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1. Overview and objectives

Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and
their large-scale computational implementations—is widely viewed as one of the outstanding challenges
facing the field of CS&E over the coming decade.

The EUREKA project set to address the most difficult class of UQ problems: those for which both
the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we
worked on these extreme-scale challenges in the following four areas:

1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that
exploit the structure of the underlying PDEs and parameter-to-observable map. These include
structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome
the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion
problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have
been very successful at exploring high-dimensional spaces.

2. Scalable parallel algorithms for construction of prior and likelihood functions based on
learning methods and non-parametric density estimation. Constructing problem-specific priors re-
mains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is
construction of likelihood functions that capture unmodeled couplings between observations and param-
eters. We will create parallel algorithms for non-parametric density estimation using high dimensional
N-body methods and combine them with supervised learning techniques for the construction of priors
and likelihood functions.

3. Bayesian inadequacy models, which augment physics models with stochastic models
that represent their imperfections. The success of the Bayesian inference framework depends on the
ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena
of interest. This is a central challenge in UQ, especially for large-scale models. We propose to develop
the mathematical tools to address these challenges in the context of extreme-scale problems.

4. Parallel scalable algorithms for Bayesian optimal experimental design (OED). Bayesian
inversion yields quantified uncertainties in the model parameters, which can be propagated forward
through the model to yield uncertainty in outputs of interest. This opens the way for designing new
experiments to reduce the uncertainties in the model parameters and model predictions. Such experi-
mental design problems have been intractable for large-scale problems using conventional methods; we
will create OED algorithms that exploit the structure of the PDE model and the parameter-to-output
map to overcome these challenges.

Parallel algorithms for these four problems were created, analyzed, prototyped, implemented, tuned,
and scaled up for leading-edge supercomputers, including UT-Austin’s own 10 petaflops Stampede
system, ANL’s Mira system, and ORNL’s Titan system. While our focus is on fundamental mathemati-
cal/computational methods and algorithms, we will assess our methods on model problems derived from
several DOE mission applications, including multiscale mechanics and ice sheet dynamics.

Several software packages were produced and updated in the context of this project:

• https://hippylib.github.io/, hIPPYlib - Inverse Problem PYthon library: hIP-
PYlib implements state-of-the-art scalable adjoint-based algorithms for PDE-based deterministic
and Bayesian inverse problems. It builds on FEniCS for the discretization of the PDE and on
PETSc for scalable and efficient linear algebra operations and solvers

• http://muq.mit.edu/, MUQ: In a nutshell, MUQ is a collection of tools for constructing models
and a collection of uncertainty quantification (UQ)focused algorithms for working on those models.
Our goal is to provide an easy and clean way to set up and efficiently solve UQ problems.
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• http://libqueso.com/, QUESO: A collection of algorithms and other functionalities aimed for
the solution of statistical inverse problems, for the solution of statistical forward problems, for the
validation of a model and for the prediction of quantities of interest from such model along with
the quantification of their uncertainties.

• http://padas.ices.utexas.edu/libaskit/, LIBASKIT: This is the LIBASKIT set of scalable
machine learning and data analysis tools. Currently we provide codes for kernel sums, nearest-
neighbors, kmeans clustering, kernel regression, and multiclass kernel logistic regression. All codes
use OpenMP and MPI for shared memory and distributed memory parallelism.

Several publications (see Section 5) and presentations (see Section 6) are also part of the outcomes.

2. Progress report, Aug 31, 2013–May 30, 2014

Our progress so far is categorized by our main research threads as outlined in §1

2.1. HPC methods for uncertainty quantification:

Papers have been submitted for publication but most of the threads below are ongoing work; participating
researchers:Biros, Ghattas, Stadler, Vetter

The majority of work on scalable parallel algorithms in CS&E has focused on the forward problem:
given parameter inputs, solve the governing equations to determine the outputs. We have been working
on the broader question: given a model containing uncertain parameters, (possibly noisy) observational
data, and a prediction quantity of interest, how do we construct scalable parallel algorithms to (1)
infer the model parameters from the data via the model, (2) quantify the uncertainty in the inferred
parameters, and (3) propagate the resulting uncertain parameters through the model to issue predictions
with quantified uncertainties? And do all of this at extreme scales? In the past year we have developed
scalable parallel algorithms for this data-to-prediction process based on the notion of linearizing the
appropriate maps (parameter-to-observable, parameter-to-prediction) and exploiting low-dimensional
structure of these maps via randomized methods. We have applied these parallel algorithms and assessed
their performance on one of the our testbed problems: modeling the dynamics of the Antarctic ice sheet
and its ultimate effect on sea level. We have shown that the work required to execute this data-to-
prediction process, measured in number of forward (and adjoint) model solves, is independent of the
state dimension, parameter dimension, data dimension, and number of processor cores.

In a second direction, we survey UQ methods and derive basic performance models that can be used
as guidelines for system design. We focus on UQ methods for systems governed by partial differential
equations, and on algorithms that can scale to high-dimensional parameter spaces. We review the com-
plexity of the representative methods like gradient and Hessian-based schemes for sampling, data-driven
priors, and stochastic collocation methods. We use two state-of-the-art UQ algorithms to demonstrate
the ideas outlined in the performance models and we use Aspen to explore the design space for future
systems with respect to these UQ algorithms. Specifically, we have created a preliminary model for the
adjoint UQ method using the Aspen performance modeling language and tools. This model describes
the iterated forward and backward steps used to calculated gradients for simulation parameters, and it
can be applied to various application forward solutions to explore their predicted runtime and memory
usage when extended to perform UQ. As memory constraints can be a bottleneck in UQ, the specific
implementation of the adjoint method may vary depending on the quantity of memory and performance
of the I/O subsystem. To explore these effects, we begun extending Aspen to support I/O components
within a machine model and I/O resource usage within application models. We combine our analy-
sis with experiments on the Stampede system at the Texas Advanced Computing Center and facilities
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at ORNL and demonstrate the feasibility of our approach. We find that even if the forward problem
has low communication intensity, UQ methods require non-local computations and thus more intense
communication (collective vs point-to-point) and more local storage.

2.2. Theoretical foundations:

Papers have been submitted for publication; participating researchers:Bui-Thanh, Ghattas, Stadler,
Moser, Oliver, Biros, Marzouk

We have analyzed novel sampling schemes for highly non-Gaussian posteriors. based on the ran-
domized maximum likelihood method (RML). First we construct an RML method in infinite dimensional
setting and show that the RML correctly samples the infinite dimensional posterior. Second, we have
speed up with RML computation using a trust region inexact Newton CG. Third, we develop a sensitiv-
ity analysis technique to compute good initial guess for RML optimization problem, and hence further
speeding the optimization work. We have also derived an exact joint distribution of the RML samples
and the randomized data. We then use it as a proposal for nonlinear Bayesian inverse problems. Our
numerical results show that the acceptance rate is 50%.

