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C. Introduction 
The production of geothermal energy from dry and low permeability reservoirs is achieved by water 
circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal 
systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves 
fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the 
in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple 
microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or 
pre-existing fracture planes and possibly their propagations. The microseismic signals contain information 
about the sources of energy that can be used for understanding the hydraulic fracturing process and the 
created reservoir properties. Detection and interpretation of microseismic events is useful for estimating 
the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological 
structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir 
characterization (SBRC). Although, progress has been made by scientific & geothermal communities for 
quantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain 
unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate, 
delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the 
resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full 
range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties 
and in-situ stress in the data inversion process.  

The objective of this research and technology developments was to develop a 3D SBRC model that 
addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms 
associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach 
proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et 
al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with 
respect to the physical processes considered and the rock properties used. Usually, the geomechanics 
analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a 
time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point 
source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass 
which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant 
role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-
coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D 
finite element model with more realistic injection geometries such as multiple injection/extraction sources 
(and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect 
the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network 
model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments, 
and calibrated and applied to Newberry EGS stimulation. 

 

In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that 
the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this 
assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using 
the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution 
itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution, 



 

x 
 

we combine an initial probabilistic description of criticality with the information contained in micro-
seismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior 
knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the 
permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that 
recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure 
distributions (modeling errors), and the observed seismic events is developed and used herein to 
realistically assess the quality of the solution. Finally, we developed a technique for processing discrete 
MEQ data to estimate fracture network properties such as dip and dip directions. The approach was 
successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good 
agreement with field observations.  

 

   

  	



 

1 
 

	

Chapter	1:	Thermo‐Poroelastic	Modeling	of	Reservoir	
Stimulation	and	Microseismicity	Using	Finite	Element	Method	
with	Damage	Mechanics	
 



 

 

1. Intr

Stress ana
exploratio
heat trans
failure du
reservoirs
 
From the 
chemical 
wellbore, 
problems 
These pro
far-field s
regime im
wellbore 
must be a
far-field s
 
 

 
 
Generally
softening 
pressure, 
approach 
permeabil
stability a
estimate p
geologica
events su
occurrenc
Microseis
growth, re
state (Pine
of MEQ a
 

roduction

alysis or rock
on and geothe
fer and chem

uring fluid inj
s, and unconv

geomechanic
interaction ar
where their i
such as boreh

oblems are m
stresses are a

mpacts rock fa
are influence

accounted for 
stresses (Fig. 

y, the strain-
or directly re
stress condit
can capture t

lity variation 
and well stim
permeability 
al formations 
uch as their 
ce of seismicit
smic event de
esulting reser
e, 1984). Num
and will impro

n 

k mass failur
ermal reservo

mical interactio
jection has in

ventional resou

cal point of v
re key factors
mpact is part
hole collapse
ainly caused 
among the m
failure, its geo
ed both by th

in determinin
1.1).  

Fig. 1. The k

stress behavi
eaches the sof
tions, and tem
the hardening
caused by th

mulation. Ind
changes and 
have becom
locations, sp

ty and reservo
etection and in
rvoir permeab
merical mode
ove reservoir 

re in respons
oir design. Th
ons in the por
ncreased in e
urces such as

view, the imp
s in reservoir 
icularly signi
, distortion, a
where the ro

most importan
ometry, and t
e injection-in
ng the impact

ey factors in g

ior of rocks 
ftening regime
mperature (J
g and softenin
he stress chan
duced micros

stress distrib
e imbalanced
patial pattern
oir activities a
nterpretation 
bility, and ge
eling of the co

development

2 

 

se to water in
he process inv
rous rock. Int
enhanced geo
 gas shales. 

pact of the v
engineering. 

ificant during 
and buckling 
ck’s effective

nt factors in 
the resulting 
nduced stress 
t of fluid flow

geomechanic

in experime
e, depending
aeger et al., 
ng behavior o

nge and rock 
eismic event

butions since 
d by fluid inj
ns of distribu
are often stud
is used for es

eometry of the
oupled proces
t activities.  

njection is o
volves couple
terest in unde
othermal syst

variations of p
These are of
injection and
during injecti
e stress excee
geomechanic
fluid path. Th
and far-field

w, temperatur

cal engineerin

ental tests sh
on the rock ty
2007). The 

of the rock (Y
failure is crit
ts are among
they measur

jection. The 
ution, and te
died for enhan
stimating the 
e geological 
sses in rock c

of much inter
ed rock deform
erstanding roc
ems, unconso

pore pressure
f especially in
d production, 
ion or drilling
eds its strengt
cal engineerin
he stress dist

d stress in the
re and chemic

 
ng design. 

hows hardeni
ype and cond
continuum d
Yuan and Ha
tical in the an
g the promis
re the earthqu
characteristic

emporal relat
nced geotherm
stimulated vo
structures an

can help impr

rest in oil an
mation, fluid 
ck deformatio
olidated petro

e, temperatur
nteresting aro
which may le

g (Yu et al., 2
th. In additio
ng since the 
tributions aro
e reservoir so
cal interaction

ing and post
ditions such as
damage mech
arrison, 2006
nalysis of we
ing approach
uake energy w
cs of microse
tions betwee
mal systems (
olume and fra

nd the in-situ 
rove understa

nd gas 
flow, 

on and 
oleum 

re and 
ound a 
ead to 
2001). 
on, the 

stress 
ound a 
o they 
n with 

t-peak 
s pore 
hanics 
), and 
llbore 

hes to 
where 
eismic 
en the 
(EGS). 
acture 
stress 

anding 



 

3 
 

1.1 Motivation and Objectives of the Study 
 
The theory of thermo-poroelasticity can explain the coupling of fluid flow and temperature effects in rock 
deformation. It provides a robust framework for studying the rock deformation and stress redistributions 
after rock failure. However, its use and application could be improved by developing three-dimensional 
injection/extraction geomechanics models that not only consider induced rock failure and fracture 
propagation but also take into account rock damage and permeability variations. Continuum damage 
mechanics with fully coupled thermo-poroelasticity using finite element methods can be used for this 
purpose. The objectives of the research were to (i) develop a fully coupled thermo-chemo-poroelastic and 
three-dimensional finite element model that considers rock damage and stress-dependent permeability for 
simulating the influence of fluid flow and temperature with various injection schedules under anisotropic 
far-field stress conditions; (ii) observe the injection-induced stress variations, permeability change and 
rock failure; (iii) simulate and study  the three-dimensional propagation of damage/fracture and 
microseismic events under different stress regimes, and better understand the key factors for temporal and 
spatial distributions of induced microseismic events.   
 

1.2  Fluid Flow, Temperature, and Solute Transport in Porous Rock 
 
Coupled hydromechanical process analysis was initially motivated by soil consolidation problems. 
Terzaghi (1923) presented the one-dimensional consolidation theory that takes into account pore pressure 
and the soil deformation. Biot (1941) developed a model for linear poroelasticity that considered the 
stress change under fluid loading and pore pressure variations under applied stress. This theory has been 
extended to include the influence of temperature, fluid flow, and rock deformation and is called thermo-
poroelasticity (McTigue, 1986; Kurashige, 1989; Wang and Papamichos, 1994). Heidug and Wong (1996) 
proposed the constitutive equations for swelling shale based on nonequilibrium thermodyanamics. 
Ghassemi and Diek (2003) considered combined effects of chemical potential and thermal osmosis on 
water flow in and out of the mud and shale formation. They indicated that in addition to thermal osmosis, 
chemical osmosis also can be several times higher than hydraulic pressure in certain conditions. Also, a 
linear chemo-thermo-poroelasticity was developed to remedy the cumbersome solution of the original 
chemo-thermo-poroelasticity for practical applications. Details of these mathematical formulations will be 
illustrated in Section 2.  
 

1.2.1  Biot’s poroelasticity 

Biot (1941) developed the coupled fluid and solids consolidation problem in porous media. He assumed 
that the material is homogeneous and fully saturated, and fluid flow follows Darcy’s law in porous media. 
The problem domain that illustrated the influence of loading in excess pore pressure variation is shown in 
Fig. 1.2. Consider a fully saturated poroelastic layer from z = 0 to z = h, and normal traction P applied at 
the top surface. Initially the layer deforms as elasticity, and an excess pore pressure induces the change of 
displacement as results of the Skempton’s effect. The fluid flow dries out gradually with time, and the 
layer continuously deforms vertically. 
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The theory of Biot consolidation represents fully coupled interaction of fluid flow and solids. It provides 
general schemes of the interaction between fluid flow and mechanical loading. Similar phenomena are 
observed around a wellbore.  
 
1.2.2  The concept of thermal stress 
 
The change of temperature induces stress and displacement in a rock skeleton. The theory of 
thermoelasticity is analogous to the theory of poroelasticity, but instead of pore pressure, it includes the 
role of temperature change. Palciauskas and Domenico (1982) and McTigue (1986) studied the effects of 
temperature change on pore pressure and stress in rock. Considering linear elasticity, temperature 
decrease or rise causes a change of strain in the rock given by:  

 0TT     (1.7) 

where   is the volumetric thermal expansion coefficient (at constant t and p) that indicates the change of 
strain by the difference of temperature in a rock. An increase in temperature will cause bulk volume 
increase, whereas a decrease of temperature will cause bulk volume decrease. Since the injection water in 
geothermal conditions is cold and reservoir temperature is hot, injection leads to tensile stress of rock in 
the injection well. For typical values such as K=10 GPa and =10-5/K, a temperature change of 10 K 
induces a thermal stress around 30 MPa.  
 
The conductivity and thermal expansion coefficients do not vary widely because most rock-forming 
minerals have similar thermal expansion coefficients. The thermal conductivity of rock is in the range 1-
10 W/m·K (Jaeger, Cook, and Zimmerman, 2007). An interesting phenomenon regarding the thermal 
effects in the rock is that the range of the thermal expansion coefficient does not vary significantly with 
rock type (Grimvall, 1986), in contrast to other rock properties such as porosity and permeability that may 
vary by many orders of magnitude. McTigue (1986) determined that the thermal expansion coefficient of 
a fluid-saturated rock is equal to that of the rock skeleton in drained conditions, whereas in undrained 
conditions, it is: 

 sfsu B     (1.8) 

where and B are the porosity and  the Skempton’s coefficient. The subscripts s and f indicate the rock 
skeleton and fluid phase, respectively. 
  
According to linear thermo-elasticity, the strain is the sum of stress-induced strain and thermally induced 
strain:  

  IIτ )()(
122

1
0TTtrace

vGG



  ,  (1.9) 

where τ  is the relationship of stress and strain in linear elasticity: 
 Gtrace 2)(  Iτ .    (1.10) 

  
The governing equation for thermoelasticity is obtained by combining Eq. 9 with the stress equilibrium 
equation, 0, jij  and the strain-displacement equations. 

  03)(2  TKGG  uu   (1.11) 

Fourier’s law, Tkq T
T   and the energy balance equation for conductive heat transfer equation can 

be written as 
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where ijklE is the elastic moduli tensor for effective configuration of undamaged area and  
e
ij  is the 

similar effective strain. 
 
The two theories in the transformation from the nominal to the effective configuration are the strain 
equivalence hypothesis and the strain energy equivalence hypothesis. Assuming that the strain in normal 
configuration is the same as in the effective configuration in strain equivalence hypothesis as: 

 
ijij   ,   (1.21) 

we can derive the expression for the relationship of the effective stress and strain configuration with the 
damage variable as follows: 

 


E
d


1
  (1.22) 

 


E
d

E


1
  (1.23) 

 From the hypothesis of strain equivalence ( ijij   ), the relationship of damaged modulus with 

initial modulus can be written as: 

   EdE )1(    (1.24) 
 
The other theory for the transformation relation between the damaged and fictitious undamaged state was 
proposed by Sidoroff (1981). The theory assumed that the elastic energy in terms of effective 
configuration and nominal stress are equal; therefore, the elastic strain energies for damage and 
undamaged configuration are the same: 

  ijijijij 
2

1

2

1
   (1.25) 

 
The relation of effective and nominal strain can be derived with Eq. 1.24 by substituting Eq. 1.18 such 
that 

  ijij d  )1(    (1.26) 

 
Therefore, by rearranging of Eq. 1.26 and Eq. 1.18, we can obtain the relationship between the initial and 
damaged modulus, 

 
EdE 2)1(             (1.27) 

 

1.5  Stress-Dependent Permeability  
 
One of the interesting physical properties in a rock is permeability. It varies by many orders of magnitude 
among the various rock types, and it influences the fluid transmissibility in porous rock, which in turns 
impacts the effective rock stress. Permeability appears to have a relationship with porosity, but that is still 
highly uncertain because of their complexity in rocks (Ingebritsen and Manning, 2010).  
 
The permeability variations induced by altered stress and rock failure have been studied by many 
researchers (Shipping et al., 1994; Kiyama et al., 1996; Coste et al., 2001; Zoback and Byerlee, 1975). 
Zoback and Byerlee (1975) illustrated the relation between permeability change and the evolution of 
microcracks and voids. Their experimental tests on granite show permeability increases of up to a factor 
of four during rock deformation. Other studies present different magnitudes for the increase in 
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permeability depending on rock type and conditions (De Paola et al., 2009; Wang and Park, 2002). Stress-
dependent permeability has been developed by Elsworth (1989) and Bai and Elsworth (1994, 1999) for 
fractured media and Bai and Elsworth (1994) for intact rock. They considered equivalent fracture 
networks and showed the sensitivity of permeability to effective stress with coupled poroelasticity.  
 
The empirical models for the correlations relating the permeability increase to the porosity change have 
been proposed by several authors (Labrid, 1975; Lund and Fogler, 1976; Lambert, 1981). The Labrid 
permeability model based on porosity change can be supposed as: 

 

n

M
k

k











00

,   (1.28) 

where 0k and 0 are the initial permeability and porosity, respectively. 
 
Labrid’s permeability model based on porosity was extended by Thomas et al. (2003), who proposed that 
porosity has correlations with strain:   

   
 
  v











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
01

1
ln ,   (1.29) 

where v  is the volumetric strain. 

 
The other interesting permeability model considering the shear dilation was developed from Bai and 
Elsworth (1994): 
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where the alternate negative and positive sign denote compression and dilatational loading.  
 
Tang et al. (2002) developed a stress-dependent permeability model based on effective stress that 
accounts for the permeability increase under shear and tensile failure. There model emerged from 
experimental observation in triaxial tests with fluid in and out through the core sample.  
For undamaged rock: 

 

  pkk iid   3/exp0   (1.31) 
For damaged rock: 

 

  pkk iidd   3/exp0   (1.32) 

where d is the increasing factor after the rock failure and d  represents the sensitivity of permeability 
in exponential decay by compression.  
 
Permeability anisotropy is a key factor in the reservoir fluid path that can be caused by in-situ stress 
anisotropy. Experimental studies have shown that the permeability behaves isotropic under isotropic 
loading, whereas anisotropy becomes larger with anisotropic loading in core analysis (Bruno et al., 1991; 
Rhett et al., 1992; Ruistuen et al., 1996). From the experimental results of permeability behavior under 
stress variations, we can infer that reservoir permeability is dependent on the deviatoric far-field stress. 
Khan and Teufel (2000) illustrated the change of permeability anisotropy with respect to pore pressure 
variations and far-field stresses. They concluded that the maximum permeability direction is parallel to 
the maximum principal stress, and the permeability anisotropy increases as the deviatoric stress increases.      
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frequently by fluid injection if the cracks, natural fractures, and faults exist and are subjected to excess 
shear. Bruel (2002) and Baisch et al. (2003) considered shear failure by fluid injection in naturally 
fractured reservoirs, and Safari and Ghassemi (2011) showed thermo-poroelastic analysis of 
microseismicity, which considered the fluid flow and fracture deformation by injection/extraction in 
geothermal reservoirs. Hydraulic fracturing also induces microseismicity. Fracturing is accompanied by 
tensile failure, which contrasts with shear induced failure (although shear failure can also be present in the 
vicinity of the hydraulic fracturing). It creates high energy for monitoring tensile failure so that it can be a 
tool for predicting the intended fractured volume.  
 

1.7  Heterogeneous Model 
 
Rocks are heterogeneous, with natural weaknesses such as pre-existing cracks, voids, and grain 
boundaries. The variations of pore pressure and temperature during fluid injection can induce fractures at 
these defects, resulting in rock failure and fracture propagation. Muller et al. (2009) conducted stochastic 
borehole stability analysis using probability distribution functions for rock and reservoir properties such 
as bulk and shear modulus, far-field stress, initial pore pressure, and tension cutoff. They assumed the 
stochastic parameters follow lognormal and normal distributions which are widely used in heterogeneous 
reservoir simulations. The other probability function in geomechanics simulation is the Weibull 
distribution function (Weibull, 1951; Fang and Harrison, 2002; Tang et al., 2002; Gharahbagh and 

Fakhimi, 2010; Min et al., 2011), defined as: 
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where s in the variables s0  

represents the corresponding mean value. The shape parameter n determines the deviation from the mean 
value. The range of n is from 1 to infinity. If n increases, statistical deviations become narrow and the 
rock is homogeneous. Most rock properties, such as modulus and porosity, are heterogeneous because of 
the rock’s components and origin, and numerical modeling needs to depict this initial heterogeneity. The 
Weibull distribution function can be used to generate an initial property distribution for numerical 
modeling. Also, the deviations of rock properties from the mean values are important. These deviations 
can be assumed as flaws in unit volume; therefore, homogeneous rock can be modeled with high value of 
n, and heterogeneity (flaws in unit volume) increase as n decreases.  

1.7.1  Stochastic model 

To approach realistic reservoir properties and conditions, many stochastic approaches have been 
developed to accommodate small and large-scale heterogeneities in reservoir simulations (Knutson, 1976; 
Smith and Morgan, 1986; Liu, 2006). The two main streams in stochastic approaches are the discrete and 
continuum models.  
 
The discrete model considers discrete geological features such as naturally pre-existing fracture and faults 
in spatial distributions. Ezzedine (2010) presented stochastic discrete fracture network numerical model 
using Monte Carlo realizations and Cacas et al. (1990) proposed stochastic particle trajectories of flow 
patterns in fractured rock incorporating intersections with the network pipes model. Liu (2006) developed 
multiple-point simulations based on the Bayesian updating correction, and demonstrated the influence of 
geostatistical model parameters, number of replicates, and grid-scale.  
 
The other stochastic approach is the continuum model. This model describes the mean level, deviations 
from the mean values, and how strongly typical properties are related with other neighboring points. 
Some key concepts are random distribution functions such as Gaussian, Weibull, and log-normal 
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2. The Theory of Poroelasticity and its Extensions 
 

The influence of fluid flow in a porous rock was initially recognized in the soil consolidation problem. 
The one-dimensional consolidation problem, which takes into account the pore pressure in soil, was 
developed by Terzaghi (1923), who demonstrated that the total stress concept consists of effective stress 
and pore pressure. Biot (1941) developed a coupled fluid/solid interaction model that assumed that the 
soil is homogeneous and water is incompressible, and used Darcy’s law for fluid flow. The linear 
poroelasticity was extended to combined thermal and hydraulic stress (McTigue, 1986; Kurashige, 1989). 
Also the relation of chemical potential and rock deformation has been developed on the basis of the 
thermodynamic law and the Gibbs-Duhem equation (Mody and Hale, 1993; Heidug and Wong, 1996; 
Ghassemi and Diek, 2003; Ghassemi et al., 2009; Zhou and Ghassemi, 2009). The sign convention in this 
section follows positive tension. 

2.1  Poroelasticity  
The linear poroelasticity introduces the coupled interaction between the rock deformation and pore 
pressure variations. The change of pore pressure causes rock deformation and also rock could be 
deformed by fluid flow.   

2.1.1  Constitutive equations  

The relation between the solid )( ij and fluid )( , the stress and pore pressure can be described as: 
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where the K and G are the bulk and shear modulus of the drained elastic solid. The constants H  , H  and 
R

 
denote the coupling between the solid and fluid stress and strain. 

