
Statistical Techniques For Real-time Anomaly
Detection Using Spark Over Multi-source VMware

Performance Data

Mohiuddin Solaimani, Mohammed Iftekhar, Latifur Khan,
Bhavani Thuraisingham

Department of Computer Science
The University of Texas at Dallas

Richardson, TX, USA

{mxs121731, mxi110930, lkhan, bhavani.thuraisingham}@utdallas.edu

Joe Ingram

Sandia National Laboratories
Albuquerque, NM, USA

jbingra@sandia.gov

Abstract

Anomaly detection refers to the identification of an irregular or unusual pat-

tern which deviates from what is standard, normal, or expected. Such deviated

patterns typically correspond to samples of interest and are assigned different

labels in different domains, such as outliers, anomalies, exceptions, or malware.

Detecting anomalies in fast, voluminous streams of data is a formidable chal-

lenge.

This paper presents a novel, generic, real-time distributed anomaly detection

framework for heterogeneous streaming data where anomalies appear as a group.

We have developed a distributed statistical approach to build a model and later

use it to detect anomaly. As a case study, we investigate group anomaly de-

tection for a VMware-based cloud data center, which maintains a large number

of virtual machines (VMs). We have built our framework using Apache Spark

to get higher throughput and lower data processing time on streaming data.

We have developed a window-based statistical anomaly detection technique to

detect anomalies that appear sporadically. We then relaxed this constraint with

higher accuracy by implementing a cluster-based technique to detect sporadic

Preprint submitted to Journal of Computers & Security September 22, 2015

SAND2015-8150J

and continuous anomalies. We conclude that our cluster-based technique out-

performs other statistical techniques with higher accuracy and lower processing

time.

Keywords: Real-time anomaly detection, Chi-square test, multinomial

goodness-of-fit test, Resource scheduling, Data center, Apache Spark

1. Introduction

Anomalies do not conform to the normal or expected behavior. It inevitably

signifies some exceptional occurrence or abnormalities in need of corrective mea-

sures. Real-time anomaly detection [1, 2, 3, 4, 5, 6] aims to capture abnormali-

ties in system behavior in real-time. They may appear in the form of malicious

network intrusions [5, 7], malware infections, abnormal interaction patterns of

individuals or groups in social media [8], over-utilized system resources due to

design defects, etc. It is a challenging task to efficiently process and detect

anomalies from continuous, high-volume, high-speed streams of data in real-

time. Failure to accomplish this task in a timely manner may lead to catas-

trophic consequences with a severe impact on business continuity.

A real-time anomaly detector could be the heart of dynamic resource schedul-

ing in enterprise data centers. Virtualizaion techniques enable data centers

to host hundreds to thousands of virtual machines (VM). Dynamic resource

scheduling plays a crucial role for the operational efficiency of these data cen-

ters. In response to varying demands for various resources–e.g., CPU, memory,

I/O–the scheduler must allocate or re-allocate resources dynamically. This ne-

cessitates real-time monitoring of resource utilization and performance data for

the purpose of detecting abnormal behavior.

A real-time anomaly detector for data centers requires scalable frameworks

capable of handling extremely large amounts of data (so called Big Data) with

low latency. Big Data frameworks (e.g., Hadoop [9], MapReduce [10], HBase

[11], Mahout [12], Google Bigtable [13]) are highly scalable to accommodate

massive data sets but lack real-time processing capabilities. Apache Storm [14]

2

and Apache S4 [15] are distributed frameworks that can process stream data.

Apache Spark [16, 17] is another distributed framework that offers streaming

integration with time-based in-memory analytics for the live data as they come

in stream. Spark runs a streaming computation as a series of micro batch jobs.

It minimizes batch size in order to achieve low latency. It keeps job states

in memory between batches so that they can be recovered without significant

delay. Spark has an advanced DAG (Direct Acyclic Graph) execution engine

that supports cyclic data flow and in-memory computing. This makes Spark

faster than other distributed frameworks. Spark is 100 times faster than Hadoop

MapReduce in memory, or 10 times faster on disk [16]. It is also faster than

Storm and S4 [18]. Overall, it generates low latency, real-time results.

We have identified some key challenges in our real-time anomaly detection

framework: (i) Identifying a data point as anomalous may increase the false

alarm when, for example, sudden spike in any resource usage due to temporal

hardware malfunctioning in a data center may not indicate its anomalous or

over usage condition. A simple extension can be detecting anomalies on win-

dowed data instead of individual data points. As data comes in stream, we

set a time window to collect data from the stream periodically. This approach

requires setting a time period for the window and collecting data within that

window. Later, a non-parametric histogram has been used to generate the dis-

tribution for the window. If a window’s distribution substantially deviates from

the model of longer-term benign distributions, the window is flagged as anomaly.

(ii) Heterogeneous data co-exists in the data center. For example, each VM in

the data center generates separate statistics for each of its resources (e.g., CPU,

memory, I/O, network usages statistics). Their balanced usages exhibit the

data center’s operational efficiency. When demands for various resources go

high, their balanced usages will no longer exist. Therefore, we capture these

balanced usage distributions. Later, we build a separate model of distributions

for each resource from them. We have observed that there exists no relation

among distributions of difference resources. For example, higher CPU usage

may not increase the memory usage & vice versa. So, we considered no rela-

3

tion among different resources when we build models. (iii) Synchronized data

communication and efficient parallel design are the main focuses for designing

distributed real-time anomaly detection framework [19, 20]. We use a message

broker (Apache Kafka [21]) to transfer the data to the distributed framework

without any loss of data. We set a fixed time interval to capture and process

data from the message broker.

Considering the above challenges, we have made the following contributions

in this paper:

• We have developed a novel, generic, window-based statistical real-time

framework for heterogeneous stream data using Apache Spark [16, 17]

and Kafka [21].

• We have developed a novel cluster-based statistical framework for hetero-

geneous stream data using Apache Spark and Kafka. We have set a time

window to capture data and generated a non-parametric distribution for

each of the feature in data. We have built a model of benign distribu-

tions for each feature in training and used that to identify anomaly during

testing. We will consider a window as anomaly if any of its feature’s

distribution fails to fit its corresponding model during testing.