Finally, we have explored dimensionality reduction methods for Bayesian inference. The intrinsic
dimensionality of an inverse problem is affected by prior information, the accuracy and number of
observations, and the smoothing properties of the forward operator. From a Bayesian perspective,
changes from the prior to the posterior may, in many problems, be confined to a relatively low-dimensional
subspace of the parameter space. We have been developing dimension reduction techniques to identify
these so-called “likelihood-informed” directions in nonlinear inverse problems. These techniques require
the collection of Hessian information over the support of the posterior distribution, or a distribution
that dominates the posterior distribution. In this context, we have developed methods that use the
randomize-then-optimize (RTO) (or randomized maximum likelihood) algorithm to explore the variation
of the Hessian over the parameter space. RTO is well suited to this problem because exploration of the
Hessian does not require exact posterior sampling; as a result, our approach does not need to “correct”
the RTO samples with importance weights or a Metropolis step, and is thus embarrassingly parallel and
computationally efficient.

One of the challenges we face in the use of Bayesian inference for uncertainty quantification is the
application of algorithms to compute or sample from the posterior distribution when the forward model is
itself stochastic or uncertain. This occurs often when probabilistic representations for model inadequacy
are employed. The difficulty is that the integral defining the likelihood becomes non-trivial in this case.
To avoid this, we are exploring a reformulation of the problem that would increase the dimension of
the inference problem by introducing auxiliary random variables and make the likelihood integral again
trivial. The auxiliary variables can then be marginalized out in the posterior. This approach is being
explored and tested in a model problem derived from model inadequacy representations in chemical
kinetics.

In many science applications, the solution of a statistical inverse problem is a prelude to making
a prediction—i.e., characterizing the posterior distribution of a quantity of interest (QoI), rather than
the model parameters, conditioned on available data. The prediction may be described by a few scalar
quantities, or perhaps even be as simple as the binary outcome of an event (e.g., collapse versus non-
collapse of the ice sheet). Even if the QoI is quite simple to describe, however, inference methods that
actually exploit this simplicity—in the nonlinear inverse problem setting—are sorely lacking. Avoiding
a full characterization of the posterior remains an open challenge. To address this issue, we have been
developing new Bayesian methods for event prediction, based on on pseudo-marginal Markov chain
Monte Carlo. The ideas is to approximately marginalize away directions irrelevant to the prediction,
while sampling from the exact posterior distribution on prediction-relevant directions. Identifying these
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directions again requires the exploration of principal Hessian directions, while to calculate approximate
marginals we are exploring the use of Laplace approximations and of local surrogate models. A further
challenge is optimal experimental design for event prediction—identifying observations that are most
informative for the posterior probability of the event. This question focuses the optimal experimental
design problem on few directions, and we have formulated it in a fully Bayesian manner. Making the
computations tractable in large-scale problems is the subject of ongoing work.

Finally, we are designing a new approach to efficiently approximate kernel sums in high dimensions
using randomized linear algebraic methods. We explore the following open question: can randomized
algorithms serve as an efficient means of computing compact representations of subblocks of a kernel
matrix? If the answer is yes, then these algorithms may open the door to the construction of fast,
accurate kernel summation algorithms which do not scale exponentially with the ambient dimension of
the input. We are working on a classification of randomized algorithms for approximating the evaluation
of matrix-vector products for suitably structured matrices, such as those arising in kernel summations. j

2.3. Coarse-graining using Bayesian formulations

Papers have been submitted for publication; participating researchers: Biros, Oden
We have considered parametric models of coarse-grained representations of several types of atomistic

systems and particulate flow systems. For atomistic systems we consider simulations with hexane and
poly (PMMA) providing the test bed for numerical experiments. The molecular dynamics of the systems
under study is modeling using the MD code LAMMPS and MCMC sampling of various distributions is
implemented using QUESO. A Bayesian approach to model calibration and validation has been developed
and applied to representative examples. The current work centers on the development of statistical
calibration of models of molecular units that are the building blocks for representative polymer chains
(RPCs) in a representative volume of the atomic system. Data is furnished by the All-Atom (first-
principles) model defined using LAMMPS and OPLS. Priors are determined using maximum entropy
principles, and posteriors of the calibration experiments are used as priors for a higher-level of statistical
calibration embodied in a sequence of validation experiments with observables derived from appropriate
projections of global quantities of interest. The challenge at this point is to select the model itself from
a class of parametric models that correspond to possible interaction potentials for the system. We have
introduced two significant tools : 1) the notion of posterior model plausibilities and 2) the idea of model
sensitivity. We are currently investigating these approaches and we are extending them to complex fluid
simulations.

2.4. Unexpended funds

So far we have spent a partial amount of our allocation. For the UT allocation, our total expenses are
$130K, 26% of the allocated funds. This is due to ongoing hiring. Several students and postdoctoral
students have recently jointed our group and additional ones will be joining our group this Fall. We
anticipate that we will be able to spend those remaining Year 1 funds during budget Year 2.
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3. Progress report, June 1, 2014–May 30, 2015

Our progress so far is categorized by our main research threads as outlined in section 1.

3.1. HPC methods for uncertainty quantification

Participating researchers:Biros, Ghattas, Stadler, Vetter
Scalable kernel methods for uncertainty quantification: We have designed a fast algorithm,

ASKIT, for kernel summation problems in high dimensions. This has been a significant breakthrough
since kernel sums are important and there are no algorithms or software that scales. Kernel sums, also
known as N-body problems, appear in computational physics, numerical approximation, nonparametric
statistics, and machine learning. In our context, the sums depend on a kernel function that is a pair
potential defined on a dataset of points in a high-dimensional Euclidean space. A direct evaluation of
the sum scales quadratically with the number of points. Fast kernel summation methods can reduce
this cost to linear complexity, but the constants involved do not scale well with the dimensionality of the
dataset. The main algorithmic components of fast kernel summation algorithms are the separation of
the kernel sum between near and far field (which is the basis for pruning) and the efficient and accurate
approximation of the far field. We introduce novel methods for pruning and for approximating the far
field. Our far field approximation requires only kernel evaluations and does not use analytic expansions.
Pruning is not done using bounding boxes but rather combinatorially using a sparsified nearest-neighbor
graph of the input distribution. The time complexity of our algorithm depends linearly on the ambient
dimension. The error in the algorithm depends on the low-rank approximability of the far field, which
in turn depends on the kernel function and on the intrinsic dimensionality of the distribution of the
points. The error of the far field approximation does not depend on the ambient dimension. We tested
the new algorithm along on experimental results that demonstrate its performance. As a highlight,
we solved problems with Gaussian kernel sums for 100 million points in 64 dimensions, for one million
points in 1000 dimensions, and for problems in which the Gaussian kernel has a variable bandwidth. To
the best of our knowledge, all of these experiments are prohibitively expensive with existing fast kernel
summation methods.