 
The change of strain by pore pressure is equal to the fluid contents change caused by the increase of 
volumetric stress: 
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The poroelastic coupling parameters can be defined as (Rice and Cleary, 1976; Detournay and Cheng, 
1993) 
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Substituting Eq. 2.4 and Eq. 2.5 into Eqs. 2.1 and 2.2: 
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After rearranging Eq. 2.6 and Eq. 2.7 to include the stress ij  and pore pressure p , we obtain: 
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where B is the Skempton pore pressure coefficient is defined by:  
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2.1.2  Field equations  

To solve the solutions for the stress and pore pressure, the balance equation for stress and fluid flow with 
Darcy’s law are also necessary.  
 
 The equilibrium equations: 

 

0, jij   (2.10) 

 The fluid mass balance equation can be written as: 

 

0,  iiq   (2.11) 

where iq is the specific discharge vector which has a relation with Darcy’s law: 
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The governing equation for solids is obtained from Eqs. 2.8 and 2.10 as 
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After substituting Eq. 2.7 into Eq. 2.11 with Darcy’s law (Eq. 2.11), the governing equation for fluid can 
be derived: 
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  is the fluid diffusion coefficient. Substituting Eq. 2.7 into Eq. 2.9: 

 

eMpkMp   2
  (2.15) 

where 
)21)(21(

)(2

vv

vvG
M

u

u





 is the Biot modulus (similar to a storage coefficient) defined as the 

change of fluid contents per unit volume as a result of pore pressure variation under constant volumetric 
strain.  
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2.2  Thermo-poroelasticity  
Nonisothermal conditions often arise when geothermal reservoir or steam assisted gravity drainage 
(SAGD) is used to enhance oil recovery. The difference of heat expansion coefficients between the rock 
and fluid cause rock deformation and pore pressure. The governing equations for thermo-poroelasticity 
were developed by McTigue (1986), assuming fully-saturated homogeneous rock. 

2.2.1  Constitutive equations  

The constitutive equations considering the relations of the strain, pore pressure, and temperature change 
were developed from the thermoelasticity and poroelsticity (McTigue, 1986):   
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where K is the bulk modulus, f
and s  are the volumetric thermal expansion coefficient for fluid and 

solid, respectively. 

2.2.2  Field equations  

Similarly from the poroelasticity derivations, the thermo-poroelastic governing equation can be derived 
from the constitutive equations and transport equations. We can obtain the governing equation for the 
solid from Eq. 2.16 and Eq. 2.10: 
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The governing equation for the fluid can be derived by putting Eq. 2.17 into Eq. 2.11 with Darcy’s law: 
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The heat transfer equation is obtained by combining the Fourier’s law and energy balance equation: 
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where iQ is the heat flux and 
Tk is the thermal conductivity. m  and pc are the total mass density and 

specific heat capacity. 
Substituting Eq. 2.20 into Eq. 2.21 can obtain the heat transfer equation. 
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3. Finite Element Method for Coupled Problem and its Verifications 
 

Section 2 described mathematical models for coupled fluid flow, temperature, and solute transport in rock 
deformation. This section describes the finite element method for coupled problems and its verification. 
The finite element method is one of the discretizing techniques for solving partial-differential equations. 
The method has been developed by many researchers (Zienkiewicz and Taylor, 1991; Strang and Fix, 
1973; Cook et al., 2001). Finite element discretization for coupled problems for coupled solid-fluid 
interaction is described by several authors (Smith and Griffiths, 2004; Zienkiewicz and Taylor, 1991; 
Lewis and Schrefler, 1988).  

3.1  Finite element formulations  

3.1.1  Basics for discretization  

In the finite element method, continuous variables such as displacement u , pore pressure p , temperature 

T , and solute concentration 
SC  can be approximated by u~  , p~ , T

~
, and, SC

~
, in terms of their nodal 

values, interpolating the nodal to nodal values by shape functions. Considering a two-dimensional 
quadrilateral element or a three-dimensional hexahedron element (Fig. 3.1), the interpolation functions 
can be written as: 
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where  u~ , p~ , T
~

and SC
~

are approximated in terms of their nodal values iu , ip , iT , and S
iC  in the 

system. iN is the interpolation function and is generally referred to as a shape function where subscript “i” 
denotes the corresponding node.  
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where  J  is the Jacobian matrix.  
To solve a partial differential equation (Eqs. 3.10 to 3.13), it is necessary to understand the procedure for 
numerical integration  (Eqs. 3.18  to 3.31) of the weighting residual by each shape function by integrating 
over the equations (Galerkin’s method). The transformation between the local Jacobian coordinate and the 
global coordinate in integration should be evaluated as follow: 
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The Gauss-Legendre quadrature for finite element numerical integration in two dimensions can be 
described as:  
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  (3.9) 

where nip is the total number of integration points (Gaussian point), iw and jw  are the weighting 

coefficients, and  ii  ,  are sampling points in element.  

3.1.2  Spatial discretization  

For the case of chemo-thermo-poroelasticity, the combining the constitutive equations and the balance 
equations with transport equations yield the governing equations: 
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  (3.11) 
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  (3.12) 

02  TcT T
 
  (3.13) 

 

where K and G are bulk and shear modulus, respectively,   Biot’s constant,   viscosity.  ,  ,  ,

1 , 2 , and   are given by:  
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where 

SM  is molar mass of the solute,

 
0 the swelling coefficient, f  the fluid mass density, R the 

universal gas constant,  the porosity, 
SC and 

DC the solute and dilute concentrations, respectively, and 

f  and s  the thermal expansion coefficients of fluid and solid, respectively.  

 
To discretize the field equations (Eqs. 3.10 to 3.13), we introduce an 8-node quadrilateral element and a 
20-node hexahedron element for computing the displacement, pore pressure, solute mass concentration, 
and temperature. Substituting the shape functions for the factors  (Eqs. 3.1 to 3.4) into the field equations 
(Eqs. 3.10 to 3.13), and then using Galerkin’s method (Finlayson, 1972, see Appendix A), the finite 
element formulations for displacement, pore pressure, solute mass concentration, and temperature are 
obtained as:    
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~~~~
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where 
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T
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  (3.25) 
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T
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  (3.26) 

          
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dc TTT
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  (3.27) 
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  (3.28) 
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  (3.29) 
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  (3.30) 

    


dDC SST
TTD NNQ

 
  (3.31) 

where the  uD  is the stiffness property for stress-strain relations, and strain displacement can be 

described with  B . (See Appendix A for full explanation of the integrals in Eqs. 3.18 to 3.31.) For 
example, in the axisymmetric stress-strain problem, strain and displacement have a relation (Timoshenko 
and Goodier, 1982) as shown by Eq. 3.32:  
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  (3.32) 

Matrix  B  is the expression of the spatial derivative: 
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3.1.3  Discretization in time  

Among the methods to discretize the time steps for partial differential equations (Zienkiwicz and Taylor, 
1989) are linear interpolations and fixed time step t (Smith and Griffiths, 2004). The finite element 
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formulations derived in Section 3.1.2 include the time-dependent variables for displacement, pore 
pressure, solute mass concentration, and temperature. The governing equations use the second order for 
the spatial domain and the first order for the time domain. These domains are categorized to a parabolic 
partial differential equation. A typical expression of a first-order time-dependent problem in a finite 
element formulation can be described by: 
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  (3.34) 

Consider two consecutive time steps as follow: 
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  (3.36) 

where 0 and 1 indicate the previous and current time step, respectively. Then, variation of the variable  
over the two time steps can be expressed in terms of a linear interpolation between its values at the two 
time steps: 
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Substituting Eq. 3.37 into Eq. 3.35 and Eq. 3.36, we obtain: 
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Using Eq. 3.35 and Eq. 3.36 and substituting them into Eq. 3.35 and Eq. 3.36, we arrive at the time 
discretization of finite element method: 
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If  =1/2, it is called the “Crank-Nicolson” method,  

           01 22
φKMφKM















 







 


tt

  (3.40) 

and if  =1, is it the “fully implicit” method, which ignores any history since the past is unknown:  
        01 φMφKM  t  

The discretization for the finite element method also has incremental version  that results from 
rearranging the governing equations (Eq. 3.14 to Eq. 3.17) for solid, fluid, solute concentration, and 
temperature with linear interpolation for time:  
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in unconsolidated reservoirs. Experimental core analysis for the strain-stress behavior of the rock in 
compressive loading shows the four stages of stress which are elastic, hardening, softening, and critical 
stress state (residual strength). Damage mechanics can describe the nonlinear behavior of rock under 
loading by considering the micro-crack, microvoid, and crackgrowth stresses (Kachanov, 1986; Lemaitre 
and Chaboche, 1990; Voyiadjis and Kattan, 1999). Kachanov (1986) proposed an effective configuration 
of undamaged material from the nominal state by introducing the damage variable, d .  
 
Several researchers have shown that permeability is a stress-dependent property (Chin, 2000; Thomas et 
al., 2003; Bai and Elsworth, 1994; Tang et al., 2002).  Tang et al. (2002) tested permeability variations 
under triaxial loading and indicated that permeability decays exponentially before the rock failure in 
compressive stress and it increases suddenly by a factor of 2 to 3 after the rock failure. Similar results 
have been reported by other researchers (Shipping et al., 1994; Kiyama et al. 1996; Coste et al., 2001; 
Zoback and Byerlee, 1975), with the increase in permeability depending on rock type and conditions (De 
Paola et al., 2009; Wang and Park, 2002). Zoback and Byerlee (1975) illustrated the relation between the 
permeability change and microcrack and void evolution.   
 
In this section, we present a numerical approach for implementing damage theory and stress-dependent 
permeability models into a fully coupled thermo-hydro-mechanics  model. Triaxial simulations with finite 
element methods have been carried out to find the material parameters which define the peak stress and 
residual strength. In addition, a stress-dependent permeability model has been applied to both elastic and 
inelastic rock states, and then we present the influence of localized rock damage and permeability change 
caused by fluid injection around a wellbore.   
 

4.1  Damage Model 
A damage and stress-dependent permeability model was proposed by Tang et al. (2002) from 
experiments for porous rock that measured the permeability and modulus change with respect to the 
change of strain (Yang et al., 2004). This model assumes that the strain-stress behavior before the rock 
failure follows the elasticity model without the hardening process and reaches the residual strength regime. 
From this damage model, there is no damage in the elastic phase, but the rock begins to fail by crack 
initiation and void growth when the stress conditions reach the failure state; that is, it satisfies the failure 
criterion. This model has an advantage for describing the behavior of brittle rock, which has a short range 
of hardening and directly reaches the softening regime in triaxial tests. An elastic-damage mechanics 
model represents the rock degradation by expressing the damage in terms of a reduction in the elastic 
modulus as the damage proceeds: 
 

0)1( EdE 
 
,   (4.1) 

where d is the damage variable which describes the amount of degradation (crack initiation, microvoid 
growth, and crack propagation) and E  and 0E  are altered modulus and initial modulus, respectively.  
The degree of damage level can be represented with damage variable from 0 to 1 with a relationship of 
strain variations. For example, d = 0 if the rock is in elastic phase, and d = 1 if the rock is perfectly 
damaged. The damage model from the rock failure can be considered as either of two types, compressive 
and tensile stresses.  
 
In compressive rock failure, the damage variable for describing softening and the critical state can be 
described as: 
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  (4.2) 

where crf  is the residual compressive strength and cf  is the maximum compressive stress.  cr  and c  

are the residual compressive strain and maximum compressive strain, respectively, and   is the 
equivalent strain (Mazars, 1986): 

 
2

 
  (4.3) 

where i   if  0i (tensile) and 0  if  0i (compressive). 

 
This equivalent strain definition from Mazars (1986) represents a damage evolution that is dominated by 
tensile strain. These components of strain during damage evolution can be obtained as follows: 

ct
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  (4.4) 

where 
t

  is built with the tensile components of the principal stress and 
c

  is for compressive 

components of principal stress. In this way, we can obtain strain components for tensile and compressive 
stresses:  
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  (4.7) 

 
If damage occurs in a tensile stress field, the damage variable is defined using the residual tensile strength 
of rock as: 

0
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E

f
d tr

 
  (4.8) 

To trace the progress of damage under tensile stress, we introduced a tension cut-off, T0, for tensile failure 
because the Mohr-Coulomb failure criterion was developed based on shear failure and it often 
overestimates the stress state for rock failure. The Mohr-Coulomb failure criterion for shear failure can be 
described as: 
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
 
  (4.9) 

where 1  and 3  are the maximum and minimum principal stresses, respectively; f and fc represent the 

friction angle and cohesive strength, respectively. 
 

4.2  Numerical Implementation of the Damage Model 
The theory of damage mechanics has been implemented into the finite element code described above. For 
illustration purposes, we consider the numerical simulation of the stress-strain response of a rock obtained 
from a laboratory triaxial experiment. In particular, we simulated the experimental data of Wang and Park 
(2002) and Tang et al. (2002), which shows a rapid decrease from the peak stress. The simulation domain 
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The damage model used in this section considered nonlinear behavior of strain-stress for the shear and 
tensile failure. This model can describe softening and residual strength regime with change the parameters 
fcr, ftr, and cr better than other suggested damage models that include exponential terms in their equations 
(Mazars, 1986; Cheng and Dusseault, 1993; Selvadurai, 2004). These exponent-based damage models can 
depict the hardening and softening process smoothly; however, it is not convenient to control the desired 
softening regime and residual strength regime. For our applications, it is important to consider softening 
and residual strength since reservoir rocks (shale, sandstone, and granite) show brittle behavior with a 
short range of hardening regime.  

5. Chemo-Thermo-poromechanical Finite Element Analysis with 
Damage Evolution around a Wellbore in Swelling Shale 

 
Wellbore stability is important when drilling for oil and gas. Especially, well design must consider the 
influence of hydraulic pressure, temperature, and chemical osmosis in shale drilling in high pressure and 
high temperature. The interaction of solid and fluid in porous rock has been firstly developed by Biot’s 
poroelastic theory (Biot, 1941; Cryer, 1963), and this theory has been extended with the influence of 
temperature, fluid flow, and rock deformation by thermo-poroelasticity (McTigue, 1986; Kurashige, 1989, 
Wang and Papamichos, 1994). These authors have shown the impact of thermal stress in wellbore 
stability: thermally induced pore pressure change can be significant in low permeability formations. The 
shale deterioration by chemical influence under isothermal condition around a wellbore has been studied 
extensively; the main driving mechanism of fluid flow is the chemical potential gradient in low 
permeability shale reservoirs. Heidug and Wong (1996) proposed constitutive equations for swelling 
shale based on nonequilibrium thermodynamics. Ghassemi and Diek (2003) considered combined effects 
of chemical potential and thermal osmosis on water flow in and out between the mud and shale formation. 
They indicated that thermal-osmosis flows are several times higher than hydraulic pressure in certain 
conditions. On the other hand, the chemo-poroelasticity model is not easy to implement because of its 
nonlinearity characteristics in physical parameters so that it can be simplified with linear chemo-thermo-
poroelastic models if the difference of concentration is not severe (Ghassemi and Diek, 2003). The 
assumptions of elasticity and constant permeability in shale drilling have limitations in predicting the real 
behavior of shale around a wellbore. In addition, the strength of shale is weak, so that it is important to 
predict the stress changes precisely around a wellbore influenced by hydraulic pressure, mass solute 
concentration, and temperature. Generally, the stress and strain behavior for shale in triaxial tests shows 
the hardening and softening with compressive or tensile stress (Yuan and Harrison, 2006). The damage 
mechanics model is one of the methods to describe this hardening and softening behavior of rock. 
Continuum damage mechanics was first introduced by Kachanov and since has been developed by many 
researchers (Kachanov, 1958; Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al., 
2005; Selvadurai, 2004) who have studied the inelastic rock behavior due to crack initiation, void growth, 
and crack growth. This damage mechanics model has been applied to poroelasticity by Selvadurai, who 
applied consolidation problems with altered moduli and permeability change. Also Hamiel et al. (2005) 
proposed a damage model in poroelastic rock and applied the model to the triaxial simulation, considering 
the time dependent degradation and healing process for a damage variable which is dependent on 
modulus, porosity, and Poisson’s ratio. Tang et al. (2002) proposed an isotropic damage model based on 
Kachanov’s (1959) effective stress hypothesis. Also he presented the permeability model which describes 
stress-dependent behavior in the elastic phase and altered permeability after the rock failure based on 
triaxial tests by measuring the permeability change with stress variation (Tang et al., 2002). This 
permeability change by rock failure has been studied by many researchers (Shipping et al., 1994; Kiyama 
et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975). Their experimental results for tests on several 
rocks show permeability increase by a factor of two to four, and this increase of permeability by rock 
failure depends on the rock type and conditions (De Paola et al. 2009; Wang and Park, 2002). 
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Fluid viscosity,  (Pa·s) 1×10-3 

Thermal expansion coefficient of solid, m (K-1) 1.8×10-5 

Thermal expansion coefficient of fluid, f (K-1) 3.0×10-4 

Thermal diffusivity, Tc (m2/2) 1.6×10-6 

Reflection coefficient,   0.2 

Swelling coefficient, 0 (MPa) 1.5 

Solute diffusivity, SD (m2/2) 2.0×10-9 

 
 
 
We compared the results which consider the influence of fluid flow, temperature, and solute transport 
based on poroelasticity, thermo-poroelasticity, and chemo-thermo-poroelasticity. Pore pressure 
distributions for isothermal and nonisothermal cases are plotted in Fig. 5.2 (a) and (b). The deviatoric far-
field stress causes the lower pore pressure to the maximum far-field stress direction because of the tensile 
stress around a wellbore, and higher pore pressure to the minimum far-field stress direction because of the 
compressive stress. The influence of temperature is described in Fig. 5.2(b). Note that the difference of 
temperature between the mud and shale formation generates thermal stress as tensile around a wellbore 
because of rock shrinkage; therefore, the fluid disperses more easily than in the isothermal condition. Fig. 
5.2(c) represents the influence of solute transport (Cm=0.1, Cshale=0.2) that the osmosis flow cause 
localized pore pressure inside the shale formation. The result for the fully coupled case has been 
described in Fig. 5.2(d). The effective radial and hoop stress distributions with different coupling schemes 
are plotted in Fig. 5.3 and Fig. 5.4. It is observed that the fluid flow, temperature, and solute transport are 
critical to rock stress; the variations in hoop stresses are especially significant. This localization of stress 
distribution often reaches the rock failure criterion, so it is necessary to consider the stress variations after 
the rock failure. The rock damage with altered modulus and permeability will be discussed in the next 
section.  
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poroelastic theory (Biot, 1941; Cryer, 1963), and its thermo-poroelastic (McTigue, 1986) and thermo-
chemo-poroelastic extension (Ghassemi et al. 2009). Chemical effects can be significant with respect to 
the clay swelling and solute transport and reactivity. Thermo-poroelasticity can be used to assess the 
influence of fluid flow and temperature change on the stress variations in the reservoir. This influence is 
often computed assuming a linear elasticity with constant mechanical and transport rock properties. The 
assumption of elastic rock skeleton and fluid flow and heat transport in porous media under constant 
permeability conditions has limitations in predicting the real behavior of the reservoir rock. Generally, the 
strain-stress behavior of rocks in triaxial tests shows hardening and post-peak softening. This behavior 
depends on the rock type, pore pressure, stress conditions, and temperature (Jaeger, Cook, and 
Zimmerman, 2007). The continuum damage mechanics approach is one of the methods that can capture 
the hardening and softening behavior of the rock (Yuan and Harrison, 2006). Continuum damage 
mechanics was first introduced by Kachanov and since has been developed and applied by many 
researchers (Kachanov, 1958; Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Yang et al., 
2004; Selvadurai, 2004) who have investigated inelastic behavior caused by crack initiation, microvoid 
growth, and fracture propagation. Also, the evolution of rock damage in the presence of poroelastic and 
thermo-poroelastic effects has been considered. Selvadurai (2004) studied damage in poroelastic brittle 
rock. His results showed a significant permeability alteration caused by damage evolution in 
consolidation problems. Hamiel et al. (2005) developed a model with a time dependent damage variable, 
porosity, and material properties. They proposed different rock behavior with degradation and healing 
within the framework of the poroelastic theory. Tang et al. (2002) proposed a damage and permeability 
model based on experimental strain-stress observations and permeability measurements (Tang et al., 2002, 
Yang et al., 2004). The model was implemented in a finite element model and was used to simulate a 
uniaxial compression test and also hydraulic fracture propagation.  
 
