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C. Introduction

The production of geothermal energy from dry and low permeability reservoirs is achieved by water
circulation in natural and/or man-made fractures, and is referred to as enhanced or engineered geothermal
systems (EGS). Often, the permeable zones have to be created by stimulation, a process which involves
fracture initiation and/or activation of discontinuities such as faults and joints due to pore pressure and the
in-situ stress perturbations. The stimulation of a rock mass is often accompanied by multiple
microseismic events. Micro-seismic events associated with rock failure in shear, and shear slip on new or
pre-existing fracture planes and possibly their propagations. The microseismic signals contain information
about the sources of energy that can be used for understanding the hydraulic fracturing process and the
created reservoir properties. Detection and interpretation of microseismic events is useful for estimating
the stimulated zone, created reservoir permeability and fracture growth, and geometry of the geological
structures and the in-situ stress state. The process commonly is referred to as seismicity-based reservoir
characterization (SBRC). Although, progress has been made by scientific & geothermal communities for
guantitative and qualitative analysis of reservoir stimulation using SBRC several key questions remain
unresolved in the analysis of micro-seismicity namely, variation of seismic activity with injection rate,
delayed micro-seismicity, and the relation of stimulated zone to the injected volume and its rate, and the
resulting reservoir permeability. In addition, the current approach to SBRC does not consider the full
range of relevant poroelastic and thermoelastic phenomena and neglects the uncertainty in rock properties
and in-situ stress in the data inversion process.

The objective of this research and technology developments was to develop a 3D SBRC model that
addresses these shortcomings by taking into account hydro-thermo-poro-mechanical mechanisms
associated with injection and utilizing a state-of-the-art stochastic inversion procedure. The approach
proposed herein is innovative and significantly improves the existing SBCR technology (e.g., Shapiro et
al. 2003) for geothermal reservoirs in several ways. First, the current scope of the SBRC is limited with
respect to the physical processes considered and the rock properties used. Usually, the geomechanics
analyses within SBRC is limited to the pore pressure diffusion in the rock mass, which is modeled using a
time-dependent parabolic equation and solved using a finite element algorithm with either a line or a point
source. However, water injection induces both poroelastic and thermoelastic stresses in the rock mass
which affect the stress state. In fact, it has been suggested that thermoelastic stresses can play a dominant
role in reservoir seismicity (Ghassemi et al., 2007). We include these important effects by using a fully-
coupled poro-thermoelastic constitutive equations for the rock mass which will be solved using a 3D
finite element model with more realistic injection geometries such as multiple injection/extraction sources
(and in fractures), uncertainty in the material parameters and the in-situ stress distribution to better reflect
the pore pressure and stress distributions. In addition, we developed a 3D stochastic fracture network
model to study MEQ generation in fracture rocks. The model was verified using laboratory experiments,
and calibrated and applied to Newberry EGS stimulation.

In previous SBRC approaches, the triggering of micro-seismicity is modeled base on the assumption that
the prior stochastic criticality model of the rock mass is a valid and adequate description. However, this
assumption often does not hold in the field. Thus, we improved upon the current SBRC approach by using
the micro-seismic responses to estimate the hydraulic diffusivity as well as the criticality distribution
itself within the field. In this way, instead of relying on our a priori knowledge of criticality distribution,



we combine an initial probabilistic description of criticality with the information contained in micro-
seismic measurements to arrive at criticality solutions that are conditioned on both field data and our prior
knowledge. Previous SBRC have relied upon a deterministic inversion approach to estimate the
permeability, and the extent of the stimulated zone, whereas a stochastic inversion algorithm that
recognizes and quantifies the uncertainties in the prior model, the time evolution of pore pressure
distributions (modeling errors), and the observed seismic events is developed and used herein to
realistically assess the quality of the solution. Finally, we developed a technique for processing discrete
MEQ data to estimate fracture network properties such as dip and dip directions. The approach was
successfully applied to the Fenton Hill HRD experiment and the Newberry EGS with results in good
agreement with field observations.



Chapter 1: Thermo-Poroelastic Modeling of Reservoir
Stimulation and Microseismicity Using Finite Element Method
with Damage Mechanics



1. Introduction

Stress analysis or rock mass failure in response to water injection is of much interest in oil and gas
exploration and geothermal reservoir design. The process involves coupled rock deformation, fluid flow,
heat transfer and chemical interactions in the porous rock. Interest in understanding rock deformation and
failure during fluid injection has increased in enhanced geothermal systems, unconsolidated petroleum
reservoirs, and unconventional resources such as gas shales.

From the geomechanical point of view, the impact of the variations of pore pressure, temperature and
chemical interaction are key factors in reservoir engineering. These are of especially interesting around a
wellbore, where their impact is particularly significant during injection and production, which may lead to
problems such as borehole collapse, distortion, and buckling during injection or drilling (Yu et al., 2001).
These problems are mainly caused where the rock’s effective stress exceeds its strength. In addition, the
far-field stresses are among the most important factors in geomechanical engineering since the stress
regime impacts rock failure, its geometry, and the resulting fluid path. The stress distributions around a
wellbore are influenced both by the injection-induced stress and far-field stress in the reservoir so they
must be accounted for in determining the impact of fluid flow, temperature and chemical interaction with
far-field stresses (Fig. 1.1).
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Fig. 1. The key factors in geomechanical engineering design.

Generally, the strain-stress behavior of rocks in experimental tests shows hardening and post-peak
softening or directly reaches the softening regime, depending on the rock type and conditions such as pore
pressure, stress conditions, and temperature (Jaeger et al., 2007). The continuum damage mechanics
approach can capture the hardening and softening behavior of the rock (Yuan and Harrison, 2006), and
permeability variation caused by the stress change and rock failure is critical in the analysis of wellbore
stability and well stimulation. Induced microseismic events are among the promising approaches to
estimate permeability changes and stress distributions since they measure the earthquake energy where
geological formations have become imbalanced by fluid injection. The characteristics of microseismic
events such as their locations, spatial patterns of distribution, and temporal relations between the
occurrence of seismicity and reservoir activities are often studied for enhanced geothermal systems (EGS).
Microseismic event detection and interpretation is used for estimating the stimulated volume and fracture
growth, resulting reservoir permeability, and geometry of the geological structures and the in-situ stress
state (Pine, 1984). Numerical modeling of the coupled processes in rock can help improve understanding
of MEQ and will improve reservoir development activities.



1.1 Motivation and Objectives of the Study

The theory of thermo-poroelasticity can explain the coupling of fluid flow and temperature effects in rock
deformation. It provides a robust framework for studying the rock deformation and stress redistributions
after rock failure. However, its use and application could be improved by developing three-dimensional
injection/extraction geomechanics models that not only consider induced rock failure and fracture
propagation but also take into account rock damage and permeability variations. Continuum damage
mechanics with fully coupled thermo-poroelasticity using finite element methods can be used for this
purpose. The objectives of the research were to (i) develop a fully coupled thermo-chemo-poroelastic and
three-dimensional finite element model that considers rock damage and stress-dependent permeability for
simulating the influence of fluid flow and temperature with various injection schedules under anisotropic
far-field stress conditions; (ii) observe the injection-induced stress variations, permeability change and
rock failure; (iii) simulate and study the three-dimensional propagation of damage/fracture and
microseismic events under different stress regimes, and better understand the key factors for temporal and
spatial distributions of induced microseismic events.

1.2 Fluid Flow, Temperature, and Solute Transport in Porous Rock

Coupled hydromechanical process analysis was initially motivated by soil consolidation problems.
Terzaghi (1923) presented the one-dimensional consolidation theory that takes into account pore pressure
and the soil deformation. Biot (1941) developed a model for linear poroelasticity that considered the
stress change under fluid loading and pore pressure variations under applied stress. This theory has been
extended to include the influence of temperature, fluid flow, and rock deformation and is called thermo-
poroelasticity (McTigue, 1986; Kurashige, 1989; Wang and Papamichos, 1994). Heidug and Wong (1996)
proposed the constitutive equations for swelling shale based on nonequilibrium thermodyanamics.
Ghassemi and Diek (2003) considered combined effects of chemical potential and thermal osmosis on
water flow in and out of the mud and shale formation. They indicated that in addition to thermal osmosis,
chemical osmosis also can be several times higher than hydraulic pressure in certain conditions. Also, a
linear chemo-thermo-poroelasticity was developed to remedy the cumbersome solution of the original
chemo-thermo-poroelasticity for practical applications. Details of these mathematical formulations will be
illustrated in Section 2.

1.2.1 Biot’s poroelasticity

Biot (1941) developed the coupled fluid and solids consolidation problem in porous media. He assumed
that the material is homogeneous and fully saturated, and fluid flow follows Darcy’s law in porous media.
The problem domain that illustrated the influence of loading in excess pore pressure variation is shown in
Fig. 1.2. Consider a fully saturated poroelastic layer from z = 0 to z = A, and normal traction P applied at
the top surface. Initially the layer deforms as elasticity, and an excess pore pressure induces the change of
displacement as results of the Skempton’s effect. The fluid flow dries out gradually with time, and the
layer continuously deforms vertically.
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Fig. 1.2. Sketch of the Biot consolidation problem.

Assuming the fluid drains on the surface and the system is impermeable at the bottom, the governing
equations for the transient phenomena of consolidation as follow,

lazw_ ow

o— =
a 822 0z

82]9 0% w 13p

0 (1.1)

2 oot Qo (1.2)
1-2y
where @ = m is the compressibility, « is the Biot’s constant, k is the coefficient of permeability

of the soil including the viscosity, and Q is the volume of water which can be forced into the soil under
pressure while the volume of the soil is kept constant.

Initial and boundary conditions for the consolidation problem can be described as no fluid flow at the
bottom and zero pore pressure because of drainage on the surface.
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The interesting solution for the consolidation problem is the change of displacement after loading (Biot,
1941).
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Fig. 1.4. Pore pressure change for various depths, as a function of time.

The analytical solution in Fig. 1.3 shows the displacement change on the top surface under loading with
respect to time, and the corresponding pore pressure changes illustrate how (Fig. 1.4) the saturated water
diffuses through the porous soil and out of its top surface as time increases. Note that maximum pore
pressure in the middle (consolidation effect) can disappear in a very short time when the permeability (as
is the case here) is relatively high (100 md). The consolidation effects will be discussed in more detail in
Section 3, in the context of pore pressure distribution around a wellbore in ultralow-permeability rock.



The theory of Biot consolidation represents fully coupled interaction of fluid flow and solids. It provides
general schemes of the interaction between fluid flow and mechanical loading. Similar phenomena are
observed around a wellbore.

1.2.2 The concept of thermal stress

The change of temperature induces stress and displacement in a rock skeleton. The theory of
thermoelasticity is analogous to the theory of poroelasticity, but instead of pore pressure, it includes the
role of temperature change. Palciauskas and Domenico (1982) and McTigue (1986) studied the effects of
temperature change on pore pressure and stress in rock. Considering linear elasticity, temperature
decrease or rise causes a change of strain in the rock given by:

e=—p (T-Tp) (1.7)

where /3 is the volumetric thermal expansion coefficient (at constant ¢ and p) that indicates the change of

strain by the difference of temperature in a rock. An increase in temperature will cause bulk volume
increase, whereas a decrease of temperature will cause bulk volume decrease. Since the injection water in
geothermal conditions is cold and reservoir temperature is hot, injection leads to tensile stress of rock in
the injection well. For typical values such as K=10 GPa and =10"/K, a temperature change of 10 K
induces a thermal stress around 30 MPa.

The conductivity and thermal expansion coefficients do not vary widely because most rock-forming
minerals have similar thermal expansion coefficients. The thermal conductivity of rock is in the range 1-
10 W/m'K (Jaeger, Cook, and Zimmerman, 2007). An interesting phenomenon regarding the thermal
effects in the rock is that the range of the thermal expansion coefficient does not vary significantly with
rock type (Grimvall, 1986), in contrast to other rock properties such as porosity and permeability that may
vary by many orders of magnitude. McTigue (1986) determined that the thermal expansion coefficient of
a fluid-saturated rock is equal to that of the rock skeleton in drained conditions, whereas in undrained
conditions, it is:

B =a,+9B(B, - B,) (1.8)

where ¢ and B are the porosity and the Skempton’s coefficient. The subscripts s and f indicate the rock
skeleton and fluid phase, respectively.

According to linear thermo-elasticity, the strain is the sum of stress-induced strain and thermally induced
strain:

1

v
E=—1——F——trace(t)l - (T —Ty)I
G 2G(1+V) ()= B( 0) , (1.9)
where T is the relationship of stress and strain in linear elasticity:
T=Atrace(t)l +2Ge . (1.10)

The governing equation for thermoelasticity is obtained by combining Eq. 9 with the stress equilibrium
equation, 7; ; = 0 and the strain-displacement equations.

GViu+(A+G)V(V-u)+3B8KVT =0 (1.11)

Fourier’s law, g7 = ~kTVT and the energy balance equation for conductive heat transfer equation can
be written as
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The solutions of temperature distribution and displacement can be solved from Eq. 1.11 and Eq. 1.12.

Thermo-elasticity has been extended to thermo-poroelasticity, which takes into account the influence of
fluid flow and heat transfer.

vir

(1.12)

1.2.3 The influence of chemical potential

The effect of chemical potential on water and solute transport is of interest in ultralow-permeability rock
such as shale reservoirs. The general concept of chemical interaction in drilling fluid/shale has been
studied by experiments (Chenevert, 1970; Hale et al., 1992; Mody and Hale, 1993). They showed that the
in and out movement of water and solution between the drilling mud and the shale reservoir alters the
pore pressure distribution, which in turns impacts the effective stresses. The fundamentals of fluid
movement in shale can be explained by the difference of chemical potential between the water and shale
as shown in Fig. 1.5.
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Fig. 1.5. Conceptual scheme of osmosis flow by chemical potential.

A model for chemo-poroelasticity that considers the osmosis, swelling, and solute transport between the
drilling mud and pore fluid in the rock based on the Gibbs-Duhem equation in thermodynamics was
presented by Heidug and Wong (1996). In this section, we only briefly introduce the general constitutive
equations and transport equations for chemo-poroelasticity. Total stress and pore volume fraction has
been introduced by Heidug and Wong (1996); that is (tension positive):

V=ag; +QP+%Bﬂ/'Jﬂ (1.14)
B

elastic stiffness coefficients are the tensor in the case of isotropy, as

2G
Lijkl = G(éiké‘jl + 5il§jk )-i— (K — TJéUé‘kl ,
where K and G denote the bulk and shear modulus, respectively. The presence of hydraulic pressure and
chemical potential cause the change of pore pressure and solute concentration with time. Fluid flux in
shale can be written as:

where V is the pore volume fraction, and 17 is the chemical potential of B ™ chemical component. The

(1.15)
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where S and D denote the solid and fluid, and the phenomenological coefficients are defined by:
— 2 G
12 1 Py kR
L =-L ‘B=—fT, (1.17)

where &k and p are the permeability and viscosity, respectively. R is the solute reflection coefficient
which may range from 0 to 1.

1.3 Deformation and Failure of Rock

A number of cases in geothermal and petroleum reservoir operation involve rock deformation and failure
caused by fluid flow change. Several different failure criteria are used for its applications (Jaeger, Cook,
and Zimmerman, 2007). In this section, we briefly review the strain-stress behavior of rock under stress
change, the Coulomb failure criterion, and the effect of pore pressure on rock failure.

1.3.1 Strain-stress curve

The most common tool for studying mechanical behavior of rocks is the uniaxial and triaxial test. It
provides the rock properties such as modulus, rock strength, and hysteretic behavior during loading and
unloading. In addition, it can estimate the brittle or ductile behavior of rock in a certain conditions of
reservoir far-field stress and temperature. The general strain-stress curve for rock under compressive
stress is illustrated in Fig. 1.6. In region A-B, the strain-stress behavior is almost elastic and hysteresis
may be observed. The stress continues to rise in region B-C but nonlinear behavior, which is called the
ductile state, begins at point B, which is the yield stress of the rock. The third region, C-D beginning with
the maximum stress at point C leads to large permanent strain change caused by compressive stress,
where deterioration of the rock causes a brittle state.

Stress.
a

Strain, &

Fig. 1.6. General strain-stress curve for rock under compression.

1.3.2 Coulomb failure criterion

The mostly widely used model for the prediction of rock failure is the Mohr-Coulomb failure criterion.
Coulomb (1773) developed the model through experimental investigation, assuming the shear stress along
to the plane causes failure. This consideration can be mathematically expressed as:
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ol =8 +u50 (117)

where |T | is shear stress, 57 is finite shear stress, and i s and o are the coefficients of internal friction

and normal stress. Eq. 17 can be rearranged to the maximum and minimum principal stress as:
1 1 .
5(01—03)250005% +5(O-1_O-3)Sln¢c, (1.18)
where ¢C is the angle of internal friction and o, and o, are the minimum and maximum principal stress.

Understanding tensile failure requires the tension cut-off, 7, which can be measured from a tensile
experiment since without a tension cut-off, the Coulomb failure criterion often overestimates the stress
state for the failure criterion.

1.3.3 Effects of pore pressure in rock failure

Fluid injection causes rock failure because of the hydraulic pressure and chemical interactions between

the rock and the fluid. The mechanical impact with pore pressure has been developed by Terzaghi (1936).

He proposed that the failure of soil can be controlled by the effective principal stress o' ; that is,
oc=0'-p (1.18)

where p is the pore pressure.
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Fig. 1.7. Stress state that satisfies the shear failure curve.
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Fig. 1.8. Stress state that satisfies the tensile failure curve.

Fig. 1.7 and Fig. 1.8 illustrate the stress state in shear and caused tensile failure by pore fluid pressure.
This fluid-induced failure is frequently observed around a borehole during the injection or production
operation in geothermal and petroleum reservoirs since they experience significant change of pore
pressure around a wellbore.

1.4 Fundamentals of Continuum Damage Mechanics

The nonlinear behavior of the rock is of much interest in well stimulation and hydraulic fracturing design
in petroleum and enhanced geothermal reservoirs. Stress behavior in triaxial tests shows the hardening
and softening process as the vertical compressive stress increases. This nonlinear behavior can also be
observed frequently in oil and gas exploration in, for example, sanding problems in unconsolidated
reservoirs, reservoir compaction during injection and production, and wellbore stability. More importantly,
the process of hydraulic fracturing directly contributes to the nonlinearity of the rock by imposing fluid
loading. Traditional poroelasticity cannot capture the hardening and softening behavior after the rock fails,
so that it is necessary to consider the nonlinear behavior of rock under the effects of fluid flow,
temperature change, and solute transport. In this section, we briefly review the continuum damage
mechanics which illustrate microcracks, microcavities, nucleation, and coalescence. The continuum
damage theory phenomenologically accounts for the initial evolution of defects such as nucleation of a
certain amount of cracks and void growth during the deformation.

Various damage models have been proposed brittle and ductile materials. These include creep damage,
cycle fatigue, and brittle damage (Kachanov, 1986; Lemaitre and Chaboche, 1990; Voyiadjis and Kattan,
1999). Kachanov (1958) first proposed a continuum damage model by introducing effective stress in a
fictitious, undamaged configuration. Later researchers extended his theory for ductile material (Lemaitre,
1984, 1985; Murakami, 1988) and brittle material (Krajcinovic and Foneska, 1981; Krajcinovic, 1983,
1996). Ductile materials show a strong plastic deformation, which is the main contributor to the damage
evolution and reverse process, so many models for ductile material consider the concepts of coupling
between plasticity and damage mechanics (Gurson, 1977; Tvergaard, 1982; Rousselier, 1987; Mahnken,
2002).

The theory of damage in porous rock has been implemented by several researchers (Hamiel et al., 2004;
Selvadurai, 2004; Tang et al., 2002). Bart et al. (2000) developed an anisotropic damage model in
poroelastic brittle rock and Selvadurai (2004) presented the application of an isotropic damage model in a
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poroelastic contact problem. Tang et al. (2002) illustrated brittle rock failure under compressive and
tensile stress with triaxial tests. They described the sudden drop to the residual stress regime by assuming
that strain-stress behavior follows the elasticity theory before the rock failure and the damage theory after
the rock failure without considering the hardening process; instead, rock heterogeneity leads to distributed
rock failure (different peak stress in each element), which defines the hardening process in the stress and
strain behavior.

Chow and Wang (1987) and Zhao and Roegiers (1993) studied the influence of rock damage on the
change in Poisson’s ratio. Measurement of the change of compressibility in uniaxial tests of Berea
sandstone and Cordoba cream limestone (Zhao and Roegiers, 1993) showed that Poisson’s ratio is
reduced as the damage variable increases during the rock fracturing progress. To understand the damage
variable, we briefly introduce the physical meaning of damage variable d and its relations of stress change.
We assume that the cross-sectional area of the cylindrical bar in the loading condition is 4 and the area of
both cracks and voids (damage in the bar) is A”. The removal of defects can be considered as a fictitious,
undamaged configuration as shown in Fig. 1.9 to use continuum damage mechanics to remove both
cracks and voids from the cylindrical bar.

1 A

o0 2 [ A
| o Remove both
o [ .
— voids and cracks
o
/SN ——
- d
~ o
T . O/ | = | 1
o o o
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, £
NG T

Damaged Effective Undamaged
Configuration Configuration

Fig. 1.9. Under uniaxial tension, both voids and cracks are removed in the effective undamaged
configuration (Voyiadjis and Kattan, 1999).

The effective configurations of the cross-sectional area and the stress are denoted by Aand T,
respectively. The effective undamaged configuration of stress can be written as:

— (o}
o= m (1.18)
where the damage variable can be described from the continuum damage theory as:
g=2"4_ £ (1.19)
A A '

where 4 is the effective configuration of the cross-sectional area, and 4” is the damaged area. We can
formulate the effective configuration of the stress-strain relationship as:

o = Ejui (1.20)
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where Eijkl is the elastic moduli tensor for effective configuration of undamaged area and 55‘ is the

similar effective strain.

The two theories in the transformation from the nominal to the effective configuration are the strain
equivalence hypothesis and the strain energy equivalence hypothesis. Assuming that the strain in normal
configuration is the same as in the effective configuration in strain equivalence hypothesis as:
gij = €jj, (1.21)
we can derive the expression for the relationship of the effective stress and strain configuration with the
damage variable as follows:
o

— =E¢
14 (1.22)
E¢ —
=F¢
1—d (1.23)

From the hypothesis of strain equivalence ( &;; = 5,-1- ), the relationship of damaged modulus with

initial modulus can be written as:

E=(1-d)E (1.24)

The other theory for the transformation relation between the damaged and fictitious undamaged state was
proposed by Sidoroff (1981). The theory assumed that the elastic energy in terms of effective
configuration and nominal stress are equal; therefore, the elastic strain energies for damage and
undamaged configuration are the same:

1 1_ _

The relation of effective and nominal strain can be derived with Eq. 1.24 by substituting Eq. 1.18 such
that

g; =(1-d)¢; (1.26)

Therefore, by rearranging of Eq. 1.26 and Eq. 1.18, we can obtain the relationship between the initial and
damaged modulus,

E=(1-d)’E (1.27)

1.5 Stress-Dependent Permeability

One of the interesting physical properties in a rock is permeability. It varies by many orders of magnitude
among the various rock types, and it influences the fluid transmissibility in porous rock, which in turns
impacts the effective rock stress. Permeability appears to have a relationship with porosity, but that is still
highly uncertain because of their complexity in rocks (Ingebritsen and Manning, 2010).

The permeability variations induced by altered stress and rock failure have been studied by many
researchers (Shipping et al., 1994; Kiyama et al., 1996; Coste et al., 2001; Zoback and Byerlee, 1975).
Zoback and Byerlee (1975) illustrated the relation between permeability change and the evolution of
microcracks and voids. Their experimental tests on granite show permeability increases of up to a factor
of four during rock deformation. Other studies present different magnitudes for the increase in
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permeability depending on rock type and conditions (De Paola et al., 2009; Wang and Park, 2002). Stress-
dependent permeability has been developed by Elsworth (1989) and Bai and Elsworth (1994, 1999) for
fractured media and Bai and Elsworth (1994) for intact rock. They considered equivalent fracture
networks and showed the sensitivity of permeability to effective stress with coupled poroelasticity.

The empirical models for the correlations relating the permeability increase to the porosity change have
been proposed by several authors (Labrid, 1975; Lund and Fogler, 1976; Lambert, 1981). The Labrid
permeability model based on porosity change can be supposed as:

ko _ (20
r —M[¢J , (1.28)

where kjand ¢ are the initial permeability and porosity, respectively.

Labrid’s permeability model based on porosity was extended by Thomas et al. (2003), who proposed that
porosity has correlations with strain:

‘I“MI__ZN:‘”’ -

where &€, is the volumetric strain.

The other interesting permeability model considering the shear dilation was developed from Bai and
Elsworth (1994):

1/3)2

k 1 9(1—v2)2(;mo)2
A § it -

ko 5 > (1.30)

where the alternate negative and positive sign denote compression and dilatational loading.

Tang et al. (2002) developed a stress-dependent permeability model based on effective stress that
accounts for the permeability increase under shear and tensile failure. There model emerged from
experimental observation in triaxial tests with fluid in and out through the core sample.

For undamaged rock:

k=koexp=|fy(o; /3~ ap)) (1.31)
For damaged rock:
k=¢Eqkoexpl-B(04 /3~ ap)] (1.32)

where &, is the increasing factor after the rock failure and B, represents the sensitivity of permeability
in exponential decay by compression.

Permeability anisotropy is a key factor in the reservoir fluid path that can be caused by in-situ stress
anisotropy. Experimental studies have shown that the permeability behaves isotropic under isotropic
loading, whereas anisotropy becomes larger with anisotropic loading in core analysis (Bruno et al., 1991;
Rhett et al., 1992; Ruistuen et al., 1996). From the experimental results of permeability behavior under
stress variations, we can infer that reservoir permeability is dependent on the deviatoric far-field stress.
Khan and Teufel (2000) illustrated the change of permeability anisotropy with respect to pore pressure
variations and far-field stresses. They concluded that the maximum permeability direction is parallel to
the maximum principal stress, and the permeability anisotropy increases as the deviatoric stress increases.
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Fig. 1.10. Microseismic events induced during the injection experiments of the Soultz-Sous-Forets
reservoir.

1.6 Injection-induced Microseismicity

In geological formations, earthquakes are occasionally caused by redistribution of the in-situ earth
stresses in the rock mass. The interest in monitoring microseismic events during injection and production
has increased over the past several years since it can be used as a tool to predict the natural fracture
distribution and reservoir rock properties such as permeability and rock strength. Once injection and
production begin in geothermal or oil and gas exploration, the pore pressures increase in the injection well
and decrease in the production well. This change of pore pressure triggers earthquake activity by both
shear and tensile failure as shown in Fig. 1.10.

Efforts to estimate reservoir properties during fluid injection and extraction have progressed by several
researchers (Talwani and Acree, 1985; Shapiro et al., 1997; 1999; 2002; Adushkin et al., 2000; Fehler et
al., 2001). Microseismic event detection and interpretation are used for estimating the stimulated volume;
resulting fracture growth, reservoir permeability, and geometry of the geological structures; and the in-
situ stress state (Pine, 1984). The process commonly is referred to as seismicity-based reservoir
characterization. Progress has been made in quantitative and qualitative analysis of reservoir stimulation
using microseismic events (Shapiro et al., 1997, 1999, 2002; Rothert and Shapiro, 2003). They
demonstrated numerical simulations based on a fluid diffusion model with a permeability tensor,
assuming microseismic events are triggered if the pore pressure exceeds certain threshold values.
However, rock failure and permeability change were not considered. Also, in-situ stress and thermal
effects on fluid-rock interaction have not been considered. Generally, induced seismicity occurs more
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frequently by fluid injection if the cracks, natural fractures, and faults exist and are subjected to excess
shear. Bruel (2002) and Baisch et al. (2003) considered shear failure by fluid injection in naturally
fractured reservoirs, and Safari and Ghassemi (2011) showed thermo-poroelastic analysis of
microseismicity, which considered the fluid flow and fracture deformation by injection/extraction in
geothermal reservoirs. Hydraulic fracturing also induces microseismicity. Fracturing is accompanied by
tensile failure, which contrasts with shear induced failure (although shear failure can also be present in the
vicinity of the hydraulic fracturing). It creates high energy for monitoring tensile failure so that it can be a
tool for predicting the intended fractured volume.

