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ABSTRACT
We introduce a new cosmic emulator for the matter power spectrum covering eight cosmological parameters.

Targeted at optical surveys, the emulator provides accurate predictions out to a wavenumber k ∼ 5Mpc−1 and
redshift z ≤ 2. Besides covering the standard set of ΛCDM parameters, massive neutrinos and a dynamical dark
energy of state are included. The emulator is built on a sample set of 36 cosmological models, carefully chosen
to provide accurate predictions over the wide and large parameter space. For each model, we have performed
a high-resolution simulation, augmented with sixteen medium-resolution simulations and TimeRG perturbation
theory results to provide accurate coverage of a wide k-range; the dataset generated as part of this project is more
than 1.2Pbyte. With the current set of simulated models, we achieve an accuracy of approximately 4%. Because
the sampling approach used here has established convergence and error-control properties, follow-on results with
more than a hundred cosmological models will soon achieve ∼ 1% accuracy. We compare our approach with
other prediction schemes that are based on halo model ideas and remapping approaches. The new emulator code
is publicly available.
Subject headings: methods: statistical — cosmology: large-scale structure of the universe

1. INTRODUCTION

The field of cosmology has undergone a remarkable transfor-
mation in the last two decades – from a somewhat qualitative
picture of the make-up and evolution of the Universe we have
arrived at the ‘Standard Model’ of cosmology with parameters
constrained at the few percent level (Ade et al. 2015; Ander-
son et al. 2014). Despite the phenomenological and descrip-
tive success of the Standard Model, many foundational ques-
tions still require answers. Our understanding of the funda-
mental physics is lacking in critical areas: We do not prop-
erly understand the cause of the accelerated expansion of the
Universe (Caldwell & Kamionkowski 2009), the nature of dark
matter is unknown (Feng 2010), and our understanding of the
physics of inflation remains incomplete, to mention three of
the most prominent puzzles. Ongoing and upcoming cosmo-
logical surveys and experiments aim to address these and other
questions by providing datasets with much smaller statistical er-
rors and extended range in spatial scales and redshift. Analysis
of these observations can provide important clues by provid-
ing evidence against a cosmological constant, or even against
general relativity as the preferred theory of gravity (Joyce et al.
2015). Some of the data will put added constraints on the prop-
erties of dark matter candidates, and also significantly tighten
the current cosmological errors on determining the sum of neu-
trino masses. Because of the enhancement of data quality, it
is therefore important – from a theoretical and modeling per-
spective – to open up new parameters beyond the standard set

of θ = {ωcdm,ωb,σ8,h,ns} and also enter new uncharted areas
with respect to length scales, exploring nonlinear regimes that
might provide new insights into the dynamics of the Universe.

In order to take full advantage of the new data, and not be
theory/modeling-limited, prediction tools must be available at
accuracy levels significantly better than those characteristic of
the measurements. Since surveys increasingly probe the nonlin-
ear regime of structure formation, theoretical predictions have
to be derived from detailed and error-controlled simulations that
are necessarily computationally expensive. While this may be a
reasonable approach to study individual models, it is not prac-
tical as a tool for exploring parameter space, nor does it help
in solving the cosmological inverse problem of determining pa-
rameters based on observational knowledge of a set of summary
statistics, where hundreds of thousands to millions of forward
model evaluations may be needed.

In order to address the above requirement, we have embarked
on a program to create very fast oracles, or “cosmic emula-
tors” for various cosmic probes. The aim of the approach is
to achieve robustly accurate prediction schemes over a range
of cosmological parameters, based on a relatively small num-
ber of underlying simulations. The complete framework not
only provides predictions for specific cosmological statistics
but also includes a self-contained Bayesian inference engine
to constrain cosmological parameters by combining observa-
tional data and emulator predictions (‘cosmic calibration’). We
first introduced the concept in Heitmann et al. (2006) based
on a set of lower resolution gravity-only simulations and a
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simulated data set for the nonlinear matter power spectrum.
In a second paper, Habib et al. (2007), we extended the ap-
proach to include measurements for the cosmic microwave
background (CMB). In a following set of four papers (Heit-
mann et al. 2010, 2009; Lawrence et al. 2010; Heitmann et al.
2014), the Coyote Universe series, we focused on providing
a high-accuracy prediction tool for the matter power spectrum
over a range of six cosmological parameters, adding w to the
standard set of five. Later, we added other emulators to pre-
dict the halo concentration-mass relation (Kwan et al. 2013)
and the galaxy power spectrum, using halo occupation distribu-
tion (HOD) modeling (Kwan et al. 2015).

In this paper, we focus again on the matter power spec-
trum, while extending the range of cosmological parameters to
eight, θ = {ωcdm,ωb,σ8,h,ns,w0,wa,ων} and employing higher-
quality simulations than in the original Coyote Universe, simul-
taneously improving on the mass resolution and the simulation
volume. This work builds on the convergent sampling strategy
described in Heitmann et al. (2015) to systematically improve
emulation accuracy by adding new simulations to a previous
sample, following Bergner (2011). In the original work, the
idea was demonstrated on a set of linear power spectra as well
as for mass function predictions (assuming universality of the
mass function across cosmologies, which is valid at the 5-10%
level) – we now release the first nonlinear emulator from the
Mira-Titan Universe simulation suite. The inclusion of a dy-
namical dark energy component and massive neutrinos is non-
trivial – the approach to the simulations is described in more
detail in Heitmann et al. (2015). Several tests of the simulation
methodology were carried out in Upadhye et al. (2014), where
results on large scales were compared to TimeRG perturbation
theory. Discussions of the range of validity and methods for
adding baryonic corrections are provided in Section 3.1.

The eventual aim of the emulators constructed from the Mira-
Titan Universe simulation suite is to reach simulation predic-
tion accuracies at the 1% level, which requires results for more
than a hundred cosmological models. The sampling strategy
followed allows us to make emulators at intermediate accu-
racy levels before all the simulations are completed and to
check thereby that the appropriate accuracies are in fact being
achieved during this process. (This also includes demonstrating
successful data filtering, data reduction with principal compo-
nents, and finally, Gaussian process modeling to carry out the
required interpolation.) Results presented in this paper demon-
strate the success of this strategy.