The permeability variations induced by altered stress and rock failure has been studied by many 
researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975). 
Zoback and Byerlee illustrated the relation between permeability change and microcrack and void 
evolution. Their experimental results for tests conducted on granite show permeability increasing by a 
factor of four. Other studies present different magnitudes for the increase in permeability depending on 
rock type and conditions (De Paola et al. 2009; Wang and Park, 2002).  
 
The stimulation of the reservoir rock mass is often accompanied by multiple microseismic events. 
Microseismic event characteristics such as their locations, spatial patterns of distribution, and temporal 
relations between the occurrence of seismicity and reservoir activities are often studied for enhanced 
geothermal systems (EGS). Microseismic event detection and interpretation is used for estimating the 
stimulated volume and fracture growth, resulting reservoir permeability, and geometry of the geological 
structures and the in-situ stress state (Pine, 1984). The process commonly is referred to as seismicity-
based reservoir characterization. Although progress has been made in quantitative and qualitative analysis 
of reservoir stimulation using micro earthquakes (Shapiro et al., 1997; 1999; 2002; Rothert and Shapiro, 
2003), the process of rock failure and permeability change is not considered. Also, in-situ stress and 
thermal effects on fluid-rock interaction have not been considered.  
 
In this work, we present the development of a finite element model to study the influence of thermo-poro-
mechanical coupling on rock damage evolution and permeability variation with reference to reservoir 
stimulation and induced seismicity. The damage model we used corresponds to the brittle rock failure 
behavior with post peak softening and permanent deformation prior to the fracture. To capture the full 
effects of rock cooling by injection in the presence of higher fluid fluxes caused by rock failure and 
permeability enhancement, the model considers both the conductive and convective heat transfer in 
porous media. Two types of injection schemes are considered in this work: explicit wellbore geometry for 
small scale simulations and a point source approach for large scale simulations. A number of numerical 
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6.4  Conclusions 
Damage mechanics and the stress-dependent permeability model have been applied to fully-coupled 
thermo-poroelasticity. It is observed that effective stresses are relaxed in the damaged area and increased 
at the interface of the damaged and intact rock by the change of modulus and permeability with injection-
induced rock failure. The model has been applied to the microseismic event simulation. Two types of 
injection schemes are used for geometrical well injection in small scale simulations and point source 
injection in large scale simulations. Results show distributed shear and tensile failure in the reservoir. The 
resulting rock failure and permeability enhancement is a function of the in-situ stress. Realistic patterns of 
micro-seismicity have been generated. Results show the significant roles of stress state and initial rock 
permeability in the resulting pattern. The results of this study indicate that the finite element method with 
damage can be used to model reservoir stimulation and induced seismicity. 
 

7. Three-Dimensional Finite Element Modeling of 
Thermo-poromechanical Well Stimulation and Injection-induced 
Microseismicity 

 
The study of stress variations by fluid injection is important in enhanced geothermal reservoir (EGS).  
Especially near the wellbore, there is a significant change of stresses by temperature, fluid flow and far-
field stresses. The influence of fluid flow and porous rock has been developed by Biot (Biot, 1941; Cryer, 
1963), and its extension version of thermo-poroelasticity has been proposed (McTigue, 1986; Kurashige, 
1995; Wang and Papamichos, 1994). They showed that the impact of thermo-poroelasticity around a 
wellbore that thermally-induced pore pressure distribution is significant if the rock permeability is low. 
The influence of chemical potential also has been developed that considered the influence of chemical 
potential, temperature and fluid flow in shale (Heidug and Wong, 1996; Ghassemi and Diek, 2003; 
Ghassemi et al., 2009). Most of the geothermal reservoir rock is granite so that we should consider the 
low permeable and brittle rock with cold water injection. Thermo-poroelasticity can be used to assess the 
influence of temperature and fluid flow change on the stress variations; however, there are some 
limitations that the rock skeleton is assumed to be elastic and constant permeability in fluid flow. 
Generally, the modulus and permeability are changed if the rock reaches the failure criterion. The strain-
stress behavior in triaxial test shows hardening and softening after post-peak stress. This behavior 
depends on the rock type, pore pressure, stress condition and temperature (Jaeger, Cook, and Zimmerman, 
2007).  Experimental results for permeability variation with stress also have been studied by many 
researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975). 
Their experimental results for tests conducted on granite show permeability increase by a factor of four. 
Other studies present different magnitudes for the increase in permeability depending on rock type and 
conditions (De Paola et al. 2009; Wang and Park, 2002).  
 
Continuum damage mechanics is used to consider the crack initiation, void growth, and crack propagation 
that can capture the hardening and softening behavior of a rock. Continuum damage mechanics was first 
introduced by Kachanov and since has been developed and applied by many researchers (Kachanov, 1958; 
Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al., 2005; Selvadurai, 2004). It can 
be contrasted with fracture mechanics in that damage mechanics describes crack initiation, microcracks, 
void growth, and crack propagation based on the failure criterion, whereas fracture mechanics assumes an 
initial crack for propagation. The impact of damage mechanics has been applied in the presence of 
poroelasticity. Selvadurai (2004) studied damage in poroelastic consolidation problems with a stress-
dependent permeability model. His results showed a significant permeability alteration caused by damage 
evolution in consolidation problems. Hamiel et al. (2005) developed a model with time dependent damage 



 

82 
 

variable, porosity, and material properties. They proposed different rock behavior with degradation and 
healing within the framework of the poroelastic theory. Tang et al. (2002) proposed a brittle damage and 
permeability model based on experimental strain-stress observations and permeability measurements 
(Tang et al., 2002; Li et al., 2005). The model was implemented in a finite element model and was used to 
simulate a uniaxial compression test and hydraulic fracture propagation.  
 
Damage mechanics has an advantage of considering the microfracture so that it can be one of the 
promising tools to predict injection-induced microseismic events. Microseismic event characteristics such 
as their locations, spatial patterns of distribution, and the temporal relation between seismicity and 
reservoir activities are often studied for enhanced geothermal systems (EGS). Microseismic event 
detection and interpretation is used for estimating the stimulated volume and fracture growth, resulting 
reservoir permeability, and geometry of the geological structures and the in-situ stress state (Pine, 1984). 
The process commonly is referred to as seismicity-based reservoir characterization. Although progress 
has been made in quantitative and qualitative analysis of reservoir stimulation using micro earthquakes 
(Shapiro et al., 1997; 1999; 2002; Rothert and Shapiro, 2003), the process of rock failure and permeability 
change has not been considered. In-situ stress and thermal effects on fluid-rock interaction have also not 
been considered.  
 
In this work, we present the development of a three-dimensional (3D) finite element model to study the 
influence of thermo-poro-mechanical coupling on rock damage evolution and permeability variation with 
reference to reservoir stimulation and induced seismicity. The damage model we used corresponds to 
brittle rock failure with post-peak softening and permanent deformation prior to fracture. In order to 
capture the full effects of rock cooling by injection in the presence of higher fluid fluxes caused by rock 
failure and permeability enhancement, the model considers both the conductive and convective heat 
transfer in porous media. A number of numerical simulations are presented to verify the model and to 
illustrate the role of far-field stress and permeability change in rock fractures, distributed damage 
evolution, and induced seismicity. 

7.1  Injection-induced Damage Propagation 
In this section, we present numerical examples for hydraulic fracturing experiments under the influence of 
different far-field stresses while taking into account fluid and temperature variations around a wellbore. 
Before conducting large reservoir simulations, we tested a small simulation domain consisting of a 3D 
block of rock with dimensions of 10×10×5 m3 (Fig. 7.1) with a 0.2-m injection interval. We use an 8-
noded hexahedron element for displacement and 8 nodes for pore pressure and temperature. All reservoir 
properties represented a granite reservoir (Table 6.1). 
 
We compared the numerical solutions with analytical solutions for effective vertical stress distribution. 
We assumed zero far-field stress and pore pressure on the wall acting with 10 MPa along the vertical 
wellbore surface. The induced effective vertical stress component contributes to tensile stress since the 
pore pressure invasion to the reservoir leads the effective stress distribution from zero to the tensile stress 
as seen in Fig. 7.1. The plot in Fig. 7.2 compares the numerical solutions for effective vertical stress with 
analytical solutions with time. The comparison of pore pressure, total radial stress components, and total 
tangential stress components are presented in Figs. 7.3 to 7.5.  
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but the event cloud shape is also related with permeability anisotropy when deviatoric stress is small. 
Thermal stress plays an important role for predicting the stress distribution by cold water injection and 
triggered microseismicity in early time steps. The pattern of microseismic events becomes elliptical and 
localized when the reservoir permeability anisotropy increases. Injection induced microseismicity in 
single large, fractured reservoirs also has been presented. Results show that event propagations are 
triggered quickly inside the fracture because of low modulus and higher permeability in natural the 
fracture. Comparing the simulated microseismicity with real data for Soultz-Sous-Forets qualitatively 
showed that numerical results with the assumption of a single large fracture can capture the main 
distribution of microseismicity in field experimental data.     

9. Conclusions and Recommendations 
 

9.1  Conclusions 
Thermo-poro-mechanical and chemo-thermo-poro-mechanical models for the rock response to fluid 
injection and drilling mud infiltration were developed using the finite element method. The rock failure 
and damage propagation were modeled by considering the nonlinear strain-stress behavior of rock. 
Damage mechanics and stress-dependent permeability were also implemented into the finite element 
model. The model has been applied to plain-strain wellbore stability analysis in shale to study the effects 
of solute transport, heat transfer, and stress distribution around a wellbore. Also, a thermo-poro-
mechanical process with damage mechanics and stress-dependent permeability was applied to two- and 
three-dimensional damage/fracture propagation and microseismicity. Especially for three-dimensional 
simulation, both well-scale and reservoir-scale numerical modeling was presented. 
 
Finite element simulation of triaxial compression behavior of rock was carried out to find out optimum 
damage mechanics material parameters which can describe microvoid and microcrack growth and crack 
propagation. The hardening and softening behavior of rock and strain-permeability behavior under 
compression were compared with the experimental results. We described the influence of material 
parameters to determine the peak stress and residual strength regime. 
 
The alteration of modulus and permeability with rock damage has been studied. The results show that the 
discontinuity of modulus and permeability causes retardation of fluid movement between the high 
permeability damaged and low permeability undamaged rock. Stress relaxation by modulus reduction in 
the damaged zone also plays an important role in propagation of damage and leads to the stress 
concentration between the interface of damaged and undamaged rock.  
 
In shale instability analysis, if mud salinity is lower than the formation, it enhances rock damage by shear 
and tensile failure around a wellbore because of osmosis effects between the drilling mud and shale 
formation. Cooling of the rock causes more tensile hoop stress and reduces the pore pressure around a 
wellbore than in isothermal conditions. Results show that thermally induced tensile stress contributes to 
stabilize the shear failure in the minimum far-field stress direction; however, it enhances tensile failure 
potential in the maximum far-field stress direction.    
 
We studied distribution of two- and three-dimensional injection-induced damage propagation 
microseismic events using the fully-coupled thermo-poroelastic finite element methods. To simulate the 
rock mass more realistically, heterogeneous modulus and permeability were implemented in the 
numerical modeling of microseismic events. We assumed that the rock properties follow a statistical 
distribution generated using the Weibull distribution function.  Both well-scale and reservoir-scale 
simulation have been developed for the analysis of injection-induced rock damage and microseismic 
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event propagation. We found that deviatoric far-field stress and permeability anisotropy contribute to 
predict the localization of microseismic event propagation. The results show that the shape of injection-
induced microseismic events becomes elliptical and sharper as the deviatoric far-field stress and 
permeability anisotropy increase. Also we illustrated that the microseismic events are localized when we 
use rock failure criteria for comparing the pore pressure criticality. 
 
Results show that a finer mesh provides more accurate numerical solutions but there are limitations of 
computational speed and memory storage to solve large-scale, fully-coupled problems. To optimize the 
mesh size and element numbers, we used a finer mesh around the wellbore and saw significant changes of 
pore pressure, temperature, and solute mass concentration. For the wellbore stability problem, the system 
domain size is relatively small compared to the injection simulation, so we used a much finer mesh 
around a 2-meter radius zone around the wellbore. However, for the injection simulations, damage 
propagation in the maximum direction is longer than wellbore stability problem. So that a fine mesh is 
used not only around a wellbore but also in the areas parallel to the maximum far-field stress direction. 
There is a possibility of unrealistic large damage propagation if the mesh size is too large to accurately 
compute the stress localizations within elements. 
 

9.2  Recommendations 
 
In this work, we considered single-phase water injection and a mechanical damage model. The 
applications of heterogeneous reservoir modulus and permeability have been used to depict more realistic 
geomechanics simulations. In this work, a continuous stochastic model approach was used to simulate 
heterogeneous reservoirs. However, in reality geological media have a lot of discrete features such as 
fissures, faults, and natural fractures. To simulate these more realistically, we recommend introducing a 
combined approach of stochastic and discrete modeling. For example, we can model the natural fracture 
and faults by discrete modeling and other regions can be described with continuous stochastic modeling. 
Finer mesh will be better for near injection and production well, and coarse mesh is recommended for the 
regions where fluid injection and production do not cause much variation in stress, etc. The choice of 
finer and coarser mesh sizes is relative to the total reservoir size that needs be simulated, the numerical 
accuracy requirements for each case, and the variations of numerical variables by boundary conditions 
such as injection rate, well pressure, production rate, and far-field stress. The mesh dependency problem 
is more significant when we consider the nonlinear stress-strain behavior. Fig. 9.1 shows a typical 
example of damage/fracture trajectory with different scales of mesh size. We observed that damage 
distributions are localized as mesh density increases with the same loading conditions. Particularly for the 
simulation of damage propagation, the loading condition and post-peak response contributes to mesh 
density (Abu Al-Rub and Kim, 2010). As the mesh size decreases, average variation of displacement 
decreases during the damage propagation because of damage localization in finer mesh. Therefore, it is 
necessary to use finer mesh in finite element modeling for the nonlinear behavior of rock and stress 
dependent permeability. 
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10.	Nomenclature	
a Compressibility 
A Cross-sectional area 
AD Damaged cross-sectional area 
B Skempton’s pore pressure coefficient 
cf Fluid diffusion coefficient 
cF Cohesive strength 
cp Specific heat capacity 
cT Thermal diffusivity 
CS Solute concentration 
d Damage variable 
DS Solute diffusivity 
E Elastic modulus 
f loading pressure 
fc Maximum compressive strength  
fcr Residual compressive strength  
ftr Residual tensile strength 
fq fluid injection rate 
G Shear modulus 
h Depth between bottom and surface 
Jf Fluid flux 
JS Solute mass flux 
k Permeability 
k0 Initial permeability 
kH,max Maximum horizontal anisotropic permeability 
kh,min Minimum horizontal anisotropic permeability 
kv Vertical anisotropic permeability 
kT Thermal conductivity 
K Elastic stiffness matrix 
J Jacobian matrix 
M Biot’s modulus 
N Shape function vector 
p Pore pressure 
p0 Initial pore pressure 
P0 Isotropic far-field stress 
s The variables of s0 
s0 Mean value of the corresponding of s 
S0 Finite shear stress 
S0 Deviatoric component in far-field stress 
S1 Finite shear stress 
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SH,max Maximum horizontal far-field stress 
Sh,min Minimum horizontal far-field stress 
Sv Vertical far-field stress 
t Time 
T Temperature 
T0 Initial temperature 
u Displacement of x-direction 
v Displacement of y-direction 
w Displacement of z-direction 
ws Displacement of z-direction at the surface 
  Biot’s constant 

f  Volumetric thermal expansion coefficient of fluid 

S  Volumetric thermal expansion coefficient of solid 

  Thermal expansion coefficients 

d  Material parameter for stress-dependent permeability 

  Strain 

c  Maximum compressive strain 

cr  Residual compressive strain 

tr  Residual tensile strain 

v  Volumetric strain 

  Porosity 

f  Friction angle 

  Fluid viscosity 

  Parameter for time discretization 
  Fluid viscosity 

m  Total mass density 

  Poisson ratio 

u  Undrained Poisson’s ratio 

  Total stress 
   Effective stress 

1  Maximum principal stress 

3  Minimum principal stress 

  Stress which has the relationship with strain in linear elasticity 

0  Swelling coefficient 

  Fluid content 
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d  Increasing factor for permeability increase after failure 

  Reflection coefficient 
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12. Appendix A 

Derivation of finite element discretization for fully coupled chemo-
thermo-poroelasticity 
 
1. Field equations for displacement, pore pressure, solute mass concentration, and temperature 
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2. Weight residual method 
The governing equation can be discretized from the following examples. A typical example for 
solving the differential equation is 

fuL )(   (A.5) 
where L is the differential equation as a function of u, and f is the known function of the 
independent variables. 
 The solution of u has weak formulations:  
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If we substitute )(xU N  in the left hand side of Eq. A.5, the residuals can be obtained by 
fUL N )( , which is called the residual of the approximation. 
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The parameter jc is solved by setting residual R to vanish by integration in the weighted-residual 

method: 
),...3,2,1(),()( NidCxRx ji 


   (A.8) 

where )(xi are the weight functions and the most widely used weighted-residual method can be 

summarized as 
 Galerkin’s method: ii    
 Petrov-Galerkin method: ii    

 Least squares method: 
i

i c

R


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3. Application of Galerkin’s method for the variables 
 The continuous variables u, p, CS, and T are approximated by the nodal values through the shape 
functions as  
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We can substitute the nodal variables to the field equations by applying Galerkin’s residual method.  
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For fluids, 
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For solute mass concentrations, 
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For temperature, 
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Integration by parts for the above three equations leads to 
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Chapter	2.	Geomechanical	Parameter	Estimation	and	Uncertainty	
Quantification	by	Discrete	Micro‐Seismic	Data	Integration	with	
Ensemble	Kalman	Filter	

1. Introduction 
 

The EnKF has been widely established as a practical data integration method for large-scale nonlinear 
dynamical systems and has been received favorably by the scientific community in a range of applications 
including hydrology, meteorology and oceanography (Evenson et al., 1996; Houtekamer and Mitchell, 
1998; Madsen and Canizares, 1999), groundwater model calibration (Chen and Zhang, 2006; Franssen 
and Kinzelbach, 2008; Nowak, 2009; Schöniger et al., 2011), and oil reservoir characterization (Naevdal 
et al., 2006; Wen and Chen, 2005; Jafarpour and McLaughlin, 2009; Aanonsen et al., 2009; Jafarpour and 
Tarrahi, 2011). Evensen (2009) reviews the EnKF formulation and its wide range of applications. 
Ehrendorfer (2007) presents a review of important issues that are encountered in implementing the EnKF. 
Despite the existing limitations in operational implementation of the EnKF for more complex (non-
Gaussian) and challenging large-scale problems, this approach has become popular as a promising 
approximate nonlinear estimation method in several applications. In this work, we propose SSBRC by 
applying the EnKF for MEQ data integration and evaluate its performance using several numerical 
experiments. Throughout this report, for pore-pressure-diffusion based forward model, all EnKF updates 
are applied to the natural logarithm of permeability. A parallel EnKF algorithm is also implemented to 
speed up the computations. 
 