1.7 Heterogeneous Model

Rocks are heterogeneous, with natural weaknesses such as pre-existing cracks, voids, and grain
boundaries. The variations of pore pressure and temperature during fluid injection can induce fractures at
these defects, resulting in rock failure and fracture propagation. Muller et al. (2009) conducted stochastic
borehole stability analysis using probability distribution functions for rock and reservoir properties such
as bulk and shear modulus, far-field stress, initial pore pressure, and tension cutoff. They assumed the
stochastic parameters follow lognormal and normal distributions which are widely used in heterogeneous
reservoir simulations. The other probability function in geomechanics simulation is the Weibull
distribution function (Weibull, 1951; Fang and Harrison, 2002; Tang et al., 2002; Gharahbagh and

n—1 n
nis s

Fakhimi, 2010; Min et al., 2011), defined as: ¥ = E(QJ CXp| — (5] where s in the variables s,
represents the corresponding mean value. The shape parameter n determines the deviation from the mean
value. The range of n is from 1 to infinity. If # increases, statistical deviations become narrow and the
rock is homogeneous. Most rock properties, such as modulus and porosity, are heterogeneous because of
the rock’s components and origin, and numerical modeling needs to depict this initial heterogeneity. The
Weibull distribution function can be used to generate an initial property distribution for numerical
modeling. Also, the deviations of rock properties from the mean values are important. These deviations
can be assumed as flaws in unit volume; therefore, homogeneous rock can be modeled with high value of
n, and heterogeneity (flaws in unit volume) increase as n decreases.

1.7.1 Stochastic model

To approach realistic reservoir properties and conditions, many stochastic approaches have been
developed to accommodate small and large-scale heterogeneities in reservoir simulations (Knutson, 1976;
Smith and Morgan, 1986; Liu, 2006). The two main streams in stochastic approaches are the discrete and
continuum models.

The discrete model considers discrete geological features such as naturally pre-existing fracture and faults
in spatial distributions. Ezzedine (2010) presented stochastic discrete fracture network numerical model
using Monte Carlo realizations and Cacas et al. (1990) proposed stochastic particle trajectories of flow
patterns in fractured rock incorporating intersections with the network pipes model. Liu (2006) developed
multiple-point simulations based on the Bayesian updating correction, and demonstrated the influence of
geostatistical model parameters, number of replicates, and grid-scale.

The other stochastic approach is the continuum model. This model describes the mean level, deviations

from the mean values, and how strongly typical properties are related with other neighboring points.
Some key concepts are random distribution functions such as Gaussian, Weibull, and log-normal
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distribution functions, and the model has been applied to the rock mechanics and reservoir simulations
(Muller et al., 2009; Tang et al., 2002; Voss, 1985; Hewett, 1986).

The discrete models are better suited for modeling large-scale heterogeneous reservoirs to describe the
discontinuities of rock mass. The continuous models are well-suited for geomechanical modeling of rock
properties, assuming typical probability distributions with stationary change. The approach for describing
the heterogeneity in this work is the continuum model which considers the deviation from the mean
values based on Weibull distribution function.

1.7.2 Mesh size sensitivity for heterogeneous models

It is critical to consider the influence of mesh scale to model spatial distribution of geological media.
Especially to describe the discontinuity of reservoir rocks, the mesh generation and size selection become
more important problems. Liu (2006) tested geostatistical modeling with different scales and found good
agreement between a finer-scale mesh and a training model that assumed a synthetic spatial distribution
for channels in sinuous sand and shale. Similarly, for crack propagation modeling, mesh size is crucial to
differentiate stress distribution during loading. Liang (2005) presented a strain-stress curve with different
mesh sizes representing the heterogeneity of rock distributions. Fig. 1.11 shows the influence of mesh
size for the numerical modeling of fracture propagation in heterogeneous media. The stress field in the
coarse mesh can smear out the stress concentration near the crack tip, so it causes difficulty for
geomechanical simulations. The finer mesh is suitable for describing the realistic spatial distribution;
however, it requires extensive computational memory and CPU costs.
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Fig. 1.11. The influence of mesh size on crack propagation in heterogeneous media (Liang, 2005).

A selection of optimum mesh size for geomechanical simulation is dependent on the local distribution of
the reservoir properties and fluid injection conditions. Especially for the wellbore stability problem, the
mud pressure is maintained in between the initial pore pressure and the fracture gradient to avoid well
collapse and severe distortion. The mesh for numerical modeling for wellbore stability must be finer near
the wellbore to capture the variations of stress, pore pressure, and temperature; however, the changes of
pore pressure and temperature are small in the range far from the wellbore (~5m), so the large element
size is suitable. The design of mesh size should be based on how significant the spatial variations of
variables are. Also, loading conditions such as fluid injection and the difference of temperature between
the injection fluid and reservoir are key factors in constructing the mesh size; too large mesh sizes and too
high heat transfer rates can cause numerical oscillation for temperature distribution.
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2. The Theory of Poroelasticity and its Extensions

The influence of fluid flow in a porous rock was initially recognized in the soil consolidation problem.
The one-dimensional consolidation problem, which takes into account the pore pressure in soil, was
developed by Terzaghi (1923), who demonstrated that the total stress concept consists of effective stress
and pore pressure. Biot (1941) developed a coupled fluid/solid interaction model that assumed that the
soil is homogeneous and water is incompressible, and used Darcy’s law for fluid flow. The linear
poroelasticity was extended to combined thermal and hydraulic stress (McTigue, 1986; Kurashige, 1989).
Also the relation of chemical potential and rock deformation has been developed on the basis of the
thermodynamic law and the Gibbs-Duhem equation (Mody and Hale, 1993; Heidug and Wong, 1996;
Ghassemi and Diek, 2003; Ghassemi et al., 2009; Zhou and Ghassemi, 2009). The sign convention in this
section follows positive tension.

2.1 Poroelasticity

The linear poroelasticity introduces the coupled interaction between the rock deformation and pore
pressure variations. The change of pore pressure causes rock deformation and also rock could be
deformed by fluid flow.

2.1.1 Constitutive equations

The relation between the solid (&;;) and fluid (&), the stress and pore pressure can be described as:

g =i [ s v L s (=123 =123

pYe [6G 9Kj’] b 3 0p j=123) @D
Okk , P

= — 4 —

"3 R 22

where the K and G are the bulk and shear modulus of the drained elastic solid. The constants ', H" and
R’ denote the coupling between the solid and fluid stress and strain.

The change of strain by pore pressure is equal to the fluid contents change caused by the increase of
volumetric stress:
%y _ 0¢ 2
dp 0oy (2:3)
The poroelastic coupling parameters can be defined as (Rice and Cleary, 1976; Detournay and Cheng,
1993)

R 2G(1+v)(v, = v)

= 2.4
a’(1-2v) (1 +v,) @4)
, s 2G(+v
2a(1-2v)
Substituting Eq. 2.4 and Eq. 2.5 into Egs. 2.1 and 2.2:
Ojj v a(l-2v)
g =——————0,;i01 +———0;;
1706 2G6(+v) TR T o601y B (2:6)
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al=2v) a?(1-2v)2(1+v,)
2G6(1+v) T 261+ v) (v, —v)
After rearranging Eq. 2.6 and Eq. 2.7 to include the stress Oj; and pore pressure P, we obtain:

2Gv

¢ =

2.7)

2GB(1+v,) 2GB*(1-2v)(1+v,)?
p=- e+ g (2.9)
31-2v,) 9, —v)1-2v,)
where B is the Skempton pore pressure coefficient is defined by:

_ S(Vu B V)
S 2(0-2v,)(1+v,)

2.1.2 Field equations

To solve the solutions for the stress and pore pressure, the balance equation for stress and fluid flow with
Darcy’s law are also necessary.

The equilibrium equations:

The fluid mass balance equation can be written as:

¢+4;; =0 (2.11)
where g; is the specific discharge vector which has a relation with Darcy’s law:

q a P

i= TP (2.12)
y7i
The governing equation for solids is obtained from Eqgs. 2.8 and 2.10 as
2 G
GV©u; + ug ki —ap;=0 (2.13)
1-2v,

After substituting Eq. 2.7 into Eq. 2.11 with Darcy’s law (Eq. 2.11), the governing equation for fluid can
be derived:

§—c V3¢ =0 (2.14)
2kB2G(1-v)(1+v,)?

where Cf = is the fluid diffusion coefficient. Substituting Eq. 2.7 into Eq. 2.9:
L 9u v, ), —v) &= a
p—kMV?p=-Maé (2.15)

2G(v, —=v)
where is the Biot modulus (similar to a storage coefficient) defined as the

" a(l—2v,)(1-2v)

change of fluid contents per unit volume as a result of pore pressure variation under constant volumetric
strain.
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2.2 Thermo-poroelasticity

Nonisothermal conditions often arise when geothermal reservoir or steam assisted gravity drainage
(SAGD) is used to enhance oil recovery. The difference of heat expansion coefficients between the rock
and fluid cause rock deformation and pore pressure. The governing equations for thermo-poroelasticity
were developed by McTigue (1986), assuming fully-saturated homogeneous rock.

2.2.1 Constitutive equations

The constitutive equations considering the relations of the strain, pore pressure, and temperature change
were developed from the thermoelasticity and poroelsticity (McTigue, 1986):

2Gv
0 =20 ¢+ Ojep = A0y P = KBGGAT .o (2.16)

_ali-2v)  a’1-207(4,)

6= 2G(1+v) T 261 +v)(v, —v)

where K is the bulk modulus, ﬂf and Bs are the volumetric thermal expansion coefficient for fluid and
solid, respectively.

2.2.2 Field equations

Similarly from the poroelasticity derivations, the thermo-poroelastic governing equation can be derived
from the constitutive equations and transport equations. We can obtain the governing equation for the
solid from Eq. 2.16 and Eq. 2.10:

GVzui+%uk’ki—ap,i+KﬂS 5Z-J~AT:O (2.18)

—2v,

The governing equation for the fluid can be derived by putting Eq. 2.17 into Eq. 2.11 with Darcy’s law:
p—kMVsz—Maé+(aﬁf +,BS)AT (2.19)

The heat transfer equation is obtained by combining the Fourier’s law and energy balance equation:
0 =—k'T; (2.20)
pmcpT+Ql-)l- =0 (2.21)

. T. .. .
where O is the heat flux and k" is the thermal conductivity. p,, and ¢ p are the total mass density and

specific heat capacity.
Substituting Eq. 2.20 into Eq. 2.21 can obtain the heat transfer equation.

T =cpV2T (2.22)
kT

where €T = is the thermal diffusivity.

mep
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3. Finite Element Method for Coupled Problem and its Verifications

Section 2 described mathematical models for coupled fluid flow, temperature, and solute transport in rock
deformation. This section describes the finite element method for coupled problems and its verification.
The finite element method is one of the discretizing techniques for solving partial-differential equations.
The method has been developed by many researchers (Zienkiewicz and Taylor, 1991; Strang and Fix,
1973; Cook et al., 2001). Finite element discretization for coupled problems for coupled solid-fluid
interaction is described by several authors (Smith and Griffiths, 2004; Zienkiewicz and Taylor, 1991;
Lewis and Schrefler, 1988).

3.1 Finite element formulations
3.1.1 Basics for discretization

In the finite element method, continuous variables such as displacement u , pore pressure P, temperature

. S . ~ o~ . .
T, and solute concentration C° can be approximated by u , P, T , and, C § , in terms of their nodal

values, interpolating the nodal to nodal values by shape functions. Considering a two-dimensional
quadrilateral element or a three-dimensional hexahedron element (Fig. 3.1), the interpolation functions
can be written as:

4

u =73 Nu, 3.1
i=1

4

p= .ZIN iDi (3.2)
1=

~ 9

T = ZINiTi (3.3)
=

=S _ Ly 8

C =.21Nici (3.4)
i=

where U, D , T'and C 5 are approximated in terms of their nodal values u;, p;, T;, and C; in the
system. N;is the interpolation function and is generally referred to as a shape function where subscript “i”
denotes the corresponding node.
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4-nodes quadrilateral element 8-nodes quadrilateral element

8-nodes hexahedron element 20-nodes hexahedron element

Fig. 3.1. Types of elements used for the finite element method.

The shape functions are often taken to be polynomials that depend on element type and the number of
nodes in the element. Several types of shape functions for two-dimensional and three-dimensional
elements are shown in Fig. 3.2 and Fig. 3.3.
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4-node quadrilateral (-1.1) (1

1
N, =5 0-80-m)

N,=50-£X ) 4

lelz(l+§ll+q)

%=l enom ! 4

(-1.-1) (1.-1)

8-node quadrilateral

N, =L (0-EX-n)-£-7-D 7
1 i 3 (-1.1) 4 (1.1} 5
N, =5(1-§)U-7I)
N,= (- £Xte )£ +n-D)
2 6
N_,:lz(l—gibm) > &
N, =L+ X+ nXE +n-1)
N, =2(1+£X1-1) 1 7
(-1.-1) 8 (1.-1)

N, =1+ €X-nX¢ -7~

N,=5li-¢-m

Fig. 3.2. Shape functions for two-dimensional 4-node and 8-node quadrilateral element.
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8-node hexahedron

M= 0-£X-0-0) ¢

1 6 T 7
N_?—g(l—f)(l—q](Hg) (11D o (1,1.1) /?]

N,= L0+ £ +0) |

o
‘>

1
N4=§(1+§X1—'?)(1_‘:) (-1.-1.1)

N, =1(-£X+ma-0) N

]
N, == 6X1+n1+ ) (11D)
8

(l.-1.-1)

P
Ny =g+EQ+m+ Q) )

N, =0+ £X+m0-0)

Fig. 3.3. Shape function for the case of three-dimensional 8-node hexahedron element.

The choice of shape function and element type varies depending on the purpose of the simulations.
Especially for solving the mixed forms of finite element formulations, Zienkiewicz and Taylor (1991)
presented a “patch test” to test the numerical stability of several types of element in two-dimensional
coupled problems. They showed that finite element solutions are stable when the variable configurations
are 8 nodes for displacement and 4 nodes for pore pressure in each element for a two-dimensional,
quadrilateral element. For corresponding three-dimensional expansion, configurations for the variables
are 20 nodes for displacement and 8 nodes for pore pressure in a hexahedron element. From a practical
point of view, the numerical stability becomes critical around a wellbore because of significant gradients
of pore pressure, temperature, and rock deformation by fluid injection. Lewis and Schrefler (1988) also
suggested a degree of freedom in each element two times higher for displacement nodes than pore
pressure and temperature to obtain more accurate finite element results. The limitations of element types
for finite element approximations are related with ill-posed shape functions that cause the singularity
problem which is divided by zero in numerical modeling, and the criterions of the stability is analyzed
from Babuska (1971, 1973) and Brezzi (1974).

Since the shape functions are defined in a local coordinate system (5,77) , it is necessary to describe the

relation between the global (x,y) and local coordinate (5,77) system. For example, the coordinate

transformation for the four-node quadrilateral element can be written as:
X = lel + N2X2 + N3X3 + N4X4 = [N]{X}

=Ny + Nayay + Nays + Nyyy = [Ny}
where [N] denotes the shape function vector as described in (Fig. 3.2) and {x}and {y} are the nodal

(3.5)

coordinates in the global coordinate system.
The other necessary coordinate transformation is the derivatives from the local to global coordinate,
which can be described by the chain rule of the partial differentiation:
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0 9

% L% (3.7)

oy %

where [J ] is the Jacobian matrix.

To solve a partial differential equation (Eqgs. 3.10 to 3.13), it is necessary to understand the procedure for
numerical integration (Egs. 3.18 to 3.31) of the weighting residual by each shape function by integrating
over the equations (Galerkin’s method). The transformation between the local Jacobian coordinate and the
global coordinate in integration should be evaluated as follow:

11
[ldxdy = | [deti|d&dn (3.8)

-1-1
The Gauss-Legendre quadrature for finite element numerical integration in two dimensions can be
described as:

11 n n
[ [f(EmdetPldédn~ 3 X wiw; f(&.m)

~1-1 i=lj=1
nip

= 2 S
1=

where nip is the total number of integration points (Gaussian point), w; and w; are the weighting

(3.9)

coefficients, and (&;,7;) are sampling points in element.
3.1.2 Spatial discretization

For the case of chemo-thermo-poroelasticity, the combining the constitutive equations and the balance
equations with transport equations yield the governing equations:

(K +§]V(V-u) + GV2u + m(a'Vp - Ve + 71VT)= 0 (3.10)
aAV-i)+ B p+ yCS Sy pr K vic? o (3.11)
7 U
$CS —D5Vv2CS —cSpTVir=0 (3.12)
T-cIVT =0 (3.13)

!
where K and G are bulk and shear modulus, respectively, & Biot’s constant, 4 viscosity. & , ¥, ¥ ' ,

71, 72 ,and B are given by:
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Z—Tl
7 =Koy

ra=apf+\Br-5,)
where M S is molar mass of the solute, @ the swelling coefficient, 3] 7 the fluid mass density, R the

. . S D . . .
universal gas constant, ¢ the porosity, C~ and C™ the solute and dilute concentrations, respectively, and

B 7 and By the thermal expansion coefficients of fluid and solid, respectively.

To discretize the field equations (Egs. 3.10 to 3.13), we introduce an 8-node quadrilateral element and a
20-node hexahedron element for computing the displacement, pore pressure, solute mass concentration,
and temperature. Substituting the shape functions for the factors (Egs. 3.1 to 3.4) into the field equations
(Egs. 3.10 to 3.13), and then using Galerkin’s method (Finlayson, 1972, see Appendix A), the finite
element formulations for displacement, pore pressure, solute mass concentration, and temperature are
obtained as:

K, ﬁ+Aﬁ—WE+VT‘:0 (3.14)
ATU+SP+MC+NT+Hyp+DyC® =0 (3.15)
MCS +Dp CS +Qp T=1" (3.16)
RT+UT=0 (3.17)
where
Ky = [B'D, BdQ (3.18)
Q
T
AZJB (lmNp dQ (3.19)
9
W= JBT ZmNCs dQ (3'20)
Q
T
V=[B" 71 mNp dQ (3.21)
o)
T
S=[Np BN, dQ (3.22)
Q
. T,
M= JNp}( NCS dQQ (3.23)
Q
T
N= [Nt 7, Nt dQ (3.24)
Q
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M= | st ¢Nes dQ (3.25)
Q

T
R =[Nt Nyp dQ (3.26)
Q

U= g) {(VNT)T (cT )(VNT)+(NT)T vy (VNT)}dQ

Hy = gf) (VNp)T(k/ ﬂ)(VNp)dQ (3.28)
Dy = gjz(VNp)T Lp (VN,)do (3.29)
Dy - (VNes JI DS (VN s )d02 (3.30)
Qp = gf)(VNT )" ¢*D% (VNy)dQ (3.31)

(3.27)

where the [Du] is the stiffness property for stress-strain relations, and strain displacement can be

described with [B] (See Appendix A for full explanation of the integrals in Eqgs. 3.18 to 3.31.) For
example, in the axisymmetric stress-strain problem, strain and displacement have a relation (Timoshenko

and Goodier, 1982) as shown by Eq. 3.32:

9
€, or 5
&, | 0 E {u}
vl |2 2| (3.32)
&g 821 or
-0
L 7~ _

Matrix [B] is the expression of the spatial derivative:

Ny, Ny o 0Ny
or or or
o M, Ny AN
[B] — 0z 0z 0z

ON,

ONy (3.33)

3.1.3 Discretization in time

Oz or 0z or oz or
Moy Moy N, N
r r r

or

Among the methods to discretize the time steps for partial differential equations (Zienkiwicz and Taylor,
1989) are linear interpolations and fixed time step At (Smith and Griffiths, 2004). The finite element
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formulations derived in Section 3.1.2 include the time-dependent variables for displacement, pore
pressure, solute mass concentration, and temperature. The governing equations use the second order for
the spatial domain and the first order for the time domain. These domains are categorized to a parabolic
partial differential equation. A typical expression of a first-order time-dependent problem in a finite
element formulation can be described by:

KJo}+ ] 2} ~ o 530

Consider two consecutive time steps as follow:

(K]}, + [m]{d—q)}o ={aj, (3.35)

dt
K]}, + [m]{%}l ={a}, (3.36)

where 0 and 1 indicate the previous and current time step, respectively. Then, variation of the variable ¢
over the two time steps can be expressed in terms of a linear interpolation between its values at the two
time steps:

{(P}l—{(l’}oz(l_g do| _plde ia
At arf, Lt (3:37)
Substituting Eq. 3.37 into Eq. 3.35 and Eq. 3.36, we obtain:

loh =lofo+ At((l - 9){%}0 + 9{%}J (3.38)

Using Eq. 3.35 and Eq. 3.36 and substituting them into Eq. 3.35 and Eq. 3.36, we arrive at the time
discretization of finite element method:

(M]+ ane[K]) {o}y = (M]-(1-0)adK]) {of
+6nt {o}, +(1-0)At {of,
If @=1/2, it is called the “Crank-Nicolson” method,

(oS col = (b= (S il o

and if € =1, is it the “fully implicit” method, which ignores any history since the past is unknown:

{m]+ adk o), = Ml

The discretization for the finite element method also has incremental version that results from
rearranging the governing equations (Eq. 3.14 to Eq. 3.17) for solid, fluid, solute concentration, and
temperature with linear interpolation for time:

(3.39)

K, A ~W \% Al
AT —(S+oaHy) —(M+6ADg) -N Ap
0 0 ~M+6ADp) -6AQp) ||ACS
0 0 0 —(R+6AU) || AT
Af (3.41)

AHyP,_1 + ADHCS
ADRCS | +AQpT,
AUT, 4
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The difference between these two methods is that absolute discretization obtains total values for
displacement, pore pressure, solute mass concentration, and temperature, whereas incremental
discretization computes the relative values. For example, if we have a constant pore pressure boundary
condition at the wellbore, the corresponding traction and the values for pore pressure at the wellbore
should be applied in each time step for the absolute version; but for the incremental version, we apply the
traction and pore pressure values only for the first time step since there is no relative change with a
constant boundary condition.

3.1.4 Boundary conditions

It is important to define the boundary conditions in geomechanics simulations; for example, hydraulic
injection pressure p , injection rate Q , injection temperature T, mud solute concentration C° are often

used in geothermal and petroleum reservoir study. For the finite element formulation (Eq. 3.41), explicit
variables such as displacement pore pressure, solute concentration, and temperature can define the
boundary by the penalty method. This method operates by multiplying the corresponding prescribed
boundary values on the left-hand side of the matrix and its corresponding coefficient on the right-hand
side vector by a large value (Fig. 3.4). This in effect fixes the known value (boundary condition) on the
nodes; that is, it prescribes the value we desired for the unknown variables.

The scheme of penalty method for boundary conditions

i, A
D 107 x Puenr
g /s

W

Ja

~—

pl = pwzb'

Fig. 3.4. Illustration of the penalty method in the finite element formulation for the boundary conditions
of displacement, pore pressure, solute concentration, and temperature.

The other most-used boundary condition in geomechanics simulations is the injection rate boundary
condition. Consider the finite element formulation for the fluid mass-balance equation (Eq. 3.11). The
right-hand side matrix should be defined by injection rate Q at the boundary elements as,

a(V-u)+ B p +z‘CS+7zT—%V2p+%LDV2C2 =f4 (3.42)

where:
nip
fq = ‘zl(NiQ)dQ
1=
where nip is the number of Gaussian points and N; denotes the shape function.

A typical example of implementation of injection rate boundary conditions for the finite element method
is illustrated in Fig. 3.5. The difference between the injection boundary condition and the pressure
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boundary condition is that the pore pressure distribution is computed through the finite element for the
given Q.

The scheme of injection rate boundary conditions

............... (@) ( f
............... VA N, xQ, .u
............... ce 7

|7 /.

“ﬁ_ = Well Pressure

Fig. 3.5. Illustration of injection rate boundary conditions in the finite element method.

Another important boundary condition in coupled fluid flow and solid problems is mechanical loading.
For describing the prescribed traction that results, for example, from pressurizing the wellbore, tractions
must relate the acting wellbore with the far-field stress of the system. For example, if the pore pressure on
the wall of the wellbore is 20 MPa and the far-field stress is 10 MPa, the applied traction is 20 MPa — 10
MPa = 10 MPa at the wellbore, which takes into account the relative force between the well pressure and
natural in-situ stress. The mechanical loading term at the boundary for the solid in finite element
formulations as is described by:

K, G+Ap-WC+VT=f (3.43)

where:
nip

f= 2 Vif )

The right-hand side of Eq. 3.43 is the mechanical load (traction on the boundary). Fig. 3.6 shows the
matrix configuration for the mechanical loading at the boundary. For the poroelastic simulation without
rock failure, it is not necessary to iterate to solve the variables. However, an iteration scheme should be
introduced if we consider the rock failure and stress-dependent permeability since the results of stress and
permeability conditions with certain loading are satisfied during the iterations. An illustration of the
iteration procedure for the case of rock failure and permeability variations is presented in Section 4.
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The scheme of mechanical loading boundary conditions
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u, = displacement at the boundary under loading

Fig. 3.6. Illustration of mechanical loading boundary condition in the finite element method.

3.2 Verifications of the Finite Element Method

In this section, finite element results for coupled problems are compared with analytical solutions. The
reservoir conditions such as far-field stress, injection pressure, temperature, and initial pore pressure are
critical in geomechanical simulations; therefore, it is necessary to validate the numerical modeling under
various boundary conditions. We verified two-dimensional and three-dimensional finite element
modeling using the analytical solutions for a wellbore in an poroelastic, thermo-poroelastic, and thermo-
chemo-poroelastic formation. For the poroelastic case, Mode 1, Mode 2, and Mode 3 were considered
(Detournay and Cheng (1988). The verifications of thermal and chemical loading were made possible by
using the solution by McTigue (1986) and Ghassemi et al. (2009), respectively.

For better understanding of the wellbore response, the wellbore loading can be decomposed into three
parts (Carter and Booker, 1982; Detournay and Cheng, 1988). We used three modes for decomposition of
the poroelastic problem around a wellbore: Mode I is an isotropic stress loading of the wellbore; Mode 11
is the pore pressure loading or injection into the wellbore; and Mode Il is the loading of the wellbore by a
far-field deviatoric stress (deviatoric far-field). The complete solution is the sum of the solutions to the
three modes. The verifications were performed with mesh consisting of 350 elements and 1141 nodes
which have 8 quadrilateral nodes for displacements and 4 nodes for pore pressure, temperature, and solute
concentration (Fig. 3.7). The maximum and minimum far-field stress components were applied to the x-
and y-directions, respectively, and reservoir properties are described in Table 3.1.
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Fig. 3.7. Mesh used for the verifications, consisting of 350 elements and 1141 nodes.

Table 3.1. Rock properties of shale.

Young’s modulus E (GPa) 1.85
Drained Possoin’s ratio v 0.219
Undrained Possoin’s ratio v, 0.461
Skempton’s coefficient, B 0.915
Permeability, & (md) 1x10™"°
Porosity, ¢ 0.299
Fluid mass density, py (kg/m’) 1000
Fluid viscosity, [1[1(Pas) 0.3x10°

3.2.1 Isotropic far-field stress around a wellbore (Mode I)

Mode I represents the isotropic far-field stress distribution around a wellbore assuming no initial pore
pressure; hence, Mode I results are the same as those for linear elasticity. We applied 10 MPa for
isotropic far-field stress and compared finite element results with the analytical solution with a radius (Fig.
3.8; solid lines represent analytical solutions and numerical solutions are plotted as dotted symbols). The
radial and tangential stresses are equally distributed around a wellbore by the isotropic far-field stress.
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Fig. 3.8. Distributions of radial and tangential stress around a wellbore by isotropic far-field stress (Mode
I). Finite element results are compared with the analytical solutions.
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3.2.2 The influence of fluid flow around a wellbore (Mode II)

Initial reservoir pore pressure is maintained in equilibrium before we begin any exploration such as
geothermal heat extraction, well stimulation, and oil and gas production. Once the change of pore
pressure distribution occurs by fluid injection or production, fluid-induced stress variations should be
considered. In this part, both production and injection-induced stress variations are presented.