Several other approaches have been suggested to provide pre-
dictions for the matter power spectrum going beyond ΛCDM.
Agarwal et al. (2014) included neutrinos and constructed an
emulator using machine learning techniques. Takahashi et al.
(2012) used a set of simulations to improve the original Halofit
predictions and Bird et al. (2012) added a neutrino contribution
to this model. Casarini et al. (2016) used an approximate ap-
proach to extend the Coyote Universe emulator to include wa
as a new parameter, in order to cover the model space of dy-
namical dark energy models. Finally, Mead et al. (2016) used
a halo model approach to include effects of neutrinos, modi-
fied gravity, and dynamical dark energy. We will discuss these
approaches and compare some of their results with the emula-
tor presented here in Section 4. will The paper is organized as
follows. In Section 2 we describe the cosmological parame-
ter space covered and provide relevant details of the simulation
suite used to build the emulator. In Section 3 we discuss em-

ulator construction with a focus on error estimates. We com-
pare our results to other approaches in Section 4, ending with
a summary and outlook in Section 5. The emulator is publicly
available via a github repository1 and on our CosmicEmu web-
page2.

2. PARAMETER RANGES AND SIMULATIONS

The parameter range now allows for dynamic dark energy
and varying the neutrino mass sum. The Mira-Titan Universe
suite of simulations is well on its way to completion; we de-
scribe below the general characteristics of the simulations, in-
cluding a separate discussion of how neutrinos are included.

2.1. Parameters

The choices for the parameter ranges covered in this paper
are discussed in detail in Heitmann et al. (2015). In addition
to the five standard parameters describing the ΛCDM model,
we include a dynamical dark energy equation of state, param-
eterized by (w0,wa), and massive neutrinos. We fix the effec-
tive number of neutrino species to be Ne f f = 3.04. The dark
energy equation of state is parameterized in the standard form:
w(a) = w0 +wa(1−a) (Chevalier & Polarski 2001; Linder 2003).
Our parameter ranges are informed by recent observations of
the CMB and large scale optical surveys. In addition, we aim to
cover the relevant ranges for ongoing and upcoming surveys.
With these considerations in mind, we choose the following
ranges over the eight cosmological parameters (with a flat prior
assumption):

0.12≤ ωm ≤ 0.155, (1)
0.0215≤ ωb ≤ 0.0235, (2)

0.7≤ σ8 ≤ 0.9, (3)
0.55≤ h ≤ 0.85, (4)
0.85≤ ns ≤ 1.05, (5)
−1.3≤ w0 ≤ −0.7, (6)

−1.73≤ wa ≤ 1.28, (7)
0.0≤ ων ≤ 0.01. (8)

Note that wa is actually jointly constrained with w0 such that
0.3 ≤ (−w0 − wa)1/4. See Heitmann et al. (2015) for a discus-
sion.

2.2. Simulations

The large-scale simulations described in this paper were car-
ried out with the HACC (Hardware/Hybrid Cosmology Code)
framework, a high-performance cosmology code, designed to
take advantage of current and future supercomputer architec-
tures; HACC is described in detail in Habib et al. (2016).
HACC simulations were carried out on the Mira supercomputer
at the Argonne Leadership Computing Facility (ALCF) and on
the Titan system at the Oak Ridge Leadership Computing Fa-
cility (OLCF). Mira belongs to the family of IBM’s Blue Gene
Q systems (BG/Q) and has 786,432 compute cores, while Titan
achieves its high performance due to the NVIDIA K20 Graph-
ics Processing Units (GPUs) attached to each of its ∼ 18,000
compute nodes. The simulations described in this paper are
modest in size compared to the capabilities of these machines,
but the sheer number of simulations needed for our full program
(∼ 100) makes this work computationally expensive. We note

1https://github.com/lanl/CosmicEmu
2http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html
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that HACC uses different algorithms on the above systems but
the results for the power spectrum agree to within small frac-
tions of a percent (Habib et al. 2016), much smaller than the
final target error of the emulator.

The results for each sampled cosmological model were ob-
tained as follows. We first evaluate the power spectrum us-
ing the TimeRG perturbative approach (introduced in Pietroni
2008), as described in Upadhye et al. (2014). This provides
a smooth and very accurate prediction of the power spectrum
on large scales (small k), out to k ∼ 0.04Mpc−1 for 0 ≤ z ≤ 1
and k∼ 0.14Mpc−1 for z≤ 2. Several N-body simulations were
carried out next. In order to cover the intermediate scales (out
to k ∼ 0.25Mpc−1), we use 16 realizations of particle mesh
(PM) simulations carried out with HACC. These simulations
evolve 5123 particles on a 10243 grid and cover a volume of
(1300Mpc)3 each. For the small scale (high k) regime we carry
out one high-resolution simulation with HACC per cosmology.
These simulations evolve 32003 particles starting at zin = 200
using the Zel’dovich approximation, each in a (2100Mpc)3 vol-
ume, leading to a mass resolution of approximately ∼1010M�,
depending on the detailed cosmological parameters. The force
resolution of these simulations is ∼ 6.6kpc. For each of the
high resolution runs we store a range of outputs:

• Particle outputs (full and randomly down-sampled to
1%) at the following redshifts: z = {4.00, 3.04, 2.48,
2.02, 1.78, 1.61, 1.38, 1.21, 1.01, 0.78, 0.74, 0.70, 0.66,
0.62, 0.58, 0.54, 0.50, 0.47, 0.43, 0.40, 0.36, 0.30, 0.24,
0.21, 0.15, 0.10, 0.0}

• Halo information at the same redshifts for friends-of-
friends halos with a linking length of b = 0.168 with at
least 20 particles per halo, halo centers are based on a
potential minimum evaluation

• Halo information at eight redshifts for friends-of-friends
halos with a linking length of b = 0.2 with at least 20
particles per halo; halo centers are based on a potential
minimum evaluation

• Halo information at the same redshifts for spherical
overdensity halos with M200 with at least 1,000 particles
per halo

• Halo information at eight redshifts for spherical over-
density halos with M300, M500 with at least 1,000 parti-
cles per halo

• All particles that reside in halos with at least 1,000 par-
ticles, 1% of particles in smaller halos, randomly se-
lected, at least 5 particles per halo

• Particle and halo tags for all particles in halos

• Power spectra at the same redshifts, though only the fol-
lowing are used for building the emulator: z = {2.02,
1.61, 1.01, 0.66, 0.43, 0.24, 0.10, 0.0}

Keeping this data leads to an uncompressed dataset size of ap-
proximately 38TB per model, and more than 1PB for the simu-
lation suite discussed in this paper. Storing the relatively large
number of time slices allows for creating light-cones from the
outputs, following the approach presented in Sunayama et al.
(2016). For the power spectrum emulator, generation of a sub-
set of the power spectrum measurements is sufficient due to

the smooth evolution of P(k). In addition, many more emula-
tors can be created from this data set, for quantities such as the
mass function, galaxy correlation function, etc. While it is diffi-
cult to make the full dataset publicly available (the raw particle
outputs will reside on tape for long-term storage and retrieval
is currently slow), we are planning to make the processed data,
such as the halo catalogs, publicly available in the near future.

