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Nanocrystalline metals show unique mechanical behaviors, including a general
propensity for mechanically-induced grain growth
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Boyce & Padilta, Met. Mat. Trans. A, (2011)

=  Typical properties of NC metals include:
= Ultra-high strength & hardness
= High wear-resistance
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properties and plastic responses arise, including
mechanically-induced grain growth
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= |n fatigue, abnormal grain growth has been suspected to a

lead to crack initiation 0

= Post-fracture techniques leave us with a “chicken and egg”
problem (fracture or AGG?)

= Additionally, are these abnormally large grains pre-existing
(grown during deposition) or cyclically-induced?

Post-fracture analysis can only tell us so much - to
understand the role of abnormal grain growth on the fatigue
deformation and crack initiation, non-destructive in-situ
techniques are required.




Synchrotron XRD can provide non-destructive means to detect abnormally large
grains occupying < 0.0001% of the sampled volume
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Detecting rare, abnormally large grains by x-ray diffraction
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X-ray beam was centered on a FIB-milled semi-circular notch (used to prescribe crack
initiation to a known location)

tensile
2mm : : direction
Notched electrodeposited NC Ni-Fe tensile Schematic representation (a) and SEM micrographs (b.c)
specimens. Gage: 0.5 2.4 mm, 10-20 pm thick. of the semi-circular notches FIB-milled at 30kV, 3nA.
Noteh radius: 10 um. Grain size: ™16 nm. Elastic stress concentration factor: Kt=2.8.

(b)

c fatigue sample
loading\ 4
direction _ .

(a) Piezo-actuated in-situ
micro-fatigue tester;

(b) transmission xrd setup
used in this study.
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tranmission xrd 144mm




XRD revealed the onset of AGG (indicated by anomalous intensity “hotspots”)

Raw diffraction patterns Transformed to Q-x space (rings “unfolded”)
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Looking at the in-situ XRD data reveals that AGG developed well before final

fatigue fracture!!
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We first detect the anomalous intensity spike at 38k cycles
(25,000 cycles before final fracture!)

The “hotspot” is actually multiple intensity peaks with very
similar orientation

= Attributed to formation of subgrain boundaries
The predominant peak intensity continuously increases,
while many other smaller peaks form

= dislocation accumulation - grain rotation

If only taking this data, it appears that the grain gradually
grows with subsequent cycling...

But, if we do a side-by-side comparison of a different tilt
angle, the intensity is very large at first, then gradually
decreases

= The abnormally large grains are not necessarily growing

continuously, but they are rotating

It appears that the abnormal grain growth occurs relatively
quickly, reaches a critical size to support dislocation activity,
then subsequently cyclically deforms until initation a crack
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Growing intensities of the anomalous intensities suggests continuous growth of
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Paris Power Law exponent, m, was calculated to be
3.4, which is consistent with other reports on crack
growth rates in NC metals.

approximately 38,000 cycles (60% of total fatigue life)
was spent fatiguing the NC structure without obvious
AGG (at least non-detectable AGG)

23,800 (38% of total fatigue life) was spent cyclically
deforming and further evolving the AGG region

1,200 cycles (2% of total fatigue life) was spent
growing the Mode-I fatigue crack until final fracture.




TEM and Precession Electron Diffraction (PED) confirmed sub-grain formation and
dislocation-based slip protrusions

Thompson
Tetrahedron

(a)Iensilediréction
crack initiation

p_ ,»//W\(AG__GZ/;;//"?

‘)\""‘[1101

(a) semi-circular

tensile notch
direction \

(e). Thicknessidirection

mode-I crack i tensile
growth direction direction

*sample width not to scale




-10° tilt -5° tilt

Chi [deg]
250 255 260
0 cycles

Chi [deg]
252 257 262

0 cycles

32k cycles

38k cycles

|

1
¢=-5°
44k cycles

0

t
b=-5°
50k cycles

0
t
b =-10° =50

56k cycles 56k cvéles

38Kk cycles

|
tt

N
N~

44k cycles

W
w

[\S)
N

Intensity/Average Intensity

Intensity/Average Intensity

We first detect the anomalous intensity spike at 38k
cycles (25,000 cycles before final fracture!)

The “hotspot” is actually multiple intensity peaks
with very similar orientation

= Attributed to formation of subgrain boundaries
The predominant peak intensity continuously
increases, while many other smaller peaks form
= dislocation accumulation = grain rotation

If only taking this data, it appears that the grain
gradually grows with subsequent cycling...