In addition we parallelized this code. There is extensive work on treecodes and their parallelization for
kernel summations in three dimensions, but there is little work on high-dimensional problems. Recently,
we introduced a novel treecode, ASKIT, which resolves most of the shortcomings of existing methods.
We introduced novel parallel algorithms for ASKIT, derive complexity estimates, and demonstrate scal-
ability on synthetic, scientific, and image datasets. In particular, we introduced a local essential tree
construction that extends to arbitrary dimensions in a scalable manner. We introduced data transforma-
tions for memory locality and use GPU acceleration. We conducted testson the Maverick and Stampede
systems at the Texas Advanced Computing Center. Our largest computations involve two billion points
in 64 dimensions on 32,768 x86 cores and 8 million points in 784 dimensions on 16,384 x86 cores.

Optimal experimenal design: This past year we have worked on developing scalable parallel
algorithms for optimal experimental design (OED) problems. Bayesian inversion asks the question: how
do we infer model parameters and their associated uncertainty, given uncertain observational data and
a possibly uncertain model? The OED problem addresses the broader and more basic question: how do
we decide what to observe in the first place, in order that the resulting model parameters are recovered
with the least uncertainty? This is a notoriously difficult problem, particularly in the extreme-scale
case (expensive models and high-dimensional parameter spaces), because the Bayesian inverse problem
is merely an inner problem, with the outer problem represented as an optimization problem over the
experimental design variables.

We have developed approximate optimization algorithms that overcome the challenges associated
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with extreme-scale OED. We measure uncertainty in the recovered inverse problem parameters by the
A-optimal design criterion—the trace of the inverse of the Hessian evaluated at the maximum a pos-
teriori point—which is effectively a Laplace approximation of the posterior. The basic ideas can be
extended to other criteria (such as D-optimality). Thus we seek to design the observational system to
minimize the average variance of the inferred parameters. The trace is approximated (to arbitrary pre-
cision) by a randomized trace estimator, which results in second-order adjoint (of the inverse problem)
PDE constraints for each random trace vector (generally a small number are required). The (Laplace
approximation of the) Bayesian inverse problem also appears as a constraint (in the form of first-order
optimality conditions), whose solution defines the MAP point. We form a meta-Lagrangian for this
OED problem, and compute gradients in the style of PDE-constrained optimization algorithms, that is,
invoking adjoints of the OED problem. Algorithmic scalability tests for a subsurface flow Bayesian OED
problem indicate that the cost, measured in number of forward or inverse PDE solves, is independent
of both the parameter and the data dimensions.

Development of domain-specific language for modeling UQ applications. Aspen is a domain-
specific language used to model the organization and behavior of both applications and computing
systems, and it includes both a library and a suite of tools to analyze these application and machine
models. In the prior reporting period, we created a preliminary template model in Aspen to explore
the design space for future systems with respect to UQ algorithms. As Aspen was initially designed to
model compute-intensive scientific applications systems, we anticipated that expanded capabilities in
Aspen would improve our analysis of UQ methods. For example, adding I/O components to a machine
model and application resource usage would be necessary, but we realized that a more expansive way of
describing computing systems and their infrastructure would be more effective, and so we have started
to abstract I/O behavior into a more general set of machine characteristics; this will culminate in a
new style of more flexible machine model capable of dealing with these abstractions and includes not
just I/O, but multiple memory systems and networking layers. Another new feature we have added is a
framework to study time-dependent behaviors in Aspen; this includes both resource usage which changes
continuously over time as well as discrete changes and behaviors which occur at periodic intervals. We
are investigating adding even more temporal support, including tracking more behaviors such as memory
and file allocation as a run progresses. Combined, we expect these to lead to a richer set of analyses
for UQ algorithms.

3.2. Theoretical foundations

Participating researchers:Bui-Thanh, Ghattas, Stadler, Moser, Oliver, Biros, Marzouk
Fast posterior sampling in Bayesian methods: We have been developing new Bayesian com-

putational methods designed to characterize the marginal posterior probability distribution of a low
dimensional quantity of interest (QoI), in situations where the QoI depends on high-dimensional inver-
sion parameters and the associated joint distribution is non-Gaussian. These problems are large-scale in
two respects: first, the parameter space, when not restricted to the QoI, is high dimensional; second,
the forward model is computationally intensive. Our scheme is goal-oriented in the sense that character-
izing uncertainty in the high-dimensional parameters is only an intermediate step towards characterizing
uncertainty in the QoI. The aim of our algorithm is to explore the posterior distribution of the QoI in
structure-exploiting manner—in particular, to approximate the expensive forward model and to sacri-
fice accuracy in parameters that are not of ultimate interest. For instance, high-dimensional inversion
parameters may be inputs or boundary conditions of a PDE, while the QoI may be a scalar functional
(deterministic or stochastic) of the PDE solution.

Our new sampling method targets the posterior distribution associated with the QoI directly,
marginalizing over the other parameters. Outside of the Gaussian setting, however, marginal densities
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rarely have an analytic form. We thus compute stochastic estimates of the marginal density of the
QoI, and use these estimates to construct local polynomial approximations of the target marginal over
regions of high posterior probability. These polynomial approximations replace direct evaluation of
the marginal in MCMC and are continually refined using noisy evaluations. Under suitable technical
conditions, we show that these approximations converge to the true marginal density and hence that
the MCMC scheme asymptotically samples from the true posterior distribution of the QoI. In numerical
examples, we show that relatively crude pointwise estimates of the marginal density can yield accurate
posteriors. In this sense, the scheme uses regularity of the marginal density and the decomposition of
the posterior into dependent low-dimensional and high-dimensional parameters to achieve significant
computational savings over standard pseudo-marginal MCMC methods or brute-force high-dimensional
sampling. Demonstrations on a marine ice sheet problem, where the QoI represents projected ice sheet
volume, are in progress.

There are many ways to explore the posterior distribution to estimate the inverse solution and its
uncertainty. Though Markov chain Monte Carlo (MCMC) approaches are perhaps the most general UQ
tool, they require millions of samples to converge, especially in high dimensions. As a result, millions of
expensive forward simulations are necessaryan intractable proposition. More importantly, they discard
costly work during the Metropolization if a sample is rejected. We have developed an ensemble-based
approach in which the prior probability distribution are represented by empirical distribution with particles
(or samples), which are then transformed, via an optimization problem, to particles representing the
posterior probability distribution, and hence the statistics, of the inverse solution.