2.2.1. Treatment of Neutrinos

The treatment of neutrino effects in cosmological simula-
tions is nontrivial. This is mainly due to two issues: 1) the
very high neutrino thermal velocities early on in the simula-
tion, and 2) the very large mass ratio between the dark matter
tracer particles and the neutrino tracer particles. Many solu-
tions to these problems have been discussed in the literature,
from adding the neutrinos only at late times, when the thermal
velocities are much smaller (helping with the first but not the
second problem), to introducing coarser force resolution for the
neutrinos to avoid the second problem, to treating the neutri-
nos perturbatively (for more details, see, e.g., Agarwal & Feld-
man (2011); Bird et al. (2012); Brandbyge et al. (2008); Brand-
byge & Hannestad (2009, 2010); Gardini et al. (1999); Inman
et al. (2015); Klypin et al. (1993); Viel et al. (2010); Banerjee
& Dalal (2016) and references therein).

We follow the approach discussed in detail in Heitmann et al.
(2015), applying a small correction to account for the scale de-
pendence of the growth function as discussed in Upadhye et al.
(2014). We provide a short summary of our neutrino treatment
here and show comparisons to results found by other groups
in Section 4. Since we consider the case of relatively small
neutrino masses, the most conservative treatment of neutrinos
suffices. In this treatment, the neutrinos are not evolved as a
separate species, but the linearly evolved neutrino component
is added at each redshift separately. At z = 0, the simulation
is normalized to the full linear neutrino-baryon-CDM power
spectrum as given by CAMB (Lewis et al. 2000). The baryon-
CDM component is taken to the starting redshift with a scale-
independent growth function and evolved forward with the N-
body code, including the neutrino component in the background
equations. This is done for consistency, since the forward evo-
lution does not have the scale-dependent growth characteristic
of massive neutrinos. At each redshift of interest, we add the
linear neutrino power spectrum to the nonlinear baryon-CDM
component. This approach is valid as long as the neutrino den-
sity fraction fν ≡ Ων/Ωm is sufficiently small.

The result of the procedure outlined above is a low-redshift
power spectrum that accurately includes nonlinearity in the
CDM + baryon sector as well as neutrinos treated linearly. Cas-
torina et al. (2015) have found this assumption to be accurate
at the 1% level for neutrino masses satisfying current bounds,
when compared with N-body simulations that include massive
neutrinos as separate particles. Meanwhile, at higher redshifts
z & 1, our use of the scale-independent CDM + baryon growth
factor leads to an error at large scales where neutrinos cannot
be neglected. Fortunately, these scales are linear, and Upad-
hye et al. (2014) showed that the resulting error can be re-
moved by multiplying the N-body power spectrum by the k-
dependent correction factor Db+CDM+ν(k,z)2/Db+CDM(z)2. Here
Db+CDM+ν and Db+CDM are, respectively, the linear growth fac-
tors for baryons + CDM + ν and baryons + CDM. The corrected
N-body power spectrum is consistent with perturbation theory
at large scales to within the simulation error bars. This proce-
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dure can be interpreted in the separate universe sense where it
has been shown that the scale-dependent clustering of an ex-
tra field (quintessence or neutrinos) can be neglected (up to
some level of approximation) when the simulation box size is
smaller than the Jeans length of that field (Hu et al. 2016; Chi-
ang et al. 2016). Our neutrino treatment is reasonable below
the Jeans (neutrino free-streaming) scale, and we correct it on
super-Jeans-scales.

3. EMULATOR CONSTRUCTION AND TESTING

In this Section we discuss the range and validity of the emu-
lator including the possibility of adding baryonic corrections in
post-processing, the smoothing procedure applied to the power
spectrum from the set of individual simulations to produce the
mean spectrum, and the final process of constructing the em-
ulator. In the latter two cases we discuss the associated errors
and how they are estimated and checked.

3.1. Range of Validity

Upcoming surveys require accurate predictions of the mat-
ter power spectrum at levels of a fraction of a percent. The
error budget is complicated as many interacting sources of un-
certainty are present. First, the numerical accuracy of the un-
derlying cosmological simulations induces an irreducible er-
ror. We follow here the discussions in Heitmann et al. (2010)
in setting the starting redshift and force and mass resolution.
Given our simulation specifications, the numerical accuracy at
the redshifts (z ≤ 2) and scales (k ≤ 5Mpc−1) of interest is at
the percent level. Second, there are errors due to the emula-
tion scheme; we discuss these and estimate their values below.
The main source for inaccuracy is the limited number of models
that we consider here. As stated earlier, this error will reduce
significantly as more models are added. Finally, the largest sys-
tematic uncertainty is due to the modeling of neutrinos and in-
complete knowledge of baryonic effects.

Strictly quantifying the error of the neutrino treatment is dif-
ficult since no error-controlled, fully self-consistent, neutrino
simulation exists currently. As explained in Section 2.2.1, we
treat the neutrinos not as a separate species but evolve them
only in the background, and we add the linear neutrino power
spectrum to the Pcb-component obtained from the simulation
rather than compute the nonlinear neutrino power spectrum.
The validity of the first assumption was tested in Upadhye et al.
(2014) using TimeRG perturbation theory. In the regime that
the perturbative approach is valid, the agreement was excellent.
The second assumption, investigated in detail in Castorina et al.
(2015), holds at the 1% level.

A similar situation holds for the uncertainty due to the lack
of a baryonic treatment. In our simulation, the baryons are only
included in the initial transfer function and gas dynamics and
star formation and feedback effects are not modeled. Baryonic
effects on the power spectrum remain inconclusive due to un-
certainties in the modeling of several effects, such as feedback
from active galactic nuclei (AGN) and supernovae (SNe). At-
taining predictive control at the percent level at smaller length
scales (k > 1Mpc−1) is difficult due to these uncertainties.

