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Introduction

• Motivation—Why Small Modular Reactors (SMRs) in Smart 
Grids and Microgrids?

• Sandia National Laboratories’ (SNL) Integral Approach for 
Economically-Viable SMRs:

 High Performance Computing (HPC) and Computational 
Dynamics 

 Coupled Multi-Physics, Computational Fluid Dynamics (CFD)

 Smart Grid Tools

 Advanced Manufacturing (AM)

 State-of-the-Art Experiments

• Path Forward

• Conclusion



3

Motivation

• We are faced with a difficult challenge as a result of diminishing 
natural resources, a more fragile environment, and increasing 
population.

 Cities with limited water supplies cannot sustain water-based power 
systems.

 Evaporative water loss at power-generating sites is significant.

Current water cycles require 650 to 850 gallons of water per MWh of 
generated electricity.

80,000,000 gallons of water per day is evaporated at Palo Verde nuclear 
reactors.

• Clearly, this trend is unsustainable under a growing population 
with diminishing natural resources.

• It is therefore crucial that more efficient energy and water  
technologies be developed, while reducing environmental impact. 

• An ideal solution is the inclusion of SMRs onto smart 
microgrids.
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Motivation

• The Department of Energy (DOE) is leading grid infrastructure 
modernization.

• Smart grids and microgrids are a crucial component for 
enabling the nation’s future energy needs.

• Smart grids and microgrids are being considered in niche 
applications, and as part of a comprehensive energy strategy:

– Manage the nation’s growing energy demands, 

– Critical infrastructures, 

– Military installations, 

– Small rural communities, and 

– Large populations with limited water supplies.  
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Why SMRs in Smart Grids?

• SMRs have many exclusive 
features found in no other energy 
source.

• Unique SMR features that are 
highly desirable for integration 
onto smart grids:

 High reliability, 

 Scalable, right-sized power 
sources,

 Economical, 

 Load balancing, 

 Highly-reduced CO2 footprint,

 Diversified energy portfolio, and

 Strong potential for lower water 
usage. 

Nuclear, solar, and wind energy 
output cycles—benefit of nuclear 

load balancing [NuScale Why SMR, 
2017A].
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SMR cost comparison vs. conventional 
reactor: optimistic cost reduction factors.

SMR cost comparison vs. 
conventional reactor: 

pessimistic cost reduction 
factors.

Why SMRs in Smart Grids?

If various cost-reducing 
measures are implemented, 

SMRs have a lower levelized unit 
electricity cost (LUEC) than 

conventional (large) reactors. 
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SMR with waterless power 
generation [Rodriguez, 2017A].

CO2 Gas Emission from Various Energy 
Sources [NuScale Why SMR, 2017C].

Why SMRs in Smart Grids?

Nuclear’s small 
CO2 footprint.

Heat rejection to the 
environment with 

waterless-power system.
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HPC and Computational Dynamics

• SNL has 179,858 parallel processors, for an astonishing 
computational power equal to 3,706 teraflops. 

• As an example, an air-cooled nuclear fuel bundle simulation 
using 128 processors requires a total of 10 hours to complete.

– This represents just 0.071% of Sandia’s total HPC capacity! 

• Our HPC provides system designers and analysts a tool that, 
compared with experiments, is

– Less costly,

– Provides more data (including data that is not currently 
measurable with current instrumentation), and

– Probes deeper into system behavior; exploits physics.

• This allows for the development of more efficient energy 
systems that are more cost-competitive and more benign 
towards the environment. 
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HPC and Computational Dynamics

CFD simulation of natural circulation fuel bundle 
experiment—velocity and temperature distribution 

[Rodriguez, 2016B].

Coupled CFD, heat transfer, and 
structural analysis of Westinghouse 

fuel rod [Rodriguez and Turner, 2012].
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Smart Grid/Microgrid Technology

• Sandia’s current computational capabilities model the entire 
grid, including temporal aspects and cyber security issues.  
 Includes a comprehensive set of tools for system development, 

integration, testing and evaluation, monitoring, and sustainment.  

• State-of-the-art smart grid tools at SNL:

 Smart Power Infrastructure Demonstration for Energy Reliability and 
Security (SPIDERS): a suite of smart grid methodologies and tools.

 Energy Surety Design Methodology (ESDM): a quantitative, risk-based 
tool to enable communities to identify and solve critical, high-priority 
energy needs.

 Reference Architecture (RA): has been validated and applied to civilian 
and military critical infrastructures. 

 Microgrid Cybersecurity Reference Architecture (MCRA): a tool to perform 
cybersecurity analysis, including design and implementation of secure 
microgrid control networks, network segmentation, and monitoring.

 Microgrid Design Toolkit (MDT): optimizes microgrid designs for civilian 
and military applications.  
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Smart Grid/Microgrid Technology

Summary of Sandia’s experience with smart microgrids: design 
and cyber security [Nanco, 2016].
.
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Smart Grid/Microgrid Technology

Areas where Sandia excels in smart 

grid/microgrid modernization:

 Grid cybersecurity and 

resilience,

 Planning and implementation 

assessments,

 Integration of distributed 

resources, renewables, and 

SMRs,

 Probabilistic methods,

 Grid enhancement and 

improved efficiency,

 Energy storage, and

 System dampening/load 

balancing.

Primary oscillation mode 
shapes for grid security 
[Pierre et al., 2016A]. 
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Advanced Manufacturing

• Sandia’s goal is manufacturing of fast and cost-effective 
system components.  