• We have implemented the distributed two-sample Chi-square test in Apache

Spark where each distribution has unequal number of data instances.

• We have compared our cluster-based approach with our previous window-

based approach [22] and also another online statistical method proposed

by Chengwei et al. [23]. It uses a multinomial goodness of fit test where

each window has a fixed number of data instances. We use Chi-square

two sample test where the number of data instances vary. Moreover, in

our scenario, anomalies may be distributed across multiple windows. Our

cluster-based approach outperforms both approaches with higher TPR

(true positive rate) because they assume that anomaly will be distributed

within a window.

4

The rest of the paper is organized as follows: Section 2 describes our sta-

tistical real-time anomaly detection frameworks in detail. Section 3 shows our

case study of real-time anomaly detection on VMware performance data using

Apache Spark with implementation details. Section 4 presents our experimen-

tal results with our framework’s accuracy. Section 5 discusses related works.

Finally, Section 6 concludes our paper and discusses future work.

2. Real-time Anomaly Detection Framework

In real-time anomaly detection, preprocessing of raw stream data serves as

a precursor to machine learning or data mining algorithms. K-means is a pop-

ular unsupervised data mining technique for stream data analytics that builds

clusters of data points from training data with the assumption that the clusters

are benign. If a test data point falls into any one of the clusters, it is labeled

as benign, otherwise it is flagged as anomalous. In order to accommodate the

evolution of stream data, the training model needs to be updated periodically.

Data center automation [24] (e.g., dynamic resource management) may re-

quire analyzing the performance data in real-time to identify anomalies. As

the stream data come continuously and the volume of data is also huge, we re-

quire a scalable distributed framework. To address the scalability issue, we can

use a distributed solution like Hadoop or MapReduce. Hadoop runs on batch

mode and cannot handle real-time data. As we are looking for real-time data

analysis in a distributed framework, we have decided to use Apache Spark [16],

which is fault-tolerant and supports distributed real-time computation system

for processing fast, large streams of data.

Apache Spark [16] is an open-source distributed framework for data ana-

lytics. It avoids the I/O bottleneck of the conventional two-stage MapReduce

programs. It provides the in-memory cluster computing that allows a user to

load data into a cluster’s memory and query it efficiently. This increases its

performance faster than Hadoop MapReduce [16].

Spark has two key concepts: Resilient Distributed Data set (RDD) and

5

directed acyclic graph (DAG) execution engine.

• Resilient Distributed Data set (RDD)

RDD [25] is a distributed memory abstraction. It allows in-memory com-

putation on large distributed clusters with high fault-tolerance. Spark has

two types of RDDs: parallelized collections that are based on existing pro-

gramming collections (like list, map, etc.) and files stored on HDFS. RDD

performs two kinds of operations: transformations and actions. Transfor-

mations create new data sets from the input or existing RDD (e.g. map

or filter), and actions return a value after executing calculations on the

data set (e.g. reduce, collect, count, saveAsTextFile, etc.).

• Directed acyclic graph (DAG) execution engine

Whenever the user runs an action on RDD, a directed acyclic graph is

generated considering all the transformation dependencies.

Spark supports both batch process and also processing of streaming data

[26]. Its streaming component is highly scalable, and fault-tolerant. It uses a

micro-batch technique which divides the input stream as a sequence of small

batched chunks of data for a small time interval. It then delivers these small

packed chunks of data to batch system to be processed.

Spark Streaming has two types of operators:

• Transformation operator

It creates a new DStream [18] from one or more parent streams. It can

be either stateless (independent on each interval) or stateful (share data

across intervals).

• Output operator

It is like action operator and allows the program to write data to external

systems (e.g., save or print DStream).

Like MapReduce, map is a transformation function that takes each data

set element and returns a new RDD. On the other hand, reduce is an action

6

function that aggregates all the elements of the RDD and returns the final result

(reduceByKey is an exception that returns a RDD).

2.1. Chi-square test

Given two binned data sets, let Ri be the number of items in bin i for the

first data set and Si be the number of items in bin i for the second data set.

The Chi-square statistic is:

χ2 =
∑
i

(
√
S/R×Ri −

√
R/S × Si)

2

Ri + Si
(1)

where R ≡
∑

iRi and S ≡
∑

i Si.

It should be noted that the two data sets can be of different sizes. A threshold

T is computed against which the test statistic χ2 is compared. T is usually set

to that point in the Chi-squared cdf with Nbins degrees of freedom(for data sets

of unequal sizes) that corresponds to a confidence level of 0.95 or 0.99 [23]. If

χ2 < T the data sets follow the same distribution.

2.2. Statistical anomaly detection

A window W can be defined as a data container which collects data d1, d2, ..., dn

from a stream periodically at a fixed time interval t from multiple VMs (virtual

machines) in a data center. The length of a Window is the total number of data

instances that it contains within that time interval.

A feature f is a property to describe a physical computing hardware or

resource used in data center. For example, CPU usage, memory usage, I/O

block transfer, etc.

Clustering techniques aim to classify a single data point. In cases of stream

data, it seems more appropriate to consider a point as part of a distribution and

determine its characteristics (anomaly/benign) with reference to the remaining

points in the distribution. Statistical approaches are a natural fit for this kind

of scenario, since they offer ways to compare two distributions. Parametric sta-

tistical techniques assume prior knowledge of the data distribution and verify

7

whether the test distribution conforms to the known model. Non-parametric

techniques, on the other hand, make no assumptions on the probability dis-

tribution of data. Hence, non-parametric techniques are less restrictive than

parametric ones, and have wider applicability compared to their parametric

counterparts [27, 28].