An alternative approach to carrying out a large number of ex-
pensive hydrodynamics simulations was put forward in Mead
et al. (2015). Here the authors incorporate baryonic effects
into a halo model approach and are able to reproduce results
from full hydrodynamics simulations at the 5% level of ac-
curacy. In the same spirit, one could model baryonic effects

given emulator predictions if reliable results from hydrodynam-
ics simulations are available. Zentner et al. (2013) follow a
similar path targeting the convergence power spectrum in mod-
eling baryonic effects by varying the halo concentration. Ap-
proaches where the baryonic physics is modeled on top of the
matter power spectrum informed by a small number of hydro-
dynamics simulations will be the only viable option for the
foreseeable future. Eifler et al. (2015) propose using a PCA
decomposition of the OWLs suite of simulations to parameter-
ize the effect of baryons on the matter power spectrum, which
can then be included in cosmological model fitting and sub-
sequently marginalized. Kitching et al. (2014) and MacCrann
et al. (2014) introduce another method to account for the im-
pact of baryons in the dark matter power spectrum by multiply-
ing the Halofit power spectrum by the ratio of the OWLs dark
matter and baryonic power spectrum over the OWLs dark only
power spectrum. Typically the most extreme OWLs simulation
is chosen, the AGN feedback scenario, such that the impact of
baryonic effects is maximized to provide an upper bound. This
technique was applied by the Dark Energy Survey Collabora-
tion (2016) and Kwan et al. (2017) to estimate the effect of
baryonic physics on the power spectrum of cosmic shear and
tangential shear for galaxy-galaxy lensing respectively.

With increasing computing power, a better understanding
of uncertainties in sub-grid modeling, and more observational
data for cross-calibration, the situation will likely improve over
time. Given current uncertainties, it is nevertheless difficult to
state an absolute error on the full matter power spectrum over
the range of scales considered in this paper.

3.2. Smoothing

Our overall approach uses ideas described in the Coyote Uni-
verse series of papers (Heitmann et al. 2010, 2009; Lawrence et
al. 2010; Heitmann et al. 2014). In this subsection and the next,
we briefly describe the approach, referring the reader to the ear-
lier work for further details.

The first task is to smooth the noisy power spectra generated
from the N-body simulations. We use the process convolution
algorithm described in Lawrence et al. (2010). A process con-
volution is a mechanism for producing realizations of a smooth
function as a weighted average of a simple stochastic process.
Figure 3 in Lawrence et al. (2010) shows a simple example
with Gaussian variates (the stochastic process) averaged with
a Gaussian smoothing kernel (the weighting scheme).

As in our previous work, we assume that the unobservable
smooth power spectrum is the result of a two-layer process
convolution. The top layer describes the transformed power
spectrum as a process convolution where Brownian motion re-
alized on a grid is smoothed with a Gaussian kernel whose
kernel width changes over the domain. The kernel width is
described by a the second layer process convolution which is
simply Gaussian variates on a grid smoothed with a Gaussian
kernel. The spectrum computed from each N-body simulation
is modeled as a multivariate Gaussian variable with mean given
by the two-layer process convolution and known diagonal co-
variance. The unknown smooth spectrum and a number of nui-
sance parameters are estimated using a Markov chain Monte
Carlo (MCMC) based approach. Details of the procedure are
provided in Lawrence et al. (2010).

The current results are obtained making a slightly different
assumption compared to our previous work. Earlier we as-
sumed, and it appeared to be the case, that different resolutions
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FIG. 1.— Data from the M012 run used in the process convolution estimation
of the smooth spectra. The gray dashed lines show TimeRG perturbation the-
ory results used at low k. The dotted gray lines show the low resolutions runs
at medium k. The solid black line shows the high resolution run at medium and
high k. In ascending order, these are at redshifts 2.020, 1.610, 1.006, 0.656,
0.434, 0.242, 0.101, and 0.000.

had about the same variance for any given value of k for which
a given resolution was unbiased. It now appears that our cur-
rent high resolution spectra have smaller variance about the true
spectrum than the low resolution runs. For now, we have used
the larger variance associated with the lower resolution runs in
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FIG. 2.— Smooth power spectra estimates for the M012 results. In ascending
order, these are at redshifts 2.020, 1.610, 1.006, 0.656, 0.434, 0.242, 0.101, and
0.000.

0.05 0.10 0.20 0.50 1.00 2.00 5.00

−3
−2

−1
0

1
2

3

M012

k

R
es

FIG. 3.— Standardized residuals from the high resolution spectra as a func-
tion of k for M012. The lines go from yellow to green to blue with increasing
step (decreasing z). These show no obvious trend, suggesting that the smooth
estimate is a good fit.

every case – as shown below this does not adversely affect the
results. In future iterations, however, we will take this change
in variance into account.

As one example, Figure 1 shows the data from the M012 runs
that are used in the estimation procedure for the smooth power
spectra. The dashed gray lines show the TimeRG perturbation
theory results used up to k = 0.04Mpc−1 for z < 1 and up to
k = 0.14Mpc−1 for z > 1. The gray dotted lines show the lower
resolution runs that go from the TimeRG perturbation theory
results up to k = 0.25Mpc−1. The solid black line shows the
high resolution run used from the TimeRG perturbation the-
ory results up to the maximum value of k = 5Mpc−1. Figure 2
shows the estimated smooth spectra for this simulation. M012
is representative of the results for all parameter settings (the Ap-
pendix provides a complete list of the sampling design space).

Figures 3 and 4 show some diagnostics for the process con-
volution fit. Both of these plots consider the standardized resid-
uals for the high resolution run for cosmology M012 (the other
cosmologies and resolutions lead to similar conclusions). The
standardized residuals are computed in the following manner.
First, the smoothed process convolution estimate is subtracted
off across k. If the process convolution process has provided a
good estimate for the mean, the residuals should now have zero
mean across k, that is the mean taken across k should be close
to zero. Next, each residual is divided by the standard devia-
tion, the square root of the variance, of the raw data at each k.
This variance changes over k in a log-linear fashion, i.e., the
log of the variance decreases linearly with the logarithm of k.
This behavior is used as part of the process convolution pro-
cedure (see Lawrence et al. 2010 for details.) If this variance
prediction is correct, the resulting standardized residual should
have variance one. If there is little correlation, the collection of
standardized residuals should resemble an independent sample
from the standard normal distribution.
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TABLE 1
ADDITIONAL MODELS FOR TESTING

Model ωm ωb σ8 h ns w0 wa ων

M038 0.1467 0.0227 0.7325 0.5902 0.9562 -0.8019 0.3628 0.007077
M039 0.1209 0.0223 0.8311 0.7327 0.9914 -0.7731 0.4896 0.001973
M040 0.1466 0.0229 0.8044 0.8015 0.9376 -0.9561 -0.0359 0.000893
M041 0.1274 0.0218 0.7386 0.6752 0.9707 -1.2903 1.0416 0.003045
M042 0.1244 0.0230 0.7731 0.6159 0.8588 -0.9043 0.8095 0.009194
M043 0.1508 0.0233 0.7130 0.8259 0.9676 -1.0551 0.3926 0.009998
M044 0.1389 0.0224 0.8758 0.6801 0.9976 -0.8861 -0.1804 0.008018

