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ABSTRACT

Critical Infrastructure Systems such as transportation, water and
power grid systems are vital to our national security, economy, and
public safety. Recent events, like the 2012 hurricane Sandy, show
how the interdependencies among different CI networks lead to
catastrophic failures among the whole system. Hence, analyzing
these CI networks, and modeling failure cascades on them becomes
a very important problem.

However, traditional models either do not take multiple CIs or
the dynamics of the system into account, or model it simplistically.
In this paper, we study this problem using a heterogeneous net-
work viewpoint. We first construct heterogeneous CI networks
with multiple components using national-level datasets. Then we
study novel failure maximization problems on these networks, to
compute critical nodes in such systems. We then provideHotSpots,
a scalable and effective algorithm for these problems, based on care-
ful transformations. Finally, we conduct extensive experiments on
real CIS data from multiple US states, and show that our method
HotSpots outperforms non-trivial baselines, gives meaningful re-
sults and that our approach gives immediate benefits in providing
situational-awareness during large-scale failures.

1 INTRODUCTION

Modern critical infrastructures (CIs) such as Energy, Water, Com-
munication etc are mutually dependent in such complex ways. For
example, the energy network depends on the water network for
treatment, dissemination, and disposition and the water network re-
lies on the energy network for energy production [28]. Indeed, such
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dependencies exist across multiple CIs, where hazards/failures af-
fecting one CI network can potentially propagate to other networks
and disrupt the functionality of the entire system.

The 2003 Northeastern US blackout [5] is a perfect example
depicting the risk, where a fault in 3 transmission lines caused
a massive blackout impacting multiple CIs. Initially, the massive
power outage caused blackouts across several U.S. states. The mas-
sive power outage effects cascaded to drinking and waste-water
treatment systems, communication, transportation, and a number
of major business and food services. Nearly 50 million people were
affected, causing huge economic losses exceeding $5 billion. About
every 4 months in the US, a major blackout occurs, affecting onemil-
lion or more people [24]. This increased vulnerability of single CI
network can be easily amplified due to the interdependencies. Sim-
ilar examples abound such as in Hurricane Sandy where cascading
and escalating failures caused severe impacts to the infrastructures
and slowed down the recovery tremendously [10]. Hence, modeling
and simulation of interdependent CI systems (CISs) has become an
important field to realize the idea of ‘smart cities and nations’.

Since the 2003 NE blackout, FEMA (Federal Emergency Man-
agement Agency), other federal agencies such as DOE-OE, DoD
and several national labs are constantly working towards improv-
ing wide-area situational awareness and developing sophisticated
decision support tools that can help in predicting propagating im-
pacts due to an extreme event like hurricanes, wildfires etc [2]. For
e.g, Oak Ridge National Lab (ORNL) developed detailed hurricane
outage models to predict which substations will be impacted, and
what the downstream implications of these failures are even before
a hurricane hits the land [8]. Such situational awareness can assist
mitigation planning with the available resources, and support the
construction of more resilient systems for future.

To this end, identifying critical and vulnerable nodes and links
of these interconnected networks that can cause maximum dam-
age is very important so that the system reliability and efficiency
can be improved by monitoring and protecting them [22, 26]. For
example, based on topological analysis of the NE American grid,
it was identified that nodes with a high degree are more impor-
tant than others [6]. Centrality indexes based on betweenness
were defined by several researchers to analyze the vulnerability
of power systems [19]. Similarly from a data-mining view point,
a few recent studies have tried to model failures in infrastructure
networks [13, 14]. However, all these methods either work single
CIs, or do not take into account any dynamics of the system, or
model it very simplistically (like considering just one-step failures).
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In this paper, a collaboration between computer scientists and
power engineers, we broadly approach this problem using heteroge-
neous networks. We unify various CI systems by first constructing
a 5-component heterogeneous network constructed by combining
various individual CIs. Looking at the system as a heterogeneous
network gives many advantages. We then study the problem of find-
ing the k critical nodes (the ‘hot spots’) in the power grid network,
the failure of which would cause the maximum failures across the
CI networks. We design a novel and an effective way of predicting
non-linear interaction among the nodes the result of which may
not be visible through a static structural analysis.

Our contributions are:

(1) We construct heterogeneous networks from real CI datasets
and develop a novel tractable cascade model F-Cas.

(2) We develop an efficient and effective algorithm HotSpots
to find the most critical nodes in the CIS using F-Cas, whose
failure can cause maximum damage.

(3) Through our extensive experiments and case studies on
unique large real datasets at ORNL, we show that our ap-
proach has immediate benefits to CI analysis, thatHotSpots
outperforms non-trivial baselines and effectively finds the
vulnerable nodes and the results from HotSpots helps with
real world situations.

2 OUR SETUP AND FORMULATIONS

Here, we first introduce the five CI components we consider in
this work and how we interlink them to a heterogeneous network
G. Second, we propose a failure cascade model F-Cas on G that
captures the interdependencies between different components in
G. And finally we formally define our problems.
Preliminary: IC Model. Given a weighted directed network, the
popular Independent Cascade (IC) model [20] describes the spread
of a contagion (idea/influence etc.) over it. Once infected/activated,
each node gets one chance to activate its neighbors in the next time
step with probability equal to the connecting edge-weight. The
cascading process starts with an initial active ‘seed’ set, and ends
when there is no new activation.