Algorithm 1 Statiscal anomaly detection

1: procedure detectanomalies(windows, TH, CTH)

2: wi ← dataOfithTimeInterval

3: AddToWindows(windows,wi)

4: status← anomalous

5: for j ← i− 1 to i−N + 1 do

6: Tj ← ComputeChi-SqrStatistic(wi,wj)

7: T ← T ∪ Tj

8: Tmin = argminj{j | Tj ∈ T}

9: if Tmin < TH then

10: cj ← cj+1

11: if cj > cTH then

12: status← benign

In Algorithm 1, we provide an outline of the anomaly detection process by a

non-parametric statistical method. It periodically collects data from incoming

stream. Data collected at the ith time interval will be stored in the ith window

wi. Each window has a score that represents the number of times this window

matches with another windows. wi is compared against past N - 1 windows

using a Chi-square test (line 6); the test statistics from this test are stored in

a list T. If the list is empty, window wi is anomaly. Otherwise, we choose the

window that has minimum test statistics Tmin(line 8). If the test statistic Tmin is

below a pre-defined threshold, the score cj of the jth window wj is incremented.

If cj exceeds a pre-defined threshold CTH , wi is declared as benign. wi is flagged

as anomalous if we do not find any window whose score exceeds CTH (line 9-12).

8

W1Wn-1Wn ...

Best Statistical
Match Cj = Cj + 1

Cj > CTH

Wi

Wi

Benign

Anomaly
W1Wn-1Wn ... Wn W1

Statistical Mismatch

W1Wn-1Wn ...

Data
Stream

Data
Stream Wj

Score
Time = t

Time = t + 1

Figure 1: Statistical technique for anomaly detection

In Figure 1, a sliding buffer always stores the recent N windows. Each window

has a distribution. When a window comes at time t, it is inserted as a most

recent window wn. It is matched with distributions of the past n−1 windows. A

Chi-square two sample test has been used to check if two distributions are same

or not. It gives the Chi-square statistics. The lower statistic indicates the closest

match. If the window wn matches window wj , then its score cj is incremented.

The score defines the number of window matches. This technique assumes that

the stream data will not change abruptly. So, anomalies will appear rarely and

will not come consecutively. If a window has high score, then it represents a

benign window. Moreover, a new window matches this high scored window will

also be considered as a benign window. We set a threshold CTH . If cj > CTH ,

then wn is benign, else it is anomaly. At time t + 1, a window wn comes and

if it does not find any closest distribution from the past n − 1 windows, it is

immediately termed as anomaly.

In the real word, consecutive anomalous windows may come frequently.

Moreover, because of using the past N windows, some benign windows may

9

be interpreted as anomalous, increasing the false positive rate. To overcome

these, we have introduced a cluster-based statistical technique, where we have

applied unsupervised clustering on benign distributions during training to build

our model. Later, we use this model to detect anomaly while testing. We use

a Chi-square two sample test to compare two distributions. During testing, if

the distribution of a window fails to match with any distribution in the training

model, we will consider it an anomaly.

Apache Kafka

Data
Pipe

Statistical Real-time Data Mining on Dstream using
Apache Spark

DStream

DStream

DStream

DStream

DStream

VMware VMs

Performance Stream Data

Matching using
Chi-square two

sided test

 p
a
st N

 m
o

d
e

l’s
d

istrib
u

tio
n

Current Dstream
distribution

Figure 2: Technical Approach

2.3. Statistical Stream Data Mining Module Implementation Using Spark

Figure 2 shows the statistical real-time framework for anomaly detection

using Apache Spark. Each virtual machine in the network continuously sends its

performance data through Kafka. The Spark framework receives the stream as

small micro batches called a DStream. After that, it uses several transformation

and action operations to build the statistical model. Here, we have focused

more on a set of data points in a window rather than an individual data point.

An anomalous window carries more information and represents a pattern or

distribution of abnormal characteristics of data. After receiving a window, the

10

framework generates a non-parametric distribution. It stores the most recent

distribution. Later anomalies will be detected by matching the current window’s

distribution with its stored distributions.

In algorithm 2, DetectAnomaly illustrates our distributed statistical pro-

cedure for anomaly detection using Spark. It describes a general procedure to

find anomalies for each feature. In this case, we say a window is benign if it is

not anomalous for all features; otherwise it is anomalous.

i Generating Non-parametric Distribution

As we do not have any prior knowledge of data, we have used a bin-based

histogram technique to derive this non-parametric distribution by using the

following formula.

Bincurrent =
⌈ d− dmin

dmax − dmin
× totalBin

⌉
(2)

where dmin and dmax are the minimum and maximum value of the data d.

These can be calculated experimentally. We have used percentage of resource

usage like CPU / memory usage. So, their minimum and maximum values

are 0 and 100.

GetDistribution in algorithm 3, describes how to generate distribution.

Here, we have used Spark’s map and reduce functions. The map function

(lines 5-8) takes an index i as key and each instance of the DStream Di as

value. Later it uses equation 2 to generate appropriate bin for each feature

and finally emits (bin , frequency) as output. The reduce function (lines 9-

10) takes bin as key and frequency list as value. It counts the total number

of frequencies for each bin of the corresponding feature. Finally, it returns

a list of bin with its frequency.

ii Chi-square Test

The Chi-square Test is the ideal non-parametric technique to match two

unknown distributions. Here, we are collecting data as a window. VMs

11

Algorithm 2 Anomaly detection

1: procedure DetectAnomaly

Inputs

2: InputDStream D (n data, l features)

3: Window W

4: modelsl ← {} . empty models collection

5: bink,l ← GetDistribution(InputDStream, totalBin)

6: ml,c ← createModel(bink,l, score = 1)

7: modelsl.insert(ml,c) . insert current model to models collection

8: if models.size = 1 then

9: current first model is benign

10: else

11: chi−modelsl ←ModelsWithChiValue(bink,l, modelsl)

12: (ml,c, (ml,match, chl))← GetMatchedModel(chi−modelsl, ml,c)

13: W← benign

14: for j← 1 to l do

15: if mj,match.isEmpty() then

16: current model mj,c is anomaly

17: W← anomaly

18: else

19: if mj,match.getScore() > ScTH then

20: current model mj,c is benign

21: else

22: current model mj,c is anomaly

23: W← anomaly

24: return W

12

Algorithm 3 Generate non-parametric distribution

1: procedure GetDistribution

Inputs

2: InputDStream D (n data, l features)

3: totalBin

Outputs

4: List (bin, f) . f = frequency

5: Map (i, Di), where i = 1 to n

6: for j← 1 to l do

7: bink,j ←
⌈

Dij−Djmin

Djmax−Djmin
× totalBin

⌉
, where k ∈ 1 .. totalBin

8: collect(bink,j , 1)

9: Reduce (bink,j , [f1, f2, ...]), where k = 1 to totalBin, j = 1 to l

. f = frequency

10: return sum([f1, f2, ...])

send their data as a stream. Due to network delay or packet loss, some data

might not reach the receiving end at their scheduled time. So, the window

size of the Spark framework may vary. Therefore, we use Chi-square test for

matching two distributions where the number of instances are not equal.