Our proposed approach induces several advantages over the contemporary counterparts. First, it is
a consistent Monte Carlo approach that provably converges to the exact posterior distribution. Conse-
quently, it does not require Metropolization and hence avoiding discarding useful expensive simulations.
Second, since each particle requires one forward PDE solve, the method naturally accommodates com-
puting resource constraints by matching the number of particles to that of allowable forward solves, and
this task is embarrassingly parallel. Third, unlike existing MCMC approaches that couple the Markov
chain and forward PDE solves, the proposed method decouples the process of constructing the pos-
terior particles and PDE simulations. As such, it is well suited for current and future supercomputer
infrastructures. Fourth, the beauty of this approach is that it casts the sampling challenge into a large-
scale optimization problem that capitalizes on our decade of work on parallel large-scale optimization
algorithms.

Efficient sampling using the Hamiltonian Monte Carlo Algorithm We are addressing the prob-
lem of developing algorithms for sampling probability density functions (pdfs) that arise as Bayesian
solutions of statistical inverse problems. Our focus is specifically on cases where (i) the forward model is
typically governed by computationally ex- pensive PDEs, which is a characteristic of large-scale statistical
inverse problems, (ii) the uncertain parameters are field quantities, which consequently result in a very
high-dimensional parameter space after discretization, (iii) the Bayesian problem could be hierarchical in
na- ture, and (iv) the forward model is highly nonlinear, which results in a highly non-Gaussian posterior
probability density. Our aim is to develop a sampling algorithm that can address all of the above chal-
lenges, while at the same time being computationally cheap and efficient when compared to the various
existing sampling techniques. The need to explore highly non-Gaussian posterior distributions made the
Hamiltonian Monte Carlo (HMC; sometimes also referred to as Hybrid Monte Carlo) sampling algorithm
particularly attractive. The algorithm has been shown to have good mixing properties, as manifested
by the fact that the sample autocor- relation drops to zero after just a few samples, through generating
non-local (global) moves in state space with high acceptance probabilities. Namely, HMC generates
proposals through first introducing an independent auxiliary momentum variable, p, associated with
each of the model parameters, q, thus enlarging the state space to the (q,p) phase space.
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3.3. Coarse-graining using Bayesian formulations

Papers have been submitted for publication; participating researchers: Biros, Oden
We have examined the development of coarse-grained models of atomistic systems for the purpose of

predicting target quantities of interest in the presence of uncertainties. A framework has been developed
that, enhanced with the concepts of information theory, sensitivity analysis, and Occams Razor, provides
a systematic means of constructing coarse-grained models suitable for use in a prediction scenario. This
new, adaptive algorithm, the Occam-Plausibility ALgorithm (OPAL), so named for its adherence to
Occams Razor and the use of Bayesian model plausibilities, identifies, among a large set of models,
the simplest model that passes the Bayesian validation tests, and may therefore be used to predict
chosen quantities of interest. The novel application of a general framework of statistical calibration
and validation to molecular systems has been applied to a system of polyethylene. The use of this
coarse-grained model and OPAL will be extended to the development of a nano-scale continuum model.

We are inverstigating fast multiscale algorithms for particulate flows We developed adaptive high-
order accurate time-stepping numerical scheme for the flow of vesicles suspended in Stokesian fluids,
which we use as a testbed for complex nonlinear systems with multiple scales, but without scale separa-
tion. Our numerical scheme can be summarized as an approximate implicit spectral deferred correction
(SDC) method. Applying a textbook fully-implicit SDC scheme to vesicle flows is prohibitively expensive.
For this reason we introduce several approximations. Our scheme is based on a semi-implicit linearized
low-order time stepping method. (Our discretization is spectrally accurate in space.) We expect that the
accuracy can be arbitrary-order, but our examples suffer from order reduction which limits the observed
accuracy to a little more than second-order. We also use invariant properties of vesicle flows, constant
area and boundary length in two dimensions, to reduce the computational cost of error estima- tion
for adaptive time stepping. We present results in two dimensions for single-vesicle flows, constricted
geometry flows, converging flows, and flows in a Couette apparatus. We experimentally demonstrate
that the proposed scheme enables automatic selection of the time step size and high-order accuracy.
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4. Progress report, Jun1, 2015–August 31, 2017

Our progress so far is categorized by our main research threads as outlined in section 1.

4.1. HPC methods for uncertainty quantification

Participating researchers:Biros, Ghattas, Stadler, Vetter:
Scalable kernel methods for uncertainty quantification:
One of the greatest challenges in computational science and engineering today is how to combine

complex data with complex models to create better predictions. This challenge cuts across every
application area within CS&E, from geosciences, materials, chemical systems, biological systems, and
astrophysics to engineered systems in aerospace, transportation, structures, electronics, biomedicine,
and beyond. Many of these systems are characterized by complex nonlinear behavior coupling multiple
physical processes over a wide range of length and time scales. Mathematical and computational
models of these systems often contain numerous uncertain parameters, making high-reliability predictive
modeling a challenge. Rapidly expanding volumes of observational dataalong with tremendous increases
in HPC capabilitypresent opportunities to reduce these uncertainties via solution of large-scale inverse
problems. In this work we have looked at a small set of these problems. One of our main efforts has
been the development of scalable kernel methods, which are based on kernel matrices.

Kernel matrices are computational primitives in many of uncertainty quantification methods, e.g.,
regression, Gaussian processes, particle filters, manifold approximation, covariance approximation, prior
construction and other. In our context, we use kernel matrices in the construction of radial basis
approximation schemes for the numerical solution of PDEs that govern the propagation of probability
distributions. Kernel matrices are large dense matrices and operations like matrix-vector multiplication,
matrix inversion, and spectral decomposition are impossible using existing methodologies. In this task
our goal is to develop scalable algorithms that resolves these issues. Our algorithm is based on our
ASKIT suite of algorithms that use hierarchical approximations of the kernel matrix. Next, we give
details on the kernel matrix approximation problem and our approach.

Let X be a set of N points ∈ Rd and let K(xi, xj) : Rd × Rd → R be a given kernel function.
The kernel matrix is the N ×N matrix whose entries are given by Kij = K(xi, xj) for i, j = 1, . . . , N ,
xi, xj ,∈ X . In radial basis function approximation, we wish to solve a linear system with matrix λI+K,
where λ > 0 is a regularization parameter that controls generalization accuracy and I is the identity
matrix. A key computational challenge in kernel methods is the acceleration of linear algebraic operations
with kernel matrices and in particular, matrix-vector multiplication and solution of linear systems. This
linear solve can be prohibitively expensive for large N because K is typically dense. A typical radial
basis function is the Gaussian kernel,

K(xi, xj) = exp

(
−1

2

‖xi − xj‖22
h2

)
, (1)

where h is the bandwidth. For small h, K approaches the identity matrix whereas for large h, K
approaches the rank-one constant matrix. The first regime suggests sparse approximations while the
second regime suggests global low-rank approximations. For the majority of h values, however, K is
neither sparse nor globally low-rank. Direct factorization of λI + K requires O(N3) work, whereas
a Krylov iterative method costs O(N2) work per iteration and may require 1000s of iterations. This
complexity barrier has made the use of kernel methods for large-scale problems impossible. To address
this challenge, we have developed a fast kernel approximation scheme, ASKIT.1 ASKIT is the foundation