2.1 Network Construction

Interpretation and conversion of a set of GIS (geographic informa-
tion system) datasets into a heterogeneous network is a crucial but
challenging task. With no systematic tools available, researchers
need to understand geographical objects and their relationships
carefully, and write conversion scripts for every different analytic
purposes. To avoid such ad hoc proprietary data processing, we
develop and utilize a generic reusable urbannet-toolkit to systemat-
ically construct CI heterogeneous networks for our analysis.

The urbannet-toolkit we design contains four components. shp2csv
converts shapefile data (a prevalent data format used in GIS which
is not suitable for network analysis) to csv files; csv2net constructs
node lists or edge lists from different shapes (POINT, MULTIPOLY-
GON, MULTILINESTRING); if needed, net-simplifier simplifies
the networks by removing redundant nodes that are used to depict
the shape contour; and finally, net-linker interconnects different
CI networks based on user-specific criteria.

Specifically we select five important components from the HSIP
Gold data [1] and EIA data [3] from the power system, and the
natural gas system (as shown in Tab. 1). Among them, power plants,
substations, and natural gas compressors are facilities without con-
nections among themselves. For example, a power plant do not di-
rectly connect to another power plant, the connections are through
other types of facilities. While in the transmission network and the
pipeline network, each node represents a connection point between
two transmission lines or pipelines, and the link between two nodes
represents the actual transmission lines/pipelines. These compo-
nents contain a natural support chain, where the power plants use
the natural gas as fuel to generate electric power, the transmission
nodes deliver the power to substations, the substations distribute
power to natural gas compressors, and finally natural gas compres-
sors help deliver natural gas to power plants through the pipelines.
Note that there are different types of power plants which use dif-
ferent fuels, here we only consider those which use natural gas as
fuel.
Infrastructure	

Type	 Node	Type	 Descrip4on	

Power	

Electrical	power	
plants	(g)	

Generate	electrical	power	which	is	
transmi?ed	to	substa4ons	through	the	
transmission	network.	

Transmission	
nodes	(t)	

Move	electrical	power	from	power	plants	to	
substa4ons.	

Electrical	
substa4ons	(s)	

Transform	voltage	and	distribute	electrical	
powers	to	consumers.	

Natural	gas	
Natural	gas	
compressors	(c)	

Increase	the	pressure	of	a	gas	to	transport	it	
through	pipelines.	

Pipelines	(p)	 Transport	natural	gas	to	consumers.	

Table 1: Summary of the five components in G.

To realize such a support chain in the system, we create interlinks
between different components in the following ways.
Substations are connected to the nearest transmission node since
it gets electrical supply from it. Each substation is also connected
to the natural gas compressors within its service area to capture
the fact that it provides power to these local facilities (service areas
are non-overlapping, so each natural gas compressor is connected
to only one substation).
Power plants are connected to the nearest natural gas pipeline
and transmission node, since they get fuel from the pipelines and
output power through the transmission network.
Natural gas compressors are connected to the nearest pipeline
to capture the fact that the flow and the pressure of the natural gas
along these pipelines depends on the compressors.

We summarize the network structure in Fig. 1. Our final directed
heterogeneous graph is G (V ,E), where V = {Vд ,Vt ,Vs ,Vc ,Vp } con-
tains all nodes in the five CI components; and E = {Et ,Ep ,Einter }
contains the edges in the transmission network, pipeline network,
and all the interlinks we created above. The directions of edges are
either indicated from the data themselves, or from the feed-supply
relation we introduce for creating the interlinks.

2.2 Failure Cascade Model F-Cas

The CI network system is vulnerable to potential failure cascades,
as localized failures may get amplified to system-wide levels. For ex-
ample, the failure of nodes in the transmission network would force
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Figure 1: Interconnections and structure of G.

re-routing of the power flow and cause overload, or near-capacity
operations of other transmission lines, with an increased proba-
bility of failure of additional nodes. With widespread, scattered,
power interruptions, natural gas compressors may eventually lose
power, thus affecting gas-fueled power plants, further reducing the
overall generation available to support the load.

Such failures are very hard to model due to the complicated
physical equations involved: state-of-the-art supercomputers utiliz-
ing sophisticated parallelization algorithms require tens of days to
perform accurate simulations just for the power system1. These are
intractable for analysis and also hard to interface with other tools.
Hence we propose a failure cascade model F-Cas which makes
simplified yet realistic enough assumptions. The goal and the chal-
lenge is to capture the most important unique dynamics quickly, to
estimate failure cascades, and then extract critical nodes. See Alg. 1.
Overall, we first simulate the failure cascade caused by overloads
within the transmission network. Based on such failures, we detect,
for each other type of node, if they would fail until there are no
new failures (this process may continue for several iterations or
‘loops’ until convergence). Next, we define the failure conditions
for each CI component in F-Cas.
Substations fail when they have no path in the transmission net-
work to an active power plant, due to the lack of power.
Natural gas compressors fail when their associated substation
(from which it gains power) fails.
Power plants fail when any of the natural gas compressors it
connects to fails, due to the lack of fuel.
Pipelines serve as the connection between natural gas compressors
and the power plants, they do not depend on other facilities and
hence we assume they would not fail during the failure cascading.
In reality, if some pipelines are damaged by some natural disaster,
they can be removed from our analysis in advance.
Transmission nodes may fail due to any overload resulting from
power re-routing in the transmission network caused by the failure
of other transmission nodes (the power has to go through other
routes which increases the probability of an overload of other trans-
mission nodes). To capture such failure cascades due to overloading,
we propose two Independent Cascade (IC) style models.