Figure 2 shows the matching of the current distribution with its recent N−1

distributions. After generating the distribution, we store it as a model (line

5-6 in algorithm 2) for each feature. This is our current model and we score

it as 1. We assume our first model as benign. If the current model is not the

first model, then we compute Chi-square value for the rest of the models and

list them (line 11 in algorithm 2). In algorithm 4, ModelsWithChiValue

computes and lists the model for each feature with their Chi-square values.

The map function (lines 5-13) takes bin and frequency as a key-value pair.

It extracts each bin of a feature and its frequency from the tuple. Later, it

computes the frequencies of that bin for that feature from all the past N −1

models. After that, it calculates the partial Chi-square statistics for that

13

Algorithm 4 Models with Chi-square value

1: procedure ModelsWithChiValue

Inputs

2: List (bin, f) . f = frequency

3: Models Ml,n (l models, each has n distributions)

Output

4: Chi−Models Ml,n−1(l models, each has n− 1 chi values)

5: Map (bink,j , fk,j), where k = 1 to totalBin, j = 1 to l

6: mj,current ←Mj,n . current model for feature j

7: RT ← mj,current.getTotalFreq

8: R← fk,j . frequency of bink,j

9: for i← 1 to n− 1 do

10: ST ←Mj,i.getTotalFreq

11: S ←Mj,i.getBinFreq(bink,j)

12: chi sqr ← (
√

ST /RT×R−
√

RT /ST×S)2

RT+ST

13: collect(Mj,i, chi sqr)

14: Reduce (Mj,i, [c1, c2, ...]), where j = 1 to l, i = 1 to n-1

. c = chi-square value

15: return sum([c1, c2, ...])

14

bin of corresponding model. Finally, it emits the (model, Chi-square value)

as a tuple list. The reduce function (lines 14-15) receives model as a key and

Chi-square value list as a list of value and sums up the Chi-square statistics

for that model. At the end, we will get Chi-square statistics for all models.

Now, we have calculated all the feature model’s Chi-square statistics and we

have to filter them by using a Chi-square threshold TH-CHI. GetMatched-

Model (line 12 in algorithm 2) finds each feature’s model which has the

lowest Chi-square value. Here, we can use any statistical tool like R [29]

to find out this threshold. R has Chi-squared test of comparing two dis-

tributions which assumes they have equal number of data instances but in

our case, we have unequal number of data instances. qchisq(cf, df) in R

gives the threshold, where cf = confidence level and df = degrees of free-

dom. Here, df = Number of bins. In algorithm 5, GetMatchedModel,

the map function (lines 5-8) takes model and Chi-sqaure value as key-value

pair. It also knows the current model. It finds all the possible closest models

using chi-square threshold and emits current model with minimum matching

Ch-square value as a key value pair. The reduce function (lines 7-8) receives

current model with a list of Ch-square values as key-value list and returns the

model which has minimum Chi-square statistic. When we match our cur-

rent model with past models, several models have lower Chi-square statistics

than the threshold. So, we have to select that model which has the lowest

statistics. In algorithm 6, MinModel (line 1-12) selects the model which

has the lowest Chi-square statistics. If several models have the same lowest

Chi-square statistics, then it selects the model which has highest score. The

score means how many times it matches a model. Initially all models have a

score = 1. If any past model is matched by current model, then we increase

the score of that past model.

iii Detecting Anomaly

The current window has multiple distributions of different features. There-

fore, the window will be flagged as benign if all its distribution are benign,

15

otherwise it is anomaly. Lines 13-24 in algorithm 2, describe this.

Algorithm 5 Find closest model

1: procedure GetMatchedModel

Inputs

2: Chi−Models Ml,n−1(l models, each has n− 1 chi values c)

3: CurrentModel ml,c(l models)

Outputs

4: ModelsWithLowestChiV alue (ml,min, cl,min), where j = 1 to l

5: Map (Mj,i, cj,i), where j = 1 to l, i = 1 to n− 1

6:

7: if cj,i ≤ TH − CHIj then . Calculated in R for 95% confidence

8: collect(mj,c, (Mj,i, cj,i))

9: Reduce (mj,c, [(M1,1, c1,1), ...]),

10: (mj,min, cj,min)←MINMODEL([(M1,1, c1,1), ...])

11: mj,min.incrementScore()

12: return (mj,min, cj,min)

2.4. Cluster-based Statistical Stream Data Mining Module Implementation Us-

ing Spark

In Figure 3, we show the cluster-based statistical real-time framework for

anomaly detection using Apache Spark. Each virtual machine in the network

continuously sends its performance data through Kafka. We cluster on the be-

nign distributions and build a model, which will be used later to detect anomaly.