In one example for stress variation induced by fluid production, we set boundary conditions so that the
initial pore pressure was 10 MPa and wellbore pressure 0 MPa. Far-field stresses were assumed to be zero
to study the induced stress variations. The comparison of finite element results and analytical solutions for
pore pressure and total radial and tangential stresses are presented in Fig. 3.9 to Fig. 3.11 Note that fluid
extraction causes significant changes of tangential stresses with time around a wellbore.
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Fig. 3.9. Pore pressure distribution with respect to time when the pressure is zero at the wellbore (Mode
II). Finite element results are compared with the analytical solutions.

Solid Lines: analytical solutions

Numerical solutions
n 1"=0.01 (4.6 hr)
A 1"=0.1 (46.2 hr)
v 1"=0.3 (120 hr)
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Fig. 3.10. The distribution of total radial stress with respect to time under production (Mode II). Finite
element results are compared with analytical solutions.
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Solid Lines: analytical solutions
Numerical solutions
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Fig. 3.11. Total tangential stress distribution with respect to time under production (Mode II). Finite
element results are compared with the analytical solutions.
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The other induced stress we are interested in is the injection case. The simplest condition for the injection
sets pore pressure at the wall at 10 MPa, with no initial pore pressure and no far-field stresses. Results for
numerical and analytical solutions are plotted in Fig. 3.12 to 3.14 for pore pressure and total radial and
tangential stress distributions. In this case, the tangential stress distributions are significantly changed
around a wellbore by fluid injection.

Solid Lines: analytical solutions
Numerical solutions
o | | 1"=0.01 (4.6 hr)
[ A 1"=0.1 (46.2 hr)
% v  1'=03 (120 hr)
e
2
@
2
o
e
=}
a
& = L
K] L 1 L
“1 2 3 4 5

rfa

Fig. 3.12. Pore pressure distribution with respect to time when the pressure is 10 MPa at the wellbore
(Mode II). Finite element results are compared with the analytical solutions.
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Fig. 3.13. The distribution of total radial stress with respect to time when the well is pressurized to 10
MPa (Mode II). Finite element results are compared with the analytical solutions.
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Fig. 3.14. Total tangential stress distribution with respect to time under pressurization (Mode II). Finite
element results are compared with the analytical solutions.

3.2.3 The influence of deviatoric far-field stress (Mode III)

Deviatoric far-field stress plays an important role in stress distribution around a wellbore. It impacts
tensile stress to the maximum far-field stress direction and compressive stress to the minimum far-field
stress direction around a wellbore. This localized stresses often leads to shear and tensile failures around a
wellbore. The boundary conditions on the well follow (Carter and Booker, 1982; Detrournay and Cheng,

1988):
o, =—Spcos20 (3.44)
0,9 =S(sin20 (3.45)
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p=0 (3.46

)

where S, denotes the deviatoric components in far-field stress and 6 is the

along to the wellbore.
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Fig. 3.15. Pore pressure distribution with respect to time along the maximum far-field stress direction
when the deviatoric far-field (10 MPa) stress is applied (Mode III). Finite element results are compared
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Fig. 3.16. Pore pressure distribution with respect to time along the minimum far-field stress direction
when the deviatoric far-field (10 MPa) stress is applied (Mode II). Finite element results are compared

with analytical solutions.
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Fig. 3.17. The distribution of total radial stress along the maximum far-field stress direction when the
deviatoric far-field (10 MPa) stress is applied (Mode III). Finite element results are compared with
analytical solutions.
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Fig. 3.18. The distribution of total radial stress along the minimum far-field stress direction when the
deviatoric far-field (10 MPa) stress is applied (Mode III). Finite element results are compared with
analytical solutions.
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Fig. 3.19. The distribution of total tangential stress along the maximum far-field stress direction when the

deviatoric far-field (10 MPa) stress is applied (Mode III). Finite element results are compared with
analytical solutions.
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Fig. 3.20. The distribution of total tangential stress along the minimum far-field stress direction when the
deviatoric far-field (10 MPa) stress is applied (Mode III). Finite element results are compared with
analytical solutions.
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Fig. 3.21. Comparison of the finite element results with analytical solutions for the pore pressure
variations with radius.

The influence of deviatoric stress is apparent where the deviatoric far-field stress is 10 MPa in the x-
direction and -10 MPa in the y-direction. To clarify the influence of deviatoric stress effects, we assumed
no initial pore pressure and no isotropic far-field stress. The distributions for pore pressure with time are
presented in Fig. 3.15 and Fig. 3.16. The negative pore pressure distributions are localized to the
maximum far-field stress direction and the positive pore pressure distributions to the minimum far-field
stress direction, since the effects are coupled around a wellbore. From the physical point of view, tensile
stress increases the pore volume, whereas compressive stress plays to decrease the pore volume. The
finite element results for total radial and tangential stress distributions are compared with analytical
solutions for both maximum and minimum far-field stress directions in Fig. 3.17 to Fig. 3.20. The
influence of deviatoric stress on the fluid variations derived analytically by Detournay and Cheng (1988)
are compared with finite element results in Fig. 3.21.

3.2.4 Combined influence (Mode I + Mode I + Mode III)

We considered the combined influence of isotropic far-field stress, deviatoric far-field stress, and fluid
injection and production around a wellbore. Boundary conditions considering all factors are as follows:

0, = Fy —Sycos260 (3.47)
0,9 =S(sin20 (3.48)
P=Po (3.49)

where P, denotes the isotropic far-field stress and p, is injection well pressure.

The given boundary conditions for the verifications are isotropic far-field stress 20 MPa, deviatoric far-
field stress 5 MPa, and injection well pressure 10 MPa. The comparisons for pore pressure distributions
are plotted in Fig. 3.22 (to the maximum far-field stress direction), and in Fig. 3.23 (to the minimum far-
field stress direction). Total tangential stress distributions are also compared to the maximum and
minimum far-field stress direction in Fig. 3.24 and Fig. 3.25.
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Fig. 3.22. Pore pressure distributions to the maximum far-field stress direction around a wellbore for an
injection case under anisotropic far-field pressures. Finite element results are compared with analytical
solutions.
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Fig. 3.23. Pore pressure distributions to the minimum far-field stress direction around a wellbore for
injection case under anisotropic far-field. Finite element results are compared with the analytical solutions.
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Fig. 3.24. Total tangential stress distributions to the maximum far-field stress direction around a wellbore
for injection case under anisotropic far-field pressure. Finite element results are compared with the
analytical solutions.
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Fig. 3.25. Total tangential stress distributions to the minimum far-field stress direction around a wellbore
for injection under the anisotropic far-field case. Finite element results are compared with analytical
solutions.

3.2.5 Temperature and solute transport

The analytical solution for the impact of thermal loading has been developed by McTigue (1986),
Kurashige (1989), Li et al. (1998), and Wang and Papamichos (1994). They found that the difference of
thermal expansion coefficients between the rock and fluid flow cause the thermal stress to the rock in turn
to impact the pore pressure distributions. Cold water injection to the hot reservoir causes rock shrinkage,
and result in contributions to the tensile stress around the injection wellbore. The finite element results are
compared with analytical solutions in Fig. 3.26 and Fig. 3.27. Initial reservoir temperature of 115°C and
injection pressure of 65°C are applied in this comparison. Note that thermally-induced tensile stress leads
the negative pore pressure distribution around a wellbore as described earlier in 3.2.3.
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Fig. 3.26. Comparison of the pore pressure caused by temperature loading using variation with radial
distance.
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Fig. 3.27. Comparison of the total radial stress variations caused by temperature loading.

Sherwood and Baily (1994) proposed a constitutive model in the membrane system, assuming no solute
transport consideration, and Heidug and Wong (1996) developed a fully coupled ion transport model. To
accommodate the nonlinear relations between stress and solute concentration, Ghassemi and Diek (2003)
proposed a linear chemo-thermo-poroelasticity model, and it has been shown both analytically and
numerically that the resulting errors are negligible when the difference of solute concentration between
the mud and the shale formation is not severe (Zhou and Ghassemi, 2009). Initial reservoir solute
concentration is assumed to be 0.2 and mud concentration is 0.1 for the comparison. The pore pressure
distributions and total tangential stress distributions during chemical loading are presented in Fig. 3.28
and Fig. 3.29. Results show that osmosis flow from the mud to the shale formation causes the increase of
pore pressure around a wellbore (Fig. 3.28). The stress distributions are significantly affected by chemical
loading (Fig. 3.29).
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Fig. 3.28. Comparison of the pore pressure variations with radius caused by chemical loading, using

numerical and analytical methods.
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Fig. 3.29. Comparison of the total tangential stress variations with radius caused by chemical loading

using numerical and analytical methods.

4. Implementation of Damage Mechanics and Stress-dependent
Permeability

The previous section presented the numerical procedure for partial differential equations—especially for
solving the displacement, pore pressure, solute concentration, and temperature problems—and also
compared the finite element results with analytical solutions for various engineering problems such as
hydraulic pressure under anisotropic far-field stress, the influence of thermal stress, and chemical loading
around a wellbore.

A coupled chemo-thermo-poroelasticity is critical to understand the interaction of pore pressure,
temperature, and chemical potential in rock deformation. However, the theory has limitations in that it
assumes an elastic rock skeleton and constant permeability. It is often used to consider the nonlinear
behavior of rock in field operations such as sanding management, fracturing jobs, and drilling operations
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in unconsolidated reservoirs. Experimental core analysis for the strain-stress behavior of the rock in
compressive loading shows the four stages of stress which are elastic, hardening, softening, and critical
stress state (residual strength). Damage mechanics can describe the nonlinear behavior of rock under
loading by considering the micro-crack, microvoid, and crackgrowth stresses (Kachanov, 1986; Lemaitre
and Chaboche, 1990; Voyiadjis and Kattan, 1999). Kachanov (1986) proposed an effective configuration
of undamaged material from the nominal state by introducing the damage variable, d .

Several researchers have shown that permeability is a stress-dependent property (Chin, 2000; Thomas et
al., 2003; Bai and Elsworth, 1994; Tang et al., 2002). Tang et al. (2002) tested permeability variations
under triaxial loading and indicated that permeability decays exponentially before the rock failure in
compressive stress and it increases suddenly by a factor of 2 to 3 after the rock failure. Similar results
have been reported by other researchers (Shipping et al., 1994; Kiyama et al. 1996; Coste et al., 2001;
Zoback and Byerlee, 1975), with the increase in permeability depending on rock type and conditions (De
Paola et al., 2009; Wang and Park, 2002). Zoback and Byerlee (1975) illustrated the relation between the
permeability change and microcrack and void evolution.

In this section, we present a numerical approach for implementing damage theory and stress-dependent
permeability models into a fully coupled thermo-hydro-mechanics model. Triaxial simulations with finite
element methods have been carried out to find the material parameters which define the peak stress and
residual strength. In addition, a stress-dependent permeability model has been applied to both elastic and
inelastic rock states, and then we present the influence of localized rock damage and permeability change
caused by fluid injection around a wellbore.

4.1 Damage Model

A damage and stress-dependent permeability model was proposed by Tang et al. (2002) from
experiments for porous rock that measured the permeability and modulus change with respect to the
change of strain (Yang et al., 2004). This model assumes that the strain-stress behavior before the rock
failure follows the elasticity model without the hardening process and reaches the residual strength regime.
From this damage model, there is no damage in the elastic phase, but the rock begins to fail by crack
initiation and void growth when the stress conditions reach the failure state; that is, it satisfies the failure
criterion. This model has an advantage for describing the behavior of brittle rock, which has a short range
of hardening and directly reaches the softening regime in triaxial tests. An elastic-damage mechanics
model represents the rock degradation by expressing the damage in terms of a reduction in the elastic
modulus as the damage proceeds:

E=(-d)Ey , (4.1)

where d is the damage variable which describes the amount of degradation (crack initiation, microvoid
growth, and crack propagation) and £ and E, are altered modulus and initial modulus, respectively.
The degree of damage level can be represented with damage variable from 0 to 1 with a relationship of
strain variations. For example, d = 0 if the rock is in elastic phase, and d = 1 if the rock is perfectly
damaged. The damage model from the rock failure can be considered as either of two types, compressive
and tensile stresses.

In compressive rock failure, the damage variable for describing softening and the critical state can be
described as:
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d=1- {(fc’" fcj(a e)+fc}/EOE (e.<E<e,)
gcr gC

g1t
Eye
where f,,. is the residual compressive strength and f, is the maximum compressive stress. &, and &,

are the residual compressive strain and maximum compressive strain, respectively, and & is the
equivalent strain (Mazars, 1986):

(4.2)

E= Z(eﬁ (4.3)

where () =¢; if & <0 (tensile) and (¢), =0 if & >0 (compressive).

This equivalent strain definition from Mazars (1986) represents a damage evolution that is dominated by
tensile strain. These components of strain during damage evolution can be obtained as follows:

o =(0), +(o), (4.4)
where (a)t is built with the tensile components of the principal stress and (0>C is for compressive

components of principal stress. In this way, we can obtain strain components for tensile and compressive
stresses:

1+
¢ :EO(I—_vd)<0>t —ﬁf’”(@[) (4.5)

1+
& :—Eo(lj " (o), _—EO(;— 2 tr(<0'>c) 46)

o= <(7>t + <(7>C 4.7

If damage occurs in a tensile stress field, the damage variable is defined using the residual tensile strength
of rock as:
d=1- Ju
Eye
To trace the progress of damage under tensile stress, we introduced a tension cut-off, 7, for tensile failure
because the Mohr-Coulomb failure criterion was developed based on shear failure and it often
overestimates the stress state for rock failure. The Mohr-Coulomb failure criterion for shear failure can be
described as:
O] t+03

(4.8)

F=———=sing, —63—01; cosg 4.9)

2

where o) and o3 are the maximum and minimum principal stresses, respectively; ¢,and c,represent the

friction angle and cohesive strength, respectively.

4.2 Numerical Implementation of the Damage Model

The theory of damage mechanics has been implemented into the finite element code described above. For
illustration purposes, we consider the numerical simulation of the stress-strain response of a rock obtained
from a laboratory triaxial experiment. In particular, we simulated the experimental data of Wang and Park
(2002) and Tang et al. (2002), which shows a rapid decrease from the peak stress. The simulation domain
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for the axisymmetric triaxial test is shown in Fig. 4.1. The sample size is 1 cmx2 cm, which has
axisymmetry so its actual ratio is 1:2. An axial load is applied in the z-directional in a step-wise manner
by increasing the displacement of the top of the sample. Displacement step change in this simulation is
2x10”m per each step, and the total step number is 80. The procedure for implementation of damage
mechanics and the stress-dependent permeability model is illustrated in Fig. 4.2. The state of stress is
checked in each element by fluid and thermal loading. Once the stress condition is to be satisfied with the
failure criterion, the damage variable for the element is computed using previously described damage
equations (Eq. 4.2 to 4.8). It is important to consider the change of the poroelastic parameters such as bulk
modulus, Biot’s constant, and porosity. The change of porosity, [1[1 is equal to the damage variable, d
(Shao, 2002), and other modulus-related parameters are also updated with the relation of £ =(1-d)E|).
To obtain accurate numerical results, the convergence of damage variables under a certain loading is
critical before moving to the next time step. For example, damage variables in each element in the first

and second iterations are compared, and if the result does not satisfy the criterion, damage variables are
updated with the same loading conditions. The tolerance criterion in this simulation is 0.1 %.

@@%@@@@@

e

Fig. 4.1. Finite element mesh used for triaxial simulations.
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Fig. 4.2. Flow chart of the simulation procedures for the implementation of the damage and permeability
model in thermo-poroelasticity with rock failure.

Simulated results in Fig. 4.3 show the peak stress variations by defining cohesive strength ¢, and the
residual strength change by defining f., in the damage model. Fig. 4.4 shows the simulated and actual
curves for different pairs of ¢, and f.,.. The best fits with experimental data are selected so that the residual
strength, .., in Eq. 4.4 and the cohesive strength, ¢ in the Mohr-Coulmb failure criterion are determined.
The implementation of the damage model for the tensile failure case is illustrated in Fig. 4.5.
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Fig. 4.4. Comparison of numerical implementation of the damage model and the experimental triaxial test.
Triaxial test results are obtained from Tang et al. (2002).
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Fig. 4.5. Numerical implementation damage theory for the tensile failure case.

To simulate a more realistic triaxial test, we considered the heterogeneity of the modulus using the
Weibull distribution function, which is widely used in a geomechanics simulation to depict the
heterogeneity of rock. The heterogeneity of the modulus is introduced to the Gaussian points in each
element. The Weibull distribution functions are defined as:
n—1 n
S5 ) e[
4 50 5o S0 (4.10)

where s is the variables s, represents the corresponding mean value.

The parameter 7 is the control factor in Weibull distribution function. A large » indicates the distributions
are narrow and more homogeneous, whereas lower n represents the more heterogeneous rock. This index
influences the rock failure in triaxial tests so that average peak stresses are reduced if the rock is more
heterogeneous because of the increase of the lower modulus in the distributions. The heterogeneous
results are presented in Fig 4.6. Results show a reduction of peak stress and smooth variations in the
heterogeneity case, which increase compared to homogeneous case. This is because of the earlier
beginning of rock failure in low modulus elements.
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Fig. 4.6. Finite element results for triaxial stimulation with damage mechanics. The stress-strain curve
varied with different levels of heterogeneity in Weibull distribution function.

4.3 Implementation of Stress-dependent Permeability Model

The rock permeability change is also considered in the elastic phase and the damage phase (Tang et al.,
2002; Yang et al., 2004):

k = ke Paloul3=ap) (40 (4.11)
k=, kge P (0 /3-a p) (d >0) (4.12)

where kjis the initial permeability and £, and S, are material constants determined empirically. Here
¢4 (£,;>1) indicates permeability increase caused by damage. Parameter B, in the exponent term is the
control parameter for the stress sensitivity of permeability in the porous rock. This permeability model
has been developed from experimental results of triaxial compressive tests. The model describes a decay
of permeability while compressive stress increases in the elastic phase. After the rock fails, there is a step
increase of permeability that decreases again with continuous compressive stress. The numerical results
for permeability variations during the triaxial loading are illustrated in Fig. 4.7.

The changes of poroelastic parameters after rock failure are also important to study injection-induced
nonlinear behavior of rock since the poroelastic constants are applicable for the elastic phase. Major
poroelastic parameters to be considered after the rock failure are bulk modulus K, shear modulus G,
Biot’s constant « , and porosity ¢. We considered the change of poroelastic parameters with damage
evolution; for example, Biot’s constant is 1 and the modulus of bulk solids and fluid are also reduced with
the change of damage variables. Porosity related parameters are recomputed assuming porosity, ¢ is

equal to the damage variable, d (Shao, 2002).
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Fig. 4.7. Finite element results for permeability variation with triaxial simulation. Permeability varied
with different material parameter, (.

4.4 Numerical Analysis of the Thermo-poromechanical Process with Damage
Evolution and Permeability Change

In this section, we present numerical examples for damage evolution and permeability alteration while
considering poroelasticity and thermo-poroelasticity with convective heat transfer. First, we present
poroelasticity and thermo-poroelasticity results without in-situ stresses to focus on the induced increments
of damage and permeability around a wellbore.

4.4.1 The influence of damage evolution and permeability change in isothermal conditions

Consider the influence of fluid flow around a wellbore under isothermal reservoir conditions with
pressure boundary conditions. We used 350 elements with 1141 nodes to simulate the domain of 5x5 m
with a wellbore of radius 0.1 m (Fig. 4.8). No in-situ stress and no initial pore pressure are applied in
initial reservoir conditions, and a wellbore pressure of 12 MPa is used in the simulation.
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Fig. 4.8. Finite element mesh for coupled thermo-poroelasticity damage model consisting of 350 elements
and 1141 nodes; zero in-situ stress pore pressure; wellbore pressure of 12 MPa.

Table 4.1. Rock properties of sandstone.

Young’s modulus £ (GPa) 7.92
Drained Possoin’s ratio v 0.14
Undrained Possoin’s ratio v, 0.35
Skempton’s coefficient, B 0.77
Permeability, & (md) 1
Porosity, ¢ 0.19
Fluid mass density, pr (kg/m?) 1000
Fluid viscosity, u (Pa-s) 1x107
Thermal expansion coefficient of solid, e, (K™) 1.8x107
Thermal expansion coefficient of fluid, &, (K™ 3.0x10"
Thermal diffusivity, ¢’ (m%/2) 1.6x10°

Damage evolution for this problem is presented in Fig. 4.9. The damage propagation in time is very slow
for the pressure boundary condition. Rock failure around the wellbore is caused by tensile failure as the
effective tensile stress dominates the failure around the wellbore. Fig 4.10 shows the distributions of
permeability. A step increase is observed in the damage phase caused by microcrack and void growth in
the rock. The resulting pore pressure distribution is discontinuous because of the high permeability in the
damage phase (Fig. 4.11). The influence of damage and altered permeability is shown in comparison with
the homogeneous poroelastic results in Fig. 4.11, where the solid lines represent the effect of damage and
permeability change and dashed lines show the poroelastic results without damage and permeability
increase (reference case). The distributions of total radial stress and tangential stress are plotted in Fig.
4.12 and Fig. 4.13; note that total radial stress distributions in the damage phase are relatively higher than
in the reference case because the pore pressure is higher in the damage phase. From a stress analysis point
of view, this small discontinuity of total radial stress between the damaged and elastic phase is caused by
the lack of sufficient fluid movement at the interface between damaged and undamaged zones; that is, at
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the boundary between the high permeability and low permeability zones. Different fluid pressures in these
zones cause a discontinuity of total stress between the damaged and elastic phases.

Fig. 4.14 and Fig. 4.15 illustrate the effective radial and tangential stress around the wellbore. The solid
lines in Fig. 4.14 and Fig. 4.15 represent the poroelastic case with damage evolutions and permeability
alterations whereas the dashed lines are for the reference case. It is observed that the effective stresses in
the damage phase are reduced in comparison to the reference case because of stress relaxation. However,
stress concentration is observed between the damage and the elastic phase. This stress concentration
effect between damage phase and intact rock drives damage propagation similar to the case of fracture
propagation theory.

Damage

Fig. 4.9. Damage evolution around a wellbore.
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Fig. 4.10. Permeability distribution around the wellbore.
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Fig. 4.11. Comparison of pore pressure distributions for simulations with and without damage. Solid lines:
pore pressure distributions for damage evolutions and permeability change; dashed lines: the reference
results from no damage and no step increase in permeability.
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Fig. 4.12. Total radial stress distributions showing damage and altered permeability effects around a
wellbore. Solid lines: stress distributions for damage case; dashed lines: the reference cases with no
damage.
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Fig. 4.13. Total tangential stress distributions showing damage and altered permeability effects around a
wellbore. Solid lines: damage evolution and permeability change; dashed lines: reference case with no
damage.
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Fig. 4.14. Effective radial stress distributions around the wellbore. Solid lines: damage evolution included;
dashed lines: no damage considered.
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Fig. 4.15. Effective tangential stress distributions showing effects of darnage and altered permeability
around the wellbore. Solid lines: damage evolution; Dashed line: no damage.

4.4.2 The influence of damage evolution and permeability change in non-isothermal condition

Thermo-poroelastic simulations were performed while considering damage evolution and permeability
alteration. Both conduction and convective heat transfer have been applied with fluid velocity computed
using Darcy’s law. We used the same 350 elements and 1141 nodes mesh in the thermo-poroelasticity
case (Fig. 4.16). The penalty method is used for the pore pressure and temperature boundary conditions at
the wellbore wall. Initial reservoir conditions of no in-situ stress and no pore pressure are first used to
explain the pure effects of damage evolution in the fully coupled thermo-hydro-mechanical simulations.

) SH.max
1 =0 MPa

I;jection Well, p = 1’2 MPa, T =65 "E'J
Fig. 4.16. Finite element mesh for the problem: 350 elements and 1141 nodes. Initial reservoir
temperature is 115 °C, and wellbore pressure is 12 MPa.
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The cooling associated with cold water injection in hot reservoir gives rise to tensile stresses associated
with rock shrinkage. As a result, cooling influences the stress distributions differently from the isothermal
conditions, as reflected in the distributions of damage variable as shown in Fig. 4.17; permeability
distributions appear in Fig. 4.18. The effect of convective cooling around the wellbore is shown in Fig.
4.19. The solid lines represent the temperature profiles caused by both conduction and convection,
whereas dashed lines are for the case of cooling by conduction only. We observe that the effect of
convective cooling on temperature distribution can become significant, which in turn impacts the stress
distributions around the wellbore caused by thermal stress. The pore pressure distributions are
discontinuous at the interface due to the altered permeability in the damage phase as in Fig. 4.20. The
total radial and tangential stress distributions are plotted in Fig. 4.21 and Fig 4.22, and effective stresses
are plotted in Fig. 4.23 and Fig. 4.24. Again, we observe discontinuity in the total stress resulting from
pore pressure discontinuity related to damage and relaxation of effective stress in the damage phase.
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Fig. 4.17. Damage evolution around the wellbore.
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Fig. 4.18. Permeability distributions around the wellbore.
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Fig. 4.19. Temperature distributions around the wellbore.
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Fig. 4.20. Pore pressure distributions around the wellbore. Solid lines represent pore pressure
distributions for damage; dashed lines give the results for the reference case with no damage.
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Fig. 4.21. Total radial stress distributions around the wellbore. Solid lines: with damage; dashed lines: no
damage.
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Fig. 4.22. Total tangential stress distributions comparing the damage and altered permeability effects
around the wellbore. Solid lines: with damage evolutions and permeability change; dashed lines:
reference case with no damage.
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Fig. 4.23. Effective radial stress distributions around the wellbore showing the impact of damage and
altered permeability. Solid lines: with damage evolution and permeability change; dashed lines: no
damage and permeability increase.
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Fig. 4.24. Effective tangential stress distributions. Solid lines: damage evolutions and permeability
change; dashed lines: no damage and no step increase of permeability.

4.5 Discussion

Damage and stress-dependent permeability models were applied to the theory of thermo-poroelasticity.
Stress distributions with implementation of damage mechanics and the permeability model has been
compared with a reference case (constant modulus and permeability). Stress relaxation occurred by
modulus alteration and concentration of effective hoop stress at the interface between the damaged and
undamaged rock. Also, pore pressure distribution shows the discontinuity at the interface due to the
increase of permeability in the damaged area.
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The damage model used in this section considered nonlinear behavior of strain-stress for the shear and
tensile failure. This model can describe softening and residual strength regime with change the parameters
fer fi» and &, better than other suggested damage models that include exponential terms in their equations
(Mazars, 1986; Cheng and Dusseault, 1993; Selvadurai, 2004). These exponent-based damage models can
depict the hardening and softening process smoothly; however, it is not convenient to control the desired
softening regime and residual strength regime. For our applications, it is important to consider softening
and residual strength since reservoir rocks (shale, sandstone, and granite) show brittle behavior with a
short range of hardening regime.