Trans-naive: When a transmission node fails, its children in
the transmission network (the nodes that consume power from
it) would have to gain power from other nodes. This increases the
chance of overloading of other nodes. So in this model, we simply

1http://www.nrel.gov/continuum/analysis/ergis.html

Algorithm 1 A simulation process for F-Cas
Input: G , a seed node set S , Trans-real (or Trans-naive)
Output: The set of failed nodesW .
1: W = S
2: Run Trans-real/Trans-naive simulation to find the set of transmission

nodes that fail (add them toW ).
3: while |W | is increasing do
4: for each substation s < W , compressor c < W , and power plant

д <W do

5: Check if it fails according to its failure condition (see Sec. 2.2)
6: Add the corresponding node to W if it fails.
7: ReturnW .

assume that when a node fails, its ‘co-parents’ (nodes that share a
common child node) have a certain probability to overload. Using
this assumption, we first identify the co-parent nodes according to
the transmission network, and then create a new co-parent network
(where two transmission nodes are connected if they are co-parents
in the original network). The edge-weights will be:

ei j =

{
c if ti and tj share a child
0 otherwise (1)

where c is some constant probability/weight, which represents the
probability of a node failing its co-parents. The failure cascade
process in the transmission network can be thought of as an IC
model on a co-parent transmission network.

Trans-real: We make a more realistic assumption here: the prob-
ability of a transmission node’s failure would be higher when the
loading operating condition (e.g. power transferred) is closer to an
established engineering limit (here referred to as the node power
capacity) [29]. Based on this assumption, we design the following
edge weights for all edges in the transmission network, represent-
ing the probability of node tj ’s failure given the failure of its parent
node ti :

ei j =

∑
x ∈Cs (Par (tj )\ti ) Load (x )∑
x ∈Par (tj )\ti Capacity (x )

(2)

where Par (tj ) are the parents of tj , Cs (Par (·)) are the union of the
child nodes of parent nodes in Par (·). Note that unlike Trans-naive,
the above edge weights are defined directly on the edges in the
transmission network instead of an additional co-parent network.
Basically we look at the parents of tj (except ti ), and calculate the
ratio of the total load from their children, with the capacity the
parents have. If the ratio is closer to 1, the operating loads of the
parents are closer to their engineering limits, and hence it is more
likely that they fail to provide enough power to tj .
Novelty:Note that our final failure cascade model F-Cas is a combi-
nation of all the different types of failures mentioned above, which
cannot be simply represented by popular cascade-style models in
standard literature [15, 20]. For example, consider the the path-
based failure condition of a substation. In typical cascade models
such IC, the failures are passed from one failed neighbor to another
(through the connecting edge). However in F-Cas, a substation may
fail due to a non-local failure of some transmission node which
may be far away. Hence the typical influence-analysis algorithms
cannot be directly applied for our problem, and novel techniques
are needed.



2.3 Problem Definitions

As mentioned in the introduction, identifying critical nodes that
can cause maximum damage is important for improving the system
reliability and efficiency. Hence given the cascade model, we for-
mally define the following failure maximization problems to find
such critical nodes.
Problem 1 (Max-Sub)

Given the heterogeneous network G, the failure cascade model
F-Cas, and k .

Find the best set S∗ of k transmission nodes to fail, s.t the ex-
pected number of final failed substations are maximized, i.e.

S∗ = argmax
S
E[#s |S] (3)

where #s represents the number of substations that would eventu-
ally fail given the initial failure of S . Note that inMax-Sub, we select
nodes based on the failure of substations because the loss/failure of
an electrical substation directly leads to the power blackout of a re-
gion. In Max-SubBus defined below, we further extend Max-Sub

by adding another component into our target.
Problem 2 (Max-SubBus)

Given the heterogeneous network G, the failure cascade model
F-Cas, and k .

Find the best set S∗ of k transmission nodes to fail, s.t the ex-
pected number of final failed substations, and the transmission bus
nodes are maximized, i.e.

S∗ = argmax
S
E[#s + #t |S] (4)

Similar as inMax-Sub, #t represents the number of transmission
nodes that would eventually fail given the initial failure of S .

3 OUR METHODS

The challenges of solvingMax-Sub andMax-SubBus are two-fold.
First, as described before, the failure does not necessarily cascade
locally from one node to its neighbor. For example, we need to
check the entire transmission network to decide if a substation
fails or not, which is a very expensive operation. Second, failures
loop through different components before convergence, making it
harder to analyze. In fact, we can show that a well-known NP-hard
problem (Influence Maximization for IC [20]) is a special case of
bothMax-Sub andMax-SubBus (by constructing a substation and
a self loop for each transmission node2). Therefore, our problems
are much more general than the influence maximization problems,
and they are also NP-hard.

Lemma 3.1. Max-Sub and Max-SubBus are NP-hard.