Generating seismicity density maps on the same grid system or mesh structure that is used for describing 
the geomechanical property distributions artificially increases the data resolution and, hence, the number 
of data that will be assimilated during the EnKF update step.  Large scale datasets, such as 4D seismic 
data (Aanonsen et al., 2003; Skjervheim et al., 2007), and particularly in this study, high resolution 
seismicity density maps, can exhibit spurious spatial correlations in the observed data and create 
unrealistic correlations between rock properties and microseismic data, thereby can degrade the 
performance of the EnKF update and lead to underestimated solution uncertainty or ensemble collapse 
( Sakov and Oke, 2008; Myrseth, 2008). We first show the estimation results for the SSBRC approach 
using the standard EnKF algorithm to illustrate the underestimation of ensemble spread, and then propose 
three methods to resolve this issue and improve SSBRC uncertainty quantification. The first and simplest 
approach to overcome ensemble spread underestimation is to increase the observation error artificially by 
using a large variance for the observation noise. In the other two methods, we reduce the number of 
observations first by using a spectral projection (spectral dimension reduction) approach and second by 
coarsening the seismicity density map (spatial dimension reduction). In projection approach, the ensemble 
of perturbed observations are projected to a reduced subspace that is defined by the leading left singular 
vectors of the observation matrix. This step is aimed at de-correlating the original observations of the 
seismicity map. The EnKF update is then used to assimilate the resulting low-dimensional description of 
the data. In the second approach, we use a coarse grid system for interpretation of the seismic events. This 
approach is very similar to the original SSBRC implementation except that it uses a coarse grid system in 
KDE-based continuous seismicity interpretation to make lower resolution density maps. Then the reduced 
dimension or coarse seismicity density maps are used in the EnKF update equation. We present the 
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random variables (parameters and observations). As a result, the updates can be applied under various 
forms of event triggering mechanisms and failure criteria as long as the random variables representing the 
states, parameters and measurements are continuous.  
 
As described before, for geomechanical forward model the MEQ events are determined by shear or 
tensile failures generated using the specified failure criterion (Mohr-Coulomb model with tension cut-off) 
at the nodes of the FEM mesh, consequently each MEQ event has its associated location ܝ௘  and 
occurrence time ݐ௘ (ܝ and ݐ denote general location and time respectively). Therefore at each time step ݐ 
evaluating the failure criterion at different locations (nodes of the FEM mesh) in the reservoir identifies 
the distribution of seismicity clouds. Similarly for the pore pressure diffusion forward model, the location 
and occurrence time of the events are identified by comparing the pore pressure and criticality at each 
grid block of the reservoir model.  
 
In practice, the discrete microseismic events identify the location of the passive seismic sources and are 
often generated through seismic source inversion methods. The raw seismic data (collected either from 
surface or borehole geophones) are inverted to map the location of seismic sources and characterize the 
associated uncertainty. In this work, however, we skip the seismic source inversion part and assume that, 
after seismic data analysis, the map of observed source (event) locations is available. 
 
The available seismic observations, however, are of discrete nature since they only identify the seismic 
status (active or inactive) of a node in the FEM reservoir model. The discrete nature of MEQ events 
introduces a difficulty in implementing inversion methods that are designed for continuous problems. For 
gradient-based methods, the discrete form of MEQ observations complicates the calculation of their 
gradients with respect to unknown parameters. On the other hand, while the EnKF does not require 
gradient information explicitly, by construction it is formulated for estimation of continuous variables and 
observations. To address this issue, we interpret the MEQ events as continuous measurements using the 
kernel density estimation method. KDE is often used for nonparametric approximation of continuous 
probability density functions (PDFs). The general idea is to convert the discrete MEQ data (and their 
predictions) into a smooth and continuous seismicity density map. For this purpose, at each time step, we 
replace each MEQ event/source with a Gaussian kernel function centered at the event location. By adding 
up the kernels, we construct a continuous function over the model mesh that represents the spatial density 
of the MEQ events. The procedure for implementing the KDE method is illustrated in Figure 3 for a one-
dimensional example. We note that the procedure in Figure 3 can be easily applied to two and three 
dimensional problems. Mathematically, the continuous seismicity density map can be written as: 
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ொொሺܝሻ

௡ಾಶೂ

௜ୀଵ

 
(1) 

 

where ܭ௜
ொொሺܝሻ ൌ ܰሺܝொொ, Σሻ is a Gaussian kernel, ݊ொொ is the number of MEQ events at each time 

step, ܝொொ denotes the location coordinate of the MEQ events (center of the individual Gaussian kernels) 

and Σ is the covariance matrix of the Gaussian kernel. The continuous map ݏሺܝሻ represents the seismicity 
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ொொ൯
்
Σିଵ൫ܝ

ly for all even
rmines the sh
ation. In this
ts and the unc
exactly the s

bers for 2D a
uantification s
width ݄, of th

݄ଶ۷ଶൈଶ 

ൌ ݄ଶ۷ଷൈଷ 

constitutes th

 

urements to con
The crosses on 
curves display t
mum value at th
e as a continuo

െ  ொொ൯ቇܝ
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mesh (with larger elements or grid blocks) which results in a coarse-scale seismicity density map that 
reduces the number of measurements. 
 

4. Inverse Modeling Approach 
We develop an inverse modeling approach called SSBRC method by adopting EnKF to integrate 
seismicity density observation for inference of hydraulic and geomechanical parameters. By applying 
SSBRC to the pore pressure diffusion forward model we infer permeability distribution and by employing 
SSBRC for the geomechanical forward model we are able to estimate permeability, Young’s modulus, 
tensile strength and cohesion distribution. We also propose some methods to improve the uncertainty 
quantification and estimation performance of the SSBRC method. The proposed EnKF-based inversion 
framework begins by generating an ensemble of ௘ܰ prior realizations of the reservoir parameter model 
(e.g. permeability or Young’s modulus) based on prior information (e.g., using geostatistical simulation 
methods). These realizations are used in the pore pressure diffusion forward model or the coupled FEM 
forward model to perform a Monte Carlo simulation to predict the pore pressure or stress distributions in 
the reservoir and then failure criterion is used to predict microseismic events. These MEQ cloud 
predictions are then converted into continuous seismicity densities, using the KDE method, and used in 
the EnKF update equation. The major computational cost of the method is related to the forecast or 
prediction step; however, EnKF can be conveniently parallelized to speed up the computations. The 
computations are implemented using the pore pressure diffusion forward model or the FEM 
geomechanical forward model and a parallel EnKF algorithm with MATLAB’s Parallel Computing 
Toolbox (MATLAB, 2011). In addition, an ensemble of perturbed observations is generated using a zero-
mean Gaussian error distribution with a variance value that is obtained through sensitivity study. The 
main steps involved in the implementation of the proposed SSBRC method are summarized as follows. 
(The details of SSBRC algorithm is also depicted in Table 1) 
1. Convert discrete microseismic data (measurements) into quantified continuous seismicity density maps 
using KDE method (section 0). 
2. Generate an ensemble of rock property models from available prior information (e.g., using 
geostatistical simulation techniques). Repeat steps 3–5 until all measurements are processed. 
3. For the prediction step, using the developed FEM geomechanical numerical simulator (the pore 
pressure diffusion forward model), forecast the stress distribution (pore pressure distribution) for each 
member of the most recently updated ensemble realizations (section Error! Reference source not found. 
or Error! Reference source not found.). This step is implemented in parallel. 
4. Predict the microseismic events for each realization by the failure criterion (section Error! Reference 
source not found.) and convert the results into seismicity density maps using the KDE approach (section 
0). 
5. Use the EnKF analysis equation with the seismicity density observations from (1) to update the 
ensemble of reservoir property models (section 0). 
The details of each of these steps are discussed next. 

 4.1 Estimation with Ensemble Kalman Filter 
The classical Kalman filter (Kalman,1960) is a sequential state estimation method for characterization of 
the first and second statistical moments of the states posterior distribution. Hence, the filter fully 
characterizes the posterior distribution of linear state-space systems that are characterized with jointly 
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Gaussian distributions (Kalman, 1960; Gelb, 1974). The implementation of the filter involves two steps: 
(1) a forecast step, in which a linear state propagation model is used to predict the mean and covariance of 
the states at the next time step; and, (2) an analysis step that updates the mean and covariance of the states 
using the dynamic observations and the forecast states mean and covariance. These two steps are repeated 
sequentially until all observations are assimilated. 
For nonlinear dynamical systems, the EnKF provides a practical approximation of the Kalman filter that 
has been successfully applied to many applications ranging from hydrology, meteorology and 
oceanography to groundwater and oil reservoir model calibration (see e.g., Aanonsen et al., 2009; 
Evensen, 2009 and references therein). The sequential formulation of the EnKF distinguishes a forecast 
(or prior) PDF for the states (augmented vector of geomechanical reservoir parameter and continuous 
seismicity response ܠ௧) ݌ሾܠ௧|ܡ଴:௧ିଵሿ, conditioned on all measurements ܡ଴:௧ିଵ taken through time ݐ െ 1, 
and an updated (or posterior) density ݌ሾܠ௧|ܡ଴:௧ሿ  conditioned on all measurements ܡ଴:௧  (continuous 
seismicity response maps) taken through time ݐ. To compute the cross covariance between predicted 
observations and parameters, the original state vector is augmented with uncertain model parameters (e.g. 
permeability, Young’s modulus and tensile strength distribution) and predicted measurements. This state 
augmentation approach can be used to update states and parameters simultaneously. Alternatively, one 
can only update the uncertain parameters and derive the updated states by solving the flow equations (or 
coupled flow, heat and geomechanics equations) with the updated parameters. This is the approach taken 
in this work. The measurements ܡ௧ consist of seismicity density map ݏ௧ሺܝሻ, defined in equation (1) that 
represent microseismic measurements in space at time ݐ. 
Since the general multivariate PDFs and their statistical moments are difficult to characterize, the EnKF 
uses a Monte Carlo approximation approach by sampling an initial set of realizations from the high-
dimensional prior PDF of the uncertain properties to form an ensemble of reservoir states (and/or 
parameters). These property maps are then used to generate an ensemble of state and measurement 
predictions that can be used to compute a sample (prior) covariance matrix for the EnKF update step as 
described below. The forecast step in the EnKF can be written as: 
 

௧|௧ିଵܠ
௝ ൌ ௧݂ ቀܠ௧ିଵ|௧ିଵ

௝ , ௧ିଵܟ,௧ିଵܢ
௝ ቁ ݆ ൌ 1,… , ௘ܰ (4) 

 

where .  ௧ିଵ is a vector of known (nonrandom)ܢ ;ݐ represents conditioning on observations up to time ݐ|

time-dependent boundary conditions and controls (such as injection rate); and ܟ௧ିଵ
௝  is a vector of random 

variables that accounts for modeling errors. The function ௧݂ሺ. , . , . ሻ  represents the state propagation 
equation from time ݐ െ 1 to time ݐ. The notations ݆ and ௘ܰ are used to indicate the realization index and 
total number of realizations, respectively. In our application, equation (4) represents the solution of the 
coupled thermo-poroelastic equations (or pore pressure diffusion equation) that describes the time 
evolution of pore pressure, stress and temperature distributions for each individual realization ݆ of the 
ensemble reservoir parameter. At time steps when MEQ data are available, the EnKF analysis equation is 
used to update the reservoir property realizations using the gain matrix and the misfit between predicted 
and observed seismicity density maps for each realization. At the update step we use an augmented state 
vector consisting of spatially distributed reservoir property (parameters to estimate) and realizations of the 
predicted continuous seismicity density map. After each update we apply a confirmation step (Wen and 
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Chen, 2005) by forecasting the future states and predictions from the initial time step with the updated 
parameters. We repeat the sequence of prediction and update steps until all measurements are integrated. 

For a model with ௕ܰ  nodes (or grid blocks), each reservoir parameter realization ܕ௝  and its 

corresponding microseismicity density response ܛ௝ are vectors of size ௕ܰ ൈ 1. In this work, the reservoir 
property models are jointly Gaussian random fields that are generated using the sgsim (Geutsch and 
Journel, 1998) geostatistical simulation technique. The augmented state vector for this case is of the form 
 

௝ܠ ൌ ൤ܕ
௝

௝ܛ
൨ ; 												݆ ൌ 1,… , ௘ܰ ⇒ ܆ ൌ ሾܠଵ ଶܠ ⋯  ே೐ሿ (5)ܠ

 
The EnKF analysis equation that is used to update each reservoir property realization can be expressed as 
 

௨ܠ
௝ ൌ ௙ܠ

௝ ൅ ۹ቀܡ௝ െ ௙ܠ۶
௝ቁ, ۹ ൌ ௘۶்ܠ௘۶்ሺ۶۱ܠ۱ ൅  ሻିଵ (6)܌۱

 
where ۹ is the Kalman gain matrix and the subscripts ݑ and ݂ denote updated and forecast quantities 
while the superscript ݁ indicates ensemble calculated statistics. The notations ۱ܠ௘  and ۱܌  represent the 
states sample covariance and observation covariance matrices, respectively. The measurement matrix 

۶ே್ൈଶே್ ൌ ൣ૙ே್ൈே್|۷ே್ൈே್൧, where ૙ே್ൈே್ and ۷ே್ൈே್ are zero and identity matrices of the specified 

dimensions, respectively, acts as a selection operator that extracts the predicted measurement components 

from the augmented state vector. The notation ܡ௝ is used to represent the ݆th realization of the perturbed 
observations. The states sample covariance ۱ܠ௘ can be computed from the ensemble of state vectors 
 

௘ܠ۱ ൌ
1

௘ܰ െ 1
෍ቀܠ௙

௝ െ ത௙ܠ
௝ቁቀܠ௙

௝ െ ത௙ܠ
௝ቁ

்
ே೐

௝ୀଵ

; ത௙ܠ
௝ ൌ

1

௘ܰ
෍ܠ௙

௝

ே೐

௝ୀଵ

 (7) 

 

where ܠത௙
௝  is used to denote the ensemble mean of the forecast states (that is, the reservoir property 

distribution from the previous step and the corresponding microseismic response forecasts). In the EnKF 
implementations, the covariance matrix in equation () need not be constructed explicitly and the update 
can be applied using its low-rank representation though a compact SVD implementation. The covariance 
matrix in equation () contains the covariance information about the reservoir parameter field as well as the 
cross covariance information between the reservoir parameter and (microseismic) measurements. It is the 
latter cross covariance that allows the estimation of uncertain geomechanical reservoir parameter 
distributions from microseismic observations. This relation bears similarity with the use of covariance and 
cross covariance in the kriging/simulation (Geutsch and Journel, 1998; Vargas-Guzman and Yeh, 1999) 
and cokriging/cosimulation (Kitanidis and Vomvoris, 1983; Yeh et al., 1995; Graham and McLaughlin 

1989; Geutsch and Journel, 1998) methods, respectively. Note that in equation (), the term ቀܡ௝ െ ௙ܠ۶
௝ቁ is 

the misfit between the ݆th perturbed observation and prediction, which in this case represents the observed 
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and predicted continuous map of seismicity density. Several remarks regarding the update equation for 
our problem will follow. 
In addition to nonlinearity in the forward coupled geomechanics and flow model, a complexity of the 
measurement model in our application is the nonlinear failure criterion (i.e., hard truncation) that is used 
to convert the continuous stress distributions to discrete microseismic events. The Gaussian kernel that we 
apply to convert the MEQ predictions to continuous maps of seismic density makes the data more 
amenable to processing with the EnKF. However, the relationship between the magnitude of stress and 
the resulting seismicity map remains complex. 
Considering the dynamic alteration of reservoir geomechanical parameters (Young’s modulus and 
permeability) in our developed coupled FEM simulator based on the damage and permeability model (in 
section Error! Reference source not found.), in the SSBRC inverse modeling approach we estimate 
geomechanical properties of the intact (initial or undamaged) rock. It is also consistent with our EnKF 
data integration approach with confirmation step (Wen and Chen, 2005) that for each EnKF analysis step 
we run the forward model from the beginning (initial state) by updated or estimated intact rock properties. 
Therefore to obtain the properties of the final stimulated or damaged reservoir rock we just need to run 
the geomechanical simulator with the estimated intact rock properties. 
In our EnKF implementation, to perturb the observations, we add an uncorrelated realization from a 
Gaussian random noise, with a specified observation covariance matrix ۱܌, to the value of the observed 
quantities. We assume that the observation error standard deviation (Std) is proportional to the value of 
the observed quantity and compute the diagonal elements of the observation error matrix as: 
 

௞ߪ
ଶ ൌ ቆߪ୫୧୬ ൅

ሺߪ୫ୟ୶ െ ௞ݕ୫୧୬ሻሺߪ െ ୫୧୬ሻݕ
ሺݕ୫ୟ୶ െ ୫୧୬ሻݕ

ቇ
ଶ

, ݇ ൌ 1,2, … , ௕ܰ 
(8) 

 

where ߪ௞
ଶ  is the observation variance at the ݇ th node or grid block (the ݇ th diagonal entry for the 

observation covariance matrix), ߪ୫ୟ୶  and ߪ୫୧୬  are the minimum and maximum standard deviations 
specified for the observations, respectively. The notation ݕ௞ represents the observed seismicity density at 
location ݇  while ݕ୫୧୬ ୫ୟ୶ݕ ,  represent the minimum and maximum observed values of the seismicity 
density, respectively. The realization ݆ of the perturbed observation at location ݇, can then be written as 
 

௞ݕ
௝ ൌ ௞ݕ ൅ ௞ߝ

௝ , ݆ ൌ 1,2, … , ௘ܰ 

௞ߝ
௝~ܰ൫0, ௞ߪ

ଶ൯ 
(9) 

 
In this work, we assume an uncorrelated Gaussian observation error with zero mean and standard 
deviation obtained from equation (). We note that other methods for generating the perturbed observations 
may also be considered. In particular in section 0 as one of the methods to improve uncertainty 
quantification of SSBRC, we first generate perturbed observations by perturbing the kernel bandwidth 
and given the large dimension and the spatial correlation that may exist between the observation errors, 
we then propose to assimilate the resulting observations in a low-rank subspace defined by the left 
singular vectors of the ensemble observations perturbations matrix in a similar way to Keepert (2004). 
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The given SSBRC formulations here are based on the assumption of estimating one of the reservoir 
properties distribution (assuming one property unknown and the rest known) which can be simply 
extended to simultaneously estimating more than one reservoir property distribution by only augmenting 
reservoir parameter vectors in the EnKF state vector. 
To generate the ensemble of reservoir parameter realizations, we used a variogram-based geostatistical 
simulation method with specified variogram parameters. The sgsim algorithm (Geutsch and Journel, 1998) 
was used to implement the geostatistical simulations. In real applications, the number of realizations is 
typically determined through a trade-off between available computational resources and the desired 
statistical accuracy in computing the required sample statistics. For large-scale problems where the 
number of realizations is limited, practical considerations such as localization or local analysis (Hamill et 
al., 1995) have been proposed to avoid inaccurate updates due to spurious (nonphysical) correlations and 
to reduce the possibility of an ensemble collapse. As the results of the numerical experiment in section 0 
and 0 show, the proposed SSBRC method with standard EnKF results in severe ensemble spread 
underestimation which will be resolved by proposed methods in section 0. In the examples that follow, 
we implement the EnKF algorithm with ௘ܰ ൌ 100 and do not apply any localizations. The detailed steps 
of SSBRC method with parallel EnKF algorithm is shown in Table 1. 
 

Table 1. Parallel EnKF algorithm for SSBRC 

Parallel EnKF Pseudo Code 
1: generate ௘ܰ initial parameter (ܕ௝) realizations 
2: generate perturbed observations (ܡ௝) from true observation (based on ۱܌) 
3: for ݐ௜ ൌ 1 to ݐே do (integration time steps) 
4:       par-for ݆ ൌ 1 to ௘ܰ do (run in parallel on different available cores) 
5:              initialize the geomechanical simulator 
6:              write the ݆௧௛ realization (ܕ௝) as the reservoir parameter 
7:              run the simulator from beginning until the current integration time 
(corresponds to ݐ௜) 
8:              generate the corresponding seismicity cloud (ॺ௝) 
9:              use KDE to convert seismicity cloud (ॺ௝) to seismicity density (ܛ௝) 
10:     end par-for 

11:     calculate ܠത௙
௝	, ,	௘ܠ۱ ۹ 

12:     update realizations by EnKF analysis equation 
13: end for 

 ௜ = integration time step index which corresponds to integration timeݐ
 ே = the total number of integration time steps (in this study = 6)ݐ
par-for = parallel for loop which executes its underlying commands in parallel 
ॺ௝= the simulated seismicity cloud corresponding to each ܕ௝ 
 

The full forward model simulator that relates the hydraulic or geomechanical parameter distribution to the 
microseismicity density map consists of geomechanical simulator (relating geomechanical parameter 
distribution to microseismicity cloud) and microseismicity continuous interpretation (relating 
microseismicity discrete cloud to microseismicity continuous density map). Figure 7 shows the schematic 
of the full forward model. In the propagation (Monte Carlo simulation) step of the EnKF procedure we 
run the full forward model for all ensemble members (geomechanical parameter samples). For the pore 
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independent for different parameter samples, we are able to run some samples simultaneously on the 
available cores of the machine. It should be noted that Figure 8 represents the estimation procedure in 
each integration step. For instance in the first integration step, the first column of Figure 8 is the initial 
ensemble of parameters and after integration of the first true seismicity density map, we will obtain the 
first updated ensemble (the last column of Figure 8) which will be the input ensemble (the first column of 
Figure 8) for the second (next) integration step. 
 