1Approximate Skeletonization Kernel Independent T reecode, which we have introduced. ASKIT approximates K in
O(dN logN) time.
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on which the rest of the algorithms are built.
We completed the design and implementation of a fast direct solver (INV-ASKIT) for kernel matri-

ces. We developed a parallel algorithm for computing the approximate factorization of an N -by-N kernel
matrix. Once this factorization has been constructed with O(N log2N) work, we can solve linear sys-
tems with this matrix with O(N logN) work. Roughly speaking, ASKIT is based on the approximation
of K as the sum of a block-diagonal matrix and a low-rank matrix followed by recursion for each diagonal
block. We refer to this process as the construction of the hierarchical representation of K. Once we
have this representation, one can factorize K by applying recursively the Sherman-Morrison-Woodbury
(SMW) formula. The factorization however, can be quite expensive especially since in practice it has
to be done for different values of λ during cross-validation studies. We developed two versions of the
solver, the first one having O(N logN2 ) complexity and the second solver having O(N log2N) complex-
ity. Since N = 106–109, the seemingly small log2N factor results in one order of magnitude speedups
over our first implementation. In addition we have worked on two additional problems. The first one is
spectral decomposition of kernel methods. The second one was improving accuracy and robustness of
ASKIT so that it supports kernels over multiple bandwidths.

We completed our work on the O(N logN) factorization of kernel matrices, including matrices
that do not compress well in all spatial levels. Our algorithm only requires kernel evaluations and
does not require that the kernel matrix admits an efficient global low rank approximation. Instead our
factorization only assumes low-rank properties for the off-diagonal blocks under an appropriate row and
column ordering. We designed a hybrid method that, when the factorization is prohibitively expensive,
combines a partial factorization with iterative methods. As a highlight, we are able to approximately
factorize a dense 11M × 11M kernel matrix in 2 minutes on 3,072 x86 Haswell cores and a 4.5M × 4.5M
matrix in 1 minute using 4,352 Knights Landing cores. The paper appeared in IEEE IPDPS 2017. In
particular, for the Knights-Landing architecture we also studied the performance of different algorithmic
choices and different memory configurations of KNL, see Table 1.

Config Haswell Cache-Quad F-Quad

Compute MatVec V with GEMV

T 0.8 0.9 0.9
GF 14 12 12

Reevaluate V with GEMM

T 4.4 7.4 7.5
GF 158 40 39

Compute MatVec V with FUSED GEMM

T 1.1 1.1 1.2
GF 269 269 243

Table 1 In this table we report comparison between Haswell (24 cores) and Intel Phi Knights Landing (68 cores) with
different memory configurations. “T” is time (sec) and “GF” GFLOPS. Three different algorithmic variants for a GEMV
with the kernel matrix. These schemes represent trade-offs between memory requirements an speed. The best variant is
the FUSED GEMM one that although it is slightly slower (due to the increased number of flops) it delivers an order-of-
magnitude savings in memory compared to the GEMV version for kernel matrices.

Certain intermediate Schur complement matrices that appear in the factorization of a kernel matrix
are hierarchical matrices and can be compressed, thus reducing the constants in the complexity estimate
significantly. The challenge is that for those matrices we don’t have a geometric structure, that is
points and appropriate distances. We call algorithms for these types of problems as “point-free kernel
methods”. To accomplish this, we used the fact that those matrices are positive definite (since they are
related to Hessian and covariance operators), and as such, they define an implicit geometric structure.

Based on these observations, we designed GOFMM (geometry-oblivious FMM), a novel method that
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creates a hierarchical low-rank approximation, or “compression,” of an arbitrary dense symmetric positive
definite (SPD) matrix. GOFMM enables an approximate matrix-vector multiplication in N logN or even
N time, where N is the matrix size. Compression requires N logN storage and work. In general, our
scheme belongs to the family of hierarchical matrix approximation methods. In particular, it generalizes
the fast multipole method (FMM) to a purely algebraic setting by only requiring the ability to sample
matrix entries. Neither geometric information (i.e., point coordinates) nor knowledge of how the matrix
entries have been generated is required, thus the term “geometry-oblivious.” Also, we introduced
a shared-memory parallel scheme for hierarchical matrix computations that reduces synchronization
barriers.

Dense SPD matrices appear in scientific computing, statistical inference, and data analytics. They
appear in Cholesky and LU factorization, in Schur complement matrices for saddle point problems, in
Hessian operators in optimization, in kernel methods for statistical learning, and in N-body methods
and integral equations. In many applications, the entries of the input matrix K are given by Kij =
K(xi, xj) : Rd × Rd → R, where K is a kernel function. Examples of kernel functions are radial basis
functions, Green’s functions, and angle similarity functions. For such kernel matrices, the input is not
a matrix, but only the points {xi}Ni=1. The points are used to appropriately permute the matrix using
spatial data structures. Furthermore, the construction of the sparse correction S uses nearest-neighbor
structure of the input points. The low-rank matrices U, V can be either analytically computed using
expansions of the kernel function, or semi-algebraically computed using fictitious points (or equivalent
points), or using algebraic sampling-based methods that use geometric information. In a nutshell,
geometric information is used in all aspects of an H-matrix method.

In many cases however, such points and kernel functions are not available. For example, in dense
graphs in data analysis (e.g., social networks, protein interactions). Related matrices include graph
Laplacian operators and their inverses. Additional examples include frontal matrices and Schur com-
plements in factorization of sparse matrices; Hessian operators in optimization; and kernel methods in
machine learning without points (e.g., word sequences and diffusion on graphs).

GOFMM is inspired by the rich literature of algorithms for matrix sketching, hierarchical matrices, and
fast multipole methods. Its unique feature is that by using only matrix evaluations it generalizes FMM
ideas to compressing arbitrary SPD matrices. In more detail, our contributions are summarized below.

• A result from reproducing kernel Hilbert space theory is that any SPD matrix corresponds to a
Gram matrix of vectors in some unknown Gram (or feature) space. Based on this result, the
matrix entries are inner products, which we use to define distances. These distances allow us to
design an efficient, purely algebraic FMM method.

• The key algorithmic components of GOFMM (and other hierarchical matrix and FMM codes) are
tree traversals. We test parallel level-by-level traversals, out-of-order traversals using OpenMP’s
advanced task scheduling and an in-house tree-task scheduler. We found that scheduling signifi-
cantly improves the performance when compared to level-by-level tree traversals. We also use this
scheduling to support heterogeneous architectures.