Hence, we first attempt to solve them in a simplified scenario
where the failure cascade does not form a loop. In such a scenario,
instead of using G, we use G ′ which is a subgraph of G that only
contains three components: power plants, transmission bus nodes,
and substations. When only considering these three components,
the failure of a substation cannot further induce failure of power
plants, i.e. the failure spreads in one direction without forming any
loop. In the following, we solveMax-Sub andMax-SubBus under
such a simplified scenario first, and then propose our algorithms
for the original problems where the failure cascade forms a loop.
2Detailed proof and additional results in appendix: https://goo.gl/QiTJMQ

3.1 Max-Sub and Max-SubBus without loop

In this section, we considerG ′ with only three CI components, and
the failure cascades in one direction from the transmission network
to the substations.

In bothMax-Sub andMax-SubBus, we need to optimize on the
expected number of failed substations, which can be written as

E[#s |S] =
∑
si

Pr(si |S ) (5)

where Pr(si |S ) represents the probability of si ’s failure given the
node set S which initially fail. By summing the failure probabil-
ities over all substations, we get the expected number of failed
substations. The failure probability Pr(si |S ) basically represents
the probability of si does not have a path to any power plants.
We may combine connected component analysis and Trans-real,
Trans-naive simulations to empirically estimate these probabilities,
however it is hard to express them in a close form and hence hard
to directly optimize. To express such a probability, we propose to
use the dominator tree to capture critical nodes to si and estimate
Pr(si |S ).

As a first step, we merge all the power plants into a super power
plant node g (Fig. 2(a)(b)). The super node g inherits all the edges
from the merged power plants, i.e. if there is an edge connecting
дi to tj , we create a link between g and tj . With such merging
operation, the failure condition of a substation does not change: if
a substation has a path to g, it certainly has a path to at least one of
the original power plant; What’s more, it allows us to construct a
dominator tree rooted at g.
Dominator tree (D). In graph theory, given any directed graph
and a starting node g, a node u dominates another node v if all
paths from g to v pass u. If all dominator nodes of v dominates
u, then u is a direct dominator of v , denoted by u = idom(v ). For
example, in Fig. 2(b), t6 is a direct dominator of s2 since all paths
from g to s2 pass through node t6, and all other dominators of s2
dominates t6. We can build a dominator tree rooted at g by adding
edges between all node pairs u and v if u = idom(v ). Dominator
trees have been extensively studied in control-flow problems, and
building dominator trees is a well-studied topic with near-linear
time algorithms available [11].

g1� g2� g3�

t1� t2�

t4�

s3�t6�t5�

t3�

s1� s2�

s4�

(a) Original graph

t1� t2�

t4�
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t3�
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Figure 2: Dominator tree examples.We first merge all power

plants into the super root node g, and then construct the cor-

responding D.

Naturally, the substations would become leaf nodes in the con-
structed dominator tree. For each substation si there exists a path
Pi = {g,t1,t2, ...,si } in the dominator tree, which starts from g, goes
over the transmission network and finally reaches the substation
si . Further, each tj ∈ Pi dominates si , namely if any tj ∈ Pi fails, si
would certainly fail. Therefore, we can estimate Pr(si |S ) using its

https://goo.gl/QiTJMQ


ancestor nodes in the dominator tree as
Pr(si |S ) = 1 −

∏
tj ∈Pi

(1 − Pr(tj |S )) (6)

which is the probability of any transmission node tj in Pi failing.
Note that to simplify analysis, we assume independence among
Pr(ti |S ). Since we know that if any tj ∈ Pi fails, si is bound to fail
in the end, this is a lower bound estimation of the true Pr(si |S ).
Using this estimation, we can now reformulate our objective func-
tion (expected number of failed nodes) inMax-Sub,Max-SubBus

(without loop) as

E[#s |S]′ =
∑
si

Pr(si |S ) = T −
∑
si

∏
tj ∈Pi

(1 − Pr(tj |S )) (7)

E[#s + #t |S]′ =
∑
si

Pr(si |S ) +
∑
ti

Pr(ti |S )

= T −
∑
si

∏
tj ∈Pi

(1 − Pr(tj |S )) +
∑
ti

Pr(ti |S ) (8)

For both E[#s |S]′ and E[#s + #t |S]′, we show that they satisfy the
following diminishing return property2.

Lemma 3.2. E[#s |S]′ and E[#s + #t |S]′ are both a) monotonically
non-decreasing; b) sub-modular in terms of S .

HotSpots framework. See pseudo-code of our HotSpots frame-
work in Alg. 2. As both E[#s |S]′ and E[#s + #t |S]′ are submodular,
this immediately gives us a (1 − 1/e )-approximation algorithm for
optimizing them [23]. HotSpots uses a greedy method to itera-
tively select nodes that lead to the maximum marginal gain of the
final objective function.