But, if we do a side-by-side comparison of a different
tilt angle, the intensity is very large at first, then
gradually decreases

In conclusion, this in-situ fatigue study corroborates our initial hypothesis that abnormal
grain growth is prevalent during the high cycle fatigue in NC metals, and that the subsequent
deformation of these abnormally large grains is likely the precursor for crack initiation.

This in-situ approach provides us with a valuable tool to continue to explore the role of AGG
during fatigue in a variety of NC systems and testing conditions.




Taking this a step further...
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analyzed in near real-time during

cyclic loading, allowing us to stop the

fatigue process upon detection of
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Despite XRD evidence of AGG during fatigue, a fatigue crack is notably absent!
Additionally, slip protrusions were found to emanate from the ALGs.

before fatigue

after fatigue . . .
Fatigue crack embryo in a second fatigued

NC specimen showing first stages of crack
initiation following AGG and slip band
formation at the sample surface.




Can we repeat this in-situ in the SEM??
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Proposed mechanisms for crack initiation in NC metals

1 fatigue induced
I grain growth
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Figure 14. Schematic showing different scaling regimes for fatigue behavior with respect to
the grain size.
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Conclusions:

* In-situ xrd fatigue corroborates our initial hypothesis that
abnormal grain growth is prevalent during high cycle
fatigue, and that the subsequent deformation of these
abnormally large grains is likely the precursor for crack
initiation.

* Despite XRD evidence of AGG during fatigue, a fatigue
crack is notably absent. Finally, the chicken-or-egg
question is answered: indeed, AGG preceded crack
initiation

e The current data shows that AGG and subsequent
deformation of the ALGs precede fatigue crack initiation
in these metals!
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...evidence “suggest that the NC matrix undergoes AGG during cyclic loading, allowing
dislocation activity to persist over length scales necessary to initiate a fatigue crack by
traditional fatigue mechanisms.” [Boyce and Padilla] also, “grain growth process that
appears to be a necessary precursor to crack initiation”. “insufficient space for the
collective dislocation interactive mechanisms found in CG metals such as pileups and
subgrain formation.” “fatigue mechanisms may be influenced more by the evolved grain
structure than by the initial structure”. Ni-Fe shows the <112> pole aligned with the
stress axis, which is the well-known orientation that any fcc single crystal rotates toward
during uniaxial deformation to take full advantage of available slip systems. In NC
metals, neighboring grains under an external stress can rotate to a common orientation,
eliminating the HAGB allowing for collective dislocation motion

Stress concentrations are relevant for NC metals! Most likely dependent on notch-to-
grain size ratios...

Abnormal grain growth (AGG) is a predominant precursor for crack initiation, the onset of
which is likely dependent on the stress concentrations

Understanding the AGG/crack initiation process will be paramount to devising means of
improving the notch sensitivity in NC metals




Notched fatigue tests revealed dramatic fatigue stress concentrations
and high notch sensitivity! owing

direction’ o
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*Furnish, Sharon, Arrington, Pillars, Clark, and Boyce submitted




No obvious FIB-induced abnormal grain growth under notches

Location/orientation of TEM sample

(notch edge)




Sample Preparation




Electrodeposited nanocrystalline metal is G
lithographically patterned for fatigue testing
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Nickel/iron chemistry make-up

NiSOy4 Nickel Sulfate 112 g/LL
FeSO, Iron sulfate 5¢/L
Na3;CsH507; Sodium Citrate 75 g/l
KSO, potassium Sulfate 1.5¢/L
CsHsNOsS Saccharin 1 g/l

1. 100 nm deposition of 2. Patterned front side

3. Electrodeposit material
Cu on S1 wafer of wafer

5. Lift-off Ni-Fe 4. Remove photoresist
samples in Cu etch
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efficiency tradeoff...
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Table 1 Q data for the (111), (200), and (220) peaks

Peak 0 {,EL_'] Q range analyzed {;31_']
(111) 3.08 27-33
(200) 3.56 3.3-3.9
(220) 5.03 47-5.3




This x-ray technique identified the AGG region, despite only
occupying < 0.0001% of the sampled volume!

(a) 200um slit aperture, (111) ring

Fatigued sample with (mostly) nanocrystalline grains
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Notched fatigue tests revealed dramatic fatigue stress concentrations
and high notch sensitivity!
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K: and g values:
= 20 um notch: 1.7 / 0.37
= 10 um notch: 1.5/ 0.28
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fatigue tester for thin foil testing
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In all cases, the fatigue
crack initiation was found
to occur directly below
both the intrinsic and
extrinsic defects!




Notch effects diminish as two length scales converge

Notches obey —— 1

. This study: Lukas, Kunz, Svoboda, MSEA, 2005
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Nanocrystalline metals are more sensitive to stress concentrations than their coarse-
grained counterparts!