Figure 3 presents evidence that the process convolution works
well in capturing the mean structure. The residuals are cen-
tered on zero across k and there are no major trends in the
data, supporting the unbiased nature of the mean estimate.
(There is some evidence of oscillatory behavior at high k, which
might indicate that our process convolution mean is not flexible
enough or might arise for some other cause; either way, it is
not quantitatively significant.) Here we see some confirmation
of the aforementioned fact that the high resolution runs have
smaller variance than the low resolution run. Most of these
residuals are between -1 and 1, which is too small to match
our assumption that these residuals should resemble draws from
a standard normal (which would produce numbers mostly be-
tween -3 and 3). Figure 4 tests our distribution of Gaussianity.
Here, the empirical quantiles of the standardized residuals (ba-
sically the sorted residuals) are plotted against the theoretical
quantiles of the standard normal distribution. The colors match
Figure 3. The straight lines indicate that the residuals do appear
to be Gaussian and are relatively uncorrelated. The slope of the
lines is related to the variance. The fact that these are less than
unity is another indication that the variance of these residuals
is smaller than expected. This conclusion about the variance is
not detrimental as every indication is that we are estimating the
smooth spectra well and the errors are fairly Gaussian.

3.3. Emulation

The follow-on task is to construct the emulator from smooth
estimates of the matter power spectra. As in the extension of
the original Cosmic Emulator in Heitmann et al. (2014), we
also have a number of partial power spectra using the TimeRG
perturbation theory approach. In fact, we have results from
TimeRG perturbation theory for the complete design (111 mod-
els). To build the emulator, we follow a version of the basic
plan from Heitmann et al. (2014). Our goal is to predict the
multivariate power spectrum from an N-body simulation as a
function of the eight input parameters. As detailed in Lawrence
et al. (2010), the first step is to standardize the simulation out-
puts by centering and scaling, and then projecting them on to
an empirical basis computed via SVD (i.e., principal compo-
nents or empirical orthogonal functions). This process discov-
ers the directions of greatest variation in the high-dimensional
outputs and reduces the modeling to these dimensions. The
basis weights are then modeled as functions of the simulation
inputs using Gaussian processes.

In this case, we have TimeRG perturbation theory results for
the entire 111 run design and complete, smoothed spectra from
N-body results over the first 36 runs in the design. The 36 com-
plete runs are used to compute the mean vector, the scaling fac-
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FIG. 4.— Quantile-quantile plot for the standardized residuals from the high
resolution spectra for M012. The points go from yellow to green to blue with
decreasing redshift z. Empirical quantiles are plotted against the theoretical
quantiles of the standard normal distribution. The approximately straight lines
indicate that the the sample is close to normal. The slope suggests that the
variance is somewhat smaller than expected, as discussed in the text.

tor, and 35 basis vectors. The complete spectra are centered,
scaled, and projected onto the basis to obtain their weights. The
partial TimeRG perturbation theory power spectra (up to the k
values described in the description of the smoothing) are cen-
tered using the relevant portion of the mean vectors, scaled, and
then projected on to the relevant part of the basis vectors to ob-
tain their weights. However, the partial power spectra are only
projected onto the first 7 basis vectors. This number was chosen
by comparing the weights from the partial and complete runs.
Beyond 7 basis vectors, the weights from the partial runs be-
gin to differ visually from the weights from the complete runs
when plotted against the eight input parameters. As a result,
using the partial run weights will actually begin to degrade the
performance of the emulator. All of the weights, from both
complete and partial spectra are put together to estimate the
Gaussian process emulator. See Lawrence et al. (2010); Heit-
mann et al. (2014) for details on the estimation via an MCMC
based approach.
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Figure 5 shows test results of the emulator fit for the to-
tal matter power spectrum emulator, Ptot = (P2

cb + P2
ν)1/2. The

dashed lines show the results for spectra from design points
M038-M044, which are completed runs from the next stage of
the emulator lattice design. The tests are done by holding out
the partial TimeRG perturbation theory results for these runs
and predicting the complete spectra. The maximum error is
about 3% and most are below 2%. The solid lines are the re-
sults for the best fit cosmology M000. This is a true out of
sample test. At low k the error reaches its maximum, with one
redshift showing about a 2.5% error. Figure 6 shows the re-
sults from predicting the training set. Typically, emulators are
expected to interpolate the training set, but that is not true in
the current case. It seems likely that the emulator has diffi-
culty interpolating the weights from the TimeRG perturbation
theory-only results. The resulting fit becomes more like stan-
dard regression where the data is not interpolated, but errors
are minimized. This issue shows up most prominently at high
k where the TimeRG perturbation theory-only runs provide no
direct information. Still, the worst-case error is only 5% with
the vast majority of errors under 2%. (These numbers are con-
sistent with the linear theory tests carried out in Heitmann et al.
2015.) As the number of complete runs continues to increase in
later releases, we anticipate that this issue will disappear; tests
using the linear theory results from Heitmann et al. (2015) are
consistent with this expectation. Overall, the emulator performs
very well despite only 36 complete sets of spectra in eight di-
mensions. We also measured the errors in just the the baryon-
dark-matter component, Pcb(k), finding very similar results.

4. COMPARISON WITH OTHER APPROACHES

In this section we provide some comparisons with alternative
approximate prediction methods. Since most other groups have
addressed either neutrinos or a dynamical dark energy equation
of state but not both (as done here), we divide our tests accord-
ingly. In each of the following subsections we compare the
alternative approaches to our full simulations, if an appropriate
model is available. In addition, we use a set of new models that
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FIG. 5.— Total matter power spectrum predictions for the cosmologies
M038-M044 (completed runs from the next design stage, not used in the cur-
rent work) and the best fit WMAP7 cosmology M000. The former are a hybrid
of out-of-sample and cross-validation predictions as the TimeRG perturbation
theory-only runs for these cosmologies were held-out on each prediction. The
model, M000, is a true test set. The comparison implies that the error is less
than 3%.

FIG. 6.— Total matter power spectrum predictions for the training set. Red
lines show simulations with ων = 0 (M000-M010) while blue lines show sim-
ulations with non-zero neutrino masses (M011-M036). Normally, an emulator
is expected to interpolate these exactly, but the inclusion of weights from the
partial runs makes this difficult. The resulting emulator behaves somewhat
more like standard regression which does not interpolate, but minimizes error.
These results suggest that the error may be as high as 5% in some cases. As
the number of runs increases, this issue will be resolved (see text).
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FIG. 7.— Ratio of predictions from the new emulator with those obtained
using the method of Takahashi et al. (2012). Solid lines show results at z = 2.02
while dashed lines show results at z = 0. The methods match very well at low k
(at the 2-3% level), but differ by 20% at high k for the higher neutrino masses
with ων > 0.007 (M038, M042, M043, M044). For the models with ων <
0.031, the agreement is better than 7% over most of the k-range investigated.

are not in the simulation design to compare the emulator with
the other prediction schemes if those schemes do allow varia-
tion of all eight parameters. We carry out our comparisons for
the two extreme redshifts, z = 0 and z = 2.02.