To calculate the marginal gain δ (ti ) of adding a node ti to S , we
first need to estimate Pr(t |S ) for calculating E[#s]′ and E[#s + #t]′.
For this purpose, we run a set ofm Trans-real/Trans-naive simula-
tions on the transmission network to get the empirical probabilities
of a ti failing given S . Then, we propose to use a recursive function
to efficiently calculate the value of the objective function given
Pr(t |S ) (Alg. 4). In effect, this recursive function just does a correct
‘walk’ on the dominator tree. We observe that the objective function
Eq. 7 (and also the first part of Eq. 8) can be naturally factorized
over different paths in the dominator tree (each t corresponds to
a path in D). Therefore, we call our recur (·) function on the root
node g, and it goes over the dominator tree in a top-down fashion,
where we take summation when iterating horizontally (visiting
the children of a node), and production when iterating vertically
(visiting different nodes in the same path). Combining the above,
we calculate the marginal gain δ (ti ) of adding a node in line 15−16.
In practice, we also adopt a lazy evaluation strategy [21] to speed
up the algorithm (by avoiding evaluating δ (ti ) for all ti in each
iteration). For ease of understanding, we omit it in Alg. 2.
Remark. The original Max-Sub and Max-SubBus do not sat-
isfy these properties. One of our main contributions is to use the
dominator-tree-based method to reformulate and estimate the opti-
mization problems s.t. they satisfy the diminishing return property,
and thus can be solved near-optimally using a greedy algorithm.

3.2 Max-Sub and Max-SubBus with loop

Now we consider the original G with all five components, and
the failures can further spread from substations to natural gas
compressors, power plants, and finally to substations again (the
‘loop’). Our main idea is to first calculate the failure probabilities

Algorithm 2 HotSpots framework
Input: G′, F-Cas, k ,m
Output: A set S of k nodes
1: S = { }
2: Merge all power plants into g, and construct a dominator tree D rooted

at g for G′
3: while |S | < k do

4: for each ti < S do

5: Estimate Pr(t |S ), Pr(t |S ∪ ti ) using F-Cas simulation.
6: δ (ti ) = Update (Pr(t |S ∪ ti ), Pr(t |S ), D, g)
7: t ∗ = argmax δ (ti ), add t ∗ to S
8: Return S

Algorithm 3Update (·)

Input: Pr(t |S ∪ t ∗), Pr(t |S ), D/D+, g
Output: δ (t ∗)

//For the without-loop version

1: Return Recur (Pr(t |S ∪ t ∗), D, g) − Recur (Pr(t |S ), D, g)
//For the with-loop version

2: Initialize all Pr(s |S ∪ t ∗), Pr(s |S ), Pr(d |S ∪ t ∗), Pr(d |S ) as 0
3: while Pr(s |S ∪ t ∗), Pr(s |S ) is changing do

//Traverse D+ to update Pr(s |S ∪ t ∗), Pr(s |S )
4: Recur+ (Pr(s |S ∪ t ∗), Pr(t |S ∪ t ∗), D+, g, 1)
5: Recur+ (Pr(s |S ), Pr(t |S ), D+, g, 1)
6: Update Pr(d |S ∪ t ∗), Pr(d |S ) using Eq. 10
7: Return E[#s |S ∪ t ∗]−E[#s |S ] using Eq. 11 (similarly forMax-SubBus)

Algorithm 4 Recur (Pr(t |S ),D,x)
Input: Pr(t |S ), the dominator tree D , the current node visited x
Output: The value of the objective function Eq. 7 (Eq. 8 can be calculated

similarly)
1: if x is a substation then

2: Return 1
3: kids = {child nodes of x in D }
4: if kids = ∅ then

5: Return 0//reach a leaf node in D that is not a substation
6: s = 0//add up the value from the child nodes
7: for each kid in kids do
8: s+ = Recur (Pr(t |S ), D, kid )//call Recur() on the child node
9: Return Pr(x |S ) ∗ s

of power plants given those of substations using the natural gas
system. Then we modify the dominator tree we constructed above
to include the failure of power plants, and thus encode the failure
cascade from substation to power plants.

3.2.1 Failure probabilities of power plants. In the failure cascade
loop, once a substation fails, the natural gas compressors that rely on
it for powerwould fail. Similarly, once a natural gas compressor fails,
the power plants it supplies fuel to (through the pipeline network)
may fail. As mentioned in Sec. 2.2, we assume the pipelines do
not fail; hence we can directly map each power plant дi to a set of
relevant substations, and derive its failure probability.

Pr(дi |S ) = 1 −
∏
cj ∈Ai

(1 − Pr(Sub (c j ) |S )) (9)

whereAi is the set of compressor nodes that fuel the power plantдi
through the pipeline network, and Sub (c j ) represents the substation



that is connected to c j . Basically, for each power plant, we find all the
natural gas compressors it can reach through the pipeline network,
and find the substations that are connected with these natural gas
compressors, and finally calculate the probabilities accordingly.

3.2.2 Dominator tree with loop (D+). The dominator tree we
had constructed before merges all power plants to a super root
node g. While this is an essential step to construct a meaningful
dominator tree for our tasks, it brings difficulties to include failure
probabilities of power plants since all of them are represented as
g. To modify the dominator tree to include the failure probabilities
of power plants, we insert a dummy node for each branch in D to
represent the set of power plants that provide power to this branch.

t1� t2�

t4�

t6�t5�

t3�

s1�

s3�

s2�

s4�

d3�d2�d1�

g1,g2�
g1�g2�g3�

g2,g3�

For example in the left snip-
pet, for each direct child node
ti of g in D, we insert a node di ,
such that the connection from g
to ti would go through di first.
This dummy node di represents
the set of power plants that can
reach ti , and it fails with the fol-
lowing probabilities:

Pr(di |S ) = 1 −
∏
дj ∈Bi

(1 − Pr(дj |S )) (10)

where Bi represents the set of power plants that can reach ti .
With the addition of these dummy nodes, we now have a failure

cascade loop in the dominator tree. Initially Pr(d |S ) are set as 0;
then we estimate the failure probabilities of substations Pr(s |S );
then we update the value of Pr(d |S ), and recalculate Pr(s |S ), so
on. These probabilities are non-decreasing over iterations in the
failure cascade loop, and they are bounded by 1. Hence we would
eventually converge. We can rewrite our objective function Eq. 7,
Eq. 8 using the probabilities P̂r(s |S ) after convergence.