4.2 Improved Uncertainty Quantification 
In this section we focus on quantification of uncertainty that is a key concept of application of the EnKF 
data assimilation approach. It is well known that for large scale datasets, such as seismic data (Skjervheim 
et al., 2007) and high resolution spatial map of seismicity density, application of the standard EnKF 
without taking into account the spatial correlation in the observations can lead to underestimated solution 
uncertainty or ensemble spread. Underestimation of ensemble spread is not favorable as it can introduce 
unrealistic confidence in potentially inaccurate future predictions and decreases the likelihood of 
capturing the true behavior of the reservoir. High dimensional observation also leads to expensive 
computational load in updating scheme of EnKF. In this situation, severe underestimation of the 
prediction uncertainty can results in biased forecasts and an ensemble collapsing into a single realization.  
 
The standard SSBRC implementation was based on generating seismicity density maps on the same grid 
system or mesh structure that was used for describing the hydraulic or geomechanical property 
distributions (section 0). A byproduct of this implementation is that it artificially increases the data 
resolution and, hence, the number of data that will be assimilated during the EnKF update step. As 
another significant byproduct of this preprocessing step, the resulting maps can exhibit spurious spatial 
correlations in the observed data and create unrealistic correlations between rock properties and 
microseismic data, thereby degrading the performance of the EnKF update.  
 
We first show the estimation results for the SSBRC approach using the standard EnKF algorithm to 
illustrate the underestimation of ensemble spread (several numerical examples which are reported in 
section 0 and 0 confirm it), and then propose three methods to resolve this issue. The first and simplest 
approach to overcome ensemble spread underestimation is to increase the observation error artificially by 
using a large variance for the observation noise. In the other two methods, we reduce the number of 
observations first by using a spectral projection (spectral dimension reduction) approach and second by 
coarsening the seismicity density map (spatial dimension reduction). In projection approach, the ensemble 
of perturbed observations are projected to a reduced subspace that is defined by the leading left singular 
vectors of the observation matrix. This step is aimed at decorrelating the original observations of the 
seismicity map.  The EnKF update is then used to assimilate the resulting low-dimensional description of 
the data. In the second approach, we use a coarse grid system for interpretation of the seismic events. This 
approach is very similar to the original SSBRC implementation except that it uses a coarse-scale grid 
system or mesh structure in KDE-based continuous seismicity interpretation in equations (),() to make 
lower resolution density maps. Then the reduced dimension or coarse seismicity density maps are used in 
the EnKF update equation. Additionally in general, observation space dimension reduction (either spectral 
or spatial) improves the computational efficiency of the analysis step of the EnKF. 
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We present the estimation results for these three methods following an introductory example to illustrate 
underestimation of uncertainty when the standard EnKF is used with large-scale seismicity density maps 
as observed data (in section 0 and 0). 
 
4.2.1 Inflated observation error variance 
The simple way to reduce the underestimation of ensemble variance is to increase observation error 

variance. The effect of this remedy is equivalent to damping the EnKF updates, the term ۹ቀܡ௝ െ ௙ܠ۶
௝ቁ in 

equation () or reducing the weight of observations (or Kalman gain, ۹). To do so, we increase ߪ୫୧୬ and 
 ୫ୟ୶ in equation () which leads to diminishing the effect of seismicity density observation in the EnKFߪ
update and finally results in preserving the ensemble spread during data assimilation. While the level of 
noise considered goes beyond most practical situations, this provides a simple way to improve the 
underestimation effect as shown in section 0 and 0. We also summarize the results from several 
experiments with increasing level of observation error variance. From the performed experiment results it 
is clear increasing the observation error variance can improve the underestimation effect observed in the 
standard EnKF. However, a main drawback of this approach is that it is not clear how the introduction of 
significant noise to the observed quantities will generally impact the quality of the EnKF update beside 
the damping effect. Hence, we consider two other alternative methods that do not corrupt the observations. 
 
4.2.2 Reduced-order projection 
The EnKF updating scheme particularly with high-dimensional observation can suffer from the problem 
known as filter divergence (Jazwinski, 1970), resulting from rank issues (Evensen, 2004) and estimation 
uncertainty (Houtekamer and Mitchell, 1998). To reduce these problems, (Evensen, 2004) introduced 
dimension reduction techniques in an EnKF setting. Skjervheim et al. (2007) also suggested an alternative 
EnKF updating using well-known dimension reduction techniques. 
In this section we first propose a new method for generating an ensemble of perturbed observations then 
we use a dimension reduction method to reduce the number of observations integrated in EnKF update 
equation. The proposed method of perturbing seismicity observation is completely different than the 
typical procedure of adding Gaussian random noise to the observation (in section 0). To exhibit and 
finally capture the spatial correlation or redundancy of observation in more efficient fashion, we propose 
to generate each perturbed observation realization by perturbing the bandwidth of Gaussian kernel. In the 
standard observation perturbation method explained in section 0, we perturb the observed seismicity 
density map however here we use the observed seismicity cloud and generate perturbed observations by 
perturbing the kernel bandwidth in KDE based quantification. 
 
After converting the discrete microseismic measurements to continuous seismicity density maps using 
Gaussian kernels, the resulting observations exhibit strong spatial correlations. Hence, this correlation (or 
redundancy) should either be taken into account during the update or should be removed from the data. 
To remove the correlations in the observations, we project the ensemble of perturbed observations onto a 
low-dimensional subspace defined by the leading left singular vectors of the observation matrix (Keepert, 
2004). During the EnKF update, we use the transformed observations (after projection to the mentioned 
subspace) for data assimilation. To implement the update, the predicted observations must also be 
projected onto the same subspace. The procedure is described below.  
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In the projection approach, at each integration step we first choose a kernel bandwidth ݄, and its standard 
deviation ߪ௛ , and then to make each perturbed observation realization, we individually perturb kernel 
bandwidth ݄, for each MEQ event of the true observation using a Gaussian distribution as below: 
 

݄௜
௝~ܰ൫݄, ௛ߪ

ଶ൯; 			 ݆ ൌ 1,2, … , ௘ܰ; ݅ ൌ 1,2, … , ݊ொொ (1) 

 
where ௘ܰ  and ݊ொொ  are the number of realizations and the number of MEQ events at the specified 

integration step, respectively. Superscript ݆, and subscript ݅, indicate realization index and MEQ event 

index, respectively. Therefore, the ݆th perturbed observation realization ܡ௝ is made of a set of perturbed 

bandwidths ݄௜
௝	ሺ݅ ൌ 1,2, … , ݊ொொሻ as follows: 

 

௝ܡ ൌ
1

݊ொொ
෍ ௜ܭ

ொொሺܝ; ݄௜
௝ሻ

௡ಾಶೂ

௜ୀଵ

 (11) 

 

Equation (11) is the same as equation (1) but for the Gaussian kernels ܭ௜
ொொሺܝ; ݄௜

௝ሻ, which have different 

bandwidths. Afterwards we make the perturbed observation ensemble as: 
 

܇ ൌ ሾܡଵ ଶܡ …  ே೐ሿ (12)ܡ

 
To project the observation to a lower dimension space we take the SVD of ܇ to obtain the matrix of 
eigenvectors which is the projection matrix ܃. Columns of ܃ are eigenvectors spanning the space made 
by ܇. A finite number of the leading left singular vectors of ܇ form a low-dimensional subspace defined 
by columns of the matrix ܃  that accurately approximate each observation realization. Since ܇  has a 
maximum rank of ௘ܰ , the maximum dimension of the transformed observations is ௘ܰ . To reduce the 
dimension of the observation space, non-leading columns of ܃ can be truncated. The truncation number 
݊୲୰୳୬ୡ varies in the range 1 to ௘ܰ. The projected perturbed observation ensemble ܇௣ is calculated as  

 

௣܇ ൌ ୲୰୳୬ୡ܃
்  ܇

୲୰୳୬ୡ܃ ൌ ሾܝଵ ଶܝ …  ௡౪౨౫౤ౙሿܝ
܃ ൌ ሾܝଵ ଶܝ …  ே೐ሿܝ

(13) 

 

where ܝ௝ is the ݆th eigenvector. We also apply the same projection to the predicted seismicity density 
maps. The ensemble of predicted seismicity density is made by the same kernel band ݄. 
 

܁ ൌ ሾܛଵ ଶܛ …  ே೐ሿ (14)ܛ
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where ܛ௝ is the ݆th simulated seismicity density map which is made of ݆th simulated seismicity cloud ॺ௝. 
The projected ensemble of predicted seismicity density maps is then calculated as: 
 

௣܁ ൌ ୲୰୳୬ୡ܃
்  (2) ܁

 
The resulting observed and predicted data for the EnKF update step are ܇௣ and ܁௣. It should be noted that 

projection method has two tuning parameters; kernel bandwidth standard deviation ߪ௛ , and truncation 
number ݊୲୰୳୬ୡ , and the observation error standard deviation parameters ߪ୫୧୬  and ߪ୫ୟ୶  are no longer 
needed. 
Application of this method to improve uncertainty quantification performance of SSBRC is shown in 
section 0 and 0 by numerical examples. As we will see, reduced-order projection of seismicity density 
observation both preserves the ensemble spread and improves the computational efficiency. 
 

4.2.3 Coarse-scale microseismicity density map 

Another approach to reduce the dimension of the seismicity map is to use a coarse scale description. This 
approach uses a coarser scale grid system or mesh structure to quantify the seismicity observations. The 
number of observations is equal to the dimension of seismicity density map. To reduce the dimension of 
the seismicity density map (number of observations to integrate) which is the major reason of the 
ensemble spread underestimation, we can build the continuous function of seismicity density on a coarser 
mesh or grid system ܝ୰ୣୢ, instead of the original FEM fine mesh (or original fine grid block configuration 
for pore pressure diffusion forward model) ܝ , in equations (1),(2). So we only need to evaluate 
continuous seismicity density map on a new coarser grid system. In this work (in 2D experiments) the 
original mesh configuration of model is square with 100 nodes (or grid blocks) at each side ଡ଼ܰ, that 
results in 10000 nodes (or grid blocks) or seismicity density observation values at ܝ. The coarse-scale 

mesh (or grid system) is assumed to have ଡ଼ܰ,୰ୣୢ nodes (or grid blocks) at each side which leads to ଡ଼ܰ,୰ୣୢ
ଶ  

total nodes (grid blocks) or seismicity density observations at ܝ୰ୣୢ . In SSBRC with coarse-scale 
seismicity density, we use a typical range of 5% to 10% for observation error standard deviation.  
The result of sensitivity analysis of SSBRC performance with respect to different grid sizes (different 
number of observation) is presented in section 0 and 0. The results demonstrate that while the estimation 
quality in terms of reservoir parameter map is not affected, the estimation variance is severely 
underestimated when a large number of correlated observations in a high resolution map is used. The 
results suggest that the information content of the high resolution map does not provide significant 
additional details in estimating the reservoir geomechanical parameter. 
 

4.3 Numerical Experiments 
In this section we present several numerical examples to show that the distribution of the MEQ events 
(their source locations) can be used to infer the spatial distribution of the reservoir parameter field. In this 
work, we have assumed that an interpretation of the microseismic data (through seismic source inversion) 
in some preprocessing step provides a spatial map of the seismic event locations and then we use the 
proposed KDE-based continuous interpretation to generate the seismicity density map. Therefore for a 
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reservoir model with ௕ܰ  nodes (or grid blocks), at each update step, a vector of ௕ܰ  observations of 
seismicity density values is assimilated. The dimension of reservoir parameter vector is also ௕ܰ. 
In this section we present the results of applying SSBRC to both pore pressure diffusion forward model 
and geomechanical forward model. The estimation results of homogeneous and heterogeneous 2D and 3D 
reservoir models in different settings are presented. We first present the application of standard SSBRC 
and its estimation performance and how it leads to ensemble spread underestimation and then we apply 
the proposed methods of improved uncertainty quantification along with SSBRC to resolve the issue of 
spread underestimation.  
 
 4.3.1 Description of experimental setup: Pore pressure diffusion 
In this section we present the results of SSBRC application to single phase pore-pressure diffusion 
forward model (finite difference numerical modeling with Eclipse (2010)) and we also demonstrate the 
results of applying improved uncertainty quantifications methods for resolving ensemble spread 
underestimation. We present three sets of experiments covering a two-dimensional (2D) homogeneous 
and heterogeneous reservoir model, and a three-dimensional (3D) heterogeneous reservoir model. For the 
2D example, we consider the estimation of a homogeneous and a heterogeneous permeability model and 
show that the distribution of the MEQ events can be used to infer the uniform permeability value and the 
spatial distribution of the permeability field. Our second experiment is based on a 3D reservoir 
configuration with a heterogeneous permeability model. In these experiments, one water injection well is 
located at the center of the field and the boundaries are closed to flow (noflow boundary conditions). The 
injection-induced MEQ events for this injection well are used to estimate the permeability in the reservoir. 
The 2D examples consist of 100ൈ100 discretized models, leading to ௕ܰ=10000 grid blocks. In this work, 
we have assumed that an interpretation of the microseismic data (through seismic source inversion) in 
some preprocessing step provides a spatial map of the seismic event locations. Therefore, at each update 
step, a vector of 10000 observations of seismicity density values is assimilated. In homogeneous 2D 
model we estimate one single parameter (the value of uniform permeability) from 10000 seismicity 
observations and in heterogeneous 2D model we estimate 10000 parameters (spatial permeability 
distribution) from 10000 seismicity density observations. In the 3D example, the reservoir is discretized 
into a 50ൈ50ൈ30 ( ௕ܰ=75000) grid configuration. Also in this case, one injection well is located at the 
center of the domain, which is perforated throughout the entire thickness of the formation. The source 
locations of the MEQ events throughout the 3D domain are used to estimate the heterogeneous 
permeability distribution. 
 

4.4 Results and Discussion 
We present and discuss the results of applying our methodology to the experiments described above. We 
present the results in terms of the estimated property maps and the ensemble statistics prior to and after 
data integration. As is common in ensemble data assimilation, we use the evolution of reservoir parameter 
estimation root-mean-square error (RMSE) and the ensemble spread (Sp) as performance measures. 
These measures are computed in each integration step using the following equations: 
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RMSEሺܕሻ ൌ
1

௕ܰ
෍ඩ

1

௘ܰ
෍൫݉௜,௝ െ ݉௧௥௨௘

௜ ൯
ଶ

ே೐

௝ୀଵ

ே್

௜ୀଵ

 (16) 

 

Spሺܕሻ ൌ
1

௕ܰ
෍ඩ

1

௘ܰ
෍൫݉௜,௝ െ ݉௠௘௔௡

௜ ൯
ଶ

ே೐

௝ୀଵ

ே್

௜ୀଵ

			 ; 						݉௠௘௔௡
௜ ൌ

1

௘ܰ
෍݉௜,௝

ே೐

௝ୀଵ

 (17) 

where ௕ܰ is the number of parameters (same as number of nodes or grid blocks here), ௘ܰ is the number of 

realizations and ݉௜,௝ is the ݅th parameter of realization ݆. We plot the ensemble spread as a percentage of 
the initial ensemble spread. We also use the other measure of ensemble spread which is called the 
auxiliary ensemble spread Spሺܤሻ. To investigate and evaluate the effect of spurious correlation and 
spread underestimation, it is proposed to use an additional or auxiliary ensemble ܤ ∈ ࣬௡ೝೌ೙೏ൈே೐  where 
each row contains zero mean, unit variance and uncorrelated Gaussian random samples (݊௥௔௡ௗ  is the 
dimension of random sample which is assumed 100 in this study) (Evensen, 2009). In each analysis time 
step we perform updates as follows: 

൬
௨܆
௨ܤ
൰ ൌ ൬

௙܆
௙ܤ
൰ ܼ (18) 

And ܤ௙ is equal ܤ௨ at previous update time (superscript ‘f’ for forecast ensemble and superscript ‘u’ for 

update ensemble). ܆ is the original state ensemble matrix that is defined in equation (). By defining the 
matrix ܼ ∈ ࣬ே೐ൈே೐ , the EnKF analysis equation becomes a combination of the forecast ensemble 
members and searches for the updated ensemble state in the space spanned by the forecast ensemble. By 
rearranging the analysis equation, we can explicitly find the matrix ܼ, 

܇ ൌ ሾܡଵ ଶܡ ⋯  ே೐ሿܡ
ᇱ܇ ൌ ܇ െ  ܆۶
ᇱ܆ ൌ ܆ െ  ഥ܆
ܵ ൌ  ′܆۶

ܥ ൌ ்ܵܵ ൅ ሺ ௘ܰ െ 1ሻ۱܌ 
ܼ ൌ ܫ ൅  ′܇ଵିܥ்ܵ

௨܆ ൌ  ௙ܼ܆

(19) 

where ܆ and ܇ are the matrix of state ensemble members and the perturbed observation ensemble matrix, 
respectively. This kind of representation of EnKF analysis based on coefficient matrix ܼ gives us a very 
evident prospect of the procedure which is being done by updating the ensemble. Spሺܤሻ is the mean of 
standard deviation (Std) of each realization of auxiliary ensemble ܤ (columns of ܤ). 
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Table 4 (with 100 to 200 % observation Std range) is chosen as a representative experiment and its 
estimation results are shown in Figure 26. Comparing test # 1 (reference experiment with the typical 
range of observation Std) and test # 4 (improved uncertainty quantification) from  
 
 

 
Table 4, we can see final ensemble spread increased from 10 % to almost 40 % and even estimation 
RMSE slightly decreased that means improvement both in parameter estimation (RMSE reduction) and 
uncertainty quantification (Spሺܕሻ increase).  
 

 
 
 
 

Table 4. Sensitivity of the SSBRC performance to different ranges of observation Std (standard SSBRC 
with seismicity density on the original fine grid) in estimating 2D heterogeneous permeability 

test # ߪ୫୧୬ (%) ߪ୫ୟ୶ (%) 
Final RMSE 

(Lperm) 
Final spread 
(%) Spሺܕሻ 

1 (reference) 11 16 0.7576 9.39 
2 34 90 0.7067 21.31 
3 82 144 0.7078 32.03 
4 100 203 0.7339 37.90 
5 111 187 0.7394 41.09 
6 143 227 0.7305 40.71 
7 255 385 0.8075 51.42 

Initial RMSE = 1.4478 
 

In Figure 26 for concise illustration, only initial and final (at the sixth integration step) estimated maps are 
shown. Figure 26.b shows initial permeability ensemble mean, ensemble Std map and an individual 
permeability sample and Figure 26.c represents the final estimated ensemble mean, Std map and an 
individual sample after assimilating all MEQ observations. SSBRC is very successful in inferring the true 
permeability since the final estimated maps are very similar to the true permeability distribution. 
Additionally SSBRC along with inflated observation error Std results in preserving ensemble spread 
through estimation procedure which is shown by high Std map of Figure 26.c (middle plot). Estimation 
RMSE, Figure 26.d, and ensemble spread, Figure 26.e, prove successful estimation and ensemble spread 
improvement, respectively. 
 