4.1. Neutrino Predictions

For the case of power spectrum predictions including neutri-
nos, we study the Halofit approach by Takahashi et al. (2012),
which was augmented with a neutrino term by Bird et al.
(2012). Takahashi et al. (2012) improved the Halofit model
originally developed by Smith et al. (2003) around the ΛCDM
model by adding a set of sixteen high-quality gravity-only sim-
ulations. Six of those models were chosen around the best-
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fit WMAP results from different years. The other ten were at
the same design points as the first ten models from the orig-
inal Coyote Emulator (Lawrence et al. 2010) (the simulation
results agreed with those run for the Coyote Emulator mostly
within 3%). These additional simulations allowed them to in-
clude a constant equation of state parameter w as a new cos-
mological parameter. Next, they refitted their parametric model
(adding additional parameters) to achieve an accuracy at the 5-
10% level out to k≤ 10hMpc−1. Based on this work, Bird et al.
(2012) added a neutrino component to Halofit with a new set of
simulations covering neutrino masses between 0.15≤

∑
mν ≤

0.6eV. Their neutrino treatment is particle-based, with the neu-
trinos modeled as a separate species, albeit at lower force reso-
lution than the dark matter particles. In order to avoid problems
due to large neutrino velocities, they started the simulations as
late as zin = 24 for the lightest neutrinos, using the Zel’dovich
approximation. This leads to systematic inaccuracies in the
power spectrum at the few percent level as shown in Heitmann
et al. (2010) and Schneider et al. (2016). (In both papers effects
at the 2-3% level were shown with a starting redshift zin = 50 at
k ∼ 1hMpc−1, extrapolating these results would suggest a 5%
error due to the late start alone, and even more at higher k). In
addition, the small volumes and limited mass resolution (5123

particles) further degrade the accuracy of the simulations. All
these effects combined will lead to systematic errors and scatter
in the power spectrum, in particular on small length scales. The
neutrino-augmented results are available in the latest CAMB
release and have been updated over time (Lewis et al. 2000).

Figure 7 shows a comparison of our new emulator with the
Takahashi et al. (2012) implementation. The ΛCDM model
(M000, brown line) agrees with our emulator at the 5% level at
z = 0 which is in agreement with our previous findings in Heit-
mann et al. (2014) for the same model (see Fig. 11 in that paper.
Note that in the extended emulator paper the ratio is taken with
respect to the simulation, meaning that the y-axis in that paper
is the inverse from what we show in Figure 7 here). Our find-
ing of very similar agreement with Takahashi et al. (2012) with
the new emulator for M000 stresses the excellent agreement
between GADGET-2 and HACC (the original Coyote Emulator
papers were based on GADGET-2 simulations, while the new
simulations have been carried out with HACC, agreements are
well within the sub-percent level). Similar results comparing
GADGET-2 and HACC were also reported in the HACC code
paper by Habib et al. (2016).

For all models, the agreement on large scales (small k, k <
0.02Mpc−1) is at the 1-2% level at both redshifts, z = 0 and
z = 2.02, demonstrating that our use of a k-dependent correction
factor for the growth function works very well. In the quasi-
linear to nonlinear regime the agreement between the Halofit
approach and the new emulator varies between 5% up to 20%.
This is again consistent with our previous findings in Heitmann
et al. (2014), Figure 12, where for some cosmological mod-
els, the differences for the power spectrum prediction between
Halofit and the extended emulator were as large as 15% over
a similar k-range (0.1Mpc−1 < k < 1Mpc−1). Contemplating
this level of error in Halofit is discomforting in the context of
using the matter power spectrum to obtain cosmological con-
straints, since these deviations of around ∼ 10 − 15% occur in
the range of scales typically accessed by measurements of the
cosmic shear power spectrum.

Finally, we emphasize that as shown in our previous work
by Upadhye et al. (2014), the agreement of our simulations in-

cluding neutrinos with a TimeRG-based perturbative approach
was better than 2% at ∼ 0.2Mpc−1 at z = 2 and ∼ 0.1Mpc−1 at
z = 0, for values of ων as high as 0.01. Given these results,
in combination with the findings in Castorina et al. (2015) dis-
cussed in Section 2.2.1, the differences in Halofit and the new
emulator are apparently due to the general inaccuracy of Halofit
away from ΛCDM models rather than to the different neutrino
treatment applied.

4.2. Dynamical Dark Energy Equation of State Predictions

Next we compare our results with the work of Casarini et al.
(2016). Based on our earlier emulator work in Heitmann et al.
(2014), these authors developed a prediction for (w0,wa) cos-
mologies by introducing an effective constant equation of state
that captures the influence of a time-varying dark energy equa-
tion of state to sub-percent accuracy. This idea was introduced
in Francis, Lewis, & Linder (2007) and is based on the assump-
tion that cosmologies beyond ΛCDM can be mapped back to
wCDM models by requiring both models to have the same dis-
tance to last scattering and the same values of H0 and energy
densities, Ωm,r,b,0 at z = 0. This has the effect of tuning the
growth in constant w0 models to match the (w0,wa) models of
interest for some new value of σ8. The new value of σ8 is con-
strained by the chosen values of (w0,wa) and within the context
of the Coyote emulator, this limits the space of allowable mod-
els because of the parameter range of the design.

Based on the above general idea and the results from Heit-
mann et al. (2014) for wCDM models, Casarini et al. (2016)
deliver predictions for the nonlinear power spectrum for dy-
namical dark energy models for scales of 1 < k < 1.5 and be-
tween redshift 0≤ z≤ 3 at high accuracy.