• Our current AM areas of interest and research include 
technologies that are either exclusive to Sandia, or that are 
currently being advanced by Sandia:
 FastCast, 

 Laser engineered net shaping, 

 RoboCast, 

 Direct write, 

 Thermal spray, and 

 Micro-nano scale manufacturing.  

• Our three major AM areas of research and development are 
analysis-driven design tools, materials assurance, and multi-
material components.  

• The ultimate goal of our AM program is to have a fully-
integrated, model-based, design/production approach that is 
agile, affordable, and assured. 
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Advanced Manufacturing

• AM has various remarkable advantages over conventional 
manufacturing that can be exploited for SMR applications:

– Simplification of the assembly process (integration),

– Streamlined path from design to prototyping,

– Generation of complex geometries and material composites, and

– On-site manufacturing for reduced shipping cost, as well as 
reduced assembly time.  

• Current areas of AM sensitivity research at Sandia include
process and material variability.

• Conceptually, process sensitivity control will be achieved with
point qualification of AM parts, better understanding of the
dynamics for machine and process variability, and process
qualification.

– These will be synthesized with the goal of deriving AM best
practices.
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Advanced Manufacturing

An example of simplified assembly 
process, rapid prototyping, and the 

generation of complex geometries at 
Sandia [Smith, 2016].

An 
example of 
FastCast at 

Sandia 
[Smith, 
2016].

An example of thermal spray using metal on 
plastic at Sandia [Smith, 2016].
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Advanced Manufacturing

Cost comparison between AM and conventional 
manufacturing [AT Kearney, 2015].

Cut-off point for 
profitability: AM 
vs. conventional 
manufacturing.
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• Particle image velocimetry (PIV) allows

– Economical experimental observation of 
system fluid velocity.

– Provides design optimization based on 
data analysis.

• Example: design an inexpensive, 
passive, water tank for collection of 
solar heat (modular solar water tank—
MSWT).

• Tools:

 HPC, CFD, and PIV.

 Recent advances in dimpled surfaces.

• Results:

 MSWT harvests $575.10/yr solar heat.

 Total cost to build device: $1,514.41.

 Break-even point: 2.6 years.

State-of-the-Art Experiments

PIV and CFD comparison 
of experimental vs. 

computational velocity.
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• 1 MW sCO2 Brayton 
Loop.

• 550 C, 14 MPa.

• Enable waterless power 
production.

• Commercialize the 
technology, scale to 1 
GW by 2020 [Rochau, 
2014].

State-of-the-Art Experiments
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How Can We Contribute Towards Making SMRs/Smart Grids Cost-
Competitive?

Near Term:

• Couple the computational physics with the smart grid tools.

• Apply the HPC towards the streamlined design and modeling 
of an entire SMR coupled to the grid.

• Apply scaling to validate subsystem behavior using PIV, etc.

• Seek niche applications where AM technology makes SMRs 
more cost-competitive than conventional manufacturing:

– Any system components where assembly simplifications result 
in a reduction in the integration work,

Path Forward



20

How Can We Contribute Towards Making SMRs/Smart Grids Cost-
Competitive?

Near Term (continued):

– Apply tools to new SMR subsystems that still require research and 
development.  

• Rapid prototyping of the subsystems will result in significantly-
reduced costs because of the close coupling between design, 
computational analysis, and experimental validation.

– Production of any subcomponents with complex geometries, 
especially components that are only needed in small quantities. 

– On-site manufacturing.

Path Forward
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How Can We Contribute Towards Making SMRs/Smart Grids Cost-
Competitive?

Long Term:

• Parallelize the smart grid tools.

• Increase the fidelity of the SMR-smart grid designs for additional 
functionality and higher economic return on investment.

• Perform state-of-the-art experiments to further optimize the system 
performance and to validate the design metrics.

• The number of AM components that are cost-competitive will 
increase as best-practice process and materials controls are 
implemented, systems are integrated, and larger components are 
manufactured.

• Continue to seek agile, affordable, and assured fully-integrated, 
model-based design/production.  

• As material variability is controlled to approach nuclear-grade quality, 
more economical manufacturing of complex metallic composites and 
streamlined subsystem integration will occur.  

Path Forward
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How Can We Contribute Towards Making SMRs Cost-Competitive?

Long Term (continued):

• This will allow AM of larger nuclear components or nuclear-grade 
subsystems (e.g., vessel heads, nuclear-qualified material 
components, and complex structures).  

• The goal is to attain ever-higher complexity, starting from relatively 
simple subsystems, expanding onto highly-complex systems, and 
culminating in system of systems.  

• For example:

 start with AM of fuel rods, 

 followed by AM of entire fuel assemblies, and 

 culminating in more complex systems (e.g., entire nuclear cores, vessel 
heads, etc.).

Path Forward
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• SMRs are ideal for enabling environmentally-benign, cost-efficient, 
load-balanced, diversified, power-production in smart grids.

• High performance computational dynamics is not just “eye candy”, but 
a powerful predictor of system/design behavior and a resource for 
advanced systems with excellent profitable margins.

• Smart grid tools are already providing many solutions, as part of DOE’s 
desire to modernize the grid and provide reliable, economical energy.

• AM already provides cost-competitive SMR components; this trend is 
expected to increase dramatically as best-practices are implemented.

• State-of-the-art PIV and various modern experimental tools validate 
system designs and provide data for additional design improvements.

• The confluence of smart grid tools, HPC, AM, and state-of-the-art 
experiments are key for profitable SMR/smart grid development.

• Government/labs/universities: need to seek and partner in emergent 
technologies that have a strong potential for return on investment.

 Industrial collaboration, scientific advances, and profit will fuel the 
technical advances and infrastructure of the future.