Why do we care about fatigue in NC metals?

(potential applications....)
N Ultra-hard thin films

Despite the potential of NC metals for advanced applications, thelr use has been
limited due to difficulties in material synthesis and lack of understanding of their
deformation mechamsms partlcularly during complex loading scenarios (e g fatigue).

LR A U/

In this study, the fatigue and fracture behaviors of electroplated NC metals were evaluated
to assess the role of the microstructure on the macro-scale mechanical properties and to
lay the foundation for long-term reliability.




Mechanically-induced grain growth as a potentially

life-limiting process for NC metals... Fatigue-induced grain growth
leading to crack initiation

Hardness evolution of NC Cu S
during indentation . . .
B Grain growth during mononotic
ar ® Huangetal, 11 nm ] : :
_ 0 1GC-Cu2, 45 nm loading leading to decreased strength
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The propensity for mechanically-induced grain growth in NC
metals has been suspected to play a major role in the macro-scale
mechanical properties! But, the necessity for post-fracture
characterization has led to only speculation...
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Is the fatigue mechanism suppressed in nanocrystalline ) i

Natonal
metals?
extrusion e a7,

&
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Ma and Laird, 1989

A billion nanocrystalline grains would
fit inside a single microcrystalline grain
of a traditional structural alloy.

Does the fatigue mechanism change
for such small grain sizes?




The crystalline orientation of the large grains
maximizes slip defar '
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the needle-in-a-haystack challenge... A
Rapidly detecting 1 abnormal grain in 10*?
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The gage section contains
~1 x1012 grains
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A 100x100 pum x-ray spot interrogates
A ~1 x10° grains

A 10 um notch localizes the peak stress to
<<1 x107 grains
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Figure. XRD intensities normalized by their means at regular intervals (~3k
cycle increments) of fatigue revealing the development of statistically
anomalous intensities associated with fatigue-induced abnormal grain
growth. Open circles indicate intensities of different standard deviations
above the local mean with 1.5-26 (purple), 26-3c (blue), 30-46 (green), 46-
5o (orange), and greater than 5c.

ately, the signal from the AGG becomes indistinguishable from noise.
Howeve viewing the additional 1.50-3c data point, it can argued that
the detection o G actually began closer to 42k cycles. It is difficult to
say based on this data“that the AGG did not actually begin at the beginning
of the fatigue. To fully address this, the signal-to-noise ratio of the
diffraction of the AGG must be improved (e.g., decreasing the spot
size, thus increasing the volumetric ratio 6fthe AGG compared to the
surrounding NC grains).

Normalized Intensity

55 56 57 58




In the specimen used in this study, the whitebeam diffraction conditions were not
optimized to detect more than a few spots. However, in a similar specimen in which
the fatigue was halted after detection of abnormal grain growth, the whitebeam
conditions were more ideal to produce multiple spots capable of indexation. This
sample experienced more than xx cycles after the first detection of AGG but prior to
fatigue failure when the test was stopped. ...

Figure. Whitebeam Laue diffraction from a second fatigued NC Ni-
Fe specimen in which case additional diffraction spots were resolved,
enabling indexation of the AGG region. lin this case, two separate
grains were observed with ~6° orientation difference (i.e., a relatively
low-angle grain boundary between two grains). (Advanced Light
Source BL 12.3.2, whitebeam spectral range ~6-22 keV, DECTRIS
Pilatus 1M Pixel array detector).

:note, this diffraction data is from samgle WA4DB15 :
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Crack growth resistance is worse than coarse-grained Ni, as expected
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Figure 2. XRD intensities (normalized by their
averages and shifted for visualization) in the y
range that anomalous high intensities
associated with ALGs were observed in-situ
during cyclic loading. The fatigue was
intentionally interrupted upon first detection of
ALGs at 172k cycles, though more detailed data
analysis after the fact revealed anomalous
intensities before 55k cycles. Peak shifts in this
case is attributed to in-plane rotation of the
growing ALGs while the broadening and
subdivision is consistent with subgrain
formation.

despite XRD evidence of AGG during
fatigue, a fatigue crack is notably
absent. Finally, the chicken-or-egg
question is answered: indeed, AGG
preceded crack initiation

55-58 deg

Integrated Intensity along y

analyzed in near real-
time during cyclic
loading, allowing us to
stop the fatigue process
upon detection of AGG.
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Figure 3. Total intensity across the y

range of interest (cumulative intensity

from y=55.4° to 58.4°) as a function of

the number of cycles indicating

continuous growth of the ALGs during

cyclic loading.