Before we show a comparison of the Casarini et al. (2016)
approach with the emulator, we compare two of our smoothed
power spectra from the simulations for M005 and M007 di-
rectly with their prediction in Figure 8. By testing against the
smoothed input power spectra as well, we are able to distin-
guish between various sources of error in Figure 8, that is,
whether the discrepancy, should there be any, is due to the as-
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of Casarini et al. (2016) for M005 and M007. We compare at z = 2 (solid
line) and z = 0 (dashed line). For M007 we have wa = −1.0 and for M008 we
have wa = 0.4333. The values for ωm and σ8 are higher for M007, leading to
stronger nonlinear effects. The Casarini et al. (2016) approach leads to < 5%
inaccuracy for M005 and < 10% for M007.
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FIG. 9.— Ratio of predictions from the new emulator with those obtained
using the method of Casarini et al. (2016). CC1 and CC2 are cosmologies
selected in addition to M005 and M007 for this comparison. The inputs are
ωm = 0.14205, ωb = 0.02225, σ8 = 0.83, h = 0.6727, ns = 0.9645 and ων = 0 for
both CC runs. For CC1, we choose w0 = −1.0 and wa = 0.5 and for CC2, w0 =
−1.0 and wa = −0.5. For all cosmologies, we compare at z = 2 (solid line) and
z = 0 (dashed line). The methods match reasonably well, agreeing within 10%
errors. The disagreement between the emulator and the Casarini et al. (2016)
result for M005 and M007 is at the same level as the disagreement of direct
comparison with the simulations in Figure 8, consistent with our emulator test
shown in Figure 6.

sumptions of the Casarini et al. model or the predictive power
of the Gaussian Process modeling. The solid line shows results
at z = 2 while the dashed lines show results at z = 0. The results
for z = 0 are in agreement at a level better than 5%, for M005 at
both redshifts. For M007 at z = 0 the agreement is also excellent
(below 5%), for z = 2 it degrades slightly but stays well under
10%. Next, Figure 9 shows a comparison of the emulator with
Casarini et al. (2016) for the same models and two additional
models, CC1 and CC2 that were not part of our original de-
sign (the cosmological parameters for CC1 and CC2 are listed
in the figure caption). We have chosen to include these en-
tirely new models in our analysis because the behavior of σ8(z)
cannot be chosen independently of the other cosmological pa-
rameters. This meant that we could only generate predictions
for two models in our testing set, without massive neutrinos,
staying within the Casarini et al. framework

Again, the comparisons are carried out at z = 0 and z = 2. At
large scales (k < 0.02Mpc−1) the agreement is excellent, at the
1-2% level. In the quasi-linear to nonlinear regime, the agree-
ment of the emulator and Casarini et al. (2016) is very similar
to the agreement with respect to the simulations themselves,
better than 5% for all models at z = 0 and well below 10% for
all models at z = 22. This level of agreement shows that this
approach works quite well.

4.3. Eight-Parameter Model Predictions

In their work, Mead et al. (2016) provide new power spec-
trum predictions, covering not only neutrinos but also dynam-
ical dark energy and modified gravity models. Their approach
is based on re-deriving the different contributions to the halo
model. The new prediction scheme is supposed to be valid for
k < 10hMpc−1 at the few percent level accuracy for most mod-
els. They arrive at this conclusion by comparing their results
to a range of simulations. This is the only approach for which
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FIG. 10.— Ratio of predictions from our smoothed simulation results with
those obtained using the method of Mead et al. (2016) for M038-M044 given
in Table 1 and M000, our ΛCDM cosmology. As in previous plots, dashed
lines show the results at z = 0 and solid lines at z = 2.02. The agreement for
M000 is basically perfect on large scales and at the 2% level in the nonlinear
regime. For M038-M044 the agreement is good over most of the k-range (at
the 5-10% level) but discrepancies can be as large as 15%.
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FIG. 11.— Ratio of predictions from the new emulator with those obtained
using the method of Mead et al. (2016) for the same models shown in Fig. 10.
The methods match roughly at the 3% level at low k for most models, but differ
by more than 15% at high k consistent with the comparison to the simulations
themselves shown in Figure 10.

we can compare our full emulator and our simulation results
directly. We use the additional seven models for this compari-
son that were also employed to investigate the accuracy of our
emulator, as given in Table 1.

We show the comparison of the Mead et al. (2016) fit with
our smoothed simulations directly in Figure 10 for M000 and
M038-M044, given in Table 1. The agreement for the ΛCDM
cosmology is excellent, basically perfect on large scales up to
k ∼ 0.04Mpc−1 and at the 2 − 3% in the nonlinear regime. The
models with a varying dark energy equation of state show some
disagreement on the very largest scales, which is most likely
due to our different implementation of (w0,wa) cosmologies in
CAMB than in the version that was used by Mead et al. (2016).
For relevant details the reader is referred to our previous work
(Upadhye et al. 2014) where we provide a description of our
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implementation and a publicly available CAMB version. In the
quasi-linear regime, the agreement is around 5-10% while at
k ∼ 1Mpc−1 some models show differences of up to 15%.

Figure 11 shows the ratio of the new emulator with respect
to the Mead et al. (2016) fit for the same models. The results
are very similar to the comparison to the smoothed simulations
as to be expected from Fig. 5 (obviously, taking the ratio of
Figures 10 and 11 would lead back to the results of Figure 5).
On large scales, we see slightly poorer agreement compared
to the comparison to the smoothed simulations, but still at the
2% level. On small scales, the agreement is very similar to
the direct comparison with the simulations – for some models
around 5% while for others closer to 15%.

4.4. Comparison with the Extended Emulator

Finally, as a last check, we compare our earlier, ‘Coyote Ex-
tended’ emulator, developed in Heitmann et al. (2014) with our
new emulator, keeping wa = ων = 0. We list the models used
for this test in Table 2. Several of the values used are close to
the edge of our parameter design, making this test rather strin-
gent. Figure 12 shows the ratio of the new emulator over the
extended emulator from our previous work. We show results
for eight models at redshift z = 0. The agreement for most mod-
els is at 2% with two instances showing disagreement up to 4%.
Given the estimated accuracy of our current emulator at approx-
imately 4% and of the previous emulator at the ∼ 5% level this
agreement is within the expected limits.
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FIG. 12.— Ratio of predictions from the new emulator with those obtained
using the extended Cosmic Emulator (Heitmann et al. 2014). The cosmologi-
cal parameters for this comparison are given in Table 2. For all cosmologies,
we compare at z = 0. The methods match within their separately estimated
errors, with disagreements at most at 4%.

5. SUMMARY AND OUTLOOK

We introduce a new cosmic emulator for the matter power
spectrum that covers eight cosmological parameters, and spans
a redshift range from 0 ≤ z ≤ 2 and wave numbers out to
k ∼ 5Mpc−1. We achieve an accuracy at the 4% level (better
for most models) over the full k-range and all eight parameters
while using a sampling space of just 36 cosmological models.

The parameter sampling approach for designing the simula-
tion suite is described in in Heitmann et al. (2015). Because this
scheme has demonstrated convergence properties, the accuracy

of the emulator can be systematically improved by adding more
simulations at well-defined points reaching close to 1% with
about 100 evaluation points in the eight-dimensional space; the
next set of 26 simulations is currently being analyzed. The
internal accuracy tests presented in this paper are consistent
with the estimates from the linear theory-based test presented
in Heitmann et al. (2015) and with the error estimates of a
previously constructed emulator that relied on a different set
of simulations (Heitmann et al. 2014). These positive results
are an important consistency check for our planned further im-
provement of the error bounds.