 

 

(b) 

(c) 

Figure 26
permeabil
standard d
mean (left
evolution 
 
Reduced-o

(d) estim
6. The SSBR
lity model: (a
deviation map
ft), standard d

of (d) the log

order project

mation RMSE
RC estimatio

a) the true log
p (middle), an
deviation (mid
g permeability

tion 

(a) true log

 

 

E 
on results w

g permeability
nd an individu
ddle), and ind
y RMSE and 

174 

g-permeabilit

with inflated 
y model, (b) in
ual realization
dividual realiz
(e) normalize

ty map 

(e) e
observation 

nitial log-perm
n (right), (c) 
zation (right) 
ed ensemble s

ensemble spre
Std for a 2

meability ens
final log perm
after six upd

spread. 

ead 
2D heteroge
semble mean 
meability ense
date steps, and

neous 
(left), 
emble 
d time 



 

175 
 

The results of applying reduced-order projection along with SSBRC for different values of kernel 
bandwidth Std, ߪ௛, and truncation number, ݊୲୰୳୬ୡ, to experiment 2, section 0, are presented in  
Table 5. The reference experiment (experiment 2, section 0) suffers from severe ensemble spread 
underestimation with only 10 % final spread however  
Table 5 shows promising improvement of ensemble spread towards 40 to 80 %. The estimation RMSE of 
projection approach as shown in  
Table 5 is not as low as reference experiment. It is clear from  
Table 5 column ݊୲୰୳୬ୡ that reduced-order projection approach lowered the number of observations from 
10000, in the reference experiment, to 25, 50 and 100, by spectral dimension reduction.  

 
Table 5. SSBRC with observation projection approach. Sensitivity of the performance of projection 

approach with respect to kernel bandwidth Std (ߪ௛) and truncation number (݊୲୰୳୬ୡ). 

Test # ߪ௛ (%) ݊୲୰୳୬ୡ 
Final RMSE 

(Lperm) 
Final spread 
(%) Spሺܕሻ 

1 25 100 1.02 50.61 
2 25 50 0.9975 68.62 
3 25 50 0.9682 64.84 
4 25 100 0.9546 41.89 
5 10 100 1.1382 28.41 
6 25 25 1.1427 76.31 

Initial RMSE = 1.4478 

 

We choose test # 4 from  
Table 5 as the representative experiment and its estimation results are shown in Figure 27. It should be 
noted that for this experiment five integration steps are considered. As it is seen in  
Table 5 test # 4, the truncation number, ݊୲୰୳୬ୡ, is 100 which means by applying reduced-order projection 
we reduced the number of observations from 10000, in the reference experiment, to 100 in the improved 
experiment. 
 
The final estimated ensemble mean and individual sample (left and right plots of Figure 27.c) demonstrate 
significant similarity with the true permeability map, Figure 27.a, and the estimation RMSE curve, Figure 
27.d, is continuously decreasing. Therefore the estimation performance of SSBRC with projection 
approach is promising. As Figure 27.e shows the final ensemble spread is 40 %. The final Std map, 
Figure 27.c (middle plot), also demonstrates high values which confirms successful application of 
reduced-order projection for resolving ensemble spread underestimation. 
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In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0 
to the experiment 3 in section 0 (reference experiment) to resolve the issue of ensemble spread 
underestimation and ensemble collapse. 
 
Inflated observation error variance  
To resolve ensemble collapse problem with experiment 3 in section 0, in this section, we artificially 
increase observation error standard deviation range. To investigate the effect of observation Std range, 
SSBRC results with different Std intervals are shown in Table 6. The first row of Table 6, test # 1, shows 
the results of reference model that is experiment 3 in section 0. These results show improvement of final 
ensemble spread, characterized by Spሺܕሻ , (preserving more ensemble spread) by increasing the 
observation error Std. It can be seen in Table 6 column Spሺܕሻ that with increasing observation Std we 
can improve final ensemble spread from 3 % to almost 20 %. The test # 3 from Table 6 (with 100 to 200 % 
observation Std range) is chosen as a representative experiment and its estimation results are shown in 
Figure 31. Comparing test # 1 (reference experiment with the typical range of observation Std) and test # 
3 (improved uncertainty quantification) from Table 6, we can see final ensemble spread increased from 3 % 
to almost 20 % and even estimation RMSE slightly decreased that means improvement both in parameter 
estimation (RMSE reduction) and uncertainty quantification (Spሺܕሻ increase). It is obvious from Table 6 
that we can yet increase ensemble spread by further inflating observation error variance (increasing ߪ୫୧୬ 
and ߪ୫ୟ୶). 
 
Table 6. Sensitivity of the SSBRC performance to different ranges of observation Std (standard SSBRC 
with seismicity density on the original fine grid) in estimating 3D heterogeneous permeability. 

test # ߪ୫୧୬ (%) ߪ୫ୟ୶ (%) 
Final RMSE 

(Lperm) 
Final spread 
(%) Spሺܕሻ 

1 (reference) 11 17 0.8504 2.58 
2 25 59 0.8236 5.49 
3 99 194 0.8151 18.65 

Initial RMSE = 1.7793 

 
In Figure 31 for concise illustration, only initial and final (at the sixth integration step) estimated maps are 
shown. Figure 31.b shows initial permeability ensemble mean, ensemble Std map and an individual 
permeability sample and Figure 31.c represents the final estimated ensemble mean, Std map and an 
individual sample after assimilating all MEQ observations. SSBRC is very successful in inferring the true 
permeability since the final estimated maps are very similar to the true permeability distribution. 
Additionally SSBRC along with inflated observation error Std results in preserving ensemble spread and 
avoiding ensemble collapse through estimation procedure which is shown by high Std map of Figure 31.c 
(middle plot). Estimation RMSE, Figure 31.d, and ensemble spread, Figure 31.e, prove successful 
estimation and ensemble spread improvement, respectively. 
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Drained Poisson’s ratio, 0.22 ߥ 

Undrained Poisson’s ratio, ߥ௨ 0.46 

Porosity, ߶ 0.30 

Material constant, ߞௗ 20 

Material constant, ߚௗ 10ି଻ 

 
In this work, we also use a 3D fully coupled FEM model with point source injection by hexahedron 
regular mesh with 30×30×15 = 13500 elements (108000 nodes) and the reservoir size of 750 m × 750 m × 
370 m. The forward geomechanical model is very computationally expensive and in our case a single 
forward simulation takes almost 5 (hr) to run (on a machine with Intel Xeon CPU 3.07 GHz and 6 GB 
RAM). Consequently, SSBRC procedure which needs running multiple realizations in different 
integration steps, has extremely high run time. While as discussed earlier the SSBRC procedure is already 
implemented in parallel, the estimation process with 3D model is still very computationally intensive. 
Therefore, as we already know the original SSBRC leads to ensemble spread underestimation we choose 
to perform SSBRC with coarse seismicity density method. Here we only present the estimation results of 
a single 3D experiment which is estimating Young’s modulus distribution from MEQ cloud using SSBRC 
with coarse-scale seismicity density method. 
To do EnKF data integration, we consider six integration steps. In each SSBRC estimation experiment, 
we assume the spatial distribution of one reservoir property unknown (the parameter to estimate) and the 
rest of the properties are assumed known. We can also estimate more than one reservoir property 
distribution simultaneously from MEQ cloud. 
 
4.5.1 Results and discussion 
In this section we present the SSBRC estimation results with the geomechanical forward model. For the 
2D model we first show the results of standard SSBRC that leads to ensemble spread underestimation and 
then the results of improved uncertainty quantification with SSBRC are presented. The estimation results 
of SSBRC with 3D geomechanical model are presented only by incorporating improved uncertainty 
quantification methods. 
 
Experiment 1: 2D Homogeneous 
To demonstrate the applicability of the SSBRC method for geomechanical model, we first apply it to a 
homogeneous parameter estimation problem. As the simplest experiment, we consider all parameters to 
be constant (homogeneous or uniform over the whole field, i.e., spatially invariable) and then we consider 
one of the parameters to be unknown and set out to estimate the unknown parameter (which is a scalar). 
When the unknown parameter is homogeneous, the initial random ensemble of realizations for EnKF 
consists of ௘ܰ real numbers while each number (or scalar) is a realization or candidate of the unknown 
parameter. Therefore, to show the ensemble we simply use a histogram. In this set of experiments we use 
the standard SSBRC with high resolution seismicity density which is generated on the original fine FEM 
mesh. The observation error Std range (ߪ୫୧୬, ߪ୫ୟ୶) is also chosen as 15 % to 50 % which is inflated to 
some extent comparing to typical range of observation Std (5 % to 10 %). 
We consider integrating tensile microseismicity events to estimate the homogeneous reservoir parameters. 
We consider Young’s modulus (ܧ), permeability (݇) and tensile strength ( ଴ܶ) to be homogeneous (a 
single value for all nodes) and consider tensile failure distribution as monitoring data. A single true 
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uncertainty quantification to this example (as the reference experiment) to resolve ensemble spread 
underestimation issue. 
 

Experiment 5: Improving Experiment 4 
In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0 
to the experiment 4 in section 0 (reference experiment) to resolve the issue of ensemble spread 
underestimation. 
 
Inflated observation error variance  
The simplest way of avoiding spread underestimation or ensemble collapse is adding large amount of 
noise to observation which can be done by specifying high observation standard deviation (Std) through 
increasing ߪ୫ୟ୶ and ߪ୫୧୬ in equation (8). To observe the effect of observation Std range, different Std 
intervals are tried in our experiments. The results of increasing the observation error Std range are given 
in Table 10. The first row of Table 10, test # 1, shows the results of reference model that is experiment 4 
in section 0. These results show improvement of final ensemble spread (preserving more ensemble spread) 
by increasing the observation error Std. However the increased Std range (e.g. test # 3 with observation 
Std of 100-200%) might seem unrealistic. It is also obvious from Table 10 that we can yet improve 
ensemble spread by further increasing the observation error Std. Figure 50 shows the estimation results of 
SSBRC with inflated observation error Std range (test # 3 from Table 10). 
 

Table 10. Sensitivity of SSBRC performance to different ranges of observation error Std 

(in estimating Young’s modulus ܧ) 

test # ߪ୫୧୬ (%) ߪ୫ୟ୶ (%) 
Final RMSE 

(GPa) 
Final ensemble 

spread (%) 
1 (reference) 8 14 2.94 1.24 

2 30 84 3.3 5.33 
3 99 193 2.63 12.24 

Initial RMSE = 6.8134 (GPa) 

 
The decreasing trend of estimation RMSE in Figure 50.b shows promising estimation performance of 
SSBRC even with greatly increased Std range of observation. Figure 50.d,e,f, represent the evolution of 
ensemble mean, an individual realization and standard deviation map throughout integration steps. As 
shown by final estimated Young’s modulus maps (at 6th integration step) in Figure 50.d,e, SSBRC is 
successful in capturing the trends of true elastic modulus of Figure 50.a. More importantly ensemble 
spread underestimation problem of SSBRC is also resolved as can be seen in Figure 50.c that shows the 
ensemble spread of the estimated parameter. From the final standard deviation map of (at integration step 
6) Figure 50.f, it is also evident that the ensemble spread is preserved during integration steps by the 
proposed method. (compare to the reference experiment results in Figure 49.c,f, where ensemble collapse 
happens). 
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This experiment shows promising estimation performance of the SSBRC however the problem of 
ensemble spread underestimation is still evident. In the next set of experiments we apply the proposed 
methods for improving uncertainty quantification to this example (as the reference experiment) to resolve 
ensemble spread underestimation issue. 
 
Experiment 7: Improving Experiment 6 
In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0 
to the experiment 6 in section 0 (reference experiment) to resolve the issue of ensemble spread 
underestimation. 
 
Inflated observation error variance  
As discussed previously, artificially increasing observation error through specifying high observation 
standard deviation (Std) through increasing ߪ୫ୟ୶  and ߪ୫୧୬  in equation (8) helps in avoiding spread 
underestimation or ensemble collapse. To observe the effect of observation Std range, different Std 
intervals are tried in our experiment. The results of increasing the observation error Std range are given in 
Table 12. The first row of Table 12, test # 1, shows the results of reference model that is experiment 6 in 
section 0. These results show improvement of final ensemble spread (preserving more ensemble spread) 
by increasing the observation error Std. However the increased Std range (e.g. test # 3 with observation 
Std of 100-200%) might seem unrealistic. It is also obvious from Table 12 that we can yet improve 
ensemble spread by further increasing the observation error Std. Figure 58 shows the estimation results of 
SSBRC with inflated observation error Std range (test # 3 from Table 12). 
 

Table 12. Sensitivity of SSBRC performance to different ranges of observation error Std 

(in estimating permeability ݇) 

test # ߪ୫୧୬ (%) ߪ୫ୟ୶ (%) 
Final RMSE 

(md) 
Final ensemble 

spread (%) 
1 (reference) 11 15 0.0011 4.44 

2 22 81 0.0011 25.11 
3 96 199 0.0010 36.97 

Initial RMSE = 0.0021 (md) 

 
The decreasing trend of estimation RMSE in Figure 58.b shows promising estimation performance of 
SSBRC even with greatly increased Std range of observation. Figure 58.d,e,f, represent the evolution of 
ensemble mean, an individual realization and standard deviation map throughout integration steps. As 
shown by final estimated permeability maps (at 6th integration step) in Figure 58.d,e, SSBRC is successful 
in capturing the trends of true permeability distribution of Figure 58.a. More importantly ensemble spread 
underestimation problem of SSBRC is also resolved as can be seen in Figure 58.c that shows the 
permeability ensemble spread. The final ensemble spread increased from 4 % in the reference experiment 
to 37 % in the improved case. From the final standard deviation map of (at integration step 6) Figure 58.f, 
it is also evident that the ensemble spread is preserved during integration steps by the proposed method. 
(compare to the reference experiment results in Figure 57.c,f, where ensemble collapse happens). 
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In this work, we developed a coupled geomechanical reservoir simulator with rock failure criteria and 
damage mechanics model, and focused on developing a framework called stochastic seismicity-based 
reservoir characterization (SSBRC) for automatic and robust integration of MEQ-type discrete data sets 
using the EnKF. We first developed 2D and 3D FEM fully coupled thermo-poro-elastic models with 
Mohr-Coulomb failure criterion (including tension cut-off) and, permeability and damage model to relate 
hydraulic and geomechanical reservoir parameters to discrete microseismicity cloud. An important 
property of the EnKF is that its sequential update scheme provides different representations of unknown 
parameters after each update. By construction, the EnKF is designed to update time-varying states of a 
system. In forward geomechanical model that rock damage is reflected in the alteration of elastic modulus 
and permeability, field stress disturbances change the rock physical properties (parameters) with time, the 
EnKF-type sequential filtering techniques prove quite useful for estimation of dynamically varying 
parameters. We also set up 2D and 3D pore-pressure diffusion forward models using a finite difference 
based commercial reservoir simulator that relates permeability distribution to MEQ cloud distribution. 
In pore-pressure forward model, by applying SSBRC we can infer permeability distribution from MEQ 
data. Considering the coupled flow and geomechanics-based forward model, SSBRC method is capable 
of inferring permeability, elastic modulus, tensile strength, cohesion and friction angle from MEQ event 
cloud. Here, both tensile and shear failures are considered as microseismicity events. 
 
Using KDE to generate seismicity density map on the same fine grid system of pore pressure diffusion 
model or fine mesh of FEM model leads to high-dimensional and redundant observation. EnKF update 
with large number of correlated observations results in severe ensemble spread underestimation. We 
proposed three methods to preserve the ensemble spread and improve uncertainty quantification of 
SSBRC. We resolved this issue by either artificially adding large random noise to observation or reducing 
the number of observations by spectral and spatial dimension reduction. As the simplest method of 
avoiding ensemble collapse, we proposed to inflate observation error variance. We also proposed 
projecting the microseismic data onto a low-dimensional subspace that is defined by left singular vectors 
of the perturbed observations matrix, and lastly using coarse-scale continuous representation of the 
microseismic data. The proposed KDE approach for transforming the discrete MEQ data in this work 
inevitably introduces some error into the estimation results. A more natural estimation approach for 
integration of MEQ data is one that does not convert the discrete events into continuous measurements. 
Developing discrete data integration algorithms can eliminate the discrete data quantification step and 
potentially lead to additional improvements in the estimation results.  
 
Here, a continuum approach has been used and discrete fracture systems were not explicitly considered in 
the estimation.  Further refinements of the workflow may also be possible by including seismic modeling 
as one of the components in the inversion framework that can help better characterize the MEQ events 
both in terms of their distribution and intensity. Analyses of the raw microseismic data can lead to 
additional information about the induced fractures and their properties. 
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Chapter	3.	Three‐Dimensional	Fully	Coupled	FEM	Analysis	of	Geothermal	
Reservoirs	with	Stochastic	Fracture	Networks	

1. Introduction 

Simulation the response of an engineered geothermal reservoir (EGS) requires analyzing the THM 
response of the reservoir rock, which are generally fractured and with heterogeneous properties to some 
extent.  The THM response of the reservoir rock includes the opening and propagation of natural fractures, 
and the failure process of intact rock. To assess the mechanical (deformation) and hydraulic (permeability 
enhancement) response of fractured rock during stimulation, three sub-models are required: a fracture 
network model, a rock heterogeneity model, and a coupled THM model. The rock heterogeneity model 
and the FEM THM model have been explained in detail previously (Chapter 1). The emphasis of this 
chapter is fracture network modeling and its implementation for seismicity generation.   

2. Fracture Network Model Development  

Fractures serve as hydraulic conductors, barriers, channels of chemical contaminants transport, and play 
important roles in the stability of engineered structures and excavations. The presence of natural fractures 
in the reservoir puts challenges for designing, exploration, evaluation, and modeling of the reservoir. 
Major challenges for numerical modeling from natural fractures include but are not limited to: 1) how to 
identify, locate, and characterize natural fractures? 2) How do flow and transport occur in fracture 
systems? 3) How can changes in fracture systems be predicted and controlled. In this work, 
countermeasures to above concerns are 1) developing a conceptual model to represent the fracture 
network geometry; 2) developing a mathematical model to represent fluid flow and solute transport in 
fractured media; 3) building a hydro-mechanical model which can analyze the coupled fluid and solid 
response, and simulate the fracture deformation and porous rock response simultaneously.  

There are generally two classes of fracture models, stochastic fracture models and deterministic models. 
There are also works that utilize combined deterministic and stochastic fracture networks. In most 
reservoir stimulation and fracture modeling, the thermo-poroelastic coupling process has been either 
neglected or simplified to empirical correlations (Cladouhos et al. 2001; Willis-Richards et al., 1996; 
Bruel, 2002). Three-dimensional THM models have been developed and applied to reservoir stimulation, 
development, and well bore stability analyses (Zhou and Ghassemi, 2009; Lee and Ghassemi, 2011). 
However, the reservoir rock was modeled as continuous porous media with possibly a few major fractures.  

In this work, a fracture network is introduced into a coupled poroelastic model with heat transport. 
Poroelastic stresses in the rock matrix are computed at each time step, and are interpolated onto the 
natural fracture faces when calculation the fracture apertures change. The overall permeability of 
fractured rock is estimated using the equivalent permeability (Tezuka and Watanabe, 2000). An iterative 
method is employed to retrieve the stress-dependent permeability at each time step. Considering the 
problem complexity and the computational cost, the rock strain and fracture geometry changes are 
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considered independent from the thermal response. The heat transport in the reservoir is assumed to occur 
via fluid flow within the fractures, and the heat conduction from rock matric to the fracture fluid. 
Compared to heat convection via fracture flow, heat convection within rock matrix is insignificant in 
early stage of injection and is neglect in this work. The heat conduction from rock matrix to the fracture 
fluid is assumed to be linear and governed by 1-D diffusive equation. 

2.1 Natural Fracture Network Model 

There are generally two classes of fracture models, stochastic fracture models (Cladhuous et al. 2011; 
Bruel et al. 1994; Willis-Richards et al. 1996; and Tezuka et al. 2005) and deterministic models (Kolditz 
and Clauser 1998, Ghassemi et al. 2007, and Safari and Ghassemi 2011). According to the treatment of 
fluid flow through fracture systems, fracture models can also be classified in to equivalent continuum 
models (Carrera et al. 1990) and discrete fracture models (Hudson and La Pointe, 1980; Long et al., 1982). 
This work develops a hybrid method using discrete stochastic networks in building a continuum 
approximation.  
 