5. Chemo-Thermo-poromechanical Finite Element Analysis with
Damage Evolution around a Wellbore in Swelling Shale

Wellbore stability is important when drilling for oil and gas. Especially, well design must consider the
influence of hydraulic pressure, temperature, and chemical osmosis in shale drilling in high pressure and
high temperature. The interaction of solid and fluid in porous rock has been firstly developed by Biot’s
poroelastic theory (Biot, 1941; Cryer, 1963), and this theory has been extended with the influence of
temperature, fluid flow, and rock deformation by thermo-poroelasticity (McTigue, 1986; Kurashige, 1989,
Wang and Papamichos, 1994). These authors have shown the impact of thermal stress in wellbore
stability: thermally induced pore pressure change can be significant in low permeability formations. The
shale deterioration by chemical influence under isothermal condition around a wellbore has been studied
extensively; the main driving mechanism of fluid flow is the chemical potential gradient in low
permeability shale reservoirs. Heidug and Wong (1996) proposed constitutive equations for swelling
shale based on nonequilibrium thermodynamics. Ghassemi and Diek (2003) considered combined effects
of chemical potential and thermal osmosis on water flow in and out between the mud and shale formation.
They indicated that thermal-osmosis flows are several times higher than hydraulic pressure in certain
conditions. On the other hand, the chemo-poroelasticity model is not easy to implement because of its
nonlinearity characteristics in physical parameters so that it can be simplified with linear chemo-thermo-
poroelastic models if the difference of concentration is not severe (Ghassemi and Diek, 2003). The
assumptions of elasticity and constant permeability in shale drilling have limitations in predicting the real
behavior of shale around a wellbore. In addition, the strength of shale is weak, so that it is important to
predict the stress changes precisely around a wellbore influenced by hydraulic pressure, mass solute
concentration, and temperature. Generally, the stress and strain behavior for shale in triaxial tests shows
the hardening and softening with compressive or tensile stress (Yuan and Harrison, 2006). The damage
mechanics model is one of the methods to describe this hardening and softening behavior of rock.
Continuum damage mechanics was first introduced by Kachanov and since has been developed by many
researchers (Kachanov, 1958; Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al.,
2005; Selvadurai, 2004) who have studied the inelastic rock behavior due to crack initiation, void growth,
and crack growth. This damage mechanics model has been applied to poroelasticity by Selvadurai, who
applied consolidation problems with altered moduli and permeability change. Also Hamiel et al. (2005)
proposed a damage model in poroelastic rock and applied the model to the triaxial simulation, considering
the time dependent degradation and healing process for a damage variable which is dependent on
modulus, porosity, and Poisson’s ratio. Tang et al. (2002) proposed an isotropic damage model based on
Kachanov’s (1959) effective stress hypothesis. Also he presented the permeability model which describes
stress-dependent behavior in the elastic phase and altered permeability after the rock failure based on
triaxial tests by measuring the permeability change with stress variation (Tang et al., 2002). This
permeability change by rock failure has been studied by many researchers (Shipping et al., 1994; Kiyama
et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975). Their experimental results for tests on several
rocks show permeability increase by a factor of two to four, and this increase of permeability by rock
failure depends on the rock type and conditions (De Paola et al. 2009; Wang and Park, 2002).
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This section presents the development of a finite element method to study the influence of chemo-thermo-
poromechanical coupling on shale damage evolution and permeability alteration around a wellbore. The
damage model describes the change of modulus with rock failure by water activity and thermal stress
around a wellbore. A number of simulations are presented to verify the model and to illustrate the role of
damage mechanics and stress-dependent permeability and resulting stress distribution by thermal stress
and chemical osmosis. In addition, we present the different distributions of damage under different far-
field stresses and compare the influence of temperature and chemical potential.

5.1 Finite element results for Chemo-thermo-poroelasticity

In this section, we briefly present two-dimensional finite element results around a wellbore to study the
influence of fluid flow, solute transport, and temperature. The simulation domain is 12x12 m* (Fig. 5.1)
and is divided into 8000 eight-noded quadrilateral elements. The individual shape functions in the mixed
approximation will not yield meaningful results (Zienkiewicz and Taylor, 1991). Overcoming this
numerical inaccuracy requires double degrees of freedom for displacements in the presence of large
changes of stresses, pressure, concentration, and temperature around the wellbore. Details of shale
properties in this simulation are illustrated in Table 5.1. Maximum and minimum far-field stress are 25
MPa and 15 MPa, respectively, and initial pore pressure and temperature are 10 MPa and 115°C. Mud
pressure and temperature are set to 15 Pa and 65°C. Solute concentration in mud and shale formations are
Cpui=0.1 Cyp. = 0.2, respectively.

'!r Sh.min

—
S

H,max

Fig. 5.1. Mesh used for finite element simulation.

Table 5.1. Input material properties for shale.

Young’s modulus £ (GPa) 1.853
Drained Poisson’s ratio v 0.219
Undrained Poisson’s ratio v, 0.461
Biot’s coefficient, 0.966
Permeability, & (md) 1x10°¢
Porosity, ¢ 0.299
Fluid mass density, o (kg/m’) 1111.11
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Fluid viscosity, u (Pa-s) 1x107

Thermal expansion coefficient of solid, &, (K™ 1.8x107
Thermal expansion coefficient of fluid, «, (K™ 3.0x10™
Thermal diffusivity, ¢’ (m’/2) 1.6x10°°
Reflection coefficient, R 0.2
Swelling coefficient, @, (MPa) 1.5
Solute diffusivity, D* (m*/2) 2.0x10”

We compared the results which consider the influence of fluid flow, temperature, and solute transport
based on poroelasticity, thermo-poroelasticity, and chemo-thermo-poroelasticity. Pore pressure
distributions for isothermal and nonisothermal cases are plotted in Fig. 5.2 (a) and (b). The deviatoric far-
field stress causes the lower pore pressure to the maximum far-field stress direction because of the tensile
stress around a wellbore, and higher pore pressure to the minimum far-field stress direction because of the
compressive stress. The influence of temperature is described in Fig. 5.2(b). Note that the difference of
temperature between the mud and shale formation generates thermal stress as tensile around a wellbore
because of rock shrinkage; therefore, the fluid disperses more easily than in the isothermal condition. Fig.
5.2(c) represents the influence of solute transport (C,=0.1, C.=0.2) that the osmosis flow cause
localized pore pressure inside the shale formation. The result for the fully coupled case has been
described in Fig. 5.2(d). The effective radial and hoop stress distributions with different coupling schemes
are plotted in Fig. 5.3 and Fig. 5.4. It is observed that the fluid flow, temperature, and solute transport are
critical to rock stress; the variations in hoop stresses are especially significant. This localization of stress
distribution often reaches the rock failure criterion, so it is necessary to consider the stress variations after
the rock failure. The rock damage with altered modulus and permeability will be discussed in the next
section.
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Fig. 5.2. Two-dimensional plots for pore pressure distribution. The solid-fluid interaction between the
drilling mud and shale formation under anisotropic far-field stress is plotted in (a), the influence of
thermal stress is in (b), chemical interaction with fluid is in (c), and fully coupled results are in (d).
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Fig. 5.3. Two-dimensional plots for effective radial stress distribution. The solid-fluid interaction between

the drilling mud and shale formation under anisotropic far-field stress is plotted in (a), the influence of
thermal stress is in (b), chemical interaction with fluid is in (c), and fully coupled results are in (d).
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Fig. 5.4. Two-dimensional plots for effective tangential stress distribution. The solid-fluid interaction
between the drilling mud and shale formation under anisotropic far-field stress is plotted in (a), the
influence of thermal stress is in (b), chemical interaction with fluid is in (¢), and fully coupled results are

in (d).

5.2 Influence of Temperature and Salinity in Shale Damage

To illustrate the role of various mechanisms on wellbore damage, we considered the example of
nonisothermal drilling in shale subjected to a stress field given by the maximum component of 25 MPa
parallel to the x-axis and a minimum far-field component of 15 MPa in the y-direction. We assumed that
initial pore pressure is 10 MPa and the mud pressure is 15 MPa. The initial shale formation temperature is
115°C and mud temperature assumed to be 65°C. Two different mud salinities of 0.3 and 0.1 are
considered, and the wellbore integrity is analyzed after 12 hours of drilling.

The roles of temperature, salinity, and stress have been considered (Ghassemi et al., 2009; Zhou and
Ghassemi, 2009), and it is known that for conventional rock response, cooling tends to reduce the shear
failure potential while enhancing tensile failure. Also, high mud salinity reduces induced pore pressure
and increases the effective radial stress at the wellbore wall. A lower mud salinity enhances flow into the
rock and contributes to higher pressure distribution around a wellbore.
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Fig. 5.5. The comparison of damage propagation at 12 hr with different coupling in numerical simulations.
Results are compared with same conditions of mud salinity Cpyg = 0.1, Cehate = 0.2, Spmax = 25 MPa, and
Spmin = 15 MPa. Poroelastic damage I plotted in (a), cooling effects are present with thermo-poroelastic
damage in (b), (c) shows the influence of osmosis flow with chemo-poroelastic behavior, (d) is fully-
coupled chemo-thermo-poroelastic damage distribution.

Fig. 5.5 shows the comparison of damage propagation with respect to the degree of coupling and different
chemical gradients. Note that Fig. 5.5 (a)-(d) show different rock failure distributions for different levels
of coupling between thermal, poroelastic, and chemical processes. As shown in Fig. 5.5 (a), the
poroelastic analysis shows that a small zone of rock damage develops in the direction of minimum stress.
If cooling is taken into account, the shear failure is circumvented and no shear damage is observed.
However, a small zone of tensile failure occurs in the direction of maximum in-situ stress response to
cooling [Fig. 5.5 (b)]. This is because the tendency of rock to shrink reduces the compressive hoop stress
and amplifies the tensile stress.

The impact of chemo-poroelastic effect is shown in Fig. 5.5 (¢), where it is assumed that the drilling mud
has lower salinity than shale. In this case, osmosis and chemically-induced stresses affect damage
evolution around the wellbore. Fluid movement from the mud to the shale contributes to the higher pore
pressure around a wellbore, leading to a large damaged area in the direction of minimum in-situ stress.
The extent of failure zone is substantially reduced in this case, when the role of cooling is taken into
account. Fig. 5.5 (d) shows that a fully-coupled simulation (hydraulic, thermal, and chemical osmosis)
shows a much smaller shear failure zone but with a small tensile failure zone.

The distributions of pore pressure for the different coupling levels (Fig. 5.6) is the lowest in the thermo-
poroelasticity case and the highest in the chemo-poroelasticity case of a lower salinity mud.
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Fig. 5.6. The comparison of pore pressure distributions at 12 hr with different coupling in numerical
simulations. Results are compared with same conditions of Cpyq = 0.1 and Cgpare = 0.2, Symax = 25 MPa,
and Sjmin = 15 MPa. (a) poroelastic, (b) thermo-poroelastic, (c) chemo-poroelastic, (d) chemo-thermo-
poroelastic pore pressure distribution.

The impact of stress-dependent modulus and permeability is easily captured with the model. Referring to
Fig. 5.7, it is observed that the failed-zone is larger when we consider the variation of modulus and
permeability. This effect can be explained by stress redistribution and the permeability effect. In constant
modulus and permeability conditions, the stress distributions are same with rock failure. However, once
the modulus reduced and permeability increased in the failed area, effective stresses reduced and pore
pressure increased. These discontinuities in stress and pore pressure in the damage phase perform as
barriers between the damaged and undamaged areas so that effective stresses are increased at the interface.
This amplification of effective stresses in altered modulus and permeability resulted in larger damage
distributions than constant modulus and permeability.
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Fig. 5.7. The influence of modulus and permeability change for rock failure distributions. Results are
compared with same conditions of lower mud salinity and Sy m.x = 25 MPa, Sy min = 15 MPa. (a) chemo-
poroelastic rock failure with altered modulus and stress-dependent permeability (d) chemo-thermo-
poroelastic rock failure with constant modulus and permeability model.

Another wellbore example to consider is the influence of mud salinity. The maximum far-field stress is 25
MPa and the minimum far-field stress is 15 MPa. We assumed that the initial pore pressure is 10 MPa and
the mud pressure is 15 MPa. The initial shale formation temperature is 115 °C and the mud temperature is
assumed to be 65°C. As before, two different mud salinities of 0.3 and 0.1 were considered, and the
wellbore integrity was analyzed after 12 hrs of drilling.

Fig. 5.8 shows that slight damage observed to the maximum far-field stress direction when the mud
salinity is higher than shale formation. When the mud salinity is lower than the formation, there are high
damage by shear and tensile to the both maximum and minimum far-field stress directions. It is widely
known that pore pressure increase in porous rock causes shear or tensile failure because of the effective
stress reduction by fluid movement. The influence of osmosis flow from the mud to the shale causes
higher pore pressure around a wellbore, and then it reached the shear and tensile failure to the maximum
and minimum far-field stress direction. The comparison of pore pressure distributions around a wellbore
has been presented in Fig. 5.9.

58 585 59 5985 ] 605 61 615 62
m m

58 58 659 595 6 605 61 615 62

Fig. 5.8. Damage distributions at 12 hr with Sy ..c = 25 MPa, S}, ,i» = 15 MPa. (a) higher mud salinity
(Coua > Cipare) (b) lower mud salinity (Chug < Cspare)

69



62f 62

58 58

56 58 62 64 56 58

6 62 64
m m

Fig. 5.9. Pore pressure distributions at 12 hr with Sy e = 25 MPa, S, i, = 15 MPa. () higher mud salinity
(Coia > Cspate) (b) lower mud salinity (Cyua < Cypare)

Fig. 5.10 shows the damage propagation with time. It is observed that shear failure occurred to the
minimum far-field stress direction because of highly compressive effective hoop stress and then tensile
failure to the maximum far-field stress direction begins as following the shear failure due to the osmosis
flow invasion from the mud to the shale formation with respect to time. The distributions of temperature
and solute concentration are plotted in Fig. 5.11 (a) and (b) for the case of lower mud salinity under given
mud pressure, in-situ stress, initial pore pressure, and temperature. Note that the effective radial and hoop
stress in Fig 5.11 (c¢) and (d) shows the stresses are relaxed in damage phase and redistributed around a
wellbore by modulus reduction and permeability increase in failed zone.
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Fig. 5.10. Propagation of damage with respect to time with Sy; ... = 25 MPa, Sy, i, = 15 MPa. The case of
lower mud salinity comparing shale formation (a) 0.5 hr (b) 1 hr (c) 3 hr (d) 6 hr.
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Fig. 5.11. The distributions of temperature (a), solute mass concentration (b) and effective radial and
hoop stress distributions (c) and (d), respectively. All results are snap shots of 12 hr and the mud salinity

Cpua = 0.1 and Cypge = 0.2 and Sy e = 25 MPa, ), i = 15 MPa.

5.3 Conclusions

Two-dimensional fully coupled finite element methods have been developed for modeling damage-
induced stress variations and permeability change around a wellbore. Results show the influence of
chemical potential and thermal stress around a wellbore. It is clearly presented that the shale is unstable
when the mud salinity is lower that formation by osmosis flow and cooling creates tensile stresses by the
difference of thermal expansion coefficients of solid and fluid. Model can explain the different
distributions of damage and pore pressure with different mud salinity. Far-field stresses are also important
in wellbore stability, it tends to be reached failure condition in lower mud salinity where the far-field
stress is low, although the mud pressure is set to the range of initial pore pressure and fracture gradient. In
addition, the coupling of hydraulic pressure, solute transport and temperature has been compared under
same conditions. Results show the impact of the osmosis and temperature in the analysis of stress
distributions. This study indicates that the finite element method with damage mechanics and stress-
dependent permeability model can be used to model the swelling shale.

6. Two-Dimensional Thermo-poromechanical Modeling of Well
Stimulation and Induced Microseismicity

Stress analysis or rock mass failure in response to water injection is of much interest in geothermal
reservoir design. The process involves coupled rock deformation and fluid flow as described in Biot’s
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poroelastic theory (Biot, 1941; Cryer, 1963), and its thermo-poroelastic (McTigue, 1986) and thermo-
chemo-poroelastic extension (Ghassemi et al. 2009). Chemical effects can be significant with respect to
the clay swelling and solute transport and reactivity. Thermo-poroelasticity can be used to assess the
influence of fluid flow and temperature change on the stress variations in the reservoir. This influence is
often computed assuming a linear elasticity with constant mechanical and transport rock properties. The
assumption of elastic rock skeleton and fluid flow and heat transport in porous media under constant
permeability conditions has limitations in predicting the real behavior of the reservoir rock. Generally, the
strain-stress behavior of rocks in triaxial tests shows hardening and post-peak softening. This behavior
depends on the rock type, pore pressure, stress conditions, and temperature (Jaeger, Cook, and
Zimmerman, 2007). The continuum damage mechanics approach is one of the methods that can capture
the hardening and softening behavior of the rock (Yuan and Harrison, 2006). Continuum damage
mechanics was first introduced by Kachanov and since has been developed and applied by many
researchers (Kachanov, 1958; Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Yang et al.,
2004; Selvadurai, 2004) who have investigated inelastic behavior caused by crack initiation, microvoid
growth, and fracture propagation. Also, the evolution of rock damage in the presence of poroelastic and
thermo-poroelastic effects has been considered. Selvadurai (2004) studied damage in poroelastic brittle
rock. His results showed a significant permeability alteration caused by damage evolution in
consolidation problems. Hamiel et al. (2005) developed a model with a time dependent damage variable,
porosity, and material properties. They proposed different rock behavior with degradation and healing
within the framework of the poroelastic theory. Tang et al. (2002) proposed a damage and permeability
model based on experimental strain-stress observations and permeability measurements (Tang et al., 2002,
Yang et al., 2004). The model was implemented in a finite element model and was used to simulate a
uniaxial compression test and also hydraulic fracture propagation.

The permeability variations induced by altered stress and rock failure has been studied by many
researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975).
Zoback and Byerlee illustrated the relation between permeability change and microcrack and void
evolution. Their experimental results for tests conducted on granite show permeability increasing by a
factor of four. Other studies present different magnitudes for the increase in permeability depending on
rock type and conditions (De Paola et al. 2009; Wang and Park, 2002).

The stimulation of the reservoir rock mass is often accompanied by multiple microseismic events.
Microseismic event characteristics such as their locations, spatial patterns of distribution, and temporal
relations between the occurrence of seismicity and reservoir activities are often studied for enhanced
geothermal systems (EGS). Microseismic event detection and interpretation is used for estimating the
stimulated volume and fracture growth, resulting reservoir permeability, and geometry of the geological
structures and the in-situ stress state (Pine, 1984). The process commonly is referred to as seismicity-
based reservoir characterization. Although progress has been made in quantitative and qualitative analysis
of reservoir stimulation using micro earthquakes (Shapiro et al., 1997; 1999; 2002; Rothert and Shapiro,
2003), the process of rock failure and permeability change is not considered. Also, in-situ stress and
thermal effects on fluid-rock interaction have not been considered.

In this work, we present the development of a finite element model to study the influence of thermo-poro-
mechanical coupling on rock damage evolution and permeability variation with reference to reservoir
stimulation and induced seismicity. The damage model we used corresponds to the brittle rock failure
behavior with post peak softening and permanent deformation prior to the fracture. To capture the full
effects of rock cooling by injection in the presence of higher fluid fluxes caused by rock failure and
permeability enhancement, the model considers both the conductive and convective heat transfer in
porous media. Two types of injection schemes are considered in this work: explicit wellbore geometry for
small scale simulations and a point source approach for large scale simulations. A number of numerical
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simulations are presented to verify the model and to illustrate the role of various mechanisms in rock
fracture.

6.1 Well Stimulation and Injection-induced Microseismicity

Two-dimensional fully-coupled thermo-poromechanical simulations have been conducted with an altered
modulus and permeability model. Mesh information for these simulations is as follows: 12,000
quadrilateral elements for a 200200 m” simulation domain which has a wellbore geometry with 0.1 m
radius (Fig. 6.1). The reservoir rock is granite with properties listed in Table 6.1. The in-situ stress state is
given by 30 MPa maximum horizontal stress in the x-direction and 20 MPa in the y-direction for
minimum horizontal stress. Heterogeneous simulation was carried out using Weibull distribution
functions for elastic modulus and permeability distributions. We assumed that the rock properties follow
the Weibull distribution function in which the shape of the heterogeneities are n=2.0 for modulus and
permeability, respectively. The same values are used for the tensile and cohesive strength distributions.
The initial pore pressure is 10 MPa and wellbore pressure increased 5 MPa every 0.5 hr until it reached 30
MPa.

The simulation results are shown in Figs. 6.2 and 6.3. Injection-induced rock failure occurred around the
wellbore and propagated out into the rock as shown in Fig. 6.2. In this simulation, we considered an
initially anisotropic permeability distribution in the rock, and so the fluid flow in the damaged area is
mostly focused in the direction of maximum permeability. Note that the far-field stress influences damage
propagation significantly in this coupled fluid injection analysis. The far-field stress anisotropy around a
wellbore contributes to tensile stress in the maximum far-field stress direction and causes compressive
stress in the minimum far-field stress direction. Also, fluid injection causes tensile hoop stresses.
Therefore, both anisotropic far-field stress and fluid-induced stress lead to tensile failure propagation in
the maximum far-field stress direction. The simulated micro-seismic events are plotted in Fig. 6.3. We
assumed that seismic events are checked in each Gaussian point and events occurred when the rock failed.
These widely scatted events are observed in an early time step because of the initial failure. The injection-
induced localized seismic events propagate into the rock with the passage of time.

100 <<,

e S SRt e
(m)
Fig. 6.1. Mesh used in damage evolution test with thermo-poro-mechanical simulations.
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Table 6.1. Input material properties for granite.

Young’s modulus £ (GPa) 10
Drained Possoin’s ratio v 0.25
Undrained Possoin’s ratio v, 0.33
Biot’s coefficient, o 0.44
Permeability, &, .., (md) 0.01
Permeability, k,, ... (md) 0.001
Fluid mass density, pr (kg/m’) 1111.11
Fluid viscosity, u (Pa-s) 1x107
Thermal expansion coefficient of solid, a,, (K) 2.4x107
Thermal expansion coefficient of fluid, &, (K™ 2.1x107
Thermal diffusivity, ¢’ (m?s) 2.0x10°
Porosity, ¢ 0.01
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Fig. 6.2. Damage propagation with time; (a): 1 hr, (b): 3 hr, (¢): 6 hr, and (d): 12 hr.
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Fig. 6.3. Results of two-dimensional seismic events plot with time.

6.2 Point Source Injection and Microseismicity

We next applied two-dimensional point source injection for large reservoir simulation using quadrilateral
regular mesh and anisotropic far-field stress distributions with 10,000 elements and reservoir size of 1 km
x 1 km. Injection rate boundary conditions were applied to the point source element while injecting with
step increases from 0.1 m*/m’s to 0.15 m*/m’-s. Maximum and minimum far-field stresses are 30 MPa
and 20 MPa, and initial pore pressure is 15 MPa. Physical parameters for the granite reservoir we used in
this simulation are described in Table 6.1. Fig. 6.4 represents the failure propagation in the homogeneous
modulus and permeability to the maximum far-field stress direction with respect to time when fluid is
moving from the point source to the reservoir. Results show that fluid injection induces the effective
stress change where fluid contacts the area and causes tensile failure propagation in the maximum far-

field stress direction. Injection-induced effective stress variations (0o,,,0 ) are plotted in Fig. 6.5. In

xx
this study, rock failure propagated horizontally to tensile failure, which is similar to the previous well
stimulation simulation. This horizontal propagation can be explained by the interaction of fluid with the
rock skeleton that altered the modulus, and increased permeability created the stress relaxation in the
damage area and amplification of stress distributions at the interface.

76



800 800
5

600 a8 600
5

400 400

200 200

200 400 600 800 1000 200 400 600 ] 1000
m m

Fig. 6.4. Fluid induced damage (rock failure) distributions at 3 hrs and 12 hrs.
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Heterogeneous properties for modulus and permeability have been applied to depict more realistic
simulations. We assumed that physical properties have Weibull distribution functions and seismic events
are triggered when the rock stress reaches the Mohr-Coulomb failure criterion with fluid injection. Initial
modulus and permeability distributions are illustrated in Fig. 6.6. We used n=2 for controlling the degree
of heterogeneity in Weibull distribution functions. Initial modulus distributions varied from 2 GPa to 18
GPa with mean values of 10 GPa and the average of initial permeability was 0.01 md with a range of
0.002 ~ 0.02 md as shown in Fig. 6.6.

77



oy . " o v = i = J " . - = L & L] = . 4
e Lyt o %= 18000 2 31T s 0.02
800 [ SR LS '.!16000_ 800 | Jo i beacs) 0018
14000 . 0.016 |
v 12000 § . 0014
10000 | &% 0.012
8000 T 0.01
600 |8 " 8000 e 3 " 0.008
s | 4000 | > g 0.008 |
< | 2000 .;, o 0.004
L i . i - i { 0.002 §
400 =5 i & =1 400 p-iutd ot b X A i
Ry (MPa) FaeRARE L R s
' . Y . - o X £ Lol £
200 EESERENE £ ' Skt ik - 200-‘_‘ S X ¥y S,
e P s 4 L
» . .
: -1 b xioa
1 ‘o 1 1 s [ O e 1 1 ‘
200 400 600 800 000 200 400 600 800 1000
m m

Fig. 6.6. Initial modulus and permeability distribution. The range of modulus is 2 GPa ~ 18 GPa and
permeability is 0.002 ~ 0.02 md.

Results show that the damage by injection-induced rock failure propagates to the maximum far-field
stress distribution; however, heterogeneity creates deviations of damage propagation caused by shear and
tensile failure (Fig. 6.7). Pore pressure distributions are localized because of the permeability increase in
the damaged area (Fig. 6.8). One of the features in the thermo-hydro-mechanical process of injection
simulation is the localization of pore pressure caused by the localized propagation of rock failure and
permeability increase. The result in Fig. 6.9 shows the seismicity plots with respect to time. Small circles
are initial rock failure caused by far-field stress and large circles represent fluid injection-induced shear
and tensile failure with time.
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Fig. 6.7. Damage distributions at 3 hrs and 12 hrs in the heterogeneous case.
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Fig. 6.9. Results for microseismic event propagation by fluid injection with time. The small circle is the
initial rock failure by far-field stress and the large circle represents injection-induced triggering of
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6.3 Discussion

Thermo-poroelastic modeling for microseismic event propagations with damage mechanics and the
stress-dependent permeability model are presented in this section. Previous work from Shapiro (1997;
1999; 2002) for microseismicity modeling was developed from the fluid flow equation and criticality. He
introduced concept of criticality values for pore pressure, assuming that microseismic events occurred if
the pore pressure exceeded a certain value of criticality. This approach is reasonable from a certain point
of view, because usually high pore pressure is needed to trigger rock failure. Shapiro’s approach also has
limitations in that it takes no consideration of permeability change, localization of stress distribution, or
temperature effects in microseismic event modeling. Fig. 6.10 illustrates the simulation results for
induced microseismicity with critical pressure and rock failure criteria. We applied the same
heterogeneity and injection schedule. Maximum far-field stress is to the x-direction and minimum far-
field stress is to the y-direction. Results show that microseismic events propagate in an isotropic manner
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in critical pressure conditions, as opposed to the rock failure criterion. From the comparison, we conclude
that the rock failure criterion can more effectively describe the ellipsoidal patterns from observation data.
The main differences in this numerical simulation from Shapiro’s model are the coupled impact of fluid
flow, temperature, and stress change for the analysis of microseismic event propagation. The other
improvement in this simulation is that permeability increases in the event locations, leading to the
discontinuity of pore pressure and stress relaxations. In turn, it can explain the propagation of localized
microseismic events in certain conditions. The influence of convective heat transfer is plotted in Fig. 6.11.
Results show a larger region of cooling by permeability increase when we consider the convective heat
transfer. The impact of convective heat transfer becomes important when the model considers fluid flow
in fractures.
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Fig. 6.10. Comparison of injection-induced microseimic event propagation under the same initial
heterogeneity and injection schedule. Microseismic events based on critical pressure are plotted in (a),
and rock failure criteria are plotted in (b).

Fig. 6.11. Comparison of temperature distributions between conductive cooling and convective heat
transfer in simulation of a sandstone reservoir which has 10 md for initial permeability and 100 md after
rock failure. Only the conductive heat transfer case is plotted in (a) and convective with conductive heat

transfer is plotted in (b). Both results are the snap shots at 180 sec.
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6.4 Conclusions

Damage mechanics and the stress-dependent permeability model have been applied to fully-coupled
thermo-poroelasticity. It is observed that effective stresses are relaxed in the damaged area and increased
at the interface of the damaged and intact rock by the change of modulus and permeability with injection-
induced rock failure. The model has been applied to the microseismic event simulation. Two types of
injection schemes are used for geometrical well injection in small scale simulations and point source
injection in large scale simulations. Results show distributed shear and tensile failure in the reservoir. The
resulting rock failure and permeability enhancement is a function of the in-situ stress. Realistic patterns of
micro-seismicity have been generated. Results show the significant roles of stress state and initial rock
permeability in the resulting pattern. The results of this study indicate that the finite element method with
damage can be used to model reservoir stimulation and induced seismicity.