In algorithm 7, we illustrate our distributed statistical procedure for anomaly

detection using Spark. It uses an semi–supervised technique for training un-

known distributions. We assume that all VMs are in stable state and their

performance data do not contain anomalies in training. We have taken a time

window to collect all the data and build non-parametric distribution for each

feature. During clustering, we build a training model for each feature. If a

16

Algorithm 6 Model with minimum Chi-square value

1: procedure MinModel

Inputs

2: [(m1, c1), (m2, c2) ..] (List of models with Chi− square value)

Outputs

3: (mmin, cmin) (matched model with min with Chi− square value)

4: cmin ←∞

5: for each (m, c) in [(m1, c1), (m2, c2) ..] do

6: sc← m.getScore()

7: if c < cmin then

8: (cmin,mmin, schigh)← (c,m, sc)

9: else

10: if c = cmin and sc > schigh then

11: (mmin, schigh)← (m, sc)

12: return (mmin, cmin)

Algorithm 7 Training

1: procedure Training

Inputs

2: InputDStream D (n data, l features)

3: modelsl ← {}

4: bink,l ← GetDistribution(InputDStream, totalBin)

5: ml,c ← createModel(bink,l, score = 1)

6: chi−modelsl ←ModelsWithChiValue(bink,j , modelsl)

7: (ml,c, (ml,match, chl))← GetMatchedModel(chi−modelsl, ml,c)

8: if ml,match.isEmpty() then

9: modelsl.insert(ml,c)

10: else

11: ml,match.incrementScore()

17

Algorithm 8 Testing

1: procedure Testing

Inputs

2: InputDStream D (n data, l features)

3: Window W

4: modelsl ← {}

5: bink,j ← GetDistribution(InputDStream, totalBin)

6: ml,new ← createModel(bink,l, score = 1)

7: chi−modelsl ←ModelsWithChiValue(bink,j , modelsl)

8: (ml,new, (ml,match, chl))← GetMatchedModel(chi−modelsl, ml,c)

9: W← benign

10: for j← 1 to l do

11: if mj,match.isEmpty() then

12: current model mj,new is anomaly

13: W← anomaly

14: else

15: if mj,match.getScore() > ScTH then

16: current model mj,new is benign

17: else

18: current model mj,new is anomaly

19: W← anomaly

20: return W

18

Apache Kafka

Data
Pipe

Cluster based Statistical Real-time Data Mining on using Apache Spark

DStream

DStream

DStream

DStream

DStream

VMware VMs

Performance Stream Data

Matching using
Chi-square two

sided test

Current Dstream
distribution

Cluster

Training

Testing

Figure 3: Technical Approach

distribution does not fit to any cluster, it starts with a new cluster. If it fits to

a cluster, then we increment the score of that cluster. The score describes the

confidence level of the cluster. Training illustrates the details.

During testing, we take a time window to collect data and generate the

unknown distribution for each feature. Later, if the distribution does not fit

to any clusters of the relevant feature, then it is called anomalous, otherwise,

it is benign. We can say a window is benign if it is not anomalous for that

feature; otherwise it is called anomalous. In algorithm 8, Testing illustrates

the details.

3. Case Study: Real-Time Anomaly Detection In VMware-based

Data Center

We have developed a generic framework using a statistical technique. We

can implement this framework in variety of fields like in social media, real-time

traffic analysis, intrusion detection in sensor data, and so on. In this case, an

anomaly corresponds to over-utilization of the resources in a data center. More

precisely, we can say that an abnormal distributions of its resources usage. For

19

example, when CPU or memory intensive applications are running, the overall

CPU or memory usage goes high and these generate abnormal distributions,

which can be considered as anomalous.

In this section, we will describe data centers and dynamic resource scheduling

and later our framework implementation details.

Resource Pool

Storage

App

Virtual OS

App

Virtual OS

App

Virtual OS

Virtual Machines

ESX Server ESX Server

Real-time
performance

Data

Real-time
Load

Balancing

Real-time Statistical Data Mining with
Apache Spark

Dynamic Load Balancing decision by
Detecting Anomaly

Resource Manager

Reading Stream Data

Storage

By Kafka

Tuple

Notify Scheduler

DStream

DStream

DStream

DStream

DStream

Storage
in HDFS

Figure 4: Dynamic resource management using Apache Spark

3.1. Data Center

A data center is the store house of data. It provides computer systems and

associated components, such as telecommunications and storage systems. It

offers dynamic resource management software to manage the storage infrastruc-

ture and also provides cloud facilities with the help of VMware, OpenStack,

Microsoft, etc.

20

3.2. Dynamic Resource Scheduler

In Figure 4, we have shown the data flow for VMware dynamic resource

management. The resource manager periodically reads the VMware perfor-

mance data and sends it to the Spark cluster model to analyze it. The resource

manager then sends the data analysis information to the resource pool [30] to

dynamically allocate resources if necessary.

3.3. Implementation Details

3.3.1. VMware Cluster Setup

Our VMware cluster consists of 5 VMware ESXi [31] (VMware hypervisor

server) 5.5 systems. Each of the systems has Intel(R) Xeon(R) CPU E5-2695

v2 2.40GHz processor, 64 GB DDR3 RAM, 4 TB hard disk and dual NIC card.

Each processor has 2 sockets and every socket has 12 cores. So there are 24

logical processors in total. All of the ESXi systems contain 3 virtual machines.

Each of the virtual machines is configured with 8 vCPU, 16 GB DDR3 RAM

and 1 TB Hard disk. As all the VM’s are sharing the resources, performance

may vary in run time. We have installed Linux Centos v6.5 64 bit OS in each

of the VM along with the JDK/JRE v1.7. We have designed a real-time outlier

detection system on this distributed system using Apache Spark. We have

installed Apache Spark version 1.0.0. We have also installed Apache Hadoop

NextGen MapReduce (YARN) [32] with version Hadoop v2.2.0 and formed a

cluster. We ran multiple MapReduce jobs on Hadoop cluster to put extra load

so that we can monitor the performance data of the VMware-based cluster.

3.3.2. VMware Performance Stream Data

It is imperative for Data Center operations team to be able to track resource

utilization of various hardware and software in order to maintain high quality

of service and client satisfaction. The performance counters generated by the

data center operation management system need to be of sufficient granularity

to facilitate the detection of anomalies.

21

In this experiment, we have used percentage of CPU usage and percentage

of memory usage to build our statistical model. Our framework can accom-

modate further attributes as well. We resorted to top [33], a Linux tool which

reports CPU related statistics, vmstat [34] for memory related statistics and we

integrated their output with that of the vSphere Guest SDK [35] using Kafka

API.