In a conventional equivalent continuum model, the induced rock heterogeneity by fractures is modeled 
using sub-regions with different local properties. Individual fractures are not explicitly present unless 
their scale is large enough to be considered separately as determined unit in the model. Each sub-region 
has uniform properties, such as poroelastic modulus and permeability, which are resulted from the 
volume-averaged behavior of many fractures inside the sub-domain. For example, flow through a sub-
domain is calculated in every direction and is used to form the equivalent permeability tensor for the sub-
domain. In this work, a sub-domain is viewed as one FEM (Finite Element Method) element. If the 
properties for the equivalent continuum are used as being known with certainty, the model is deterministic. 
If the coefficients are viewed as randomly distributed with a probability, the model is stochastic (Long et 
al. 1982, Robinson 1984, Dershowitz 1984, and Hudson and LaPointe 1980). In stochastic framework, 
fractures are reproduced only in a statistical sense to capture the overall connectivity of the entire region 
and not distinguished locally higher or lower than average zones. It is important to note that, in order to 
approximate the conductive fracture geometry (the inner connection of fractures), interference testing and 
tracer testing is critical to see how is the system interconnected (National Research Council, 1996). 
 

2.2 Stochastic Fracture Network Model 

In stochastic fracture network model, the fracture network consists of series of penny-shape fractures, the 
distributions of which is determined by the statistic descriptions of fracture density, size, and orientation. 
The stochastic distribution function of fracture network properties can be fitted from field survey data or 
experience. In this work, fracture network generation is inherited from Cacas et al. (1990). The fracture 
density, size, and orientation are described by Poisson distribution, log-normal distribution, and Fisher-
von Mises distribution respectively. Parameters for these three distributions are from field data. However, 
slight modification can be made to the distribution function case by case. ALTAROCK (2011) suggested 
an elliptical Fisher distribution fits better for field data from Newberry site. In our numerical model, 

Poisson’s parameter  indicates the total number of fractures expected in the modeled volume. The 
variables from a Poisson random generator are the coordinates of fracture centers, which give the location 

of fractures in the modeled domain. There are two parameters in the log-normal distribution. is the 
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Figure 4. Fisher von Mises distributions with mean direction at (-1, 1, 1) and k = ½, 1, 4, and 8. 
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Figure 6. Illustration of x- directional flow through a fractured element. 

The fluid flow in fracture is assumed to be governed by the cubic law shown by the following equation: 

L

pwa
Q





12

3

                                                                                                                  (5)                                                             

where Q is the volumetric flow rate in m3/s, w is the length of intersection line between fracture and 
element interface in m; a is the aperture of the fracture in m;	ߤ is the fluid viscosity;	∆݌ is the pore 
pressure change in Pa after the flow travel through ∆ܮ  distance in m. In numerical simulations, the 
reservoir block is divided into small elements as shown in Figure 7. The fractures have apertures (a) and 
intersect the elements with an intersection length (l). The directional conductivity of the element can be 
expressed in the following way (e.g., Rahman et al. 2002): 
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Where, nfi is the total number of fractures in the element, which contributes to the flow in ith directional. aj 
and lij are the aperture and intersection line length of the jth fracture on the intersected element surface. Ai 
is the cross section area of the corresponding direction, which is the interface of two elements in this 
model. The total permeability of the individual elements is obtained by the superposition of the rock mass 
permeability and the equivalent permeability of fractures using Equation (4). Geometry algorisms for 
calculation intersections between penny shape fractures and element faces can be found in the Appendix 
at the end of this dissertation. 
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Figure 7. Conversion of fracture permeability into equivalent permeability of FEM element. 

2.4 Mechanical and Hydraulic Properties of Fractured Rock 

The simulation domain in this model is treated as continuum. It is essential to mapping fracture properties 
into rock matrix, and forming a continuum with equivalent mechanical and hydraulic properties. The 
parameter sensitivity and mesh sensitivity of this conversion is also evaluated.  

2.4.1 Mechanical properties of fractured rock 

 

Finite Element Method (FEM) is used in our numerical modeling. In simulations, the simulated domain is 
discretized into finite elements (meshing). In FEM simulation, each element is required to have its 
individual properties, such as Young’s modulus, Poisson’s ratio, and permeability, etc. In modeling of 
rock heterogeneity, we statistically distribute the local properties into individual elements. In some cases 
when rock mass with natural fractures are considered, it is necessary to calculate the equivalent elemental 
properties of elements that contain fracture(s) before conducting Finite Element analysis. In the following, 
Young’s modulus is used as an example to explain the equivalent technique for modeling the properties of 
fractured sample. The basic concept is similar to the equivalent permeability method introduced 
previously. As conservation of flow rate is used in permeability conversion, the balance of displacement 
is used accordingly for the equivalent Young’s modulus. The overall displacement of the fractured rock is 
equal to the displacement of converted continuum mass with equivalent Young’s modulus under the same 
external loading. Rosso 1976 illustrated correlations among joint stiffness, axial and transverse strains of 
rock sample, and Young’s modulus of intact rock during a triaxial test (Figure 8): 

Coefficient of friction: n /   

Average joint displacement: 



sin

cos)( 23 n
s

dD
d


  

Average joint closure:    sincot23
1

1 














  DL

E
Ldn  

Joint shear stiffness: 
s

s d
K


  

(b) Notations used in Eqn. (2.6) 



 

240 
 

Joint normal stiffness: 
n

n
n d

K


  

Shear stress:  cossin)( 31   

Normal stress:    2
313 sinn  

 

Figure 8. Illustration of relations between variables in triaxial test of a fractured specimen. 

In above correlations and Figure 8, 1 is axial strain; 2 is small transverse strain; 3 is large transverse 

strain; D is sample diameter;  is angle between the joint surface and the sample axis; L is sample length; 

E is elastic modulus determined from the competent specimen; 1 is axial stress; 3 is confining pressure. 

From above relations, we can derive an expression of vertical equivalent Young’s modulus in terms of 
properties of intact rock and fracture.  
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where deviatory stress 31  d ; E’ is equivalent  Young’s modulus of the fractured sample; and 

other parameters are same as defined above. Here we assume the fracture properties and intact rock 
properties are known. Figure 9 shows the comparison between lab test result and calculated result using 
Equation (7). We can see that that equation approximates the lab test result well in elastic part.  
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Figure 9. Comparison between Equation 7 results with lab test data. 

When the scale gets bigger, or the mesh gets coarser depending on modeling requirements, a single 
element can contain several fractures. In practice, average local properties can be calculated using 
different averaging approaches depending on the definition of the problem. A single element can be 
divided into finite number of sub-elements such that one sub-element only includes one cut-through 
fracture. Then the averaging formula can be applied to find equivalent elemental properties. This method 
has been validated by comparing it to numerical simulations. Results show that the equivalent Young’s 
modulus is less depended on fracture location in the element, but highly depended on the fractured level 
(number of fractures per volume). In the numerical model, Young’s moduli of sub-elements are randomly 
distributed and five random samples have been selected. The results are sufficiently close to calculation 
using the averaging formula (Equation 8). Therefore, in later simulations related to fractured rock, the 
equivalent Young’s modulus of an element will be calculated using averaging formula.  
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Figure 10. Comparison between Equation 2.8 results with numerical simulation results. 

2.4.2 Hydraulic properties of fractured rock 

 

The equivalent permeability technique converts fracture networks into a continuous media with 
equivalent permeability. The conductivity of the resulting continuous media is dramatically influenced by 
the connectivity of the fracture network, and is also affected by the finite element mesh selection. An 
example is shown in this part to analyze the parameter sensitivity of fractures connectivity and to test the 
mesh sensitivity of the equivalent permeability technique. In the following example, a network of 500 
fractures is created within the domain matrix block using different fracture orientation and distribution 
parameters. Three different sizes of finite element mesh were used to investigate the impact of the mesh. 

Figure 11A-D shows the influence of fracture orientations on the fracture network directional 
conductivities. The blue color shows the connectivity of fracture networks whose orientations are derived 
using the Fisher von Mises distribution (FVM) (group I) and the random distribution (group II). We can 
see that the fracture network with random orientations has higher conductivity in x- and y- directions and 
a lower conductivity in the z- direction when compared with Fisher von Mises distributed fracture 
networks. Considering the geometric average conductivity (Figure 11D), group (II) fractures also show 
higher values than group (I). These two groups have the same number of fractures, and the same size 
distributions. The finite element meshes are the same as well. By comparison, we can see the connectivity 
of fracture networks is significantly influenced by the fracture orientations. 
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fracture center by balancing the heat convection (via fluid flow) and heat conduction between adjacent 
rock mass and the fluid in the fracture. It is assumed the temperature at fracture face is continuative (Brue, 
2002): 

mf TT   at y=0                                                                                                (10)      

The energy balance equation can be expressed as: 

   
in

j

out

k
fkikfffjijffi tTqCtTqCE                                                       (11) 

Where t
dy

dT
SkE y

m
imi  0)(  denotes the energy from the heat flux at fracture walls which is governed 

by conduction (diffusive equation, Equation 12). qij and qik represents the fluxes flow in a given fracture i, 

from fracture j and flow out to fracture k with temperature  fj and fi, respectively (Figure 14). The fluid 
exits to the fracture k having the same temperature as the current temperature in fracture i. Similarly, fluid 
flows from fracture j to fracture i having the same temperature as the current temperature in fracture j.  

 

Figure 14. Energy conservation of fracture i. 

The heat exchange across the fracture face can be described as (Brue, 2002): 

dtSdE iii   
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The above diffusive equation is solved using the finite difference method. Given the fracture temperature 
at time t, the solution will return the temperature distribution from the fracture face to the other end of the 

rock cylinder. After that, the heat flux i can be obtained and the energy exchanged (Ei) calculated. At 
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The one dimensional heat conduction takes place in a cylinder which has a cross section area of A = r2. 

Therefore, the volume of each element (i) has a volume of Vi = r2yi. We can then write the discretized 
form of equation (14) as: 

   
t

tTtT
ViTiT

y

A
iTiT

y

A mm
imm

i

m
mm

i

m










)0()1(
)()1()()1(


                  (16) 

If we use uniform element size, i.e. y = const., then according to central differentiation, we can denote 
the coefficients as  

2)(
)()(

y
iKiK m

TT 



                                                                               (17) 

And finally the diffusion equation can be written in matrix form as 

)0()1()1( tTtTtK mmT                                                                                   (18) 

The temperature distribution (m|y) in the rock cylinder at time t can then be calculated. The temperature 

gradient dm/ dy at fracture wall is needed in the heat convection calculation as the heat gain of the 

fracture from adjacent rock. In this model it is approximated by (m1-m0)|t /y.  

In the heat transfer part, the fluid flow is confined within the connected fracture networks. Therefore, it is 
necessary to find out the connected fractures. A search algorithm is used to determine the connectivity. 
Every fracture is checked whether or not it belongs to a connected flow path. Then, dead ends and 
isolated fractures are removed. An iterative analysis is employed to do the searching. 

In order to solve the system of equation for heat transfer, the fluid flow in fracture network need to be 
solved first. As explained in the equivalent permeability section, fluid flow is confined within fracture 
networks. Fluid flow in fractures is assumed to be similar to that of parallel surfaces. Then the cubic law 
provides the volumetric flux (m3/s) through a fracture with aperture a  and length l:  

dl

dpla
Q

12

3
                                                                                                    (19) 

The flow network considers each connected fracture as a 1D pipe linking the centers of adjacent fractures 
(Figure 16). Let ki and kj represent the conductivity of fracture i and j, and let pi and pj be the pore 
pressure at each fracture center. Li and Lj are the channel length in fracture i and j, respectively. The 
volumetric flow rate between fractures i and j can be write as: 

ji

ji
ijij LL

pp
kQ




 ; 

jjii

ji
ij kLkL

LL
k

// 


                                                                          (20) 

Conductivity of each fracture can be obtained from the modified cubic law: 
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nref is the effective normal stress which causes 90% closure of the compliant aperture. When the shear 

stress on fracture surface exceeds the shear strength, shear slippage occurs. And the resulted shear 
displacement can be estimated by: 

s

pn
s K

U
 

                                                                                                      (27) 

n is the shear stress applied on fracture surface. p is the shear strength described above. sK  is the 

fracture shear stiffness, can be expressed as: 

r

G
Ks                                                                                                             (28) 

 is a geometric parameter which is used as 24
7  in this model (Eshelby, 1957). r is the penny shape 

fracture radius. G is the surrounding material shear modulus. 
The change in aperture due to excessive shear stress can be calculated from shear displacement, as: 

)tan( eff
dilss Ua                                                                                                (29) 

When the fracture surfaces are in contact, the “in contact” fracture aperture is given by (Willis-Richards 
et al. 1996): 

ress
nref

aa
a

a 



91

0                                                                                (30) 

where resa  represents the residual aperture at high effective stress, taken to be zero in this model. 0a  is 

the initial total compliant aperture of the fracture. And sa  is the aperture change due to shear slippage, as 

discussed above. 
For fully open fractures, the opening aperture is the normal displacement multiplied by 2. For a circular 

shape fracture of radius ܴ under normal stress n, the normal displacement of any point of the crack 
surface is given by (Jaeger and Cook, 1969): 

22)1(2
)( rR

G
ru 







                                                                                   (31) 

Resulting in the maximum width at the center: 

G

R
a


)1(4 

                                                                                                     (32) 

The volume of the penny shaped crack is obtained from: 

G

R
dr
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rV n

R

3

)1(8
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)1(4
(2

3
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

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                                                            (33) 

Indicating an average aperture of: 

G

R
RVa n





3

)1(8
/ 2 

                                                                              (34) 

The updated aperture due to new stress distribution will be input for the equivalent permeability 
calculation of next time step as described previously.  
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The magnitude of radiated elastic energy is calculated according to McGarr et al. 1979 and Hanks and 

Kanamori, 1979. The seismic moment due to slip “ sU ” over the slip area, can be obtained from: 

 


 dAGUM s0                                                                                               (35) 

G is the shear modulus of the rock. The magnitude of a mini-earthquake generated by the slippage can 
then be estimated as: 

 7.10log)
3

2
( 010  MM                                                                                 (36) 

2.6 Analysis of Near Wellbore Response 

This simulation focuses on utilizing a stochastic fracture network and poroelasticity to simulate the 
thermal-hydro-mechanical response of near wellbore fractured zone during the fluid injection process, 
and to assess the permeability enhancement in the stimulated zone. The fractured geothermal reservoir is 
modeled using a system of rock blocks some of which contain stochastically-distributed fractures and 
fractured zones. The effect of the fractures on permeability is introduced into the model by using the 
equivalent permeability approach. The rock matrix is assumed to be poroelastic and the fractures are 
allowed to deform and to slip. Heat transport within the fractures and the associated thermal stress on the 
rock is also considered. A series of simulations are carried out to analyze the rock mechanical response 
and permeability evolution for a Newberry-type reservoir. In granitic fractured reservoirs, like Newberry-
Tuff, the overall fluid flow pattern is dominated by flow within the interconnected natural fracture 
network, since the conductivity of fractures is much higher than intact rock. However, the heat energy is 
stored in the rock mass surrounding the fractures, and it takes time to heat-up the fracture fluid to a 
desirable temperature. Therefore, to engineer a geothermal system, one need to enhance the 
permeability/connectivity of the pre-existing natural fractures without creating massive hydraulic 
fractures.   

2.5.1 Stochastic fracture network 

In this work, a natural fracture network of 500 penny-shape cracks is introduced into the poroelastic 
model (Figure 20). The 3D hydraulically conductive fracture network is generated using stochastic 
descriptions of its characteristics: Poisson distribution for fracture location, log-normal distribution for 
fracture size, and Fisher von-Mises distribution for fracture orientation. The parameters of these 
distributions are usually found from field tests or experimental data. The fracture data can be complied in 
to form a network by defining location, size, and orientation of the fractures. One of such stochastic 
fracture network (Table 1) is shown in Figure 20. The parameters of the fracture distribution used herein 
are from fracture analysis of Newbery field (AltaRock 2011), and from empirical suggestions (Cacas et al. 
1990). Fracture apertures are assigned following the relationship with the fracture size (Tezuka 20005): 

ra                                                                                                            (39) 
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2.5.5 Case summary 

This simulation example shows different aspects of permeability enhancement in EGS. The model is 
shown to be capable of analyzing the stress variations, pore pressure distributions, and potential injection 
induced micro-seismicity. From the results, we have seen the important role of fracture network 
properties (fracture distribution, orientation, and fracture network connectivity) in geothermal reservoir 
design and development. The fracture aperture changes with stress variations associated with injection 
and directly influence the reservoir permeability evolution. The orientation of the fractures in the 
reservoir dramatically influences the permeability development. In a fractured reservoir, properties of 
fracture network have a significant impact on pore pressure and seismic events distribution. Results also 
show a correlation between pore pressure increase, fractures slip and MEQs. A comparison with field/lab 
test needs to be conducted in the future work. Calibration of fracture distribution parameters and damage 
induced permeability change are being considered and will be reported in the following context. 

2.6 Large Scale Reservoir Response Analysis 

 
2.6.1 Model set up 

This model is also applied to a fractured geothermal reservoir, in which the natural fracture network is 
connected to the injection well via a hydraulic fracture, as shown in Figure 37. A one-wing elliptical 
hydraulic fracture on x-z plane is centered at coordinates (670.0, 242.5, 250.0) with a major axis (x-
direction) of 300 meters and s miner axis (z-direction) of 150 meters. The elliptical fracture has a uniform 
width of 5 mm. The modeled reservoir has a length of 1000 meters in x-direction, a width of 500s meter 
in y-direction, and a thickness of 500 meters in z-direction. The injection well is set vertically along the 
minor axis of hydraulic fracture, and the open-hole injection section is 160 m (140 m-300 m). The 
injection rate is held at 26.56 l/s for 40 hours. The injection water temperature is set to be 50°C and the 
reservoir temperature is 115°C. The whole domain is selected large enough to eliminate boundary effects. 
We assume fixed displacement and fixed pressure difference boundary condition at far field. This domain 
is discretized into 20,000 uniform finite element bricks and subject into the fully coupled FEM model. 
The in-situ stress state is indicated in Figure 37A also. The maximum horizontal stress is in x-direction, 
and this is a normal regime stress state where the largest in-situ stress is vertical. A cluster of natural 
fractures, 1000 count, is located in front of the hydraulic fracture. The coordinates of the center of natural 
fracture network is (450, 250.0, 250.0), and the fractured zone is 500 m X 500 m X 500 m. Figure 37B 
shows more details about natural fracture network and hydraulic fracture. Rock properties and fracture 
network parameters are listed in Table 4. Rock and fracture properties are from AltaRock (2011) on 
Newberry reservoir and Li et al. 2012. 
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Fracture orientation,  2.8 

Fluid viscosity 3.0X10-4 Pa s 
Basic friction angle 0.698 
Dilation angle 0.052 
90% closure stress 100 MPa 
Thermal expansion coefficient (solid) 1.8 X 10-5 K-1 
Thermal expansion coefficient (fluid) 3.0 X10-4 K-1 
Thermal diffusivity 6.0 X 10-12 m2/s 
Fracture density 1.5 m-1

Fracture size (Log SD) 1.0 
size-aperture coefficient  4.0 X 10-3 

 
2.6.2 Simulations and results 

 
The response of natural fracture network to injection is analyzed. At first, two sets of fractures are tested 
individually. These two sets of fractures have same distribution and orientations, different size and 
aperture. The resulting micro-seismic events location is the same for both sets. Results show the 
significant influence of fracture orientation on the occurrence of shear slippage. Figure 38 is a plot of the 
normal to the slipped fractures and their corresponding MEQ events at time = 10 hour. Gray circles 
represent all the fractures, while color rectangles are the slipped fractures. The color bar gives the 
magnitude of slippage induced micro-seismicity. It can be seen that shear slippage happens on fractures 
whose normal orientation falls into a certain range as indicated in the plot. The direction cosines of a 
fracture plane can be written in terms of its fracture dip and azimuth. From Figure 38, we can see that 
most fractures with azimuth between (-30°, 30°) slip after 10 hours of injection. Slipped fractures are 
sorted and plotted in Figure 39. Colors on fractures indicate the magnitude of MEQ events. It is evident 
from the figure that the event magnitudes are less related to the fracture orientation, size, or the distance 
to the injection source. We observe same magnitude of events on different size of fractures. We also 
observe higher magnitude of events on fracture far from injection source than the near ones. And from 
Figure 38, we can see the same magnitude events occur on fractures with large range of azimuth angles. 
However, due to our assumption of the dependency of fracture aperture and size (aperture is 10-4 of 
fracture size, Equation 13), the correlation between the fracture aperture and event magnitude is not 
evident. In order to characterize the sensitivity of fracture slip to injection, fluid gravity is ignored in this 
work, and we can see slippage occur on shallow fractures (Figure 39). By adding fluid gravity, the lower 
part of reservoir would be pressurized first, as discussed in Wang and Ghassemi, (2012b). 
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2.6.3 Case summary 

The 3D Thermal and Poroelastic model developed in this work calculates the performance of fractured 
reservoir during stimulation. The permeability enhancement of the natural fracture networks, and the 
corresponding slippage induced MEQ events have been analyzed. The result shows that the as one would 
expect, fractures orientations have a major influence on the initiation of shear slippage. From permeability 
improvement, we can conclude that as the pressure field changes during injection, fracture permeability 
can be enhanced. Also, stress change can also cause fracture closure, hence decrease the local 
permeability. Shear slippage does not necessary indicates permeability enhancement according to the 
simulation results. Some fractures’ aperture decreases while shear slipping.  Since the zone of temperature 
disturbance is so small (not even reach the fractured zone as shown in Figure 21), we do not observe 
cooling effect in this studying case.  