7. Three-Dimensional Finite Element Modeling of
Thermo-poromechanical Well Stimulation and Injection-induced
Microseismicity

The study of stress variations by fluid injection is important in enhanced geothermal reservoir (EGS).
Especially near the wellbore, there is a significant change of stresses by temperature, fluid flow and far-
field stresses. The influence of fluid flow and porous rock has been developed by Biot (Biot, 1941; Cryer,
1963), and its extension version of thermo-poroelasticity has been proposed (McTigue, 1986; Kurashige,
1995; Wang and Papamichos, 1994). They showed that the impact of thermo-poroelasticity around a
wellbore that thermally-induced pore pressure distribution is significant if the rock permeability is low.
The influence of chemical potential also has been developed that considered the influence of chemical
potential, temperature and fluid flow in shale (Heidug and Wong, 1996; Ghassemi and Diek, 2003;
Ghassemi et al., 2009). Most of the geothermal reservoir rock is granite so that we should consider the
low permeable and brittle rock with cold water injection. Thermo-poroelasticity can be used to assess the
influence of temperature and fluid flow change on the stress variations; however, there are some
limitations that the rock skeleton is assumed to be elastic and constant permeability in fluid flow.
Generally, the modulus and permeability are changed if the rock reaches the failure criterion. The strain-
stress behavior in triaxial test shows hardening and softening after post-peak stress. This behavior
depends on the rock type, pore pressure, stress condition and temperature (Jaeger, Cook, and Zimmerman,
2007). Experimental results for permeability variation with stress also have been studied by many
researchers (Shipping et al., 1994; Kiyama et al.; 1996, Coste et al., 2001; Zoback and Byerlee, 1975).
Their experimental results for tests conducted on granite show permeability increase by a factor of four.
Other studies present different magnitudes for the increase in permeability depending on rock type and
conditions (De Paola et al. 2009; Wang and Park, 2002).

Continuum damage mechanics is used to consider the crack initiation, void growth, and crack propagation
that can capture the hardening and softening behavior of a rock. Continuum damage mechanics was first
introduced by Kachanov and since has been developed and applied by many researchers (Kachanov, 1958;
Mazars, 1986; Simankin and Ghassemi, 2005; Tang et al., 2002; Li et al., 2005; Selvadurai, 2004). It can
be contrasted with fracture mechanics in that damage mechanics describes crack initiation, microcracks,
void growth, and crack propagation based on the failure criterion, whereas fracture mechanics assumes an
initial crack for propagation. The impact of damage mechanics has been applied in the presence of
poroelasticity. Selvadurai (2004) studied damage in poroelastic consolidation problems with a stress-
dependent permeability model. His results showed a significant permeability alteration caused by damage
evolution in consolidation problems. Hamiel et al. (2005) developed a model with time dependent damage
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variable, porosity, and material properties. They proposed different rock behavior with degradation and
healing within the framework of the poroelastic theory. Tang et al. (2002) proposed a brittle damage and
permeability model based on experimental strain-stress observations and permeability measurements
(Tang et al., 2002; Li et al., 2005). The model was implemented in a finite element model and was used to
simulate a uniaxial compression test and hydraulic fracture propagation.

Damage mechanics has an advantage of considering the microfracture so that it can be one of the
promising tools to predict injection-induced microseismic events. Microseismic event characteristics such
as their locations, spatial patterns of distribution, and the temporal relation between seismicity and
reservoir activities are often studied for enhanced geothermal systems (EGS). Microseismic event
detection and interpretation is used for estimating the stimulated volume and fracture growth, resulting
reservoir permeability, and geometry of the geological structures and the in-situ stress state (Pine, 1984).
The process commonly is referred to as seismicity-based reservoir characterization. Although progress
has been made in quantitative and qualitative analysis of reservoir stimulation using micro earthquakes
(Shapiro et al., 1997; 1999; 2002; Rothert and Shapiro, 2003), the process of rock failure and permeability
change has not been considered. In-situ stress and thermal effects on fluid-rock interaction have also not
been considered.

In this work, we present the development of a three-dimensional (3D) finite element model to study the
influence of thermo-poro-mechanical coupling on rock damage evolution and permeability variation with
reference to reservoir stimulation and induced seismicity. The damage model we used corresponds to
brittle rock failure with post-peak softening and permanent deformation prior to fracture. In order to
capture the full effects of rock cooling by injection in the presence of higher fluid fluxes caused by rock
failure and permeability enhancement, the model considers both the conductive and convective heat
transfer in porous media. A number of numerical simulations are presented to verify the model and to
illustrate the role of far-field stress and permeability change in rock fractures, distributed damage
evolution, and induced seismicity.

7.1 Injection-induced Damage Propagation

In this section, we present numerical examples for hydraulic fracturing experiments under the influence of
different far-field stresses while taking into account fluid and temperature variations around a wellbore.
Before conducting large reservoir simulations, we tested a small simulation domain consisting of a 3D
block of rock with dimensions of 10x10x5 m® (Fig. 7.1) with a 0.2-m injection interval. We use an 8-
noded hexahedron element for displacement and 8 nodes for pore pressure and temperature. All reservoir
properties represented a granite reservoir (Table 6.1).

We compared the numerical solutions with analytical solutions for effective vertical stress distribution.
We assumed zero far-field stress and pore pressure on the wall acting with 10 MPa along the vertical
wellbore surface. The induced effective vertical stress component contributes to tensile stress since the
pore pressure invasion to the reservoir leads the effective stress distribution from zero to the tensile stress
as seen in Fig. 7.1. The plot in Fig. 7.2 compares the numerical solutions for effective vertical stress with
analytical solutions with time. The comparison of pore pressure, total radial stress components, and total
tangential stress components are presented in Figs. 7.3 to 7.5.
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Fig. 7.1. Induced effective vertical stress variation by fluid injection.
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Fig. 7.2. Comparison of numerical solutions with analytical solutions for effective stress component, S7.,
distribution.
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Fig. 7.3. Comparison of numerical solutions with analytical solutions for pore pressure distribution along
to the radial direction.
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Fig. 7.4. Comparison of numerical solutions with analytical solutions for total radial stress, S,
distribution.
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Fig. 7.5. Comparison of numerical solutions with analytical solutions for effective stress component, Sy,
distribution.

Fig. 7.6. Iso-surface (20%) of injection induced damage variable for the case when the minimum in-situ
stress is S,.

For the analysis of injection-induced rock failure and permeability change, we assumed that permeability
in the maximum far-field stress direction (x-direction) is 5 times higher than that in the minimum far-field
stress direction (y-direction). The vertical permeability value is assumed to be 10% of the permeability in
the minimum far-field stress direction. The experimental results for the permeability anisotropy showed
that the permeability path is higher in the maximum stress direction (Khan and Teufel, 2000). In this
example, the maximum horizontal stress is 30 MPa (x-direction), minimum horizontal stress is 20 MPa
(y-direction), and the vertical stress is 10 MPa (z-direction). The injection pressure starts at 13 MPa and is
increased at 0.5-hr intervals until it reaches 20 MPa
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The iso-surface of the area damaged 20% by 6-hr fluid injection is plotted in Fig. 7.6. The permeability

and pore pressure distributions in the fracture zone are represented in Fig. 7.7. Note that axial stress (O, )

distribution and horizontal tangential stress contribute to failure around the wellbore. In our fracture
simulation, the damaged area (microcrack and void-growth area) becomes sharper when damage variable
convergences are satisfied. Also, the anisotropic permeability model under anisotropic far-field stress
shows more realistic results since fluid injection plays an important role in this process and its simulation.
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Fig. 7.7. Cross sectional view of permeability and pore pressure distributions. Results are for a time of 6
hrs. Permeability distributions: (a) and (b); pore pressure distributions: (¢) and (d). See Table 7.1 for
units. Unit for permeability is md.

7.2 Damage Propagation under Different Stress Regimes

After carrying out small reservoir geomechanical simulations, we conducted large scale reservoir
simulations using a large mesh with 83,232 8-noded hexahedron elements for a reservoir size of 240x120
x150 m® as shown in Fig. 7.8. We tested three different far-field stress regimes: strike-slip: (Sp;ma=30
MPa, Sj,min=10 MPa, S,=20 MPa), with horizontal far-field stresses as the maximum and minimum in-situ
stresses; thrust (Syma=30 MPa, S, min=20 MPa, §,=10 MPa), with vertical far-field stress as the minimum
stress component; and normal faulting (Sy mx=20 MPa, S, in=10 MPa, S,=30 MPa), with the vertical far-
field stress as the maximum in-situ stress component. All reservoir properties are the same as the previous
simulations, and permeability anisotropy is oriented according to the far-field stress direction; for
example, kj nin=0.1x10" md, ky mx=10x10" md, and k,=0.1x10" md are applied for the strike-slip
regime, kj, min=1% 102 md, Ay ma=10% 102 md, and £,=0.1x 10° md for the thrust regime, and kj,
2in=0.1x107 md, &y max=1.0% 107 md, and £, = 0.1% 107 md are applied for the normal fault regime.

86



Table 7.1. Reservoir properties used in the simulations.

Case 1 Case 2 Case 3

(Strike-Slip) (Thrust) (Normal)
SH, max 30 MPa 30 MPa 20 MPa
Sh. min 10 MPa 20 MPa 10 MPa
S, 20 MPa 10 MPa 30 MPa
K1, max (md) 10x10 10x10° 0.1x107
Kb, min (md) 1x10° 1x107 1x10°
ky (md) 0.1x10° 0.1x107 0.1x10°

Fig. 7.8. Mesh used in simulation; Sy . represents maximum horizontal stress, Sy, i 1S minimum
horizontal stress, and S, is vertical stress.

In these simulations, damage propagation caused by fluid injection was investigated in relation to the in-
situ stress regime. The first case was when the minimum in-situ stress is horizontal (Case 1). The
injection interval zone is 2 m and injection pressure begins at 8 MPa and is increased at 2.5 MPa
increments every 0.5 hr until it reaches 32 MPa. Fluid injection causes both effective tangential and
effective axial stresses to become tensile. These two stress components contribute to tensile principal
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stress inside the rock. Fig. 7.9 shows the 20% damaged area. Note that damage and fractures propagate
vertically and horizontally in this case where the minimum stress is horizontal. Height growth occurs
rapidly near the wellbore where the axial stress effects dominate. Away from the wellbore, the in-situ
stress controls the manner of damage zone propagation similar to a hydraulic fracture. The effective axial
stress and pore pressure distributions are shown in Fig. 7.10.

- — &, - i W= e "

Fig. 7.9. Damage and permeability distributions for minimum horizontal far-field stress at 12 hrs. 20 %
damage of iso-surface is plotted in (a), and (b) is a magnified image. Cross-sectional views of

permeability distributions are illustrated in (c) and (d).

88



et 114 1 1]
ermSaBRER

MPa)

Fig. 7.10. Effective vertical stress and pore pressure distributions for minimum horizontal far-field stress
at 12 hrs. Cross-sectional views of effective vertical stress are in (a) and (b), and pore pressure
distributions are in (c¢) and (d), respectively.

For Case 2, the vertical minimum in-situ stress regime, the injection interval zone is 0.2 m and the
pressure begins at 20 MPa and increases at 2.5 MPa at 0.5 hr until it reaches 42 MPa. Fig. 7.11 shows the
fluid- induced 20% damaged area and the permeability distribution. Results show that injection-induced
damage and the fractured area propagate horizontally. The propagation of damage is much larger in the
maximum horizontal far-field stress direction than in the minimum horizontal far-field stress direction,
which is influenced by permeability anisotropy.
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damage of iso-surface is plotted in (a) and (b) is magnified image. Cross-sectional view of permeability
distributions are illustrated in (c) and (d).

For the Case 3, vertical stress as the maximum far field stress, the same injection rate conditions of Case 1
are used for the comparison of the normal fault regime with the strike-slip regime (Case 1). The only
different properties are far-field stress distribution and permeability anisotropy because maximum far-
field stress directions are varied from the y-direction to the z-direction. Results show a stronger tendency
for the induced damaged and fractured zone to propagate vertically; however, as shown in Fig 7.12, the
damage area is smaller (for the same injection rate of Case 1) because of the influence of the large,
vertical far-field stress.

The different geometry of the failure plane for the case of Sjmin and S, as the minimum in-situ stress
components can be attributed to different patterns of fluid and stress distribution in each case. In this
simulation, the effective axial stress caused by fluid injection and deviatoric stress from the horizontal far-
field stress are the main contributors to tensile failure across the wellbore for case 1 and case 3 (Sj.min as
the minimum). However, in the case of S, as the minimum stress, the effective axial stress is not
significant compared to the minimum Sj,,,;, and the wellbore hoop stress which serve to propagate the
damage. We observe that a higher injection pressure is needed to generate the fracture plane in the
homogeneous rock case, when Sv is the minimum in-situ stress rather than S, min, because of the effective
stress contributions for tensile failure. This is reasonable since there is additional hoop tensile stress (as
opposed to only axial) when the fracture is initiated in a vertical plane.
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Fig. 7.12. Damage and permeability distributions fof minimum vertical far-field stress at 6 hrs. 20 %
damage of iso-surface

The variation of damage propagations with time for the strike-slip, thrust, and normal fault regimes are
illustrated in Figs. 7.13 to 7.15 for comparison.

Hydraulic fracturing with cold water injection has been illustrated in Fig 7.16. Initial reservoir
temperature is 200 °C and cold water temperature is 65 °C. Injection pressure is maintained 35 MPa for 6
hr, starting from 8 MPa. Both fluid injection and temperature difference contribute to fracture propagation.
In this simulation, we assume the hydraulic fracture (macrocrack) as 90% damage. Results show that the
90% damage zone length is 24 m, height is 8 m, and average thickness near the well 10 cm. Note that
temperature distribution is influenced by fluid flow, which is related with convective heat transfer, but the
transfer rate is very slow. It is important to define the hydraulic fracturing in fluid injection. The main
difference in the theory of fracture and damage mechanics is that the fracture considers macrocrack
propagation, whereas damage mechanics considers the micro-fracture. Macrocrack propagation can be
explained to be a sudden localization of microcracks (Mazars and Pijaudier-Cabor, 1996) so that the
distributions of damage are generally broader than fracture propagations.
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Fig. 7.13. Iso-surface 20% damage plot of 3D damage propagation with respect to tim under horizontal
far-field stress as the minimum: (a): 0.5hr, (b): 1 hr, (¢): 1.2 hr, (d): 1.5 hr.

Fig. 7.14. Iso-surface 20% plof 3D damaopa with ep to time under vertical far-
field stress as the minimum: (a): 1 hr, (b): 1.2 hr, (¢): 1.5 hr, (d): 1.9 hr.
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Fig. 7.15. Iso-surface 20% damage plot of 3D damage propagation with respect to time under vertical far-
field stress as the maximum: (a): 1 hr, (b): 1.5 hr, (c): 2 hr, (d): 3 hr.
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(a)

(c)

Fig. 7.16. Plot for -hSl-draulic fracturing zone (90% damaged area) with minimum horizontal (a) and pore
pressure distribution (b). Different plane views of temperature distributions in (c) and (d). All results have
the same time step at 6 hr.

7.3 Injection Volume Analysis

The influence of injection volume under different stress regimes is reported in this section. Well pressure
in this comparison is a step increase of 15 to about 44 MPa for normal regimes and 20 to about 48 MPa
for thrust regimes. Initial well pressure is set to the pressure before the rock failure and damage evolution
begins after the next step increase of wellbore pressure. Fig. 7.17 shows the comparison of a 40%
damaged area with different far-field stresses when we inject 968 L for 3 days in the normal regime (Sy,
max = 20 MPa, Sj min = 10 MPa, S, = 30 MPa, ky, max = 10107 md, &y, min = 1x10° md, and %, = 0.1x107)
and 340 L for 3 days in the thrust regime (Sy mx = 30 MPa,
Sp min = 20 MPa, S, = 10 MPa, ky, max = 1x10° md, &, min = 1x10” md, and k&, = 0.1x10” md). The normal
regime led to a larger damaged area and higher injection volume than the thrust regime. This is because of
the influence of the horizontal deviatoric stress to increase damage distribution with similar injection
pressure schedules. Injection pressure is similar to the case of thrust regime, but tangential stress creates
larger failure in the maximum far-field stress direction around a wellbore in the normal regime. However,
in the thrust regime the contribution of tangential stress is weak and induced vertical stress cause it to fail.
Results indicate that larger damage and injection volume can be predicted with the same injection
pressure where the minimum far-field stress is horizontal than in the thrust regime. The thrust regime
needs a higher injection pressure schedule to create a fracture plane with given far-field stress condition.

Damage distribution and injection volume have been studied in the same injection pressure schedule with
different far-field stress (Fig. 7.18). The conditions for far-field stress and permeability are Sy, max = 20
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MPa, Sh. min = 10 MPa, S, = 30 MPa,
ki, mx = 10x10° md, kj mn = 1x10° md, k& = 0.1x10° for the normal regime and
S, max = 40 MPa, S, min = 20 MPa, S, = 30 MPa, ky, max = 103107 md, &y, pin = 1x107 md, &, = 0.1x107 for
the strike-slip regime. The injection pressure is scheduled as step increases from 5 MPa to 32.5 MPa
every 1 hr for both cases. Injection volume is 473 L with 3 day injection for the normal regime and 121 L
also with 3 day injection for the strike-slip regime. Deviatoric stress for the strike-slip regime is 10 MPa,
whereas it is 5 MPa for the normal regime. Larger damage and injection were observed in the normal-
regime than in the strike-slip regime. Previous comparison shows the influence of deviatoric stress in
damage distribution with the same initiation of rock failure. However, in this comparison, the failure
beginning time is different in the normal and strike-slip regimes with same injection pressure schedule.
Injection-induced damage propagation begins later in the strike-slip regime because of higher
compressive horizontal stresses. This analysis shows that the roles of horizontal deviatoric stress and
failure initiation pressure aare important to predict injection volume and fracture propagation. This
analysis indicates that fracture propagation results from the complex interactions of the fluid injection
pressure, far-field stress, permeability, and rock strength.

PRI Al Wi  nineeeggez 7

al \

‘%

7
Normal Regime \ i Thrust Regime

' 14 m

Fig. 7.17. The comparison of damage distribution under different str;ssrfglmes .(2-1) normal regime, 968
L for 3 days (b) thrust regime, 340 L for 3 days.

(a) (b) i
a/:;;‘-"
12m 7 mI)(\,
| 8m
Normal Regime . ijike~5|ip Regime

Fig. 7.18. The comparison of damage distribution under different stress regimes. (a) normal regime, 473
L for 3 days (b) strike-slip regime, 121 L for 3 days.
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7.4 Heterogeneous Microseismicity Simulations

In this section, we consider induced microseismicity simulations with damage evolution. We assumed
that seismic events are generated when the effective rock stress reaches the level prescribed by the failure
criterion (Mohr-Coulomb) as fluid infiltrates the rock and stresses change. The simulation mesh is the
same as in the previous homogeneous 3D simulations. However, heterogeneities of modulus and
permeability are considered using Weibull distribution functions. The initial modulus and permeability
distributions are illustrated in Fig. 7.19. As before, three different far-field stress regimes were tested: one
with horizontal stress as the minimum, another with vertical stress as the minimum, and the other with
vertical stress as the maximum. To investigate the permeability and far-field stress relationship, we also
considered two different permeability models: (1) reservoir permeability properties are highly related to
the far-field stress (anisotropic permeability), and (2) permeability is independent of the far-field stress
(isotropic permeability). Details of reservoir properties are described in Table 7.2. In the case of
anisotropic permeability, we simply assumed a permeability that is 10 times higher in the maximum in-
situ stress direction and 10 times lower in minimum in-situ stress direction.

Fig. 7.19. Initial heterogeneous modulus which ranges from 4 GPa to 16 GPa in (a) and (b), and
permeability distribution (0.004 to about 0.016 md) is presented in (c), (d).
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Table 7.2. Reservoir properties used in 3D heterogeneous simulations.

Case 1 Case 2 Case3 Case4 Case5 Caseb6
Stress . .
. Strike-slip Thrust Normal

regime
E 10 GPa (n=1.5) 10 GPa (n=1.5) 10 GPa (n=1.5)
k. [md] Kmax=10%107 Kmax=10%10"" Kmax=1%107
(=1.5) 10° Kmin=0.1x10" | 107 Knin=1.0x107 | 107 Kpnin=0.1x10"

: k=1.0x107 k,=0.1x10 k,=10x10"
Cy 100 MPa (n=2) 100 MPa (n=2) 100 MPa (n=2)
Ty 5 MPa (n=2) 5 MPa (n=2) 5 MPa (n=2)

The resulting seismic events distributions are plotted in Figs. 7.20 to 7.22 for different reservoir
permeabilities in different in-situ stress regimes. Fig. 7.20(a) shows the seismic events in time for the
conditions of isotropic permeability with minimum horizontal far-field stress. Fig. 7.20(b) shows a plot
for the same far-field stress conditions and injection rate but with anisotropic permeability. The seismic
events are scattered broadly when permeability is isotropic since there are no significant differences in
fluid sweep velocities in the x-, y-, and z-directions. However, in the case of anisotropic permeability,
seismic events are highly localized because fluid invasion is focused in the maximum far-field stress
direction, and this leads to localized seismic events. Same conditions are simulated for the minimum
vertical far-field stress case (Fig. 7.21). Similarly, broad distributed seismic events occur under isotropic
permeability conditions, and scattered localized events are observed in the anisotropic permeability case.
Vertical stress as the maximum has been plotted in Fig. 7.22. Note that same injection conditions are used
for both stress regime simulations. Results show that for the normal faulting case, the induced seismicity
does not propagate but stabilizes earlier because vertical stress is higher than the thrust regime, where a
higher injection rate is needed to generate tensile failure for fracture propagation in the vertical direction.
It is worth pointing out that the smaller gray points show the distribution of micro-seismic events as a
result of the far-field stresses and might be interpreted as background values.
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Fig. 7.20. Predicted micro-seismic events after 10 hrs of pumping for the case of horizontal stress as the
minimum far-field stress: (a) isotropic permeability and (b) anisotropic permeability.
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Fig. 7.22. Micro-seismic events after 6 hrs of pumping for the case that the vertical stress is the maximum
far-field. (a) isotropic permeability and (b) anisotropic permeability.

The influence of cooling has been compared in Fig. 7.23. Initial reservoir temperature is assumed 200°C
and injection cold water temperature is 50°C. The heat transfer by conduction and convection between the
fluid flow and hot reservoir causes tensile stress, which creates larger induced microseismic events. For
the cooling case, the fluid contact in an early time step contributes significantly to tensile stress, resulting
in larger failure than in the isothermal case. Results show that larger initial microseismic events occurred
for the case of cooling [Fig. 7.23(a)] than in the isothermal condition [Fig. 7.23(b)]. Since the heat
transfer rate is slower than fluid transport, the effects of thermal stress are important for the long-term
fluid injection (3 to 12 months). However, the thermal stress also plays an important role in short-term
fluid injection (3 to 6 days) to estimate the microseismic event propagation since the cooling that creates
more tensile stress in an early time step on the wall of the wellbore results in larger rock failure with the
same fluid injection.
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Fig. 7;23. Comparison of microseismic events after 65 hrs of pumping for the case of isothermal
condition and cooling condition. (a) isothermal and (b) cold water (50°C) to the hot reservoir (200°C).

7.5 Conclusions

Damage mechanics and stress-dependent permeability models have been applied to injection induced
stress variations in thermo-poroelasticity. The parameters for strain-stress and strain-permeability can be
obtained by triaxial simulations comparing the experimental results. The modulus and permeability
changes caused by rock failure influence the stress distributions, which in turn affect the impact of
damage propagation. The results show that the failure plane is perpendicular to the minimum far-field
stress distribution. Cold water injection in the normal or strike-slip regime shows penny-shape
propagation which can capture the hydraulic fracturing. The study of injection volume indicates that the
influence of far-field stress, injection pressure schedule, and fracture initiation pressure can be used to
predict the drainage volume and fractured area related to fluid injection. We considered a heterogeneous
modulus and permeability in microseismicity simulations and compared the effect of permeability
anisotropy. The propagation of microseismic events is localized when the reservoir permeability is
anisotropic because of fluid path localizations. The results of this study indicate that the finite element
method with damage can be used to model reservoir stimulation and induced seismicity.

8. Three-Dimensional Thermo-poromechanical Analysis of
Microseismicity

Three-dimensional injection induced damage/fracture propagation at well scalewas presented in the
previous section. To simulate microseismic event propagation in larger space, it is efficient to consider
the point source injection scheme because injection well radius (~0.1 m) is negligible compared to
reservoir size. Point source is localized fluid and heat flux without geometry considerations for
mathematical approximation to simplify the problem. The development of numerical implementation of
the point source method was described in Section 3.1.3.

We performed three-dimensional (3D) simulation with point source fluid loading. We used an 8-node
hexahedron element for displacement, pressure, and temperature, and the total element number used in
this simulation is 32,000. Reservoir size is 1 km x 1 km % 0.5 km, and we assume that the depth of
injection is 2.5 km and the injection interval is 25 m at the middle point of the reservoir (Fig. 8.1). We
also considered gravitational force to the z-direction which has gradual change for vertical stress and
maximum and minimum horizontal far-field stresses are constant to the vertical direction. Three different
types of far-field stress regimes are studied with same injection rate to analyze the influence of far-field
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stresses as shown in Table 8.1. Newberry geothermal reservoir stress regimes are used for strike-slip and
normal regime. For thrust regime, we tested Cooper basin geothermal reservoir stress regime. Initial
reservoir properties for modulus and permeability are generated using Weibull distribution functions.

To apply gravity in the simulations, we used the measured reservoir data as initial pore pressure and far-
field stress for initial background stresses that increase with depth. The other method to apply gravity in
the simulation is by applying the force to the z-direction in each element on a basis of rock density data.
We performed the simulations based on reservoir stress data. The progress of reservoir stress distribution
during fluid injection can be computed by summing the induced stress variation and the background far-
field stress field in each Gaussian point of the element.

Fig. 8.2 shows initial heterogeneity with average modulus of 10 GPa and average permeability of 0.01 md.
The injection schedule and pressure changes are plotted in caused by rock failure and the propagation of
the damaged area.

SH, max

sh, min m 1000

Fig. 8.1. Mesh used in three-dimensional simulation; Sy m.x represents maximum horizontal stress, Sy, min 1S
the minimum horizontal stress, and S, is the vertical stress.

Table 8.1. Reservoir properties used in 3D simulations.

Case 1 Case 2 Case 3
(Strike-slip) (Thrust) (Normal)
SH. max 70 MPa 95 MPa 48 MPa
Sh. min 46 MPa 70 MPa 36 MP
S, 60 MPa 60 MPa 60 MPa
K1, max 1x10” md 1310 md 1x10 md
Kb min 1x10> md 1x107 md 1x10 md
ky 0.1x10” md 0.1x10” md 0.1x10” md
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Fig. 8.2. Initial heterogeneous modulus (a) and permeability (b).
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Fig. 8.3. Injection rate and injection pressure are plotted in normal, strike-slip, and thrust regime.

8.1 Microseismicity in Strike-Slip Regime

Three-dimensional injection-induced stress and permeability change were performed under a strike-slip
regime (horizontal far-field stresses are the maximum and the minimum, and vertical stress is
intermediate) for a Newberry geothermal reservoir. Fig. 8.4 describes the injection-induced microseismic
events with respect to time. We assumed that microseismic events occurred if the effective rock stresses
reached the shear or tensile failure criterion. Change of color represents the time scale from the initial
time step to 72 hrs. Results show that seismic events are propagated irregularly because of the
heterogeneity from fluid injection, but a cross-sectional view shows that the seismic event propagation
follows the maximum horizontal stress direction as shown in Fig. 8.5. The different mode of rock failure
is plotted in Fig. 8.6, where the red denotes the shear failure and the blue is tensile failure caused by the

101



stimulation. The distributions of S1-S3 (maximum principal stress — minimum principal stress) and
minimum far-field stress distributions are plotted in Fig. 8.7 and Fig. 8.8. The stress distribution along the
vertical direction increases as the depth increases because of the gravity in the far-field stress. The results
of stress distribution show that fluid injection decreases the effective stress level, which results in shear
and tensile failure and stress relaxation at the microseismic event location. Pore pressure distributions are
plotted for 1-hr and 3-day stimulations in Fig. 8.9; it dispersed nonhomogeneously due to the
heterogeneous permeability.

800 900 1000

Fig. 8.4. Micro-seismic events after 3 days pumping for the case of strike-slip regime.
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Fig. 8.5. Cross-sectional views for strike-slip regime. (a) represents top view, (b) is maximum directional
side view, and (c) is minimum directional side view.
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Fig. 8.6. Injection-induced failure analysis. Blue represents tensile failure and red shows shear failure.