3.3.3. Message Broker

We are continuously monitoring each VMware performance data using the

vSphere Guest SDK [35]. We have also integrated top [33] to get the current per-

centage of CPU usage and vmstat [34] to get the current percentage of memory

usage. Several message brokers (e.g., Apache Kafka [21], RabbitMQ [36], etc.)

are available to integrate with Spark. We have chosen Kafka 3.3.4 because it is

stable and also compatible with Apache Spark. Kafka creates a dedicated queue

for message transportation. It supports multiple source and sink on the same

channel. It ships (in Figure 2) those performance data to Spark’s streaming

framework. Kafka ensures that the messages sent by a producer to a particular

topic partition are delivered to the consumer in the order they are sent. In ad-

dition to high-speed, large-scale data processing, Kafka clusters offer safeguards

against message loss due to server failure. Kafka is a natural fit for our real-time

anomaly detection initiative where it serves as an intermediary between multi-

ple VMware virtual machines and the Spark cluster, transferring multi-source

stream data from the VMs to Spark.

3.4. Building Statistical Training Model and Prediction

Our framework captures CPU and memory data periodically and generates

distributions for each of them. It then clusters the distributions separately for

both CPU and memory usages during clustering. While testing, it again gener-

ates distributions for both CPU and memory usages. If any of the distribution

does not fit into the cluster of distributions, then we consider them as anomaly.

More details are described in Section 2.

22

3.5. Scalability

Our framework can easily adapt to an increasing number of VMware virtual

machines. For each new VM, we simply plug in one more data collection in-

stance to Kafka [21]. Furthermore, we can increase computational parallelism

by adding more threads to Spark executors/workers.

4. Experimental Results

4.1. Data set

We continuously monitor 12 VMs’ performance data. Each VMware sends

data to Kafka server at twelve second intervals. Apache Spark periodically

collects stream data from Kafka server at two min intervals. The length of the

window is not fixed here. The number of data points in each windows varies from

95-105. In this experiment, we have trained our model with clustering by 200

windows. So, 200 x 100 (average) = 20,000 data points have been considered

during training. We collect 400 windows during testing both for our cluster-

based statistical method and window-based method. So, 400 x 100 (average) =

40,000 data points have been considered during testing.

We have compared our result with a non-distributed, online statistical ap-

proach [23]. For this, we dump our real-time testing data to a CSV file. It

uses a fixed window and it uses multinomial goodness-of-fit [37] for statistical

analysis while we are using a Chi-square two-sided test.

In this experiment, we consider any VM resource hungry if its usage goes

beyond 95%. For example, if a VM has more than 95% CPU usage, then it is

called CPU hungry.

4.2. Results

Table 1 shows the training statistics. We use 200 windows for training each

window has 100 data points on an average. We have found seven clusters for

CPU usage and five clusters for memory usage.

23

Table 1: Training

Number of Windows 200

Number of data points 20,000

Number of cluster 7(CPU), 5 (Memory)

Next, we have used our data set for both non-distributed and distributed

experiments during testing. The online distributed method is used to detect

anomaly for cluster-based statistical model and window-based model. The non-

distributed method is used for online multinomial goodness-of-fit based model.

Table 2 shows the details.

Table 2: Testing

Distributed Non-distributed

Number of Windows 400 400

Number of data points 40,000 40,000

Table 3: Accuracy

Data set TPR FNR TNR FPR

Multinomial goodness-of-fit based model 20.00% 80.00% 82.16% 17.84%

Window-based model 60.00% 40.00% 99.80% 00.20%

Cluster-based model 96.00% 03.33% 95.67% 04.32%

Our framework has higher accuracy to identify anomaly. In table 3, TPR

is the proportion of actual anomaly which are correctly identified and TNR is

the proportion of actual benign which are correctly identified. Moreover, FNR

is the proportion of actual anomaly which are misclassified as benign and FPR

is the proportion of actual benign which are misclassified as anomaly. We take

20 bins for building histogram/distribution and 400 windows out of which 30

are anomaly. We calculate the Chi-square threshold THchi = 31.41. We have

24

used the function qchisq(0.95, df = 20) = 31.41 in R [29], where confidence

level = 95% and degrees of freedom = numberofbins. Here, we assume that an

anomaly can be spread across multiple windows. During testing, we found that

our framework can successfully detect most of the injected anomalies. Only 1

of them is misclassified and the rest 29 are correctly classified. Moreover, it also

detects 354 benign windows as benign and misclassifies only 16 as anomaly.

On the other hand, our window-based statistical model correctly identifies

18 anomaly out of 30 although it correctly classifies 369 benign out of 370.

The reason of its low accuracy is that it assumes anomaly will come abruptly

and spread within a window and if it comes across multiple windows, then it

identifies the first one, but misclassifies the rest of the anomalous windows.

The online Multinomial goodness of fit test based approach has low TPR rate.

We take only 400 windows and 30 of them are anomalous. It detects only 06

of them as anomaly and misclassifies 24 as benign. Moreover, it detects 304

benign windows as benign and misclassifies 66 as anomaly. It assumes equal

window length which may increase some false alarm.

25 50 100 150 200
0

0.5

1

1.5

2

Number of training windowsP
ro
ce
ss
in
g
la
te
n
cy

(m
il
li
se
co

n
d
)

Cluster based model

Figure 5: Average window processing latency during training

Figure 5 shows the average execution time per window for 200 windows while

training. It has a consistent execution time (on average 1.75ms).

Figure 6 shows the comparison of execution time per window of three ap-

proaches during testing. We plot the average execution time for window against

the total number of windows. Here, we can see that our cluster-based model

25

25 100 200 300 400

1.5

2

2.5

3

Number of training windowsP
ro
ce
ss
in
g
la
te
n
cy

(m
il
li
se
co

n
d
)

Cluster-based model

Window-based model

Multinomial test based approach

Figure 6: Comparing average window processing latency during testing

and Chi-square-based technique have a lower execution time. It varies from

1.22-2.28ms for cluster-based model and 1.33-2.45ms for window-based model.

The base-line approach has average execution time between 3.08-1.49ms. Ini-

tially the Multinomial test based approach has higher execution time because it

operates in batch mode. It reads the whole file in to memory before doing the

computation. So, it has higher I/O time. Therefore, it will affect the average

execution time of a window when we have billions of data.