• We conduct extensive experiments to demonstrate the feasibility of the proposed approach. We
test our code on 22 different matrices related to machine learning, stencil PDEs, spectral PDEs,
inverse problems, and graph Laplacian operators. We perform numerical experiments on Intel
Haswell and KNL, Qualcomm ARM, and NVIDIA Pascal architectures. Finally, we compare with
three state-of-the-art codes: HODLR, STRUMPACK, and ASKIT.

GOFMM also has several additional capabilities. If points and kernel functions (or Green’s) function are
available, they can be utilized in a similar way to our algebraic FMM code ASKIT. GOFMM currently
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Figure 1 In this figure, we compare GOFMM with two other open-source packages for six different SPD matrices. HODLR is a
software library developed at Stanford. STRUMPACK is a software library developed at NERSC. “Case” indicates the matrix
type. All these matrices are dense, symmetric, and positive definite. K02 is a the Hessian of an inverse source problem
with the 5-point Laplacian, K04 is with the 5-point low-frequency Helmholtz, K07 is a covariance matrix on a domain with
complicated geometry, K12 is a the Hessian of a source inversion problem with a spectral, variable coefficient Laplacian,
K17 is the Hessian of a high-Peclet number advection-reaction-diffusion PDE with pseudo-spectral discretization. Finally,
G03 is a dense Schur complement of a saddle point problem. The size of all these matrices are 65K. Also, ε2 is the relative
`2 norm between the exact matrix and its approximation; “Comp” is the time required to compress the matrix; and “Eval”
is the time to perform a matrix-vector product with 256 right-hand sides. With the exception of K17, which is hard to
compress, all the other matrices compress very well. Overall, the wall-clock time for GOFMM including the compression and
the approximate matvec, 10× faster than an SGEMM. In addition, GOFMM (depending on the case) can be several orders
of magnitude faster than STRUMPACK and HODLR.

supports three different measures of distance: geometric point-based (if available), Gram-space `2

distance, and Gram-space angle distance. GOFMM has support for matvecs with multiple vectors, which
is useful for Monte-Carlo sampling, optimization, and block Krylov methods. The overall complexity
of both the compression and evaluation phases is O(N). This work appeared in the IEEE/ACM SC’17
conference.

Optimal experimental design: We have continued working on developing scalable parallel algo-
rithms for optimal experimental design (OED) problems.

In the last period of the project, we addressed the problem of optimal experimental design (OED)
for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse
problem seeks to infer an infinite-dimensional parameter from experimental data observed at a set of
sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal
placement of sensors so as to minimize the uncertainty in the inferred parameter field.

Specifically, we seek an optimal subset of sensors from among a fixed set of candidate sensor
locations. We formulate the OED objective function by generalizing the classical A-optimal experimental
design criterion using the expected value of the trace of the posterior covariance. This expected value is
computed through sample averaging over the set of likely experimental data. To cope with the infinite-
dimensional character of the parameter field, we construct a Gaussian approximation to the posterior at
the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define
the OED objective function.

We used randomized trace estimation to compute the trace of this covariance operator, which
is defined only implicitly. The resulting OED problem includes as constraints the system of PDEs
characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian
approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using
sparsifying penalty functions. Variational adjoint methods are used to efficiently compute the gradient
of the PDE-constrained OED objective function. We elaborate our OED method for the problem of
determining the optimal sensor configuration to best infer the coefficient of an elliptic PDE.
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Furthermore, we conducted numerical experiments for inference of the log permeability field in a
porous medium flow problem. Numerical results showed that the number of PDE solves required for
the evaluation of the OED objective function and its gradient is essentially independent of both the
parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The
number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance
properties.

Development of domain-specific language for modeling UQ applications.
We have continued the development of Aspen domain language. With the anticipation of exascale

architectures, energy consumption is becoming one of the critical design parameters, especially in light
of the energy budget of 2030 Megawatts set by the U.S. Department of Energy. Understanding an
applications execution pattern and its energy footprint is critical to improving application operation
on a diverse heterogeneous architecture. Applying application-specific performance optimization can
consequently improve energy consumption. However, this approach is only applicable to current systems.
As we enter a new era of exascale architectures that is projected to contain more complex memory
hierarchies, increased levels of parallelism, heterogeneity in hardware, and complex programming models
and techniques, energy and performance management is getting more cumbersome. We therefore
propose techniques that predict the energy consumption beforehand or at runtime to enable proactive
tuning. Such energy prediction approaches must be generic and adapt themselves at runtime to changing
application and hardware configurations. Most existing energy estimation and prediction approaches are
empirical in nature and thus tied to current systems. To overcome this limitation, we propose two
energy estimation techniques: ACEE (Algorithmic and Categorical Energy Estimation), which uses a
combination of analytical and empirical modeling techniques; and AEEM (Aspens Embedded Energy
Estimation), a system-level analytical energy estimation technique. Both of these models incorporate
the Aspen domain specific language for performance modeling. We present the methodologies of these
two models and test their accuracy using five proxy applications.

In addition, to DSLs, we also consider frameworks that allow use of additional memory resources,
which are likely to be necessary in the context of uncertainty quantification problems. Indeed, a surprising
development in recently announced HPC platforms is the addition of, sometimes massive amounts
of, persistent (nonvolatile) memory (NVM) in order to increase memory capacity and compensate
for plateauing I/O capabilities. However, there are no portable and scalable programming interfaces
using aggregate NVM effectively. This paper introduces Papyrus: a new software system built to
exploit emerging capability of NVM in HPC architectures. Papyrus (or Parallel Aggregate Persistent
-YRU- Storage) is a novel programming system that provides features for scalable, aggregate, persistent
memory in an extreme-scale system for typical HPC usage scenarios. Papyrus mainly consists of Papyrus
Virtual File System (VFS) and Papyrus Template Container Library (TCL). Papyrus VFS provides a
uniform aggregate NVM storage image across diverse NVM architectures. It enables Papyrus TCL to
provide a portable and scalable high-level container programming interface whose data elements are
distributed across multiple NVM nodes without requiring the user to handle complex communication,
synchronization, replication, and consistency model. We evaluated Papyrus on two HPC systems,
including UTK Beacon and NERSC Cori, using real NVM storage devices and the results are very
encouraging.