(a) 1 hr injection (b) 3 day injection
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Fig. 8.7. The difference of maximum and minimum principal stress distribution for 1 hr injection (a) and
after 3 days pumping (b).
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Fig. 8.8. Minimum principal stress distribution for 1 hr injection (a) and after 3 days pumping (b).
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(a) 1 hrinjection (b) 3 day injection
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Fig. 8.9. Pore pressure distribution for 1 hr injection (a) and after 3 days pumping (b).

8.2 Microseismicity in Thrust Regime

In the Cooper Basin geothermal reservoir, the vertical far-field stress is the minimum (thrust regime). It
has been tested with the same heterogeneity and injection rate schedule as performed in previous strike-
slip regime. Injection-induced seismic events in a 3-day injection schedule are plotted in Fig. 8.10.
Microsesimic events did not happen and the formation stabilized after 40 hrs because the rock failure did
not occur with the given injection rate and far-field stress. The shape of the seismic-event clouds is
spherical (Fig. 8.11) and the number of events is less than in the strike-slip regime case because the
compressive far-field stress in the thrust regime case is higher; therefore, the possibility of rock failure
was less with the same injection rate. Most seismic events were generated by shear failure in this
simulation. Stress distributions for maximum and minimum principal are illustrated in Figs. 8.13 and 14.
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Fig. 8.10. Micro-seismic events after 3 days pumping for the thrust regime.
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Fig. 8.11. Cross-sectional views for thrust regime. (a) represents top view, (b) is maximum directional
side view, and (c) is minimum directional side view.

s,

Fig. 8.12. Injection-induced failure analysis. Blue represents tensile failure and red shows shear failure.
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Fig. 8.13. The difference of maximum and minimum principal stress distribution for 1 hr injection (a) and
after 3 days pumping (b).

(a) 1 hrinjection - (b) 3 day injection

Fig. 8.14. Minimum principal stress distribution for 1 hr injection (a) and after 3 days pumping (b).

8.3 Microseismicity in Normal Regime

One of the most common stress regimes in reservoirs is the normal stress regime. In this stress regime,
vertical fracturing is observed and the microseismic event shape is ellipsoidal because of the stress
differences in horizontal far-field stress. Injection-induced seismic events are illustrated in Fig. 8.15.
Small dots represent initial shear failure caused by natural compressive far-field stress. Cross-sectional
views in Fig. 8.16 show that microseismic events are propagated to the maximum horizontal far-field
stress direction and also to the vertical far-field stress direction. The pattern of events cloud is a penny
shape, which is similar to hydraulic fracturing, but the events can be observed broadly since microseismic
events include not only microcrack but also macrocrack generation by fluid injection. Shear and tensile
failure modes are plotted in Fig. 8.17, which shows that shear failure is randomly observed at the bottom
side because of the increase in vertical far-field stress due to gravity, and also induced shear and tensile
failure are observed because of water injection. Changes in principal stress distributions and pore pressure
distributions are plotted in Figs. 8.18 to 8.20.
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Fig. 8.16. Cross-sectional views for normal regime. (a) represents top view, (b) is maximum directional
side view, and (c) is minimum directional side view.
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Fig. 8.17. Injection-induced failure analysis. Blue represents tensile failure and red shows shear failure.

(a) 1 hr injection (b) 3 day injection

Fig. 8.18. The difference of maximum and minimum principal stress distribution for 1 hr injection (a) and
after 3 days pumping (b).

(a) 1 hrinjection (b) 3 day injection

Fig. 8.19. Minimum principal stress distribution for 1 hr injection (a) and after 3 days pumping (b).

108



(a) 1 hrinjection (b) 3 day injection

Fig. 8.20. Pore pressure distribution for 1 hr injection (a) and after 3 days pumping (b).

8.4 Discussion of Microseismicity in Three Different Stress Regimes

We presented microseismic event propagation under three different stress regimes (strike-slip, thrust,
normal regime) with the same injection schedule and the same distribution of heterogeneity of modulus
and permeability. Results show that the patterns of microseismic events are penny shaped for strike-slip
and normal regimes. However, we observed differences in the event locations and times with changes in
far-field stress conditions. Especially in the normal regime case, initial rock failure increased as the depth
increased, and it also influenced the injection induced microseismic event propagation. The difference of
seismic events with normal and strike-slip regimes is compared in Fig. 8.21. For the thrust regime in the
simulation, it the distance of events from the injection source is relatively shorter than in the strike-slip
and normal regimes because of the effective stress contributions toward shear and tensile failure. This is
also observed in well-scale simulation (Section 7) for the thrust regime.

(a) Normal Regime (b) Strike-Slip Regime

Fig. 8.21. Comparison of seismic events in normal and strike-slip regimes.

We tested the influence of permeability anisotropy in a thrust regime that had 10 times higher
permeability in the horizontal directions and 10 times lower permeability in the vertical directions. This
assumption is accompanied by the experimental results that the maximum fluid path increases
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proportionally as the deviatoric stress increases in rock. Results in Fig. 8.22 show that injection-induced
microseismic events are horizontally scattered. Note that small dots represent initial rock failure in the
reservoir. Cross-sectional views in Fig. 8.23 show the microseismic events localized to the horizontal
direction by fluid injection. This result indicates that the fluid flow path highly influences the stress
distribution, and it causes the shape of the rock failure and microseismic events. Permeability distribution
for the initial injection and after 3 days for the thrust regime is described in Fig. 8.24. The rock failure
induced by injection increased permeability and triggered microseismicity.
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Fig. 8.22. Microseismic events after 3 days pumping in the highly anisotropic permeability case.
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Fig. 8.23. Cross-sectional views for thrust regime. (a) represents top view, (b) is maximum directional
side view, and (c) is minimum directional side view.
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Fig. 8.24. Cross-sectional views for permeability distribution. (a) initial permeability distribution, (b)
permeability distribution after 3 days injection.
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8.5 Influence of Deviatoric Stress

In this section, we present the results of microseismic event propagation under three stress regimes that
show different event propagation with the same injection schedule and the same distribution of
heterogeneity. This indicates that the far-field stress plays an important role in induced seismicity. We
studied the influence of deviatoric far-field stress in microseismic events propagations as changing
horizontal deviatoric stresses. The simulation conditions for this study are presented in Table 8.2, in
which horizontal far-field stress is changed with same vertical far-field stress (strike-slip regime).
Permeability anisotropy is considered so that the vertical direction has 10 times lower permeability.

Table 8.2. Reservoir properties used in the simulations for stress regime and permeability anisotropy.

Case 1 Case 2 Case 3
S, max 55 MPa 60 MPa 65 MPa
Sh. min 45 MPa 40 MPa 35 MPa
S, 50 MPa 50 MPa 50 MPa
K, max 1x10 md 1x10” md 1x102 md
Kn min 1x10” md 1x10” md 1x102 md
ky 0.1x10” md 0.1x10” md 0.1x102 md

In contrast with the result for the thrust regime, the events cloud scattered horizontally. In the small
deviatoric stress reservoir condition, the fluid path has the dominant effect in microseismic event
propagation since permeability anisotropy in horizontal direction is 10 times higher than in the vertical
direction. However, if the horizontal deviatoric stresses increase as in cases 2 and 3, the influence of
horizontal deviatoric stresses becomes significant as the deviatoric stresses increase. Figs. 8.25 to 8.27
show that microseismic events propagate to the maximum far-field stress direction, and the cloud shape is
sharper in the maximum horizontal far-field stress direction as the deviatoric stress increases. The results
indicate that permeability anisotropy is critical for event propagation when the deviatoric stress is not
severe, and also the far-field stress influences the microseismic pattern as the deviatoric stress increases.

(a) ¥ SH, max (b)
lS\f
—— yi —
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Fig. 8.25. Cross-sectional views for the case of 5 MPa as deviatoric stress after 3 day injection. (a)
represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and red
dots are shear failure.
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Fig. 8.26. Cross-sectional views for the case of 10 MPa as deviatoric stress after 3 day injection. (a)
represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and red
dots are shear failure.

(a) | sH, max (b)
LSV
Sh min SH max

Fig. 8.27. Cross-sectional views for the case of 15 MPa as deviatoric stress after 3 day injection. (a)
represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and red
dots are shear failure.

8.6 Anisotropic Permeability

As we have seen in previous results, fluid path is one of the key factors for microseismic event analysis.
In this simulation, we studied the influence of permeability anisotropy. Table 8.3 shows different
permeability anisotropy, which increases the permeability in the direction of the maximum horizontal far-
field stress. Note that vertical permeability is lower than horizontal permeability and only the values of &y,
max are changed and far-field stress conditions are the same.

Table 8.3. Input parameters for stress regime and permeability anisotropy.

Case 1 Case 2 Case 3
S, max 60 MPa 60 MPa 60 MPa
S 40 MPa 40 MPa 40 MPa
S 50 MPa 50 MPa 50 MPa
K, max 2x10” md 5x107 md 10%10° md
Kn,min 1x10”? md 1x10”? md 1x102 md
ky 0.1x10” md 0.1x10” md 0.1x102 md
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Figs. 8.28 to 8.30 show clouds of seismic events for different permeability anisotropy after 3 day injection.
The shape of the microseismic event clouds becomes narrow and sharper as the permeability anisotropy
increases in the maximum direction because of the localization in the fluid path. Note that few events
appear in the vertical direction because vertical permeability is 10 times lower than horizontal
permeability.

(a) | sH, max (b)
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Fig. 8.28. Cross-sectional views for the case of &y, max = 2%ky, min after 3 day injection. (a) represents top
view and (b) is minimum directional side view. Blue dots represent tensile failure and red dots are shear
failure.

(a) | s e (b)

Fig. 8.29. Cross-sectional views for the case of ky, max = 5%ky, min after 3 day injection. (a) represents top
view and (b) is minimum directional side view. Blue dots represent tensile failure and red dots are shear
failure.
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Fig. 8.30 Cross-sectional views for the case of ki max = 10xky, min after 3 day injection. (a) represents top
view and (b) is minimum directional side view. Blue dots represent tensile failure and red dots are shear
failure.

8.7 Microseismic Simulations in Soultz-Sous-Forets Stress Regime

We performed microseismicity simulation with a Soultz-Souls-Forest stress regime. One of the most
important characteristics in the GPK-1 and GPK-2 stress regime is a transition of stress regime from a
normal regime to a strike-slip regime as the reservoir depth increases, as shown in Fig. 8.31. Three
different stress regimes have been tested: the normal regime (1.25 km — 1. 75 km), the transition (2.75 km
—3.25 km), and the strike-slip regime (4.25 km — 4.75 km). We assumed that there are no natural fracture
and fault in this simulation.
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Fig. 8.31. Change of far-field stress with respect to depth in Soultz-Sous-Forets geothermal reservoir.

Microseismic events propagation with time and failure mode at 1.25 km—1.75 km are plotted in Fig. 8.32
and Fig. 8.33 (normal regime). Microseismicity propagated perpendicular to the minimum horizontal far-
field stress direction. Transition and strike-slip regime cases are also plotted in Figs. 8.34 to 8.37. The
minimum far-field stress does not change with depth variations as the minimum; therefore, microseismic
events are propagated normal to the minimum far-field stress directions. Both shear and tensile failure
from fluid injection were observed. The comparison of microseismic events propagation as the depth
increase is illustrated in Fig. 8.38.
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Fig. 8.32. Cross-sectional views for the normal regime (1.25km — 1.75km) after 3 day injection. (a)
represents top view and (b) is minimum directional side view.

(b)

Fig. 8.33. Shear and tensile failure plot for the normal regime (1.25km — 1.75km) after 3 day injection. (a)
represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and red
dots are shear failure.
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Fig. 8.34. Cross-sectional views for the transition regime (2.75km — 3.25km) after 3 day injection. (a)
represents top view and (b) is minimum directional side view.
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Fig. 8.35. Shear and tensile failure plot for the transition regime (2.75km — 3.25km) after 3 day injection.
(a) represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and
red dots are shear failure.
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Fig. 8.36. Cross-sectional views for the strike-slip regime (4.25km — 4.75km) after 3 day injection. (a)
represents top view and (b) is minimum directional side view.

Fig. 8.37. Shear and tensile failure plot for the strike-slip regime (4.25km — 4.75km) after 3 day injection.
(a) represents top view and (b) is minimum directional side view. Blue dots represent tensile failure and
red dots are shear failure.
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(a) Depth 1.25~1.75 km (normal regime)
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Fig. 8.38. Comparison of microseismic events propagation under different depth. (a) injection depth is 1.5
km in normal regime (b) 3 km in transition regime, and (c) 4.5 km in strike-slip regime.

We also performed injection-induced microseismic event propagations in existing natural fractures. The
mesh used in this simulation is 250 mx250 mx250 m with an 8-node hexahedron element and one
simplified, circular natural fracture (representing the conceptual model of a Soutz-Sous-Forets geothermal
reservoir). The natural fracture is inclined by 20° from the vertical direction, and its fracture radius is 50
m (Bruel, 2002). To describe the natural fracture in finite element modeling, we assumed that is modulus
is 10-5 times lower (~0.1 MPa) and permeability is 106 times higher (~103 md) than an intact granite
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reservoir, and its cohesive strength is zero in the naturally fractured zone. The mesh for numerical
modeling is presented in Fig. 8.39. Fig. 8.40 shows the initial natural fracture configuration and initial
distribution of modulus. The stress regime in this simulation is a normal regime with SH,max = 50 MPa,
Sh,min = 30 MPa, and Sv = 60 MPa; the injection rate is 24 L/sec.
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Fig. 8.40. Natural fracture configuration is illustrated in (a), and initial distribution of modulus properties
are plotted in (b).

The results for microseismic event propagation with time and pore pressure distribution after a 3 day
injection schedule are presented in Fig. 8.41. The microseismic event propagation in Fig 8.41(a) shows
almost the same growth rate in the up and down direction because the influence of gravity in far-field
stress, initial pore pressure, and fluid gravity is ignored in this simulation. Note that the microseismic
event propagation is fast inside the natural fracture in early time steps because of quick fluid movement to
the natural fracture, and then there is a small delay to generate propagation of new events. A possible
reason is that it needs more pore pressure to propagate the rock failure in the intact rock since rock
properties and permeability are discontinuous between the natural fracture and the intact rock. The
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comparison of numerically obtained microseismicity with real field date is presented in Fig. 8.42. The
numerical simulation that assumed a single large fracture can describe the main features of the
experimental data in Soultz-Sous-Forets. However, the distribution of microseismicity between the
simulation and field data is different. To improve the numerical modeling for microseismicity, it is
necessary to consider not only large main fracture but also other factors that can influence
microseismicity, such as localized permeability distribution, modulus, and rock strength in small natural
fractures around the injection area.

Fig. 8.41. Microseismic event propagation and pore pressure distribution with fluid injection to the
natural fracture. (a) microseismic events propagation with time (b) pore pressure distribution after 3 days
injection.

Fig. 8.42. Comparison of numerical results for injection-induced microseismicity with experimental data.
(a) numerical results assuming the injection in single large fracture (b) experimental data at GPK1-well
in Soultz-Sous-Forets geothermal reservoir.

8.8 Conclusions

The influence of far-field stress and permeability anisotropy has been studied through a thermo-hydro-
mechanical model with damage evolution. Point source injection was applied to simulate a large reservoir
efficiently. A fully-coupled finite element method with damage mechanics provided the tools to analyze
injection induced microseismicity. Results show that the far-field stress and permeability anisotropy
influence the stress distributions, which in turn impact microseismic event propagations. The event
propagation is perpendicular to the minimum far-field stress distribution. Cold water injection in normal
or strike-slip regime leads to vertical propagation, which can capture the effects of hydraulic fracturing,

120



but the event cloud shape is also related with permeability anisotropy when deviatoric stress is small.
Thermal stress plays an important role for predicting the stress distribution by cold water injection and
triggered microseismicity in early time steps. The pattern of microseismic events becomes elliptical and
localized when the reservoir permeability anisotropy increases. Injection induced microseismicity in
single large, fractured reservoirs also has been presented. Results show that event propagations are
triggered quickly inside the fracture because of low modulus and higher permeability in natural the
fracture. Comparing the simulated microseismicity with real data for Soultz-Sous-Forets qualitatively
showed that numerical results with the assumption of a single large fracture can capture the main
distribution of microseismicity in field experimental data.

9. Conclusions and Recommendations

9.1 Conclusions

Thermo-poro-mechanical and chemo-thermo-poro-mechanical models for the rock response to fluid
injection and drilling mud infiltration were developed using the finite element method. The rock failure
and damage propagation were modeled by considering the nonlinear strain-stress behavior of rock.
Damage mechanics and stress-dependent permeability were also implemented into the finite element
model. The model has been applied to plain-strain wellbore stability analysis in shale to study the effects
of solute transport, heat transfer, and stress distribution around a wellbore. Also, a thermo-poro-
mechanical process with damage mechanics and stress-dependent permeability was applied to two- and
three-dimensional damage/fracture propagation and microseismicity. Especially for three-dimensional
simulation, both well-scale and reservoir-scale numerical modeling was presented.

Finite element simulation of triaxial compression behavior of rock was carried out to find out optimum
damage mechanics material parameters which can describe microvoid and microcrack growth and crack
propagation. The hardening and softening behavior of rock and strain-permeability behavior under
compression were compared with the experimental results. We described the influence of material
parameters to determine the peak stress and residual strength regime.

The alteration of modulus and permeability with rock damage has been studied. The results show that the
discontinuity of modulus and permeability causes retardation of fluid movement between the high
permeability damaged and low permeability undamaged rock. Stress relaxation by modulus reduction in
the damaged zone also plays an important role in propagation of damage and leads to the stress
concentration between the interface of damaged and undamaged rock.

In shale instability analysis, if mud salinity is lower than the formation, it enhances rock damage by shear
and tensile failure around a wellbore because of osmosis effects between the drilling mud and shale
formation. Cooling of the rock causes more tensile hoop stress and reduces the pore pressure around a
wellbore than in isothermal conditions. Results show that thermally induced tensile stress contributes to
stabilize the shear failure in the minimum far-field stress direction; however, it enhances tensile failure
potential in the maximum far-field stress direction.

We studied distribution of two- and three-dimensional injection-induced damage propagation
microseismic events using the fully-coupled thermo-poroelastic finite element methods. To simulate the
rock mass more realistically, heterogeneous modulus and permeability were implemented in the
numerical modeling of microseismic events. We assumed that the rock properties follow a statistical
distribution generated using the Weibull distribution function. Both well-scale and reservoir-scale
simulation have been developed for the analysis of injection-induced rock damage and microseismic
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event propagation. We found that deviatoric far-field stress and permeability anisotropy contribute to
predict the localization of microseismic event propagation. The results show that the shape of injection-
induced microseismic events becomes elliptical and sharper as the deviatoric far-field stress and
permeability anisotropy increase. Also we illustrated that the microseismic events are localized when we
use rock failure criteria for comparing the pore pressure criticality.

Results show that a finer mesh provides more accurate numerical solutions but there are limitations of
computational speed and memory storage to solve large-scale, fully-coupled problems. To optimize the
mesh size and element numbers, we used a finer mesh around the wellbore and saw significant changes of
pore pressure, temperature, and solute mass concentration. For the wellbore stability problem, the system
domain size is relatively small compared to the injection simulation, so we used a much finer mesh
around a 2-meter radius zone around the wellbore. However, for the injection simulations, damage
propagation in the maximum direction is longer than wellbore stability problem. So that a fine mesh is
used not only around a wellbore but also in the areas parallel to the maximum far-field stress direction.
There is a possibility of unrealistic large damage propagation if the mesh size is too large to accurately
compute the stress localizations within elements.

9.2 Recommendations

In this work, we considered single-phase water injection and a mechanical damage model. The
applications of heterogeneous reservoir modulus and permeability have been used to depict more realistic
geomechanics simulations. In this work, a continuous stochastic model approach was used to simulate
heterogeneous reservoirs. However, in reality geological media have a lot of discrete features such as
fissures, faults, and natural fractures. To simulate these more realistically, we recommend introducing a
combined approach of stochastic and discrete modeling. For example, we can model the natural fracture
and faults by discrete modeling and other regions can be described with continuous stochastic modeling.
Finer mesh will be better for near injection and production well, and coarse mesh is recommended for the
regions where fluid injection and production do not cause much variation in stress, etc. The choice of
finer and coarser mesh sizes is relative to the total reservoir size that needs be simulated, the numerical
accuracy requirements for each case, and the variations of numerical variables by boundary conditions
such as injection rate, well pressure, production rate, and far-field stress. The mesh dependency problem
is more significant when we consider the nonlinear stress-strain behavior. Fig. 9.1 shows a typical
example of damage/fracture trajectory with different scales of mesh size. We observed that damage
distributions are localized as mesh density increases with the same loading conditions. Particularly for the
simulation of damage propagation, the loading condition and post-peak response contributes to mesh
density (Abu Al-Rub and Kim, 2010). As the mesh size decreases, average variation of displacement
decreases during the damage propagation because of damage localization in finer mesh. Therefore, it is
necessary to use finer mesh in finite element modeling for the nonlinear behavior of rock and stress
dependent permeability.
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Fig. 9.1. Simulated crack propagation for three mesh densities: (a) coarse, (b) medium, and (c) fine (Abu
Al-Rub and Kim, 2010).
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10. Nomenclature

a Compressibility

A Cross-sectional area

AP Damaged cross-sectional area

B Skempton’s pore pressure coefficient
cr Fluid diffusion coefficient

CF Cohesive strength

Cp Specific heat capacity

cr Thermal diffusivity

c Solute concentration

d Damage variable

D’ Solute diffusivity

E Elastic modulus

f loading pressure

fe Maximum compressive strength

Ser Residual compressive strength

o Residual tensile strength

fq fluid injection rate

G Shear modulus

h Depth between bottom and surface
J Fluid flux

J Solute mass flux

k Permeability

ko Initial permeability

kit max Maximum horizontal anisotropic permeability
ki, min Minimum horizontal anisotropic permeability
k, Vertical anisotropic permeability

K" Thermal conductivity

K Elastic stiffness matrix

J Jacobian matrix

M Biot’s modulus

N Shape function vector

p Pore pressure

Do Initial pore pressure

Py Isotropic far-field stress

s The variables of sy

S0 Mean value of the corresponding of s
So Finite shear stress

So Deviatoric component in far-field stress
Sy Finite shear stress
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SH, max
Sh, min

Maximum horizontal far-field stress
Minimum horizontal far-field stress
Vertical far-field stress

Time

Temperature

Initial temperature

Displacement of x-direction
Displacement of y-direction
Displacement of z-direction
Displacement of z-direction at the surface
Biot’s constant

Volumetric thermal expansion coefficient of fluid
Volumetric thermal expansion coefficient of solid
Thermal expansion coefficients

Material parameter for stress-dependent permeability
Strain

Maximum compressive strain

Residual compressive strain

Residual tensile strain

Volumetric strain

Porosity

Friction angle

Fluid viscosity

Parameter for time discretization
Fluid viscosity

Total mass density

Poisson ratio

Undrained Poisson’s ratio

Total stress
Effective stress

Maximum principal stress
Minimum principal stress

Stress which has the relationship with strain in linear elasticity
Swelling coefficient

Fluid content

125



Sa

Increasing factor for permeability increase after failure

Reflection coefficient
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12. Appendix A

Derivation of finite element discretization for fully coupled chemo-
thermo-poroelasticity

1. Field equations for displacement, pore pressure, solute mass concentration, and temperature

(K+§JV(V-U) +GV2u + m(a'Vp —;(VCS +71VT)= 0 (A.1)
a(V-u)+ B p +Z'CS+72T—£VZP+£LDV2C2 =0 (A.2)
H H
¢C° —D3v2CS —cSpTvir=0 (A.3)

T-c'V’T =0 (A4)

2. Weight residual method
The governing equation can be discretized from the following examples. A typical example for
solving the differential equation is
Lw)=f (A.S5)
where L is the differential equation as a function of u, and f'is the known function of the
independent variables.

The solution of u has weak formulations:

N
u(x) = Uy (x)= X c;¢;(x)+p(x) (A.6)
j=1
If we substitute U, (x) in the left hand side of Eq. A.5, the residuals can be obtained by
L(Uy) - f, which is called the residual of the approximation.

]:
The parameter ¢, is solved by setting residual R to vanish by integration in the weighted-residual

method:

[yi()R(x,C;)dQ  (i=123,.N) (A.8)
Q
where y,(x) are the weight functions and the most widely used weighted-residual method can be

N
R=Uy(x)-f =LL zlc,¢,-<x)+¢o(x)]—f #0 (A7)

summarized as
Galerkin’s method: y; = ¢;
Petrov-Galerkin method: y; = ¢;

Least squares method: y; = S—R

¢
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3. Application of Galerkin’s method for the variables
The continuous variables u, p, C°, and T are approximated by the nodal values through the shape
functions as

i=l1 i=1 i i=l1

We can substitute the nodal variables to the field equations by applying Galerkin’s residual method.

wQ

For solids,

(G Sl a6 I F Sl ao

(k2] o F 2l v, T2, I} -

tile T e Jes oo T £ [Nyl an=o

For fluids,
af I SV itaop 1, F [N, Jolaos

Q

X gf)[NcS]T[NcS ]{CS}dQJf?’zgf)[NT]T[NT]{T}_

2 2
ﬁJ[NP]Té_z[NP]{p} dQJrﬁLD J[NCS]TG_Z[NCS Ip} d=0
Ho ox "o Ox

For solute mass concentrations,

¢£[NCS]T[NCS]{CS}dQ_DSg![NCS 82 [ CS]{C }

- e oo

For temperature,

2

T - T r 0

[[N7] [NT]{T}dQ ~c" [Ny} —[Np T =0
Q Q ox
Integration by parts for the above three equations leads to
K, U+Ap-WC+VT=0
ATU+SP+MC+NT+Hpp+DyCs =0
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MES +DDGS +QD T =fu

RT+UT=0
where :
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Chapter 2. Geomechanical Parameter Estimation and Uncertainty
Quantification by Discrete Micro-Seismic Data Integration with
Ensemble Kalman Filter

1. Introduction

The EnKF has been widely established as a practical data integration method for large-scale nonlinear
dynamical systems and has been received favorably by the scientific community in a range of applications
including hydrology, meteorology and oceanography (Evenson et al., 1996; Houtekamer and Mitchell,
1998; Madsen and Canizares, 1999), groundwater model calibration (Chen and Zhang, 2006; Franssen
and Kinzelbach, 2008; Nowak, 2009; Schoniger et al., 2011), and oil reservoir characterization (Naevdal
et al., 2006; Wen and Chen, 2005; Jafarpour and McLaughlin, 2009; Aanonsen et al., 2009; Jafarpour and
Tarrahi, 2011). Evensen (2009) reviews the EnKF formulation and its wide range of applications.
Ehrendorfer (2007) presents a review of important issues that are encountered in implementing the EnKF.
Despite the existing limitations in operational implementation of the EnKF for more complex (non-
Gaussian) and challenging large-scale problems, this approach has become popular as a promising
approximate nonlinear estimation method in several applications. In this work, we propose SSBRC by
applying the EnKF for MEQ data integration and evaluate its performance using several numerical
experiments. Throughout this report, for pore-pressure-diffusion based forward model, all EnKF updates
are applied to the natural logarithm of permeability. A parallel EnKF algorithm is also implemented to
speed up the computations.

Generating seismicity density maps on the same grid system or mesh structure that is used for describing
the geomechanical property distributions artificially increases the data resolution and, hence, the number
of data that will be assimilated during the EnKF update step. Large scale datasets, such as 4D seismic
data (Aanonsen et al., 2003; Skjervheim et al., 2007), and particularly in this study, high resolution
seismicity density maps, can exhibit spurious spatial correlations in the observed data and create
unrealistic correlations between rock properties and microseismic data, thereby can degrade the
performance of the EnKF update and lead to underestimated solution uncertainty or ensemble collapse
( Sakov and Oke, 2008; Myrseth, 2008). We first show the estimation results for the SSBRC approach
using the standard EnKF algorithm to illustrate the underestimation of ensemble spread, and then propose
three methods to resolve this issue and improve SSBRC uncertainty quantification. The first and simplest
approach to overcome ensemble spread underestimation is to increase the observation error artificially by
using a large variance for the observation noise. In the other two methods, we reduce the number of
observations first by using a spectral projection (spectral dimension reduction) approach and second by
coarsening the seismicity density map (spatial dimension reduction). In projection approach, the ensemble
of perturbed observations are projected to a reduced subspace that is defined by the leading left singular
vectors of the observation matrix. This step is aimed at de-correlating the original observations of the
seismicity map. The EnKF update is then used to assimilate the resulting low-dimensional description of
the data. In the second approach, we use a coarse grid system for interpretation of the seismic events. This
approach is very similar to the original SSBRC implementation except that it uses a coarse grid system in
KDE-based continuous seismicity interpretation to make lower resolution density maps. Then the reduced
dimension or coarse seismicity density maps are used in the EnKF update equation. We present the
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estimation results for these three methods following an introductory example to illustrate underestimation
of uncertainty when the standard EnKF is used with large-scale seismicity density maps as observed data.
In this work, we develop the practice of permeability inference from discrete MEQ data with EnKF and
then extend it to geomechanical parameters by using a coupled geomechanical forward model and
subsequently we improve the uncertainty quantification.