5. Related Work

Our related work covers anomaly detection techniques, then the scalability

issue with existing distributed frameworks.

Clustering has been widely used for the anomaly detection problem. K-

means has produced better accuracy but it has greater time complexity for a

very large data set. K-means also have an initial centroid problem. K-medoids

[38] overcomes this problem. It initially selects k centers but the centers are

repeatedly changed randomly and thus it improves the sum of squared error.

Assent et al. [39] have proposed an AnyOut algorithm for detecting outlier on

stream data. They use hierarchical clustering and determine an outlier score

based on the deviation between object and cluster. They can smoothly detect

outliers but they are not addressing the scalability issue. As hierarchical clus-

26

tering has a complex data structure, it is time consuming if we deploy it in a

distributed system.

Yu et al. [40] have proposed a non-parametric cluster-based anomaly detec-

tion framework in the distributed system. It uses Hadoop[9] and MapReduce.

It outperforms existing static anomaly detection techniques. Gupta et al. [41]

also propose a framework for an anomaly detection system using Hadoop and

MapReduce. They extract context from system operational log files. After that,

they use K-means to build a model and generate score for anomaly. Apache Ma-

hout [12] is a machine learning tool in a distributed system. It uses Hadoop and

MapReduce. It has K-means and StreamingKMeans implementations. These

implementations run on batch mode and they are also timeconsuming. So, they

are not ideal for clustering real-time data.

All of the above distributed techniques use Hadoop and MapReduce. Hadoop

works well in batch where we have the data in advance. It does not work

well with real-time systems, where data comes continuously. If we use Hadoop

for building the training model, then for each new instance it will repeatedly

build the model. That will be a waste of time and resources. So, we cannot

use Hadoop with stream or real-time data. Similar distributed systems like

HBase [11] and BashReduce [42] have the same problem. Apache Storm [14]

and Apache S4 [15] are also available for stream data processing, but Spark is

much faster than these [26]. So, we have decided to use Spark [14]. It is scalable

and fault tolerant. It has guaranteed data processing and finally it is quite faster

than other frameworks like Hadoop, Storm, etc.

Most of the anomaly detection techniques focus on point anomalies but we

know that anomalies can form a group. Rose et al. [43] implemented a group-

based anomaly detection system on social media. Liang et al. [44] proposed a

Flexible Genry Model (a model that addresses both point and group data char-

acteristic) to capture the group anomaly. All these works have used typical topic

models [45] to identify group behavior. Our cluster-based model also captures

group behavior but we do not consider the relation among all the resources. For

example, we experimentally find that many CPU hungry applications do not

27

consume higher memory & vice versa. So, we capture all the benign distribu-

tions for each resource during training within a particular time frame.

Chengwei et al. [23] implements statistical techniques to identify anomalies

using a non-distributed framework. They use a multinomial goodness-of-fit test

to match two unknown distributions but they assume that, the two distributions

have equal size widow. In practice, the window size may vary due to many

reasons. In that case, we found their their technique does not give good results.

Mohiuddin et al. [22] performed real-time statistical anomaly detection for

VMware performance data using Apache Spark [16] which performs well under

the constraint that a certain window contains all anomalies. Moreover, it also

uses a buffer to store past N models. So, an initial benign model might be

identified as anomaly over time if the buffer does not contain that model. So

it increases false alarms. We demonstrated that the approach proposed in this

paper outperforms the one in [22] by addressing those issues. Apache Spark

1.1.0’s MLib library [46] supports Pearson’s Chi-square goodness of fit test and

independence test of paired observations of two variables.

6. Conclusion and Future work

In this paper we have implemented a cluster-based statistical technique for

real-time anomaly detection using Apache Spark that uses a Chi-square test

as distance metric. It segments performance data streams of VMware virtual

machines into windows of variable lengths and performs window-based compar-

isons against a trained model of benign windows. Our experiments confirm that

it is capable of detecting anomalous CPU and memory utilizations of VMware

virtual machines that span across multiple windows collected at different time

intervals. Our framework is generic and can be adapted to a wide array of use

cases. In the future, we intend to apply it to a complex heterogeneous streaming

environment where each feature of the heterogeneous data interrelated and we

can explore either statistical approaches or graphical model to capture anomaly.

28

7. Acknowledgement

Funding for this work was partially supported by the Laboratory Directed

Research and Development program at Sandia National Laboratories and The

National Science Foundation (NSF). Sandia National Laboratories is a multi-

program laboratory managed and operated by Sandia Corporation, a wholly

owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of

Energy’s National Nuclear Security Administration under contract DE-AC04-

94AL85000. NSF grant is contracted under NSF award No. CNS 1229652 and

NSF Award No. DUE 1129435.

References

[1] M. Solaimani, L. Khan, B. Thuraisingham, Real-time anomaly detection

over vmware performance data using storm, The 15th IEEE International

Conference on Information Reuse and Integration, San Francisco, USA.

[2] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, J. B. Ingram,

Spark-based anomaly detection over multi-source vmware performance

data in real-time, In the proceeding of 2014 IEEE Symposium Series on

Computational Intelligence, Orlando, Florida, USA.

[3] A. Mustafa, M. Solaimani, L. Khan, K. Chiang, J. Ingram, Host-based

anomalous behavior detection using cluster-level markov networks, Tenth

Annual IFIP WG 11.9 International Conference on Digital Forensics, Vi-

enna University of Technology.

[4] A. Mustafa, A. Haque, L. Khan, M. Baron, B. Thuraisingham, Evolv-

ing stream classification using change detection, 10th IEEE International

Conference on Collaborative Computing: Networking, Applications and

Worksharing, October 2225, 2014 Miami, Florida, USA.

[5] Y. Yao, A. Sharma, L. Golubchik, R. Govindan, Online anomaly detection

for sensor systems: A simple and efficient approach, Performance Evalua-

tion 67 (11) (2010) 1059–1075.

29

[6] W. Lee, S. J. Stolfo, P. K. Chan, E. Eskin, W. Fan, M. Miller, S. Her-

shkop, J. Zhang, Real time data mining-based intrusion detection, in:

DARPA Information Survivability Conference & Exposition II, 2001.