E[#s |S]+ = T −
∑
si

∏
tj ∈Pi

(1 − Pr(tj |S )) ·∏
дj ∈Bi

∏
cy ∈Aj

(1 − P̂r(Sub (cy ) |S )) (11)

E[#s + #t |S]+ = T −
∑
si

∏
tj ∈Pi

(1 − Pr(tj |S )) ·∏
дj ∈Bi

∏
cy ∈Aj

(1 − P̂r(Sub (cy ) |S )) +
∑
ti

Pr(ti |S ) (12)

Further, we can prove by induction that the above objective
functions maintain the diminishing return property.

Lemma 3.3. E[#s |S]+ and E[#s + #t |S]+ are both a) monotonically
non-decreasing; b) sub-modular in terms of S2.

Hence, the complete problem with loop can be solved using the
same (1 − 1/e )-approximation framework in Alg. 2, with a new
dominator tree,Update (·), and Recur+ (·) function (Alg. 3, Alg. 5).

The overall time complexity of our HotSpots framework is
O (kVt (mEt + lVt + lVs )), where Vt , Vs are the number of transmis-
sion nodes and substation nodes respectively, Et is the number of
edges in the transmission network, and l is the number of failure
cascade loops until the probabilities converge.

Algorithm 5 Recur+ (Pr(s |S ),Pr(t |S ),D+,x,v)
Input: Pr(s |S ), Pr(t |S ),D+, x ,v (the probability that none of the previous

nodes fail)
Output: Update the values of Pr(s |S )
1: if x is a substation then

2: Pr(x |S ) = 1 − v
3: else
4: kids = {child nodes of x in D+ }
5: for each kid in kids do
6: Recur+ (Pr(s |S ), Pr(t |S ), D+, kid,v ∗ (1 − Pr(x |S )))

Node Type TN PA FL OH
Power Plants 11 45 79 35
Transmission Nodes 206 224 253 105
Electrical Substations 489 831 1590 806
Gas Compressors 105 291 45 189
Pipelines 387 5667 624 7641

Table 2: Number of nodes in each CI components for each

dataset we use.

4 EXPERIMENTS

In this section, we design various experiments and case studies
to evaluate our algorithms. For the experiments, we set the load
and the capacity of any transmission node as a constant value.
Different load and capacity settings can easily be used by changing
the corresponding values in F-Cas.
Datasets:We construct heterogeneous CI networks as described
in Sec. 2.1 for four different states for our evaluation: Tennessee
(TN), Pennsylvania (PA), Florida (FL) and Ohio (OH). The statistics
of each of these datasets are shown in Tab. 2.
Baselines: To the best of our knowledge, there is no existing algo-
rithm that can be used to solve the failure maximization problems
(Max-Sub,Max-SubBus) as our algorithms do for the CI networks.
We adapt two related algorithms, and generate several algorithms
with different node selection strategies as our baselines.
(1) Opera [13] is a recent work which picks k critical nodes that
would maximally break the connectivity of a target network (which
can be measured by the number of triangles in the network). We
run it on the transmission network.
(2) Netshield [27] is an immunization algorithm which aims to
minimize the epidemic threshold of the graph. We select the top k
transmission nodes according to the ranking given by the algorithm.
(3) Degree: pick transmission nodes with the highest degrees.
(4) Pagerank: pick transmission nodes with the highest pageranks.
(5) Random: We randomly select k transmission nodes.

4.1 Effectiveness (Q1)

For the nodes selected by our algorithms and the baselines, we run
our F-Cas simulation to evaluate the effectiveness forMax-Sub and
Max-SubBus. See Figure 3 (only show OH for lack of space, results
for FL, TN, PA are similar2). In all states under all situations (Trans-
real and Trans-naive), the proposed HotSpots algorithm performs
better than the baselinemethods. The difference betweenHotSpots
and other baselines decreases as k increases. This is expected, as
more seeds are picked, the eventual failures will saturate. Note that
Opera does not give good results for Max-Sub and Max-SubBus,
as it is designed to deal with static interdependent networks. Our



Max-Sub and Max-SubBus both need the dynamics of the whole
network system—as a result, our proposed HotSpots outperforms
Opera. Also for other baselines, as they only consider the static
information within one network, they do not perform as well or as
stable as HotSpots.
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Figure 3: Evaluating the detected nodes. ProposedHotSpots

(in red), outperforms all the baselines. Top/bottom row are

Trans-naive/Trans-real. # of seeds k vs expected # of substa-

tions (and transmission nodes) from each method: larger is

better.