2. Modeling Methodology

The SSBRC method proposed in the project aims to infer spatially distributed reservoir properties by
integrating MEQ monitoring data with EnKF. As mentioned earlier, we integrate microseismicity density
maps as observed data. We use two forward modeling approaches for simulating the reservoir stimulation
process. A complete forward model is required to relate the permeability distribution of the reservoir to
seismicity density maps which includes pore-pressure diffusion reservoir model, criticality as failure
criterion and KDE-based continuous seismicity interpretation. The main steps involved in the
implementation of the pore-pressure diffusion overall forward model are schematically shown in Figure 1.
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Figure 1. Overall workflow of the pore-pressure diffusion forward model that relates permeability distribution to
microseismicity density observations.

Similarly, in the case of geomechanical reservoir model, a comprehensive forward model is needed to
relate the reservoir hydraulic and geomechanical property distributions to seismicity density maps which
includes FEM-based coupled geomechanical simulator, failure criteria, damage and permeability model
and finally KDE-based continuous seismicity interpretation. The main steps involved in the
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implementation of the geomechanical overall forward model are schematically shown in Figure 2. The
reservoir property distributions such as permeability, Young’s modulus, tensile strength and cohesion are
used as input parameters to the coupled FEM simulator which involves the coupled process of rock
deformation, fluid flow and heat transfer. The FEM simulator predicts the stress distributions in the
reservoir and where the rock’s effective stress exceeds its strength (prescribed by failure criteria) is used
to establish the triggering mechanism and to predict microseismic events. These predictions are then
converted into continuous seismicity densities, using the KDE method. Rock damage and permeability
models are also used to update the elastic modulus and permeability values to model the rock degradation
during hydraulic stimulation.
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Figure 2. Overall workflow of the geomechanical forward model that relates hydraulic and geomechanical reservoir
property distributions to microseismicity density observations.

The details of the geomechanics modeling were described in the previous chapter. In the following the
implementation of the EnKf is described. with continuous seismicity interpretation method. Then the
SSBRC inverse modeling approach based on EnKF is explained and proposed methods for improving
uncertainty quantification are presented. Next, we present and discuss the results of applying the proposed
approach to a series of experiments.

3. Continuous Microseismicity Interpretation with Kernel Density
Estimation

An important property of the EnKF inversion is that the forward and observation models can be quite
general with varying level of complexity. However, the update equation is designed for continuous
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random variables (parameters and observations). As a result, the updates can be applied under various
forms of event triggering mechanisms and failure criteria as long as the random variables representing the
states, parameters and measurements are continuous.

As described before, for geomechanical forward model the MEQ events are determined by shear or
tensile failures generated using the specified failure criterion (Mohr-Coulomb model with tension cut-off)
at the nodes of the FEM mesh, consequently each MEQ event has its associated location u, and
occurrence time t, (u and t denote general location and time respectively). Therefore at each time step t
evaluating the failure criterion at different locations (nodes of the FEM mesh) in the reservoir identifies
the distribution of seismicity clouds. Similarly for the pore pressure diffusion forward model, the location
and occurrence time of the events are identified by comparing the pore pressure and criticality at each
grid block of the reservoir model.

In practice, the discrete microseismic events identify the location of the passive seismic sources and are
often generated through seismic source inversion methods. The raw seismic data (collected either from
surface or borehole geophones) are inverted to map the location of seismic sources and characterize the
associated uncertainty. In this work, however, we skip the seismic source inversion part and assume that,
after seismic data analysis, the map of observed source (event) locations is available.

The available seismic observations, however, are of discrete nature since they only identify the seismic
status (active or inactive) of a node in the FEM reservoir model. The discrete nature of MEQ events
introduces a difficulty in implementing inversion methods that are designed for continuous problems. For
gradient-based methods, the discrete form of MEQ observations complicates the calculation of their
gradients with respect to unknown parameters. On the other hand, while the EnKF does not require
gradient information explicitly, by construction it is formulated for estimation of continuous variables and
observations. To address this issue, we interpret the MEQ events as continuous measurements using the
kernel density estimation method. KDE is often used for nonparametric approximation of continuous
probability density functions (PDFs). The general idea is to convert the discrete MEQ data (and their
predictions) into a smooth and continuous seismicity density map. For this purpose, at each time step, we
replace each MEQ event/source with a Gaussian kernel function centered at the event location. By adding
up the kernels, we construct a continuous function over the model mesh that represents the spatial density
of the MEQ events. The procedure for implementing the KDE method is illustrated in Figure 3 for a one-
dimensional example. We note that the procedure in Figure 3 can be easily applied to two and three
dimensional problems. Mathematically, the continuous seismicity density map can be written as:

NMEQ
_ 1 MEQ (1)
() = Zl K7 (u)

where KiM EQ (W) = N(upgg,X) is a Gaussian kernel, nygq is the number of MEQ events at each time
step, Uy denotes the location coordinate of the MEQ events (center of the individual Gaussian kernels)
and X is the covariance matrix of the Gaussian kernel. The continuous map s(u) represents the seismicity

139



density at all locations (all nodes of the FEM mesh) in the reservoir and constitutes the observations for
the EnKF update.
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Figure 3. Schematic illustration of converting discrete microseismic event measurements to continuous seismicity
density observations in one dimension using kernel density estimation method. The crosses on the x axis show the
reconstruction of the discrete microseismic events, while the short symmetric curves display the corresponding
Gaussian kernels used to represent each event as a density function with maximum value at the location of the
discrete events. The red line shows the density of the microseismic events in space as a continuous observation to be

used in the EnKF.
The Gaussian kernel has the form:
MEQ 1 1 Ts-1 (2)
2m|X|2

in which the covariance matrix can be specified either globally for all events or locally (or separately) for
individual events. The covariance matrix for the kernel determines the shape, size and orientation of the
Gaussian ellipsoid centered at the microseismic event location. In this work, we select an isotropic
Gaussian kernel for quantification of the microseismic events and the uncertainty in the MEQ locations.
Additionally the assigned kernels of all events are assumed exactly the same. Therefore the covariance
matrix X, is diagonal and all diagonal members (two members for 2D and three members for 3D) are
equal. Therefore, to specify the Gaussian kernel or the quantification specifications we only need to
determine one single parameter which is the (isotropic) bandwidth h, of the smoothing kernel. The kernel
covariance matrix is as follows:

2
In 2D case: £ = [lz) f?z] = h%l,y,

h2 0 0 (3)
In 3D case: X = [0 h?2 0 ] = h2l3y3
0 0 h?
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where I, and I3, are the identity matrices of the specified dimensions. We note that, in practice, the
values of the bandwidth used for the kernel functions are identified from the uncertainty in locating the
seismic sources from the raw surface or borehole seismic data. In this work, a simple sensitivity analysis
revealed that selecting a bandwidth parameter as large as twice the dimension of each element in the FEM
mesh leads to reasonable results. One advantage of the KDE is that it also provides a convenient
procedure to account for the spatial uncertainty in the location of the events. For better illustration, the
procedure for implementing the KDE method for a two-dimensional example is shown in Figure 4.

(b)

g .
() (d)

Figure 4. Illustrating the continuous seismicity interpretation in 2D. (a) the individual events in separate plots that
make the seismicity cloud of (c). (b) corresponding density maps of single events of (a) that are made by putting 2D
Gaussian kernel at the location of each events. (d) the seismicity density map corresponds to the cloud in (c) which
is obtained by adding (averaging) all individual densities of (b).

Taken from a 2D geomechanical example (experiment 2 in section 0), Figure 5 shows the evolution of the
MEQ cloud at 6 different time steps (called integration time steps) and Figure 6 illustrates the
corresponding seismicity density maps created by KDE-based continuous interpretation through these
time steps.
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Figure 5. Seismicity cloud evolution in 6 different time steps.
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Figure 6. Seismicity density maps created by KDE method corresponding to seismicity clouds of Figure 5.

Quantification of microseismicity cloud on the original FEM mesh (or the original grid block
configuration for pore pressure diffusion model) that the reservoir parameters are assigned to, results in a
high resolution seismicity density and redundancy in observations. As we discuss in section 0, high
dimensional observation or measurement in the EnKF update leads to uncertainty underestimation and
bias in the estimation results. Therefore in section 0, we propose to quantify microseismicity on a coarse
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mesh (with larger elements or grid blocks) which results in a coarse-scale seismicity density map that
reduces the number of measurements.

4. Inverse Modeling Approach

We develop an inverse modeling approach called SSBRC method by adopting EnKF to integrate
seismicity density observation for inference of hydraulic and geomechanical parameters. By applying
SSBRC to the pore pressure diffusion forward model we infer permeability distribution and by employing
SSBRC for the geomechanical forward model we are able to estimate permeability, Young’s modulus,
tensile strength and cohesion distribution. We also propose some methods to improve the uncertainty
quantification and estimation performance of the SSBRC method. The proposed EnKF-based inversion
framework begins by generating an ensemble of N, prior realizations of the reservoir parameter model
(e.g. permeability or Young’s modulus) based on prior information (e.g., using geostatistical simulation
methods). These realizations are used in the pore pressure diffusion forward model or the coupled FEM
forward model to perform a Monte Carlo simulation to predict the pore pressure or stress distributions in
the reservoir and then failure criterion is used to predict microseismic events. These MEQ cloud
predictions are then converted into continuous seismicity densities, using the KDE method, and used in
the EnKF update equation. The major computational cost of the method is related to the forecast or
prediction step; however, EnKF can be conveniently parallelized to speed up the computations. The
computations are implemented using the pore pressure diffusion forward model or the FEM
geomechanical forward model and a parallel EnKF algorithm with MATLAB’s Parallel Computing
Toolbox (MATLAB, 2011). In addition, an ensemble of perturbed observations is generated using a zero-
mean Gaussian error distribution with a variance value that is obtained through sensitivity study. The
main steps involved in the implementation of the proposed SSBRC method are summarized as follows.
(The details of SSBRC algorithm is also depicted in Table 1)

1. Convert discrete microseismic data (measurements) into quantified continuous seismicity density maps
using KDE method (section 0).

2. Generate an ensemble of rock property models from available prior information (e.g., using
geostatistical simulation techniques). Repeat steps 3—5 until all measurements are processed.

3. For the prediction step, using the developed FEM geomechanical numerical simulator (the pore
pressure diffusion forward model), forecast the stress distribution (pore pressure distribution) for each
member of the most recently updated ensemble realizations (section Error! Reference source not found.
or Error! Reference source not found.). This step is implemented in parallel.

4. Predict the microseismic events for each realization by the failure criterion (section Error! Reference
source not found.) and convert the results into seismicity density maps using the KDE approach (section
0).

5. Use the EnKF analysis equation with the seismicity density observations from (1) to update the
ensemble of reservoir property models (section 0).

The details of each of these steps are discussed next.

4.1 Estimation with Ensemble Kalman Filter

The classical Kalman filter (Kalman,1960) is a sequential state estimation method for characterization of
the first and second statistical moments of the states posterior distribution. Hence, the filter fully
characterizes the posterior distribution of linear state-space systems that are characterized with jointly

143



Gaussian distributions (Kalman, 1960; Gelb, 1974). The implementation of the filter involves two steps:
(1) a forecast step, in which a linear state propagation model is used to predict the mean and covariance of
the states at the next time step; and, (2) an analysis step that updates the mean and covariance of the states
using the dynamic observations and the forecast states mean and covariance. These two steps are repeated
sequentially until all observations are assimilated.

For nonlinear dynamical systems, the EnKF provides a practical approximation of the Kalman filter that
has been successfully applied to many applications ranging from hydrology, meteorology and
oceanography to groundwater and oil reservoir model calibration (see e.g., Aanonsen et al., 2009;
Evensen, 2009 and references therein). The sequential formulation of the EnKF distinguishes a forecast
(or prior) PDF for the states (augmented vector of geomechanical reservoir parameter and continuous
seismicity response X;) p[X;|Vo.t—1], conditioned on all measurements y,.;_, taken through time t — 1,
and an updated (or posterior) density p[X;|yo.:] conditioned on all measurements y,.; (continuous
seismicity response maps) taken through time t. To compute the cross covariance between predicted
observations and parameters, the original state vector is augmented with uncertain model parameters (e.g.
permeability, Young’s modulus and tensile strength distribution) and predicted measurements. This state
augmentation approach can be used to update states and parameters simultaneously. Alternatively, one
can only update the uncertain parameters and derive the updated states by solving the flow equations (or
coupled flow, heat and geomechanics equations) with the updated parameters. This is the approach taken
in this work. The measurements y, consist of seismicity density map s,(u), defined in equation (1) that
represent microseismic measurements in space at time t.

Since the general multivariate PDFs and their statistical moments are difficult to characterize, the EnKF
uses a Monte Carlo approximation approach by sampling an initial set of realizations from the high-
dimensional prior PDF of the uncertain properties to form an ensemble of reservoir states (and/or
parameters). These property maps are then used to generate an ensemble of state and measurement
predictions that can be used to compute a sample (prior) covariance matrix for the EnKF update step as
described below. The forecast step in the EnKF can be written as:

J _ J J . 4
Xiit-1 = fe (Xt—1|t—1'zt—1'wt—1) j=1..,N, @

where . |t represents conditioning on observations up to time t; Z;_; is a vector of known (nonrandom)

time-dependent boundary conditions and controls (such as injection rate); and wtj_1 is a vector of random
variables that accounts for modeling errors. The function f;(.,.,.) represents the state propagation
equation from time t — 1 to time t. The notations j and N, are used to indicate the realization index and
total number of realizations, respectively. In our application, equation (4) represents the solution of the
coupled thermo-poroelastic equations (or pore pressure diffusion equation) that describes the time
evolution of pore pressure, stress and temperature distributions for each individual realization j of the
ensemble reservoir parameter. At time steps when MEQ data are available, the EnKF analysis equation is
used to update the reservoir property realizations using the gain matrix and the misfit between predicted
and observed seismicity density maps for each realization. At the update step we use an augmented state
vector consisting of spatially distributed reservoir property (parameters to estimate) and realizations of the
predicted continuous seismicity density map. After each update we apply a confirmation step (Wen and
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Chen, 2005) by forecasting the future states and predictions from the initial time step with the updated
parameters. We repeat the sequence of prediction and update steps until all measurements are integrated.
For a model with N, nodes (or grid blocks), each reservoir parameter realization m/ and its
corresponding microseismicity density response s/ are vectors of size N;, X 1. In this work, the reservoir
property models are jointly Gaussian random fields that are generated using the sgsim (Geutsch and
Journel, 1998) geostatistical simulation technique. The augmented state vector for this case is of the form

xj _ m]] ] — 1’ ---,Ne =X = [Xl XZ XNe] (5)

The EnKF analysis equation that is used to update each reservoir property realization can be expressed as
. . , . _ 6
x, =x/ +K(y/ —Hx]), K=C{HT(HCZH' +Cq)™! ©)

where K is the Kalman gain matrix and the subscripts u and f denote updated and forecast quantities
while the superscript e indicates ensemble calculated statistics. The notations C§ and Cq represent the
states sample covariance and observation covariance matrices, respectively. The measurement matrix
Hy, x2n, = [ONbXNblleXNb]v where Oy, xn, and Iy, xy, are zero and identity matrices of the specified
dimensions, respectively, acts as a selection operator that extracts the predicted measurement components
from the augmented state vector. The notation y/ is used to represent the jth realization of the perturbed
observations. The states sample covariance C¢ can be computed from the ensemble of state vectors

Ne

Ne
1 ) . ) ) i 1
R ) A IR A R ?

where )_(]{ is used to denote the ensemble mean of the forecast states (that is, the reservoir property
distribution from the previous step and the corresponding microseismic response forecasts). In the EnKF
implementations, the covariance matrix in equation () need not be constructed explicitly and the update
can be applied using its low-rank representation though a compact SVD implementation. The covariance
matrix in equation () contains the covariance information about the reservoir parameter field as well as the
cross covariance information between the reservoir parameter and (microseismic) measurements. It is the
latter cross covariance that allows the estimation of uncertain geomechanical reservoir parameter
distributions from microseismic observations. This relation bears similarity with the use of covariance and
cross covariance in the kriging/simulation (Geutsch and Journel, 1998; Vargas-Guzman and Yeh, 1999)
and cokriging/cosimulation (Kitanidis and Vomvoris, 1983; Yeh et al., 1995; Graham and McLaughlin

1989; Geutsch and Journel, 1998) methods, respectively. Note that in equation (), the term (yj - Hx}) is

the misfit between the jth perturbed observation and prediction, which in this case represents the observed
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and predicted continuous map of seismicity density. Several remarks regarding the update equation for
our problem will follow.

In addition to nonlinearity in the forward coupled geomechanics and flow model, a complexity of the
measurement model in our application is the nonlinear failure criterion (i.e., hard truncation) that is used
to convert the continuous stress distributions to discrete microseismic events. The Gaussian kernel that we
apply to convert the MEQ predictions to continuous maps of seismic density makes the data more
amenable to processing with the EnKF. However, the relationship between the magnitude of stress and
the resulting seismicity map remains complex.

Considering the dynamic alteration of reservoir geomechanical parameters (Young’s modulus and
permeability) in our developed coupled FEM simulator based on the damage and permeability model (in
section Error! Reference source not found.), in the SSBRC inverse modeling approach we estimate
geomechanical properties of the intact (initial or undamaged) rock. It is also consistent with our EnKF
data integration approach with confirmation step (Wen and Chen, 2005) that for each EnKF analysis step
we run the forward model from the beginning (initial state) by updated or estimated intact rock properties.
Therefore to obtain the properties of the final stimulated or damaged reservoir rock we just need to run
the geomechanical simulator with the estimated intact rock properties.

In our EnKF implementation, to perturb the observations, we add an uncorrelated realization from a
Gaussian random noise, with a specified observation covariance matrix Cq, to the value of the observed
quantities. We assume that the observation error standard deviation (Std) is proportional to the value of
the observed quantity and compute the diagonal elements of the observation error matrix as:

=12,..,N, (®)

(Umax - amin)(}’k - Ymin)>2 k

2
O = | Omin +
k ( i (ymax - Ymin)

where o is the observation variance at the kth node or grid block (the kth diagonal entry for the
observation covariance matrix), dyax and Opi, are the minimum and maximum standard deviations
specified for the observations, respectively. The notation y,, represents the observed seismicity density at
location k while Ymin, Ymax represent the minimum and maximum observed values of the seismicity
density, respectively. The realization j of the perturbed observation at location k, can then be written as

J j .
ykZYR+5k; ]:1,2,...,Ne
. )
ex~N(0,0¢)

In this work, we assume an uncorrelated Gaussian observation error with zero mean and standard
deviation obtained from equation (). We note that other methods for generating the perturbed observations
may also be considered. In particular in section 0 as one of the methods to improve uncertainty
quantification of SSBRC, we first generate perturbed observations by perturbing the kernel bandwidth
and given the large dimension and the spatial correlation that may exist between the observation errors,
we then propose to assimilate the resulting observations in a low-rank subspace defined by the left
singular vectors of the ensemble observations perturbations matrix in a similar way to Keepert (2004).
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The given SSBRC formulations here are based on the assumption of estimating one of the reservoir
properties distribution (assuming one property unknown and the rest known) which can be simply
extended to simultaneously estimating more than one reservoir property distribution by only augmenting
reservoir parameter vectors in the EnKF state vector.

To generate the ensemble of reservoir parameter realizations, we used a variogram-based geostatistical
simulation method with specified variogram parameters. The sgsim algorithm (Geutsch and Journel, 1998)
was used to implement the geostatistical simulations. In real applications, the number of realizations is
typically determined through a trade-off between available computational resources and the desired
statistical accuracy in computing the required sample statistics. For large-scale problems where the
number of realizations is limited, practical considerations such as localization or local analysis (Hamill et
al., 1995) have been proposed to avoid inaccurate updates due to spurious (nonphysical) correlations and
to reduce the possibility of an ensemble collapse. As the results of the numerical experiment in section 0
and 0 show, the proposed SSBRC method with standard EnKF results in severe ensemble spread
underestimation which will be resolved by proposed methods in section 0. In the examples that follow,
we implement the EnKF algorithm with N, = 100 and do not apply any localizations. The detailed steps
of SSBRC method with parallel EnKF algorithm is shown in Table 1.

Table 1. Parallel EnKF algorithm for SSBRC

Parallel EnKF Pseudo Code

1: generate N, initial parameter (m/) realizations

2: generate perturbed observations (y/) from true observation (based on Cg)
3:for t; = 1 to ty do (integration time steps)

4. par-for j = 1 to N, do (run in parallel on different available cores)

5 initialize the geomechanical simulator

6 write the jt* realization (m/) as the reservoir parameter

7: run the simulator from beginning until the current integration time
8:
9:

(corresponds to t;)
generate the corresponding seismicity cloud (S/)
use KDE to convert seismicity cloud (S/) to seismicity density (s/)
10:  end par-for
11: calculate )_(; ,CS K
12:  update realizations by EnKF analysis equation
13: end for
t; = integration time step index which corresponds to integration time
ty = the total number of integration time steps (in this study = 6)
par-for = parallel for loop which executes its underlying commands in parallel
S/= the simulated seismicity cloud corresponding to each m/

The full forward model simulator that relates the hydraulic or geomechanical parameter distribution to the
microseismicity density map consists of geomechanical simulator (relating geomechanical parameter
distribution to microseismicity cloud) and microseismicity continuous interpretation (relating
microseismicity discrete cloud to microseismicity continuous density map). Figure 7 shows the schematic
of the full forward model. In the propagation (Monte Carlo simulation) step of the EnKF procedure we
run the full forward model for all ensemble members (geomechanical parameter samples). For the pore
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pressure diffusion forward model that relates permeability distribution to MEQ cloud the same full
forward model including MEQ continuous interpretation is constructed.

Ml(.rmelsmluty (.loud

Geomechanical parameter
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ﬁ

Geomechanical Microseismicity
simulator continuous
interpretation

Full Forward Model

Figure 7. Full forward model relating geomechanical parameter distribution to microseismicity density
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Figure 8. EnKF procedure (in each integration time step).

Figure 8 shows the schematic of the parallel EnKF pseudo code. We perform full forward model of the
parameter ensemble (propagation step) in parallel. Since running the forward model is completely
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independent for different parameter samples, we are able to run some samples simultaneously on the
available cores of the machine. It should be noted that Figure 8 represents the estimation procedure in
each integration step. For instance in the first integration step, the first column of Figure 8 is the initial
ensemble of parameters and after integration of the first true seismicity density map, we will obtain the
first updated ensemble (the last column of Figure 8) which will be the input ensemble (the first column of
Figure 8) for the second (next) integration step.

4.2 Improved Uncertainty Quantification

In this section we focus on quantification of uncertainty that is a key concept of application of the EnKF
data assimilation approach. It is well known that for large scale datasets, such as seismic data (Skjervheim
et al., 2007) and high resolution spatial map of seismicity density, application of the standard EnKF
without taking into account the spatial correlation in the observations can lead to underestimated solution
uncertainty or ensemble spread. Underestimation of ensemble spread is not favorable as it can introduce
unrealistic confidence in potentially inaccurate future predictions and decreases the likelihood of
capturing the true behavior of the reservoir. High dimensional observation also leads to expensive
computational load in updating scheme of EnKF. In this situation, severe underestimation of the
prediction uncertainty can results in biased forecasts and an ensemble collapsing into a single realization.

The standard SSBRC implementation was based on generating seismicity density maps on the same grid
system or mesh structure that was used for describing the hydraulic or geomechanical property
distributions (section 0). A byproduct of this implementation is that it artificially increases the data
resolution and, hence, the number of data that will be assimilated during the EnKF update step. As
another significant byproduct of this preprocessing step, the resulting maps can exhibit spurious spatial
correlations in the observed data and create unrealistic correlations between rock properties and
microseismic data, thereby degrading the performance of the EnKF update.

We first show the estimation results for the SSBRC approach using the standard EnKF algorithm to
illustrate the underestimation of ensemble spread (several numerical examples which are reported in
section 0 and 0 confirm it), and then propose three methods to resolve this issue. The first and simplest
approach to overcome ensemble spread underestimation is to increase the observation error artificially by
using a large variance for the observation noise. In the other two methods, we reduce the number of
observations first by using a spectral projection (spectral dimension reduction) approach and second by
coarsening the seismicity density map (spatial dimension reduction). In projection approach, the ensemble
of perturbed observations are projected to a reduced subspace that is defined by the leading left singular
vectors of the observation matrix. This step is aimed at decorrelating the original observations of the
seismicity map. The EnKF update is then used to assimilate the resulting low-dimensional description of
the data. In the second approach, we use a coarse grid system for interpretation of the seismic events. This
approach is very similar to the original SSBRC implementation except that it uses a coarse-scale grid
system or mesh structure in KDE-based continuous seismicity interpretation in equations (),() to make
lower resolution density maps. Then the reduced dimension or coarse seismicity density maps are used in
the EnKF update equation. Additionally in general, observation space dimension reduction (either spectral
or spatial) improves the computational efficiency of the analysis step of the EnKF.
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We present the estimation results for these three methods following an introductory example to illustrate
underestimation of uncertainty when the standard EnKF is used with large-scale seismicity density maps
as observed data (in section 0 and 0).

4.2.1 Inflated observation error variance
The simple way to reduce the underestimation of ensemble variance is to increase observation error

variance. The effect of this remedy is equivalent to damping the EnKF updates, the term K(yj - Hx]];) in

equation () or reducing the weight of observations (or Kalman gain, K). To do so, we increase o,,;, and
Omax 1IN equation () which leads to diminishing the effect of seismicity density observation in the EnKF
update and finally results in preserving the ensemble spread during data assimilation. While the level of
noise considered goes beyond most practical situations, this provides a simple way to improve the
underestimation effect as shown in section 0 and 0. We also summarize the results from several
experiments with increasing level of observation error variance. From the performed experiment results it
is clear increasing the observation error variance can improve the underestimation effect observed in the
standard EnKF. However, a main drawback of this approach is that it is not clear how the introduction of
significant noise to the observed quantities will generally impact the quality of the EnKF update beside
the damping effect. Hence, we consider two other alternative methods that do not corrupt the observations.

4.2.2 Reduced-order projection

The EnKF updating scheme particularly with high-dimensional observation can suffer from the problem
known as filter divergence (Jazwinski, 1970), resulting from rank issues (Evensen, 2004) and estimation
uncertainty (Houtekamer and Mitchell, 1998). To reduce these problems, (Evensen, 2004) introduced
dimension reduction techniques in an EnKF setting. Skjervheim et al. (2007) also suggested an alternative
EnKF updating using well-known dimension reduction techniques.

In this section we first propose a new method for generating an ensemble of perturbed observations then
we use a dimension reduction method to reduce the number of observations integrated in EnKF update
equation. The proposed method of perturbing seismicity observation is completely different than the
typical procedure of adding Gaussian random noise to the observation (in section 0). To exhibit and
finally capture the spatial correlation or redundancy of observation in more efficient fashion, we propose
to generate each perturbed observation realization by perturbing the bandwidth of Gaussian kernel. In the
standard observation perturbation method explained in section 0, we perturb the observed seismicity
density map however here we use the observed seismicity cloud and generate perturbed observations by
perturbing the kernel bandwidth in KDE based quantification.

