t), (c) M(t) and (e) A(t). In Figure 7e, solid and dashed lines refer to the solution of equation
(38) respectively with and without the assumption W � hWi5k=ðcgÞ. (b) pdf of W(t). (d) Histogram of M(t). (f) Analytical pdf and histogram
of A(t) (with W � hWi5k=ðcgÞ) (solid red and light gray), and histogram for the real solution A(t) (dark gray).
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For a gamma distribution, the mode is also the harmonic mean, which, interestingly, is an exact result in
agreement with (33). Figure 7 compares the approximate solution with the one obtained from numerical
simulations of the full system (36). The approximate PDF captures well the shape and location of the simu-
lated PDF, however the approximate one tends to have weaker mode and larger spread. More detailed
comparisons of the validity of the used approximation will be presented in subsequent contributions. For
this paper, the approximate PDF of the mean age already serves the purpose of showing how the (external)
random variability in the input propagates into the probabilistic properties of age. As seen in Figure 7, even
the mean water age can vary considerably from sample to sample by virtue of the input variability. This
type of variability could thus be expected to significantly impact the year-to-year determination of water
age in a hydrologic system. One should also mention that the external stochasticity in the input may be
responsible for a heavier tail behavior of the age distribution (see distribution of mean age in Figure 7),
compared to the case with only internal variability. This effect is well known in compound distributions
[Benjamin and Cornell, 1970] and has recently been advocated as a mechanisms for nonextensive thermody-
namics behavior in statistical mechanics [Beck and Cohen, 2003] and for increased variability of ecohydro-
logic variables [Porporato et al., 2006].

6. Conclusions

While revisiting the general solution of the MKVF equation within the context of the theory of age distribu-
tions, we have emphasized that such distributions by their nature stem from integrating the internal structure
of flow pathways within hydrologic control volumes [Ginn and Loge, 2007]. Such ‘‘internal’’ variability should
be contrasted with another form of ‘‘external’’ stochasticity, originating from the randomness inherent in input
and output terms of hydrologic systems. The MKVF equation and the stochastic differential equations that
can be derived from it suggest a framework to include these external stochastic effects and quantify their con-
tribution to the probabilistic structure of water age. Some results regarding the statistical properties of mean
age have been described in sections 4 and 5. Even for the age independent loss function of sections 3.1 and
5, the temporal variability of external input induces non trivial effects on the age distribution.

Several issues remain to be explored along these lines, including the effects of age-dependence and nonli-
nearities in the loss function, as well as their random variability at different time scales (e.g., daily, seasonal
and interannual) and the link to probabilistic renewal theory. This notwithstanding, we hope that this work
could represent a useful step toward improving the characterization water age distributions in hydrologic
and geophysical systems.

Appendix A

We derive here the PDFs of the auxiliary variables Uðt; sÞ5
Ð1
s Nðt; s0Þds0 and Vðt; sÞ5

Ð t
21 Nðt0; sÞdt0 for the

linear stochastic storage of section 5. As evident from Figure 6 such variables are the cumulative processes
of a marked Poisson process. In particular, introducing for convenience an auxiliary time variable,

~s5t2s (A1)

to be used instead of s, then

Uðt;~sÞ52

ðt2~s

1

nðt;~s0Þd~s0: (A2)

This is the integral of the formal time derivative of a marked Poisson process with rate k and jumps with
parameter gð~sÞ5cegðt2~sÞ. The corresponding master equation for pUðu; t;~sÞ is [Cox and Miller, 1977]

@pU

@~s
52kpU1kgð~sÞ

ðu

0

pU e2gð~sÞðu2xÞdx; (A3)

with initial condition pUðu; t; 0Þ5dðu2u0Þ, with dð�Þ the Dirac delta function and u05wðt50Þe2gt . By taking
the Laplace transform with respect to u! k; pUðu; t;~sÞ ! p

†

Uðk; t;~sÞ, one obtains
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dp
†

U

d~s
52kp

†
12

gð~sÞ
gð~sÞ1k

� �
; (A4)

which can be solved by dividing by p
†

U , integrating with respect to ~s and then taking the exponential,

p
†

Uðk; t;~sÞ5p
†

Uðk; t; 0Þe2k~s 12
ceg~s

ceg~s1k

� �
: (A5)

By substituting y5ke2g~s in the previous expression one obtains the Laplace transform of a jump process
with exponential distributed jumps and linear drift, whose inverse transform has already been given in
Tsurui and Osaki [1976]; Viola et al. [2008]; Daly and Porporato [2010]. Performing then the transformation of
random variables, pðkÞ5pðyÞ dk

dy, and knowing that ~s5t2s, one finally obtains the desired solution, plotted
in Figure 6b,

pUðu; t; sÞ5#ðu2u0Þegs e2gðt2sÞdðu2u0Þ1e2gðt2sÞ2cðu2u0Þ kc
g
ðegðt2sÞ21Þ1F1 ð12

k
g
; 2; cðu2u0Þð12egðt2sÞÞ

� �� �
; (A6)

where #ð�Þ is the heaviside function and 1F1ð�; �Þ is the Kummer confluent hypergeometric function [Abra-
mowitz and Stegun, 2012].

Similarly, the variable V represents the integral over time of the derivative of a marked Poisson process with
the same rate k and rescaled parameter for the jumps, gðsÞ5ce2cs. Note that the latter is a now a constant
with respect to the integration variable t and the initial condition is pVðv; 0; sÞ5dðv2v0Þ and
v05wðt50Þe2gs. As a result, considering constant g in (A4), and integrating with respect to t,

p
†

Vðk; t; sÞ5e2v0k e2kte
kgðsÞ

gðsÞ1kt: (A7)

Antitransforming [see e.g., Daly and Porporato, 2010], the solution (see Figure 6d) is found as

pVðv; t; sÞ5#ðv2v0Þe2gt e2gðsÞðv2v0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kgðsÞt
v2v0

r
I1ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kgðsÞðv2v0Þt

p
Þ1dðv2v0Þ

� �
; (A8)

where I1ð�Þ is the modified Bessel function of the first kind of order 1 [Abramowitz and Stegun, 2012].
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