We have compared our results to other predictions for the
nonlinear power spectrum by a number of authors. The agree-
ment in the linear regime is excellent as is to be expected. The
agreement degrades for models away from ΛCDM in the quasi-
linear to nonlinear regime and we find differences at the 5−10%
for most models but up to 15−20% depending on the model and
redshift investigated and prediction scheme used (only Mead et
al. 2016 provide predictions over the eight cosmological param-
eters that we investigate here, all other approaches only treat
a subset of the parameters). The agreement we find between
different methods is consistent with our evaluation in the ex-
tended Coyote emulator, presented in Heitmann et al. (2014),
where we found differences between the emulator predictions
and, e.g., Halofit at the 20% level for some models.

The simulation suite presented here lends itself to many more
investigations. We are currently building a large set of emula-
tors for quantities such as the halo mass function, redshift space
distortions, and halo correlation and galaxy correlation func-
tions and bias functions. As emulation accuracies continue to
improve, addition of ‘post-processing’ modules for, e.g., bary-
onic effects and galaxy modeling, will also become easier to
implement in a robust fashion.

In future, we expect emulators and observations to co-evolve.
There will likely be a greater emphasis on cross-correlation-
based probes; also as measurements squeeze the parameter
space priors, the quality of emulation will improve significantly.
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APPENDIX
In this Appendix we list all the cosmological models that

have been used in the paper to construct and test the new emu-
lator.
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TABLE 2
EXTENDED COSMIC EMU COMPARISON COSMOLOGIES

Model ωm ωb σ8 h ns w0 wa ων

FC1 0.15110 0.02217 0.81110 0.8167 1.0280 -1.09038 0 0
FC2 0.15110 0.02217 0.82813 0.8167 1.0280 -1.19484 0 0
FC3 0.12000 0.02306 0.70000 0.6833 1.0060 -0.74838 0 0
FC4 0.12000 0.02306 0.68981 0.6833 1.0060 -0.71040 0 0
FC5 0.14205 0.02225 0.83000 0 .6727 0.9645 -0.84095 0 0
FC6 0.14205 0.02225 0.81830 0 .6727 0.9645 -0.78951 0 0
FC7 0.14205 0.02225 0.83000 0 .6727 0.9645 -1.12210 0 0
FC8 0.14205 0.02225 0.83757 0 .6727 0.9645 -1.18190 0 0

TABLE 3
DESIGN

Model ωm ωb σ8 h ns w0 wa ων

M000 0.1335 0.02258 0.8 0.71 0.963 -1.0 0.0 0.0
M001 0.1472 0.02261 0.8778 0.6167 0.9611 -0.7000 0.67220 0.0
M002 0.1356 0.02328 0.8556 0.7500 1.0500 -1.0330 0.91110 0.0
M003 0.1550 0.02194 0.9000 0.7167 0.8944 -1.1000 -0.28330 0.0
M004 0.1239 0.02283 0.7889 0.5833 0.8722 -1.1670 1.15000 0.0
M005 0.1433 0.02350 0.7667 0.8500 0.9833 -1.2330 -0.04445 0.0
M006 0.1317 0.02150 0.8333 0.5500 0.9167 -0.7667 0.19440 0.0
M007 0.1511 0.02217 0.8111 0.8167 1.0280 -0.8333 -1.00000 0.0
M008 0.1200 0.02306 0.7000 0.6833 1.0060 -0.9000 0.43330 0.0
M009 0.1394 0.02172 0.7444 0.6500 0.8500 -0.9667 -0.76110 0.0
M010 0.1278 0.02239 0.7222 0.7833 0.9389 -1.3000 -0.52220 0.0
M011 0.1227 0.0220 0.7151 0.5827 0.9357 -1.0821 1.0646 0.000345
M012 0.1241 0.0224 0.7472 0.8315 0.8865 -1.2325 -0.7646 0.001204
M013 0.1534 0.0232 0.8098 0.7398 0.8706 -1.2993 1.2236 0.003770
M014 0.1215 0.0215 0.8742 0.5894 1.0151 -0.7281 -0.2088 0.001752
M015 0.1250 0.0224 0.8881 0.6840 0.8638 -1.0134 0.0415 0.002789
M016 0.1499 0.0223 0.7959 0.6452 1.0219 -1.0139 0.9434 0.002734
M017 0.1206 0.0215 0.7332 0.7370 1.0377 -0.9472 -0.9897 0.000168
M018 0.1544 0.0217 0.7982 0.6489 0.9026 -0.7091 0.6409 0.006419
M019 0.1256 0.0222 0.8547 0.8251 1.0265 -0.9813 -0.3393 0.004673
M020 0.1514 0.0225 0.7561 0.6827 0.9913 -1.0101 -0.7778 0.009777
M021 0.1472 0.0221 0.8475 0.6583 0.9613 -0.9111 -1.5470 0.000672
M022 0.1384 0.0231 0.8328 0.8234 0.9739 -0.9312 0.5939 0.008239
M023 0.1334 0.0225 0.7113 0.7352 0.9851 -0.8971 0.3247 0.003733
M024 0.1508 0.0229 0.7002 0.7935 0.8685 -1.0322 1.0220 0.003063
M025 0.1203 0.0230 0.8773 0.6240 0.9279 -0.8282 -1.5005 0.007024
M026 0.1224 0.0222 0.7785 0.7377 0.8618 -0.7463 0.3647 0.002082
M027 0.1229 0.0234 0.8976 0.8222 0.9698 -1.0853 0.8683 0.002902
M028 0.1229 0.0231 0.8257 0.6109 0.9885 -0.9311 0.8693 0.009086
M029 0.1274 0.0228 0.8999 0.8259 0.8505 -0.7805 0.5688 0.006588
M030 0.1404 0.0222 0.8232 0.6852 0.8679 -0.8594 -0.4637 0.008126
M031 0.1386 0.0229 0.7693 0.6684 1.0478 -1.2670 1.2536 0.006502
M032 0.1369 0.0215 0.8812 0.8019 1.0005 -0.7282 -1.6927 0.000905
M033 0.1286 0.0230 0.7005 0.6752 1.0492 -0.7119 -0.8184 0.007968
M034 0.1354 0.0216 0.7018 0.5970 0.8791 -0.8252 -1.1148 0.003620
M035 0.1359 0.0228 0.8210 0.6815 0.9872 -1.1642 -0.1801 0.004440
M036 0.1390 0.0220 0.8631 0.6477 0.8985 -0.8632 0.8285 0.001082
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