4.2 Scalability (Q2)

We investigate how HotSpots scales as the number of seeds k and
as size of network |V | changes (we ranHotSpots on increasing sizes
of the TN state data). See Figure 4. As expected from our complexity
analysis, it scales linearly with k and almost quadratically on |V |.
Note that for all our datasets, HotSpots finished within 30 minutes
in choosing top-50 nodes.

(a) vs k (b) vs |V |
Figure 4: Scalability Results.

4.3 Success Stories and Case Studies (Q3)

In this section, we show how HotSpots algorithms and results can
be used for real applications at ORNL and beyond. Note that the
HSIP Gold data we used is not public, and we cannot directly show
the network we constructed due to security reasons. Therefore
in all our visualizations, we use the maps and the high-voltage
transmission lines from the US Energy Information Administration
(EIA) [3] which are publicly available.

Heterogeneous networks for CI. Constructing a heterogeneous
CI network having interlinks within and across networks to cap-
ture various physical, geographical and cyber interdependencies
provides useful insights right off the bat. For example, by simply
overlaying the hurricane advisory track over the heterogeneous
network we constructed, we can quickly estimate the extent of the
infrastructure damage, and even predict the spread of the damage
beyond the contour of the hurricane track. This is crucial as getting
such estimates currently are non-trivial, and time consuming [10].

In this case study, we overlay actual hurricane sandy wind swath
tracks (advisory no. 20) obtained from Hurricane Mapping [4] over
our five-component heterogeneous network, and estimate both
the immediate and predicted damage of the hurricane. The results
from our analysis provide several intuitive insights. Firstly, when
the hurricane Sandy makes landfalls on New York city, by simply
overlaying the hurricane track with ourG , we can quickly estimate
the CI facilities directly affected by the hurricane. As shown in
Fig. 5(a), we expect from HotSpots that 227 nodes inG are affected
after sandy hits NY city. Assuming these 227 nodes would fail im-
mediately, by running our failure cascade model F-Cas, we can
predict the future damage of the CI network and pinpoint high risk
regions and facilities. In Fig. 5(b)(c), the failure quickly cascades
to other CI facilities in the entire NY state. Further, the cascading
and escalating loop failures are clearly visible on the map with
487 nodes failing before the failure cascade loop is formed and 712
nodes failing after the loop formation. These reinforcing loops were
one of the major causes for the prolonged recovery. Our failure
model is able to systematically predict the cascading loop trends
given the initial perturbation input. Such prediction results comple-
ment existing hurricane assessment tools, such as HEADOUT [2],
OCIA3, EARRS [8] by including the failure cascade affect into their
damage assessment system which are mainly based on application
of fragility curves [7] without considering the interdependencies
among different CI components.
Comparison with the 2003 Blackout. An in-depth study on the
US NE 2003 blackout event revealed that a single high voltage trans-
mission line in northern Ohio brushed against some overgrown
trees and shut down due to overheating [5]. Within a couple of
hours, three other lines sagged into trees and switched off, forcing
other power lines to shoulder an extra burden and tripping a cascade
of failures throughout southeastern Canada and eight NE states.
This suggests that the initiators of this massive blackout should be
critical nodes in the context of cascading failures. In this case study,
we select a portion of the heterogeneous network overlapping the
Ohio region and run HotSpots to identify the top 5 vulnerable
nodes (shown in Fig. 6a). By comparing our findings with the study
mentioned above, we find that one of the nodes (on the top right)
we identified are truly critical: it is only one hop away (within ∼ 10
miles in geographical distance) from the nodes connecting the 3
transmission lines which actually failed and triggered the blackout.
Such critical nodes identified by HotSpots can also support DHS
NIPP4 for strengthening the security and resilience of the CI sys-
tem. In contrast, the baselines do not detect these critical nodes. For

3https://www.dhs.gov/office-cyber-infrastructure-analysis
4https://www.dhs.gov/sites/default/files/publications/NIPP%202013_Partnering%
20for%20Critical%20Infrastructure%20Security%20and%20Resilience_508_0.pdf

https://www.dhs.gov/office-cyber-infrastructure-analysis
https://www.dhs.gov/sites/default/files/publications/NIPP%202013_Partnering%20for%20Critical%20Infrastructure%20Security%20and%20Resilience_508_0.pdf
https://www.dhs.gov/sites/default/files/publications/NIPP%202013_Partnering%20for%20Critical%20Infrastructure%20Security%20and%20Resilience_508_0.pdf


(a) 227 nodes initially affected in NY city (b) 487nodes fail before the cascade loop (c) 712 nodes fail after a loop of cascade

Figure 5: Estimate the impact of hurricane sandy on NY state. (a) # of directly affected nodes by overlaying constructed G
with the hurricane track (b) F-Cas simulation results before the failure cascade forms a loop. (c) F-Cas results after the failure

cascade forms a loop. We mark regions with high number of CI failures as red (actual network not shown for data privacy).

example, Netshield detects much different nodes that are more
than 80 miles away from the critical locations in the blackout.
Analyzing detected critical nodes. To evaluate the quality of the
critical nodes HotSpots finds, we mark our results on high-voltage
(> 345 kV) transmission networks sourced from the EIA. In Fig. 6,
the locations of the detected nodes are marked with a red circle.
While the high-voltage transmission lines are not a direct indicator
of importance, it is expected in general that critical nodes would
be either on large generation plants or on transmission line ter-
minations with a large power throughput. In the visualization of
the high-voltage transmission networks, this is often correspon-
dent to nodes with several converging lines. In these figures, we
clearly observe that many of the top transmission nodes HotSpots
identified are on these high-voltage transmission lines, and some
on the intersection of multiple HV lines, indicating that the nodes
detected from HotSpots are truly important.