4.2. Theoretical foundations

Participating researchers:Bui-Thanh, Ghattas, Stadler, Moser, Oliver, Biros, Marzouk
Prior distributions for Bayesian inference that rely on the l1-norm of the parameters are of consid-

erable interest, in part because they promote parameter fields with less regularity than Gaussian priors
(e.g., discontinuities and blockiness). These l1-type priors include the total variation (TV) prior and the
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Besov space Bs
1,1 prior, and in general yield non-Gaussian posterior distributions. Sampling from these

posteriors is challenging, particularly in the inverse problem setting where the parameter space is high-
dimensional and the forward problem may be nonlinear. This paper extends the randomize-then-optimize
(RTO) method, an optimization-based sampling algorithm developed for Bayesian inverse problems with
Gaussian priors, to inverse problems with l1-type priors. We use a variable transformation to convert
an l1-type prior to a standard Gaussian prior, such that the posterior distribution of the transformed
parameters is amenable to Metropolized sampling via RTO. We demonstrate this approach on several
deconvolution problems and an elliptic PDE inverse problem, using TV or Besov space Bs

1,1 priors. Our
results show that the transformed RTO algorithm characterizes the correct posterior distribution and
can be more efficient than other sampling algorithms. The variable transformation can also be extended
to other non-Gaussian priors.

In many inverse problems, model parameters cannot be precisely determined from observational data.
Bayesian inference provides a mechanism for capturing the resulting parameter uncertainty, but typically
at a high computational cost. This work introduces a multiscale decomposition that exploits conditional
independence across scales, when present in certain classes of inverse problems, to decouple Bayesian
inference into two stages: (1) a computationally tractable coarse-scale inference problem, and (2) a
mapping of the low-dimensional coarse-scale posterior distribution into the original high-dimensional
parameter space. This decomposition relies on a characterization of the non-Gaussian joint distribution
of coarse- and fine-scale quantities via optimal transport maps. We demonstrate our approach on a
sequence of inverse problems arising in subsurface flow, using the multiscale finite element method to
discretize the steady state pressure equation. We compare the multiscale strategy with full-dimensional
Markov chain Monte Carlo on a problem of moderate dimension (100 parameters) and then use it to
infer a conductivity field described by over 10000 parameters.

4.3. Coarse-graining using Bayesian formulations

Papers have been submitted for publication; participating researchers: Biros, Oden
We have continued the development OPAL, the Occam-Plausibility Algorithm (Farrell et al. in J

Comput Phys 295:189208, 2015) in which the use of Bayesian model plausibilities is replaced with
information-theoretic methods, such as the Akaike information criterion and the Bayesian information
criterion. Applications to complex systems of coarse-grained molecular models approximating atomistic
models of polyethylene materials are described. All of these model selection methods take into account
uncertainties in the model, the observational data, the model parameters, and the predicted quantities
of interest. We compared all of the models chosen by Bayesian model selection criteria and those chosen
by the information-theoretic criteria.
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• G. Biros, Fast algorithms for hierarchical matrices, Applied Mathematics Colloquium, University
of North Carolina at Chapel Hill, Chapel Hill NC, October 2016

• G. Biros, Parallel Hierarchical Matrix Algorithms for Kernel Methods, Invited session on Al-
gorithms for Extreme Scale in Practice, ISC High Performance Conference, June 19–23, 2016
Frankfurt, Germany

• G. Biros, Extreme Scale Algorithms For The Inexact Factorization Of Kernel Matrices, KAUST
Workshop on Scalable Hierarchical Algorithms for Extreme Computing, 9–11 May 2016, KAUST,
Saudi Arabia

• G. Biros, Exascale N-body Algorithms for Data Analysis and Simulation, Plenary, German Prior-
ity Program ”Software for Exascale Computing” (SPPEXA) Symposium, Leibniz Supercomputing
Centre, Garching, Germany, January 2016

• G. Biros, Bayesian inverse problems for spatial random fields, D3: Deformation, Defects, Diag-
nosis Symposium, University of Pennsylvania, Penn Institute for Computational Science, Philadel-
phia, Pennsylvania, May 2015

• G. Biros, Scalable N-body methods for kernel sums in high dimensions, International Symposium
on Big Data and Predictive Computational Modeling, Technical University of Munich, Institute
for Advanced Study, Munich, Germany, May 2015

• G. Biros, An algebraic treecode for fast kernel sums in high dimensions, Computational and
Applied Mathematics Colloquium, Rice University, Houston, Texas, April 2015

• G. Biros, N-body methods in computational science and engineering, in Minisymposium: Fast
Multipole Methods Maturing at 30 years, SIAM Conference on Computational Science and Engi-
neering, Salt Lake City, UT, March 2015

• G. Biros, A fast N-body algorithm for kernel sums in high dimensions, in Minisymposium: UQ in
Large Scale Computing, SIAM Conference on Computational Science and Engineering, Salt Lake
City, UT, March 2015
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• G. Biros, N-body algorithms in computational science and engineering, Institute for Advanced
Studies Colloquium, Technical University of Munich, Munich, Germany, June 2014

• G. Biros, Fast algorithms for the evaluation for volume integral equations on hybrid architectures,
Keynote Workshop: Exploiting Different Levels of Parallelism for Exascale Computing, ACM
International Conference on Supercomputing, Munich, Germany, June 2014

• A. Davis, P. Heimbach, Y. Marzouk, Predicting the probability of West Antarctic collapse: a
Bayesian approach, International Society for Bayesian Analysis World Meeting, Cancun, Mexico.
July 2014.

• A. Davis, M. Parno, P. Conrad, Y. Marzouk, MUQ (MIT Uncertainty Quantification): Flex-
ible software for connecting algorithms and applications., SIAM CSE 2015. Salt Lake City, UT.
March 2014.

• A. Davis, Predicting marine ice sheet dynamics and volume loss under uncertainty, MIT EAPS
seminar. April 2015

• A. Davis, P. Heimbach, Y. Marzouk, Uncertain prediction of marine ice sheet dynamics and
volume loss, SIAM GS15, Stanford, CA. June 2015

• O. Ghattas, Bayesian inversion for large scale Antarctic ice sheet flow, 52nd Meeting of the
Society for Natural Philosophy, Rio de Janeiro, Brazil, October 22–24, 2014.

• O. Ghattas, Mathematical and computational challenges in large-scale Bayesian inverse problems
arising in the flow of the Antarctic ice sheet,Prospects in Applied Mathematics, Chicago, IL,
October 19–20, 2014.

• O. Ghattas, Optimal Experimental Design for Large-Scale Bayesian Nonlinear Inverse Problems,
Applied Inverse Problems 2015, Helsinki, Finland, May 25–29, 2015.

• O. Ghattas, Hessian-based Implicit Dimension Reduction for Large-scale Bayesian Inverse Prob-
lems, Big Data and Predictive Computational Modeling, Technical University of Munich, Munich,
Germany, May 18-21, 2015.

• O. Ghattas, Scalable and Efficient Algorithms for the Propagation of Uncertainty from Data
through Inference to Prediction for Flow of the Antarctic Ice Sheet, Pan-American Congress on
Computational Mechanics (PANACM 2015), Buenos Aires, Argentina, April 27–29, 2015.

• O. Ghattas, From data to prediction via reduced parameter-to-observable maps: Applications to
Antarctic ice sheet dynamics, SIAM Conference on Computational Science and Engineering, Salt
Lake City, UT, March 11-15, 2015.