DISCEX’01. Proceedings, Vol. 1, IEEE, 2001, pp. 89–100.

[7] G. R. Abuaitah, Anomalies in sensor network deployments: Analysis, mod-

eling, and detection, Ph.D. thesis, Wright State University (2013).

[8] D. Savage, X. Zhang, X. Yu, P. Chou, Q. Wang, Anomaly detection

in online social networks, Social Networks 39 (0) (2014) 62 – 70.

doi:http://dx.doi.org/10.1016/j.socnet.2014.05.002.

URL http://www.sciencedirect.com/science/article/pii/

S0378873314000331

[9] Apache hadoop.

URL http://hadoop.apache.org/

[10] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large

clusters, Communications of the ACM 51 (1) (2008) 107–113.

[11] Apache hbase.

URL https://hbase.apache.org/

[12] Apache mahout.

URL https://mahout.apache.org/

[13] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, R. E. Gruber, Bigtable: A distributed storage sys-

tem for structured data, ACM Transactions on Computer Systems (TOCS)

26 (2) (2008) 4.

[14] Storm - distributed and fault-tolerant realtime computation.

URL http://storm.incubator.apache.org/

[15] S4.

URL http://incubator.apache.org/s4

30

[16] Apache spark.

URL http://spark.apache.org/,

[17] Apache spark.

URL http://spark.apache.org/streaming/

[18] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, I. Stoica, Discretized

streams: A fault-tolerant model for scalable stream processing, Tech. rep.

(2012).

[19] B. Balasingam, M. Sankavaram, K. Choi, D. Ayala, D. Sidoti, K. Pattipati,

P. Willett, C. Lintz, G. Commeau, F. Dorigo, J. Fahrny, Online anomaly

detection in big data, in: Information Fusion (FUSION), 2014 17th Inter-

national Conference on, 2014, pp. 1–8.

[20] J. Camacho, G. Macia-Fernandez, J. Diaz-Verdejo, P. Garcia-Teodoro,

Tackling the big data 4 vs for anomaly detection, in: Computer Commu-

nications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on,

2014, pp. 500–505. doi:10.1109/INFCOMW.2014.6849282.

[21] Apache kafka.

URL http://kafka.apache.org/

[22] M. Solaimani, M. Iftekhar, L. Khan, B. Thuraisingham, Statistical tech-

nique for online anomaly detection using spark over heterogeneous data

from multi-source vmware performance data, in: Proceedings of the 2014

IEEE International Conference on Big Data (IEEE BigData 2014), IEEE,

2014.

[23] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield,

K. Schwan, Statistical techniques for online anomaly detection in data cen-

ters, in: Integrated Network Management (IM), 2011 IFIP/IEEE Interna-

tional Symposium on, 2011, pp. 385–392. doi:10.1109/INM.2011.5990537.

[24] VMware, Automating the virtual datacenter.

URL https://www.vmware.com/files/pdf/avd_wp.pdf

31

[25] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing.

[26] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mccauley,

M. Franklin, S. Shenker, I. Stoica, Fast and interactive analytics over

hadoop data with spark.

[27] N. Jaques, Fast johnson-lindenstrauss transform for classification of high-

dimensional data.

[28] T. Hoskin, Parametric and nonparametric: Demystifying the terms.

[29] R, The r project for statistical computing.

URL http://www.r-project.org/

[30] Why use resource pools?

URL http://pubs.vmware.com/vsphere-4-esx-vcenter/index.jsp?

topic=/com.vmware.vsphere.resourcemanagement.doc_40/managing_

resource_pools/c_why_use_resource_pools.html

[31] VMware, vsphere esx and esxi info center.

URL http://www.vmware.com/products/esxi-and-esx/overview

[32] Apache hadoop nextgen mapreduce (yarn).

URL http://hadoop.apache.org/docs/current/hadoop-yarn/

hadoop-yarn-site/YARN.html

[33] top, Top command in linux.

URL http://linux.about.com/od/commands/l/blcmdl1_top.htm

[34] vmstat, vmstat.

URL http://linuxcommand.org/man_pages/vmstat8.html

[35] VMware, Vmware vsphere guest sdk documentation.

URL https://www.vmware.com/support/developer/guest-sdk/

32

[36] Rabbitmq tm.

URL https://www.rabbitmq.com/

[37] N. Cressie, T. R. Read, Multinomial goodness-of-fit tests, Journal of the

Royal Statistical Society. Series B (Methodological) (1984) 440–464.

[38] L. Kaufman, P. Rousseeuw, Finding groups in data: an introduction to

cluster analysis, Wiley series in probability and mathematical statistics.

Applied probability and statistics, Wiley, 2005.

URL http://books.google.com/books?id=yS0nAQAAIAAJ

[39] I. Assent, P. Kranen, C. Baldauf, T. Seidl, Anyout: Anytime outlier detec-

tion on streaming data, in: Database Systems for Advanced Applications,

Springer, 2012, pp. 228–242.

[40] L. Yu, Z. Lan, A scalable, non-parametric anomaly detection framework

for hadoop, in: Proceedings of the, ACM, 2013, p. 22.

[41] M. Gupta, A. B. Sharma, H. Chen, G. Jiang, Context-aware time series

anomaly detection for complex systems.

[42] E. Frey, Bashreduce (2009).

URL http://rcrowley.org/2009/06/27/bashreduce

[43] R. Yu, X. He, Y. Liu, Glad: group anomaly detection in social media anal-

ysis, in: Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, ACM, 2014, pp. 372–381.

[44] L. Xiong, B. Póczos, J. G. Schneider, Group anomaly detection using flexi-

ble genre models, in: Advances in Neural Information Processing Systems,

2011, pp. 1071–1079.

[45] M. Steyvers, T. Griffiths, Probabilistic topic models, Handbook of latent

semantic analysis 427 (7) 424–440.

33

[46] Mllib - basic statistics.

URL https://spark.apache.org/docs/latest/mllib-statistics.

html

34