(a) OH

(b) PA

(c) TN

Figure 6: Top five transmission nodes identified by

HotSpots, highlighted with red circles.

4.4 User interface

To improve usability, we also spent time designing a web-based user
interface that integrates all the proposed tools and algorithms and
also facilitates ‘what-if’ scenario analysis. We describe the details
in the following and show an example screenshot in Fig. 7.

Our interface allows users to input their own CI data, and con-
struct their own heterogeneous CI network using our graph gener-
ation toolkit (urbannet-toolkit). The heterogeneous network will
then be visualized on a real map (top right in Fig. 7), with options
to show a certain type of CI component (top left), and to check
detailed attributes of a specific node. Further, it allows users to
input a perturbation (i.e. selecting initial failure nodes), customize

and run our failure cascading simulation (bottom left), and get real-
time failure statistics and visualizations in all the CI components
(bottom right). Finally, it integrates the HotSpots algorithm which
automatically identifies and visualizes the critical nodes. We also
provide a knob which can control the number of critical nodes the
analyst wants to visualize. This interface would greatly help in
analyzing the vulnerability of the CI systems for domain experts
and decision makers.

Figure 7: Snapshot of our UI (shows part of Florida).

5 DISCUSSION

To the best of our knowledge, the proposed HotSpots algorithm,
as well as our urbannet-toolkit and F-Cas model are the first at-
tempt in analyzing up to five CI components in a unified framework
from a graph analytic view point. Additional CI components can be
easily added given the interlinking rules. The graphs so generated
facilitate network-based analysis and easy visualization for bet-
ter understanding. As discussed in Section 2.2, our failure cascade
model F-Cas is not very expensive to run, and captures both the
path-based and neighbor-based failure conditions, that cannot be
modeled by existing cascade models. Note that such path-based fail-
ure cascading is not restricted to the transmission network. Similar
overload phenomenons and path-based failures can be observed
in the electrical distribution network (crucial for power delivery),
which distributes power from substations to local facilities (a layer
that we do not model to simplify our analysis). Take the SCADA sys-
tem (supervisory control and data acquisition)5 as another example.
The communication servers send control signals through the WAN
and LAN network to control facilities such as PLCs (programmable
logic controllers) and RTUs (remote terminal units). When some

5https://en.wikipedia.org/wiki/SCADA

https://en.wikipedia.org/wiki/SCADA


connections in the WAN and LAN network are damaged, message
flooding may happen which would cause message loss (similar to
the overloading in our problem), and further cause malfunctioning
in the electric grid system. As a result, HotSpots can be easily
applied on a wide range of CI systems to identify the critical nodes
in those systems.

6 OTHER RELATEDWORK

In addition to work that we have mentioned in previous sections,
we discuss more related work here.
Infrastructure Vulnerability Analysis. Previous works on vul-
nerability analysis and simulation of interdependencies between
critical infrastructure systems can be categorized into: empirical
approach, agent based, system dynamics based, economic theory
based, and network based approaches (see [24] for a review). A few
mathematical frameworks [12] and interdependency models [17]
have been proposed for vulnerability analysis. Most of these work
focus on only two critical infrastructures at a time. For example,
Parandehgheibi et al. [25] study the interdependency between a
communication network and a power grid network, Dueñas-Osorio
et al. [18] study the fragilities and interdependency between power
and water network. We study a more general problem where we fo-
cus on combining multiple practical (five) CI components together.
Influence Maximization and Cascade Analysis. The influence
maximization problem aims to find the best seed nodes which
maximize influence. This has been extensively studied on the Inde-
pendent Cascade and the Linear Threshold models [20], where they
gave a (1-1/e) approximation algorithm based on submodularity.
Much work has focused on designing more efficient algorithms
for the original problem [9], or extending to continuous time mod-
els [16], or under uncertainty [15]. All these algorithms assume
that the influence cascades locally through edges. In contrast, in
our problem, the failure condition for nodes requires examination
of the connectivity of the entire network, and not just neighbors. A
very recent work Opera [13] finds critical nodes in a CI network
that would maximally decrease the connectivity in target networks.
However, they still use a ‘local’ failure model, which does not cap-
ture the dynamics of CIS (they optimize on a different objective
function based on the number of triangles in the network).

7 CONCLUSIONS

In this paper, we approach the problem of failure analysis on CI
systems using heterogeneous networks. We construct real CI net-
works from datasets at ORNL, and formulate a novel cascade model
F-Cas and problems to identify critical nodes. We then develop
an effective and scalable algorithm HotSpots for these problems.
We also showed through extensive experiments on real datasets,
that such an approach is useful for CI analysis, that HotSpots
gives high quality results beating competitors, and the results are
interpretable and meaningful matching real-world situations.

As future work, the results from our approaches can serve as an
input starting point for expensive, high-fidelity simulations. Further,
applyingHotSpots to other CIs such as the transportation network
and the SCADA system is also useful.
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