This model is useful to analyze the geothermal reservoir response during stimulation. It can give 
assistance when design an injection schedule and to predict the effects of the stimulation. By comparing 
simulation result and field observations, this model can also be used to evaluate the fracture network 
models. 
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Chapter	4:	Geomechanics‐Based	Stochastic	Analysis	of	
Microseismicity	Considering	Fracture	Networks	
 

1. Introduction  
Fractures which represent discontinuities in rock have a significant effect on the fluid transport capability 
of a reservoir. Fractures orientations, spacing, connectivity are important features that control network 
permeability. Table 1 summarizes common properties used for characterizing fractures and fracture 
networks. Table 2 summarizes the properties of a fracture set which could constitute a fracture network. 
Despite their essential role in reservoir development, there still are uncertainties regarding direct and 
indirect diagnostic technologies for characterizing fractures orientations in-situ. In the last several 
decades, many methods have been used to constrain the uncertainty in measuring the fractures 
orientations. Those methods are mainly geophysical in nature, ranging from simple extrapolation of field 
observations to high resolution seismic survey and transient electromagnetic method (see Table 3). Active 
geophysical methods can naturally be divide into three distinct scales: (1) large scales associated with 
surface geophysics, (2) intermediate scale associated with surface-borehole and borehole-borehole, and 
(3) small scales associated with measurements made on rocks immediately adjacent to a borehole or 
tunnel. In general, active geophysical methods that probe into the subsurface have a poor ability to 
spatially resolve the fracture geometry. Borehole logging and camera and outcrop mapping commonly 
suffer from lower dimensional limited exposures (Einstein and Baecher 1983; Williams and Johnson 
2004; Li, Feng et al. 2013). Furthermore, the description of fracture geometries obtained from local field 
surveys has to be scaled up from the local scale to the entire reservoir which can cause loss of geometric 
characteristics of the fractures. The question of how to establish a reliable fracture pattern away from the 
borehole remains a challenging issue. Thus, fracture pattern in numerical analysis are commonly treated 
in a stochastic framework (Leung and Zimmerman 2012, Berrone, Pieraccini et al. 2015, Farmahini-
Farahani and Ghassemi 2015, Ghassemi and Tao 2016). Thus, the numerical simulation results are 
uncertain and might not be reliable for optimizing completions design and production assessment.  
 
Table 1. Properties commonly used to characterize a fracture. 

Characteristic Fracture property 
SI 
unit definition 

Wall rock 
rheology 

UCS  ܲܽ Uniaxial compressive strength 

JCS  ܲܽ Joint compressive strength 

JRC  - Joint roughness coefficient 

  ௡ߢ
ܲܽ
/݉ Fracture normal stiffness 

  ௦ߢ
ܲܽ
/݉ Fracture shear stiffness 

 
Geometry 

 
Orientation 

2D ݋ Fracture strike 

3D ݋ Fracture dip and dip direction 
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Size 

Lengthሺ݈ሻ ݉ Length of a fracture trace on a surface 

Area ݉ଶ Area of the fracture surface 

Volume ݉ଷ Volume of fracture void 

 
Aperture 

Mechanicalሺܽ௠ሻ ݉ Distance between two fracture walls 

Hydraulic ሺܽ௛ሻ ݉ 
Effective fluid transport relevant fracture 
aperture 

 
Displacement 

Shear direction 
 
݉ 

Measure of shear displacement for 
fracture wall 

Normal 
direction 

Measure of normal displacement for 
fracture wall 

Filling 
  - 

Description of the material inside the 
fracture void 

 
 
Table 2. Properties commonly used to characterize fracture networks. 

Fracture network property SI unit definition 

Densityሺ݌ሻ 

Arealሺܲ20ሻ ݉ିଶ Number of fractures per unit area  

Volumetricሺܲ30ሻ ݉ିଷ Number of fractures per unit volume 

sets - Number of sets in this field 

Intensityሺܫሻ 

Linearሺܲ10ሻ ݉ିଵ Number of fractures per unit length 

Arealሺܲ21ሻ ݉ ∙ ݉ିଶ Fracture length per unit area 

Volumetricሺܲ32ሻ 
݉ଶ

∙ ݉ିଷ Fracture area per unit volume 
 
Spacingሺܵሻ  ݉ Average distance between fractures 
 
Mean lengthሺ݈௠ሻ  ݉ Average fracture length 

 
Length 
distribution 

Scanline 
sampling - 

Trace length of fractures intersecting with a 
scanline 

Window 
sampling - Trace length of fractures inside a sampling area 
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Table 3. Fracture detection methods. 
Methods Length scale of investigation and 

resolution  Remarks 
Differential methods 

0.1 െ 5000 ݉  

Elastic methods: seismic band ሺ10 െ
ሻ  100ݖܪ100 െ 5000 ݉ 

Zero shear modulus of 
fluids 

Elastic methods: sonic band ሺ2 െ  ሻݖܪ20
0.1 െ 10 ݉ 

Elastic methods: ultrasonic band 
ሺ200 െ ሻ 0.1ݖܪ2000 െ 5 ݉ 

Fracture aperture is 
critical 

Borehole televiewer 
10 െ 30 ܿ݉ ሾ0.3 െ 5 ܿ݉ሿ 

Detects fractures in 
boreholes 

Electrical methods  
10 െ 300 ݉ 

Resistivity of fracture 
fluid 
 

Electromagnetic methods 
ሾ10 െ 300 ݉ሿ 

Radar methods 
3 െ 100 ݉ 

Conventional well logs  
0.1 െ 10 ݉ 

Near-borehole 
environment 

Geological observation 
0.1 െ 500 ݇݉ Surface lineations 

Tiltmeter methods 
100 െ 2000 ݉ Expansion of fracture  

flowmeters 
1 െ 100 ݉ 

Directly detects fracture 
flow 

 
A source of data on the nature of reservoir fracture network is micro-seismic data or micro-earthquakes 
(MEQs). Cold water injection perturbs the pore pressure and the in-situ stress state within the reservoir 
leading to fracture initiation and/or activation of discontinuities such as faults and fractures which is often 
manifested as multiple MEQs. Detection and interpretation of MEQs using downhole receiver arrays 
(Brady, Withers et al. 1994; Warpinski, Wright et al. 1999) can be analyzed to provide useful information 
on the stimulated zone, created reservoir permeability and fracture growth, and geometry of the 
geological structures and the in-situ stress state(Pine and Batchelor 1984; Gutierrez-Negrin and Quijano-
Leon 2003; Warpinski, Wolhart et al. 2004; Gao and Ghassemi 2016)  MEQs are believed to be 
associated with rock failure in shear, and shear slip on new or pre-existing fracture planes (Pearson 1981; 
Ye, Janis et al. 2017). The generated MEQs contain information about the sources of energy that can be 
used for understanding the hydraulic fracturing process (Talebi, Young et al. 1991; Shapiro, Huenges et 
al. 1997; Foulger, Julian et al. 2004) and the created reservoir properties. The growth of the fractured 
zone direction can be determined using inverse modeling of micro-seismic observations. This inverse 
modeling is commonly referred to as seismicity based reservoir characterization (SBRC) and can been 
used to estimate the rock mass permeability tensor resulting from stimulation without explicitly 
considering the fracture network and its mechanical characteristics and response (Shapiro, Patzig et al. 
2003). In the work (Shapiro, Huenges et al. 1997),  developed a diagnostic technique to estimate the 
reservoir permeability from MEQs.  Pore pressure diffusion model was used to link MEQs to equivalent 
permeability at reservoir scale assuming the rock to be in the limiting state. Therefore, MEQs are assumed 
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each cluster. An objective function depending on the ratio of S wave to P wave amplitudes and maximum 
separation distance is proposed to measure the matching level between different MEQs (Roff, Phillips et 
al. 1996). A further study suggests a four-term objective function that becomes much more 
complex(Kuang, Zoback et al. 2017). In these approaches, the focal mechanism solution with the largest 
value of the objective function is most likely to be the best. However, due to arbitrariness of the objective 
function and low magnitude of MEQs, this method seems to be poorly constrained and contains large 
errors. Furthermore, these methods suffers from three limitations: 1) the objective function is complex 
resulting in convergence difficulties; 2) waveform of MEQs is probably disorganized and amplitude is 
very low, so only very strong MEQs can be selected; 3) there is no general theoretical framework to 
quantitatively measure the matching level between the MEQs. 

1.1 Objectives 
The objective of this part of the research work was to develop an alternative method to help characterize 
fractures orientations in the reservoir. We first apply the concept of similarity measure which is a real-
valued function which quantifies the similarity between two objects (Jarvis and Patrick 1973; Frey and 
Dueck 2007). The core of the similarity measure is to build the distance metrics between the two objects. 
For instance, the distance metrics is calculated from the center of one object to the center of another 
object. In this study, we use this approach to develop a stochastic framework called Geomechanics-Based 
Stochastic Analysis of Microseismicity (GBSAM) to integrate TMEQs as prior information to infer 
fractures orientations. GMEQs are generated when the shear stress at the center of fractures are larger 
than the shear strength according to the Mohr-Coulomb failure criterion. If one fracture slips, the stored 
shear strain energy is calculated and it is supposed that a certain part of the shear strain energy will be 
released as seismic energy. If the released seismic energy is larger than the threshold energy of MEQs, 
additional MEQs are generated on the fracture plane stochastically. The threshold energy of MEQs can be 
defined as the minimum detection capacity of sensors. Mahalanobis distance (Huberty 2005) is then 
applied to measure the similarity between TMEQs and GMEQs. The uniqueness and existential of 
solution from GBSAM also has been investigated. Finally, the GBSAM is applied to a data set of MEQs 
recorded during phase 2.2 of Newberry Volcano EGS demonstration project, Fenton Hill EGS and 
Mississippi Hydraulic fracturing.  

2. Analytical and Numerical Procedures  

2.1 Poroelastic Solution of Finite Duration Line Injection  
Water injection will disturb the initial pore pressure and stress fields in the reservoir and fractures are 
reactivated and potentially induce MEQs. This problem can be approximated via a line injection source in 
permeable zone which is bounded by two semi-infinite impermeable zones (Figure 2). The line injection 
source	ሺݎ ൌ 0ሻ extends over the thickness of the permeable layer and fluid is injected into the surrounding 
rock masses at a constant volumetric rate Q over the finite time interval	0 ൏ ݐ ൏ ܶ. The shear modulus G 
and Poisson’s ratio	ݒ and other poroelastic constants are assumed known. The fractures are stochastically 
distributed throughout the permeable zone which is assigned an effective permeability. The effective 
permeability of fractures is assumed as the same as the permeable zone. Poroelastic and thermal effects 
are neglected in this study. Initially	ሺݐ ൌ 0ሻ, all the hydraulic and mechanical fields are assumed to be in 
equilibrium state.  
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Where ݊ଵ	and ݊ଶ	is the number of data in group 1 and group 2, respectively. The covariance matrix of 
each group is computed using the centered data matrix. The pooled covariance matrix of two data groups 
is computed as weighted average of the covariance matrices as follow: 

                                                 ܵ ൌ
௡భ

௡భା௡మ
ଵܵ ൅

௡మ
௡భା௡మ

ܵଶ                                                           ⒇ 

The value of MD is simply quadratic multiplication of the mean difference and inverse of pooled 
covariance matrix. 

                                      ݀ሺܺ, ܻሻ ൌ ඥሺ തܺ െ തܻሻ்ܵିଵሺ തܺ െ തܻሻ		                                                           21                        

Now, suppose a 3D reservoir an unknown fracture orientation ݊ ൌ ൛݊௫, ݊௬, ݊௭ൟ or ሼ݀݅݌,  ሽ݊݋݅ݐܿ݁ݎ݅݀	݌݅݀
and the goal is to identify the unknown fracture orientation by performing inverse analysis. Since it is 
difficult to determine the components of fracture orientation from a highly complex reservoir system, 
some necessary assumptions are made. The locations of the fractures are assumed to be the same as the 
TMEQs. The fractures are assumed penny-shape and the radius is pre-defined. The parameters in the line 
source model are also assumed to be known (Cheng and Ghassemi 2016). Fracture population is equally 
divided into several sets in random form in every cycle. For instance, there are only one set in dip and 
three sets in dip direction. In each set, the fractures orientation are followed by normal distribution.  
To interpret TMEQs for fracture orientation we propose a general inverse analysis named GBSAM. These 
assumptions preserve the GBSAM characteristics while optimizing the inverse analysis. Here we need to 
point out that GBSAM cannot predict the orientation of each individual fracture and it only provides the 
likely orientation of each set.  
The procedures of the computational algorithm for extracting fractures orientation from TMEQs, plus an 
additional converged analysis are summarized as follows: 
 
Step 1. Define the all parameters but fracture orientation. It is assumed that the reservoir has two sets of 
fractures. The location and number of fractures are the same as the TMEQs.  The initial fracture 
orientation of each set is 

൛݊௫ଵ, ݊௬ଵ , ݊௭ଵൟ ൌ ൛0.1, 0.01, √1 െ 0.1ଶ െ 0.01ଶൟ		 and 	൛݊௫ଶ, ݊௬ଶ, ݊௭ଶൟ ൌ ൛0.1, 0.01, √1 െ 0.1ଶ െ 0.01ଶൟ . In 

order to simplify the inverse analysis, ݊௫ଵ	and ݊௫ଶ	is constant and equated to 0.1.  
Step 2. The members of each set are also different in every cycle because each set is randomly selected 
from the fractures population. The number of set 1 is equated to set 2 and properties are assigned to the 
reservoir and the fracture for execution of geomechanics model with boundary and initial conditions.  
Step 3. Compute the distribution of induced stress and pore pressure and stored strain energy on the 
fractures planes.  
Step 4. Check whether the CFF is larger than zero. If CFF is positive, frictional sliding occurs on a 
fracture and a GMEQs will be generated. Check whether the ratio of stored strain energy to threshold 
energy of MEQs is larger than one. If yes, the number of GMEQs which lower the ratio will be generated.  
Step 5. Compare the TMEQs with GMEQs via MD.  
Step 6. Store the value of MD ݓ௜	and the current properties of the reservoir, fracture orientations and the 

current number of cycles	݅	. Calculate the average value of MD	ݒ௜.  So 
∑௪೔

௜
 is equated to the average value 

of MD	ݒ௜.   
Step 7. Repeat calculation from step 2 to step 6 until the number of cycles i equals the maximum number 
of cycles c. Check whether the |ݒ௜ െ |௜ିଵݒ ൑  is satisfied. If yes, the inverse	ሻݎܾ݁݉ݑ݊	݈݈ܽ݉ݏ	ܽ	ݏ݅	ߝሺ	ߝ
analysis in this cycle has converged.   
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In this study, we use a line source of length almost equal to half the length of the open hole section of 

well NWG 55-29, having the same average inject rate	ܳ ൌ
଴.଴଺ଷ௠య

௦
. The length of the open section of well 

NWG 55-29 is 906 m. The reservoir properties in GBSAM used are shown in Table 3. The permeability 
used is estimated value for the John Day formation(Cladouhos, Petty et al. 2015).  
 

Table 3. Parameters used in this work for Newberry simulations. 
Parameter Variable Value and unit 

Vertical Stress (z direction) ߪ௭ 67ܽܲܯ 
Maximum Horizontal Stress(x direction) ௫ 46ߪ  ܽܲܯ
Minimum Horizontal Stress(y direction) ߪ௬ 30  ܽܲܯ

Injection time t 58  ݏݕܽ݀
Injection rate ܳ 0.0063݉ଷ/ݏ 

Biot coefficient 0.65 ߙ 
Undrained Poisson’s ratio ݒ௨ 0.35 

Shear modulus ܽܲܩ10 ߤ 
Drained Poisson’s ratio 0.3 ݒ 

Fluid Viscosity 0.85 ߟ ∙ 10ିସܲܽ ∙  ݏ
Permeability ݇ 0.01 ∙ 10ିଵହ	݉ଶ 

Hydraulic diffusivity ܿ 19.00 ∙ 10ିଶ 	݉ଶ ⁄ݏ  
Cohesive strength ߬଴ 0 ܲܽ 

Friction coefficient ݉0.52 ݑ 
Total number of cycles  300 

Permeability zone of thickness 2݄ 200݉ 
Standard deviation for dip degree √80 

Standard deviation for dip direction degree √160 
Time of injection shut in ܶ 58  ݏݕܽ݀

 
 

The results from the GBSAM show that the fractures dip are ሼߤ, ሽߪ ൌ ቄ60௢, √80
௢
ቅ and the fracture dip 

direction are ሼߤ, ሽߪ ൌ ቄ100௢, √160
௢
ቅ	and 	ሼߤ, ሽߪ ൌ ቄ270௢, √160

௢
ቅ . Figure 13 shows the results from 

GBSAM and the results from BHTV. As can be observed from Figure 14(a), fracture dips from GBSAM 
are in good agreement with observations from BHTV. Figure 14(b) shows that the fracture dip direction 
from GBSAM are also in good agreement with observation from BHTV. The total number of GMEQs is 
370. From Figure 14(c)-(e), GMEQs has a good match with TMEQs.  
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3. Conclusions  
Constraining the fracture orientation in reservoir is the high interest to hydrocarbon industry. The fracture 
orientation (3D) or strike (2D) can be used to reconstruct the stress field, which led to the formation of the 
fracture. Fracture orientation are typically estimated from 1-D scan lines in outcrop and boreholes 
imaging log, or 2D circular sampling in outcrops. Recently, terrestrial laser scanner allow a 
comprehensive fracture analysis of an entire outcrop in 3D, which is therefore less subject to observation 
biases than scan lines or window samplings of limited sizes (Cecile Massiot 2017). In this work, we 
propose GBSAM to constrain the fracture orientation based on the microseismic data.  The core steps in 
GBSAM are to handle with discrete MEQs data and measure similarity between field MEQs and 
stimulated MEQs.  Here we apply Mahalanobis distance, a common tool from data sciences to measure 
similarity between field MEQs and stimulated MEQs and also handle with discrete data. The mechanism 
of generating MEQs is also improved which indicate one fracture may have multiple MEQs. The number 
of MEQs on a fracture is defined as the ratio of released seismic energy to threshold seismic energy. In 
order to verify model, GBSAM is applied to extract information of fracture orientation (dip and dip 
direction) in three examples, Newberry EGS and the Fenton Hill HDR. Results from GBSAM have good 
agreement with results from boreholes image logging or previous studies in those examples.  
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