skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resilience Design Patterns: A Structured Approach to Resilience at Extreme Scale

Journal Article · · Supercomputing frontiers and innovations
DOI:https://doi.org/10.14529/jsfi170301· OSTI ID:1407767

Reliability is a serious concern for future extreme-scale high-performance computing (HPC) systems. Projections based on the current generation of HPC systems and technology roadmaps suggest the prevalence of very high fault rates in future systems. While the HPC community has developed various resilience solutions, application-level techniques as well as system-based solutions, the solution space remains fragmented. There are no formal methods and metrics to integrate the various HPC resilience techniques into composite solutions, nor are there methods to holistically evaluate the adequacy and efficacy of such solutions in terms of their protection coverage, and their performance \& power efficiency characteristics. Additionally, few of the current approaches are portable to newer architectures and software environments that will be deployed on future systems. In this paper, we develop a structured approach to the design, evaluation and optimization of HPC resilience using the concept of design patterns. A design pattern is a general repeatable solution to a commonly occurring problem. We identify the problems caused by various types of faults, errors and failures in HPC systems and the techniques used to deal with these events. Each well-known solution that addresses a specific HPC resilience challenge is described in the form of a pattern. We develop a complete catalog of such resilience design patterns, which may be used by system architects, system software and tools developers, application programmers, as well as users and operators as essential building blocks when designing and deploying resilience solutions. We also develop a design framework that enhances a designer's understanding the opportunities for integrating multiple patterns across layers of the system stack and the important constraints during implementation of the individual patterns. It is also useful for defining mechanisms and interfaces to coordinate flexible fault management across hardware and software components. The resilience patterns and the design framework also enable exploration and evaluation of design alternatives and support optimization of the cost-benefit trade-offs among performance, protection coverage, and power consumption of resilience solutions. Here, the overall goal of this work is to establish a systematic methodology for the design and evaluation of resilience technologies in extreme-scale HPC systems that keep scientific applications running to a correct solution in a timely and cost-efficient manner despite frequent faults, errors, and failures of various types.

Research Organization:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Grant/Contract Number:
AC05-00OR22725
OSTI ID:
1407767
Journal Information:
Supercomputing frontiers and innovations, Vol. 4, Issue 3; ISSN 2313-8734
Publisher:
South Ural State UniversityCopyright Statement
Country of Publication:
United States
Language:
English

Cited By (2)

Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction journal February 2021
Pattern-based Modeling of High-Performance Computing Resilience preprint January 2017