• O. Ghattas, Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow, American Geophysical
Union Fall Meeting, San Francisco, CA, December 15–19, 2014.

• O. Ghattas, Perspective on Co-Design: Uncertainty Quantification Challenges at Extreme Scale,
International Workshop on Co-Design, Guangzhou, China, November 6–10, 2014.

• O. Ghattas, Sparse structure-exploiting methods for large-scale Bayesian inverse problems, Work-
shop on Approximation, Integration, and Optimization, Institute for Computational and Experi-
mental Research in Mathematics (ICERM), Brown University, September 29–October 3, 2014.
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• O. Ghattas, Big data meets big models: Large-scale Bayesian inference, with application to
inverse modeling of Antarctic ice sheet dynamics, 11th World Congress on Computational Me-
chanics, Barcelona, Spain, July 20–25, 2014.

• O. Ghattas, Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow, Caltech Computing +
Mathematical Sciences Colloquium Series, Caltech, Pasadena, CA, May 18, 2015.

• O. Ghattas, Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow, Distinguished Speaker
Series in Scientific Computing, Centre for Scientific Computing and PIMS, Simon Fraser University,
Burnaby, BC, Canada, April 10, 2015.

• O. Ghattas, Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow, ICES Babuska Forum
Seminar, Austin, TX, February 13, 2015.

• J. S. Meredith and J. Vetter, Exploring Emerging Technologies in the Extreme Scale HPC Co-
Design Space with Holistic Performance Modeling, Exascale Applications and Software Conference
(EASC), Edinburgh, UK, April 22, 2015

• J. S. Meredith and J. Vetter, Aspen Hackathon and Tutorial, web-based and in person at Oak
Ridge, TN, April 18, 2015

• R.E. Morrison and R.D. Moser, Representing Model Inadequacy in Combustion Kinetics, Bul-
letin of the American Physical Society, 67th Annual Meeting of the APS Division of Fluid Dy-
namics, November 2325, 2014; San Francisco, California

• September 19, 2013. ”The Emergence of Predictive Computational Science: Validation and
Verification of Computational Models of Complex Physical Systems,” Presented by J.T. Oden,
Florida International University, Miami, FL.

• October 11, 2013. ”The Emergence of Predictive Computational Science: Validation and Verifi-
cation of Computational Models of Complex Physical Systems,” Presented by J.T. Oden, Distin-
guished Lecture, Scientific Computing and Imagine Institute, The University of Utah, Salt Lake
City, UT.

• November 6, 2013, ”The Emergence of Predictive Computational Science: Validation and Veri-
fication of Computational Models of Complex Physical Systems,” Presented by J.T. Oden, 44th
Henry M. Shaw Lecture, North Carolina State University, Raleigh, NC.

• February 18–21, 2014, Parallel Algorithms for Prior Functions in Bayesian Inference, George Biros,
SIAM Conference on Parallel Processing, Portland, OR

• February 18–21, 2014, Reexamining Algorithm-Based Fault Tolerance for Exascale Architectures,
Dong Li and Jeff Vetter, SIAM Conference on Parallel Processing, Portland, OR

• February 18–21, 2014, SIAM Conference on Parallel Processing, Portland, OR

• March 31-April 3, 2014. ”Calibration, Validation, and Model Uncertainty of Coarse- Grained Mod-
els of Atomic Systems,” Presented by K. Farrell, SIAM Conference on Uncertainty Quantification,
Savannah, GA.

• March 31-April 3, 2014, Statistical Inversion for Basal Parameters for the Antarctic Ice Sheet
Tobin Isaac, Noemi Petra, Georg Stadler, and Omar Ghattas, SIAM Conference on Uncertainty
Quantification, Savannah, GA.
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• March 31-April 3, 2014A Scalable MAP-Based Algorithm for Optimal Experimental Design for
Large-Scale Bayesian Inverse Problems Alen Alexanderian, Noemi Petra, Georg Stadler, and Omar
Ghattas, SIAM Conference on Uncertainty Quantification, Savannah, GA.

• March 31-April 3, Scalable Algorithms for Bayesian Inverse Problems and Optimal Experimental
Design with Applications to Large-scale Complex Systems Alen Alexanderian, Omar Ghattas,
Tobin Isaac, James R. Martin, Noemi Petra, and Georg Stadler, SIAM Conference on Uncertainty
Quantification, Savannah, GA.

• March 31-April 3, Scalable Nearest Neighbor Search Algorithms in High Dimensions George Biros
and Bo Xiao, SIAM Conference on Uncertainty Quantification, Savannah, GA.

• March 31-April 3, Parallel Multiscale Algorithms for Construction of Likelihood and Prior Den-
sities for Bayesian Inverse Problems, George Biros, Bill March, Bo Xiao, SIAM Conference on
Uncertainty Quantification, Savannah, GA.

• March 31-April 3, Optimal Bayesian Experimental Design in the Presence of Model Error abstract
Youssef M. Marzouk, SIAM Conference on Uncertainty Quantification, Savannah, GA.

• March 31-April 3, Dimension-independent Likelihood-informed MCMC Samplers, Tiangang Cui,
Youssef M. Marzouk, SIAM Conference on Uncertainty Quantification, Savannah, GA.

• March 31-April 3,Sequential Experimental Design Using Dynamic Programming and Optimal
Maps, Xun Huan and Youssef M. Marzouk, SIAM Conference on Uncertainty Quantification,
Savannah, GA.

• March 31-April 3, Probabilistic Representations of Model Inadequacy for RANS Turbulence Mod-
els, Todd Oliver and Robert D. Moser, SIAM Conference on Uncertainty Quantification, Savannah,
GA.

• May 7-9, 2014. ”Validation and Selection of Multiscale Models of Complex Systems,” Presented
by J.T. Oden, ASME 2014 Verification and Validation Symposium, Las Vegas, NV.

• May 79, 2014, Big data, sparse information: Bayesian inference for large-scale models, with
application to inverse

modeling of Antarctic ice sheet dynamics, International Conference on Scientic Computing at
Extreme Scale, Shanghai Jiao Tong University, Shanghai, China,

• July 714, 2014, Big data, sparse information: Bayesian inference for large-scale models, with
application to inverse

modeling of Antarctic ice sheet dynamics,. To be presented by O. Ghattas, SIAM Annual Meeting,
Chicago, IL,

• June 23, 2014, Big data, sparse information: Bayesian inference for large-scale models, with
application to inverse

modeling of Antarctic ice sheet dynamics, To be presented by O. Ghattas, PASC14 Conference,
Zurich, Switzerland

Besides the presentations, let us remark that we have organized several minisymposia in UQ and
HPC mainly in the SIAM conferences but elsewhere as well.
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