After converting the discrete microseismic measurements to continuous seismicity density maps using
Gaussian kernels, the resulting observations exhibit strong spatial correlations. Hence, this correlation (or
redundancy) should either be taken into account during the update or should be removed from the data.
To remove the correlations in the observations, we project the ensemble of perturbed observations onto a
low-dimensional subspace defined by the leading left singular vectors of the observation matrix (Keepert,
2004). During the EnKF update, we use the transformed observations (after projection to the mentioned
subspace) for data assimilation. To implement the update, the predicted observations must also be
projected onto the same subspace. The procedure is described below.
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In the projection approach, at each integration step we first choose a kernel bandwidth h, and its standard
deviation oy, and then to make each perturbed observation realization, we individually perturb kernel
bandwidth h, for each MEQ event of the true observation using a Gaussian distribution as below:

W ~N(ho2); j=12,.,No; i=12, ., Nypo ey

where N, and nygq are the number of realizations and the number of MEQ events at the specified
integration step, respectively. Superscript j, and subscript i, indicate realization index and MEQ event

index, respectively. Therefore, the jth perturbed observation realization y’/ is made of a set of perturbed

bandwidths h{ (i=12,..,nygg) as follows:

1 NMEQ
yj = z KL-MEQ(U; hi) (11)
"MEQ

Equation (11) is the same as equation (1) but for the Gaussian kernels KiMEQ (u; hlj ), which have different
bandwidths. Afterwards we make the perturbed observation ensemble as:

. yhe] (12)

To project the observation to a lower dimension space we take the SVD of Y to obtain the matrix of
eigenvectors which is the projection matrix U. Columns of U are eigenvectors spanning the space made
by Y. A finite number of the leading left singular vectors of Y form a low-dimensional subspace defined
by columns of the matrix U that accurately approximate each observation realization. Since Y has a
maximum rank of N,, the maximum dimension of the transformed observations is N,. To reduce the
dimension of the observation space, non-leading columns of U can be truncated. The truncation number
Nirunc Varies in the range 1 to N,. The projected perturbed observation ensemble Y,, is calculated as

Yp = UtTruncY

Uirune = [ul u? .. untrunc] (13)
U=[u! u? .. ule]

where w/ is the jth eigenvector. We also apply the same projection to the predicted seismicity density
maps. The ensemble of predicted seismicity density is made by the same kernel band h.

S =[s! s? .. sle] (14)
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where s/ is the jth simulated seismicity density map which is made of jth simulated seismicity cloud S/.
The projected ensemble of predicted seismicity density maps is then calculated as:

Sp = UliuncS (2)

The resulting observed and predicted data for the EnKF update step are Y,, and S,,. It should be noted that

projection method has two tuning parameters; kernel bandwidth standard deviation gy, and truncation
number Nyync, and the observation error standard deviation parameters 0y, and gpy,a¢ are no longer
needed.

Application of this method to improve uncertainty quantification performance of SSBRC is shown in
section 0 and 0 by numerical examples. As we will see, reduced-order projection of seismicity density
observation both preserves the ensemble spread and improves the computational efficiency.

4.2.3 Coarse-scale microseismicity density map

Another approach to reduce the dimension of the seismicity map is to use a coarse scale description. This
approach uses a coarser scale grid system or mesh structure to quantify the seismicity observations. The
number of observations is equal to the dimension of seismicity density map. To reduce the dimension of
the seismicity density map (number of observations to integrate) which is the major reason of the
ensemble spread underestimation, we can build the continuous function of seismicity density on a coarser
mesh or grid system u,.4, instead of the original FEM fine mesh (or original fine grid block configuration
for pore pressure diffusion forward model) u, in equations (1),(2). So we only need to evaluate
continuous seismicity density map on a new coarser grid system. In this work (in 2D experiments) the
original mesh configuration of model is square with 100 nodes (or grid blocks) at each side Ny, that
results in 10000 nodes (or grid blocks) or seismicity density observation values at u. The coarse-scale
mesh (or grid system) is assumed to have Ny o4 nodes (or grid blocks) at each side which leads to N)%'red
total nodes (grid blocks) or seismicity density observations at U,.q. In SSBRC with coarse-scale
seismicity density, we use a typical range of 5% to 10% for observation error standard deviation.

The result of sensitivity analysis of SSBRC performance with respect to different grid sizes (different
number of observation) is presented in section 0 and 0. The results demonstrate that while the estimation
quality in terms of reservoir parameter map is not affected, the estimation variance is severely
underestimated when a large number of correlated observations in a high resolution map is used. The
results suggest that the information content of the high resolution map does not provide significant
additional details in estimating the reservoir geomechanical parameter.

4.3 Numerical Experiments

In this section we present several numerical examples to show that the distribution of the MEQ events
(their source locations) can be used to infer the spatial distribution of the reservoir parameter field. In this
work, we have assumed that an interpretation of the microseismic data (through seismic source inversion)
in some preprocessing step provides a spatial map of the seismic event locations and then we use the
proposed KDE-based continuous interpretation to generate the seismicity density map. Therefore for a
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reservoir model with N, nodes (or grid blocks), at each update step, a vector of N, observations of
seismicity density values is assimilated. The dimension of reservoir parameter vector is also Np,.

In this section we present the results of applying SSBRC to both pore pressure diffusion forward model
and geomechanical forward model. The estimation results of homogeneous and heterogeneous 2D and 3D
reservoir models in different settings are presented. We first present the application of standard SSBRC
and its estimation performance and how it leads to ensemble spread underestimation and then we apply
the proposed methods of improved uncertainty quantification along with SSBRC to resolve the issue of
spread underestimation.

4.3.1 Description of experimental setup: Pore pressure diffusion

In this section we present the results of SSBRC application to single phase pore-pressure diffusion
forward model (finite difference numerical modeling with Eclipse (2010)) and we also demonstrate the
results of applying improved uncertainty quantifications methods for resolving ensemble spread
underestimation. We present three sets of experiments covering a two-dimensional (2D) homogeneous
and heterogeneous reservoir model, and a three-dimensional (3D) heterogeneous reservoir model. For the
2D example, we consider the estimation of a homogeneous and a heterogeneous permeability model and
show that the distribution of the MEQ events can be used to infer the uniform permeability value and the
spatial distribution of the permeability field. Our second experiment is based on a 3D reservoir
configuration with a heterogeneous permeability model. In these experiments, one water injection well is
located at the center of the field and the boundaries are closed to flow (noflow boundary conditions). The
injection-induced MEQ events for this injection well are used to estimate the permeability in the reservoir.
The 2D examples consist of 100x100 discretized models, leading to N,=10000 grid blocks. In this work,
we have assumed that an interpretation of the microseismic data (through seismic source inversion) in
some preprocessing step provides a spatial map of the seismic event locations. Therefore, at each update
step, a vector of 10000 observations of seismicity density values is assimilated. In homogeneous 2D
model we estimate one single parameter (the value of uniform permeability) from 10000 seismicity
observations and in heterogeneous 2D model we estimate 10000 parameters (spatial permeability
distribution) from 10000 seismicity density observations. In the 3D example, the reservoir is discretized
into a 50x50%30 (N,=75000) grid configuration. Also in this case, one injection well is located at the
center of the domain, which is perforated throughout the entire thickness of the formation. The source
locations of the MEQ events throughout the 3D domain are used to estimate the heterogencous
permeability distribution.

4.4 Results and Discussion

We present and discuss the results of applying our methodology to the experiments described above. We
present the results in terms of the estimated property maps and the ensemble statistics prior to and after
data integration. As is common in ensemble data assimilation, we use the evolution of reservoir parameter
estimation root-mean-square error (RMSE) and the ensemble spread (Sp) as performance measures.
These measures are computed in each integration step using the following equations:
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1 |1
RMSE(m) = N_E ﬁi(m” - mirue)z (16)
b= | 7e =1
14 1 1<
.. . 2 , ..
Sp(m) = - N_Z(mu —mb o) s ml = N_Z .y (17)
b= |7 e= €i=1

where N}, is the number of parameters (same as number of nodes or grid blocks here), N, is the number of
realizations and m®/ is the ith parameter of realization j. We plot the ensemble spread as a percentage of
the initial ensemble spread. We also use the other measure of ensemble spread which is called the
auxiliary ensemble spread Sp(B). To investigate and evaluate the effect of spurious correlation and
spread underestimation, it is proposed to use an additional or auxiliary ensemble B € R™rana*Ne where
each row contains zero mean, unit variance and uncorrelated Gaussian random samples (14,4 is the
dimension of random sample which is assumed 100 in this study) (Evensen, 2009). In each analysis time

step we perform updates as follows:
Xu\ _ Xy 18
(5,) = (5,)2 09

And By is equal By, at previous update time (superscript f for forecast ensemble and superscript ‘u’ for
update ensemble). X is the original state ensemble matrix that is defined in equation (). By defining the
matrix Z € RNeXNe | the EnKF analysis equation becomes a combination of the forecast ensemble
members and searches for the updated ensemble state in the space spanned by the forecast ensemble. By
rearranging the analysis equation, we can explicitly find the matrix Z,

Y=I[y' y* - y%]
Y =Y-HX
X' =X-X
S = HX' (19)
€ =SST+ (N, — 1Cq
Z=1+STCY
X, = X;Z

where X and Y are the matrix of state ensemble members and the perturbed observation ensemble matrix,
respectively. This kind of representation of EnKF analysis based on coefficient matrix Z gives us a very
evident prospect of the procedure which is being done by updating the ensemble. Sp(B) is the mean of
standard deviation (Std) of each realization of auxiliary ensemble B (columns of B).
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B = [b1 bZ bNe]

1 & . (20)
Sp(B) = FZ Std(b)
€=

By analyzing Sp(B) through update steps we can find out the amount of variance reduction of the
procedure. By the way, this measure is very sensitive to the spread of the perturbed observations Cq, and
can help us to choose the best spread of perturbed observation (perturbed observation Std) to obtain the
appropriate result. Therefore the other measure of ensemble spread is the auxiliary ensemble spread
Sp(B) that its inverse is called inflation factor p; . Auxiliary ensemble spread Sp(B) clearly shows what
percentage of the original ensemble spread is lost only because of erroneous or spurious correlation of
observation and parameter.

Experiment 1: 2D Homogeneous

In this experiment we present the result of SSBRC application to a 2D homogeneous reservoir model.
This experiment is performed by the standard SSBRC with no improved uncertainty quantification
methods applied. The 2D reservoir consists of 100x100 grid system (10000 grid blocks) and there is one
water injection well at the center. The permeability of all grid blocks are assumed equal (homogeneous
permeability distribution). The uniform initial reservoir pressure is equal 3000 (psi) and the injection
pressure is 6000 (psi). We use Eclipse to numerically solve the single phase pore pressure diffusion
equation by finite difference method. The criticality distribution is assumed spatially random distributed.
Here by SSBRC we infer the value of homogeneous permeability (only one parameter to estimate) from
10000 seismicity density observations. The true homogeneous permeability value (the unknown
parameter to estimate) is assumed 20 (md) and the criticality distribution (assumed known) is spatially
random (uncorrelated) distributed and its values come from a Gaussian probability density function (PDF).
Figure 9 shows the true reservoir model specifications including the pore pressure evolution through time,
criticality distribution and the resulting MEQ cloud that will be used as observed data in EnKF. The
stimulation period is 216 (min) and we specify 6 integration steps to assimilate MEQ observations. The
MEQ density map is constructed on the original fine grid system and the observation error Std range
(Omin and o,,x) 1s the typical range of 5 % to 10 %.
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Figure 9. Microseismicity cloud generation in a two-dimensional model with homogeneous permeability
(20 mD): (a) snapshots of diffusive pore pressure distributions at different time steps p(u, t), (b) spatially
uncorrelated Gaussian (white noise) rock criticality C(u), and (¢) the cloud of microseismic events
generated by comparing rock criticality with pore pressure distributions at different times steps.

In this example, SSBRC with its standard setup (seismicity density map on the fine original mesh) and the
typical range of observation error Std is used. The initial ensemble (100 realizations) is randomly
generated from a Uniform PDF in the range of 1 (md) to 200 (md). The estimation results are shown in
Figure 10.
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Figure 10. Estimation results of the 2D homogenous permeability model with SSBRC. The vertical red
line in (a) indicates the true value of homogeneous permeability.

Figure 10.a shows the evolution of permeability ensemble histogram throughout integration steps while
the vertical red line indicates the true value of permeability. The first plot in Figure 10.a is the histogram
of initial ensemble which comes from a Uniform PDF. As the histogram evolution shows the estimated
permeability values are becoming closer to true permeability through integration steps and after the third
update all the estimated realizations almost fall on true permeability. As the final estimated ensemble
histogram illustrates, the estimation result is very precise which is also shown by the RMSE plot of
Figure 10.b. Therefore the SSBRC is successful in inferring permeability from MEQ observations. As we
can see in Figure 10.a, the parameter estimation is almost perfect while we are just losing at most 40 % of
ensemble spread due to spurious correlation (represented by Sp(B) in Figure 10.d). In estimating one
value, we already know that the final estimated ensemble ideally should not have any spread or variance
which is happening here. Actually there is no spread in final ensemble as it is shown in the last histogram
and the original ensemble spread in Figure 10.c, while from auxiliary ensemble spread Sp(B) plot, Figure
10.d, we still have most of the ensemble spread left which is a good sign that the spurious correlation just
caused minor spread reduction. Again it should be noted that auxiliary ensemble spread Sp(B) is the
spread of an auxiliary ensemble (each realization is a normal random uncorrelated vector) which is
completely irrelevant to the original ensemble of parameters. In homogeneous case as the results show
since we already expect almost perfect estimation (almost zero final spread for original ensemble), spread
underestimation is not the target problem to solve. In this experiment the appropriate measure of spread is
auxiliary ensemble spread Sp(B) which is acceptable (more than 60 %).

While as discussed this experiment does not seem to need resolving ensemble spread underestimation, we

will apply three proposed improved uncertainty quantification methods to this experiment in later in the
report and investigate their effects on SSBRC performance.
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Experiment 2: 2D Heterogeneous

In this section, we apply SSBRC to a 2D pore pressure diffusion reservoir model with heterogeneous
permeability distribution. The 2D model has a 100x100 grid block structure (10000 grid blocks) and the
permeability field is a heterogeneous parameter. There is only on water injection well at the center of the
field. The true log-permeability distribution is shown in Figure 11.b. In this experiment the dimension of
the parameter to estimate and seismicity density observation are both equal to 10000. An uncorrelated
Gaussian random distribution is also assumed for criticality map shown in Figure 11.c.
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Figure 11. Microseismicity cloud generation in a two-dimensional model with heterogeneous
permeability: (a) snapshots of diffusive pore pressure distributions at different time steps p(u, t), (b) the
true log-permeability distribution, (c) spatially uncorrelated Gaussian (white noise) rock criticality C(u),
and (d) the cloud of microseismic events generated by comparing rock criticality with pore pressure
distributions at different time steps.
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Other specifications of the true model are illustrated in Figure 11 including the pore pressure distribution
in the field through stimulation period and the MEQ cloud observation which is generated by comparing
pore pressure distributions and the criticality map. Using SSBRC we assimilate MEQ cloud observation,
Figure 11.d, (after quantifying by KDE method) by EnKF update equation to infer heterogeneous log-
permeability field, Figure 11.b. The stimulation period is 216 (min) and we specify 6 integration steps to
assimilate MEQ observations. The MEQ density map is constructed on the original fine grid system and
the observation error Std range is the typical range of 5 % to 10 %.

In the following figures in this section, the extensive estimation results of SSBRC are presented. Figure
12 shows the result of updating the permeability ensemble in terms of ensemble mean throughout 6
integration steps. It is seen that the estimated ensemble mean is becoming more similar to the true
permeability map in Figure 12.a by assimilating MEQ observations in time. The initial ensemble (almost
uniform initial ensemble mean in Figure 12.b) is completely uninformative about true permeability map,
Figure 12.a, however after MEQ data assimilation the final ensemble mean, Figure 12.h, is very similar to
the true map. Therefore SSBRC proves its suitability for heterogeneous permeability estimation from
MEQ data.
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Figure 12. Estimating heterogeneous permeability by SSBRC. The evolution of the estimated ensemble

mean through integration steps.
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Figure 13 shows the estimation result in terms of one realization. The evolution of an individual
permeability realization or sample is shown in this figure. As we can see again, SSBRC is able to update a
dissimilar initial permeability realization, Figure 13.b, to a final estimated realization, Figure 13.h, which
is quite comparable to the true permeability map, Figure 13.a.
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Figure 13. Estimating heterogeneous permeability by SSBRC. The evolution of an individual realization
through integration steps.

The performance measures of SSBRC estimation procedure are also shown in Figure 14. The continuous
reduction of estimation RMSE, Figure 14.a, shows the success of SSBRC in estimating permeability
distribution. The final RMSE value is almost half of initial RMSE. The ensemble spread is plotted in
Figure 14.b which shows that almost 90 % of the initial ensemble spread is lost through estimation
procedure. This very low final ensemble spread (10 %) shows severe ensemble spread underestimation.
This uncertainty quantification issue will be resolved by applying the proposed methods of this section
and the new estimation results will be presented in experiment 5.
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Figure 14. SSBRC performance measures in estimating 2D heterogeneous permeability field.

The other representation of ensemble spread is the standard deviation (Std) map of the ensemble which its
evolution in integration steps is shown in Figure 15. By assimilating the MEQ data, the spread of the
permeability ensemble decreases that results in lowering the ensemble Std map. Figure 15 shows constant
reduction of ensemble spread. As Figure 15.g represents the final estimated ensemble Std is very low that
again demonstrates the ensemble spread underestimation of SSBRC with high dimensional observations

(MEQ density map on original fine grid system).
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Figure 15. Evolution of the standard deviation (Std) map of permeability ensemble through integration
steps.
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Experiment 3: 3D Heterogeneous

In this section we apply SSBRC to a 3D pore pressure diffusion reservoir model with heterogeneous
permeability distribution. The 3D model has a 50x50x30 grid block structure (75000 grid blocks) and the
permeability field is a heterogeneous parameter. There is only on water injection well at the center of the
field which is perforated throughout the entire thickness of the formation. The true log-permeability
distribution is shown in Figure 16.b. In this experiment the dimension of the parameter to estimate and
seismicity density observation are both equal to 75000. An uncorrelated (Gaussian random distribution is
also assumed for criticality map shown in Figure 16.c.

Initial Pressure Distribution Pressure Distribution (psi) at 4.32 (min) Pressure Distribution (psi) at 21.6 (min)
lssoo lssoo
‘5000 5000
4500 4500
L4000 4000
3500 Iasoo
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= 40
30

Pressure Distribution (psi) at 43.2 (min) Pressure Distribution (psi) at 64.8 (min)
Issoo
{5000
4500
4000
Iasoo

50

65 (min)
l52

39

(b) true log-permeability map (c) criticality map (d) MEQ cloud
Figure 16. Microseismicity cloud generation in a three-dimensional model with heterogeneous
permeability: (a) snapshots of diffusive pore pressure distributions at different time steps, (b) the true log-
permeability distribution, (c) spatially uncorrelated Gaussian (white noise) rock criticality, and (d) the
cloud of microseismic events generated by comparing rock criticality with pore pressure distributions at
different time steps.

Other specifications of the true model are illustrated in Figure 16 including the pore pressure distribution
in the field throughout stimulation period, Figure 16.a, and the MEQ cloud observation, Figure 16.d,
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which is generated by comparing pore pressure distributions and the criticality map. Using SSBRC we
assimilate MEQ cloud observation, Figure 16.d, (after quantifying by KDE method) by EnKF update
equation to infer 3D heterogeneous log-permeability field, Figure 16.b. The stimulation period is 65 (min)
and we specify 6 integration steps to assimilate MEQ observations. The MEQ density map is constructed
on the original fine grid system and the observation error Std range is the typical range of 5 % to 10 %.

Initial Ensemble Mean

(a) true log-permeability map (b)
Integration Step 1 (21.6 min) Integration Step 2 (34.56 min)

(d)

Integration Step 6 (64.8 min)

-0

(h) final estimated ensemble
() (® -

Figure 17. Estimating 3D heterogeneous permeability by SSBRC. The evolution of the estimated
ensemble mean through integration steps.

In the following figures in this section the extensive estimation results of SSBRC are presented. Figure 17
shows the result of updating the permeability ensemble in terms of ensemble mean through 6 integration
steps. It is seen that the estimated ensemble mean is becoming more similar to the true permeability map
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in Figure 17.a by assimilating MEQ observations in time. The initial ensemble (almost uniform initial
ensemble mean in Figure 17.b) is completely uninformative about true permeability map, Figure 17.a,
however after MEQ data assimilation the final ensemble mean, Figure 17.h, is very similar to the true
map. Therefore SSBRC proves its suitability for 3D heterogeneous permeability estimation from MEQ
data.

Figure 18 shows the estimation result in terms of one individual realization. The evolution of an
individual permeability realization or sample is shown in this figure. As we can see again, SSBRC is able
to update a dissimilar initial permeability realization, Figure 18.b, to a final estimated realization, Figure
18.h, which is quite comparable to the true permeability map, Figure 18.a.

Initial Sample

(a) true log-permeability map (b) initial log-permeability realization
Integration Step 1 (21.6 min) Integration Step 2 (34.56 min) Integration Step 3 (43.2 min)

(c) (d)
Integration Step 4 (47.52 min) Integration Step 5 (56.16 min)

20

10

€3} (2) (h) final estimated realization
Figure 18: Estimating 3D heterogeneous permeability by SSBRC. The evolution of an individual
realization through integration steps.
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The performance measures of SSBRC estimation procedure are also shown in Figure 19. The continuous
reduction of estimation RMSE, Figure 19.a, shows the success of SSBRC in estimating 3D permeability
distribution. The final RMSE value is less than half of initial RMSE. The ensemble spread is plotted in
Figure 19.b which shows that 97 % of the initial ensemble spread is lost throughout the estimation
procedure. This very low final ensemble spread (3 %) shows severe ensemble spread underestimation and
ensemble collapse which is due to erroneous and spurious correlation of very high resolution seismicity
density observation and permeability distribution. As discussed before, very high dimensional seismicity
density observation (75000 seismicity observations) which is made on the original fine grid system
introduces high amount of redundancy and spurious correlation to EnKF update and consequently results
in ensemble collapse. This uncertainty quantification issue will be resolved by applying the proposed
methods Oand the new estimation results will be presented in experiment 6.

1. =10
£ 80
=16 g
44 § 60
e g
W12 & 40
1 E 20
0.8 : 2
0 20 _ 40 60 5 % 20 40 60
Time (min) Time (min)
(a) estimation RMSE (b) ensemble spread

Figure 19. SSBRC performance measures in estimating 3D heterogeneous permeability field.

The other representation of ensemble spread is the standard deviation (Std) map of the ensemble which its
evolution in integration steps is shown in Figure 20. By assimilating the MEQ data, the spread of the
permeability ensemble decreases that results in lowering the ensemble Std map. Figure 20 shows
continuous reduction of ensemble spread. As Figure 20.g shows the final estimated ensemble Std is
extremely low that again demonstrates the ensemble spread underestimation of SSBRC with high
dimensional observations (MEQ density map on original fine grid system).
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Initial Std Map

(a) initial ensemble Std map

Integration Step 1 (21.6 min) Integration Step 2 (34.56 min) Integration Step 3 (43.2 min)

(b) (d)

Integration Step 4 (47.52 min) Integration Step 5 (56.16 min) Integration Step 6 (64.8 min)

(g) final estimated ensemble Std

(©) () i
Figure 20. Evolution of the standard deviation (Std) map of permeability ensemble through integration
steps.

Experiment 4: 2D Homogeneous, Resolving Spread Underestimation

In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0
to the experiment 1 in section 0 (reference experiment) to resolve the issue of ensemble spread
underestimation.

Inflated observation error variance

The simplest way of avoiding spread underestimation or ensemble collapse is adding large amount of
noise to observation which can be done by specifying high observation standard deviation (Std) through
increasing op,.x and opyin in equation (8). To observe the effect of observation Std range, different Std
intervals are tried in our experiment. The results of increasing the observation error Std range are given in
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Table 2. The first row of Table 2, test # 1, shows the results of reference model that is experiment 1 in
section 0. These results show improvement of final ensemble spread in terms of both Sp(m) and Sp(B)
(preserving more ensemble spread) by increasing the observation error Std. However the increased Std
range (e.g. test # 4 with observation Std of 100-200%) might seem unrealistic. It is also obvious from
Table 2 that we can yet improve ensemble spread by further increasing the observation error Std. Figure
21 shows the estimation results of SSBRC with inflated observation error Std range (test # 4 from Table
2). In estimating one single parameter with SSBRC since we expect perfect estimation (zero spread) it
does not seem necessary to apply improved uncertainty quantification methods however as the results of
Table 2 show increasing observation Std helps in preserving the ensemble spread.

Table 2. Sensitivity of the SSBRC performance to different ranges of observation Std (standard SSBRC
with seismicity density on the original fine grid) in estimating homogeneous permeability

« | Final Aux.
Final RMSE | Final spread .
test # Omin (%) | Omax (%) o Spread (%)

(md) | Coyspm) | U

1 (reference) 8 13 0.0021 0.0036 67.58
2 27 54 0.0030 0.0050 77.17

3 40 88 0.0036 0.0056 78.58

4 91 196 0.0115 0.0193 90.46

Initial RMSE = 104.0444 (md)
*Spread = spread of the original ensemble (permeability)

**Aux. Spread = spread of the random auxiliary ensemble (the inverse of inflation factor) used for the
analysis of spurious correlation

The results of resolving ensemble spread underestimation by inflating observation error Std are shown in
Figure 21. To briefly illustrate the estimation results, estimated ensemble histogram is only plotted in first,
third and sixth (final) integration steps. As shown in Figure 21.a,b, the final estimated ensemble is almost
equal to the true permeability which confirms the suitability of SSBRC for parameter estimation. In the
experiments of Table 2 the appropriate measure of spread is auxiliary ensemble spread Sp(B) which is
acceptable (more than 60 %) in all experiments. Different experiments and different setups do not have
significant effect on the RMSE value in homogeneous case.

Initial Ensemble Integration Step 1 (36 min) Integration Step 3 (108 min) Integration Step 6 (216 min)
60 60 60
40 40 40
20 20 20
50 100 150 200 00 = -5'[.} 100 150 200 00 50 100 150 200 00 50 100 150 200
Permeability (md) Permeability (md) Permeability (md) Permeability (md)

(a) permeability ensemble histogrm update through integration steps.
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Figure 21. Estimating homogeneous permeability from MEQ observation by SSBRC and improving
uncertainty quantification by increased observation error Std.

(b) permeability estimation RMSE (d) auxiliary ensemble spread

Reduced-order projection

In this section we apply the projection method of section 0 to experiment 1 in section 0 to improve the
final estimated ensemble spread. As mentioned earlier, projection method has two tuning parameters;
kernel bandwidth standard deviation oy, and truncation number ny.y,c. We investigate the performance of
SSBRC with reduced-order projection with respect to four different sets of these parameters as shown in
Table 3. As we can see from these tests, the estimation RMSE as we expect is almost zero and as the
objective of the projection method, ensemble spread is greatly preserved (final ensemble spread is around
60% or more). It should be noted that the number of observations is decreased from 10000 to 25, 50 and
100 by projection method, as reported in Table 3, nyrync column. Table 3 shows the sensitivity of the
projection approach with respect to o, and ny.ync. The proposed observation projection approach is
successful in preserving the ensemble spread and resolving ensemble spread underestimation of SSBRC
through observation dimension reduction. Detailed estimation results of test # 1 from Table 3 are shown
in Figure 22.

Table 3. SSBRC with observation projection approach. Sensitivity of the performance of projection
approach with respect to kernel bandwidth Std (ay,) and truncation number (Nrync)-

Final Aux.
Final RMSE Final spread
Test # oy, (%) Nerunc 0 Spread (%)
(md) (%) Sp(m) P (B)
1 25 100 0.0037 0.0063 59.73
2 25 50 0.0048 0.0080 66.93
3 25 25 0.0064 0.0103 84.61
4 10 50 0.0040 0.0067 69.64

Initial RMSE = 104.0444 (md)

Figure 22 shows homogeneous permeability estimation results by SSBRC with projection approach. As
we can see from the plots in Figure 22 both estimation performance (RMSE) and ensemble spread are
promising.
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(c) original permeability ensemble
spread
Figure 22. Estimating homogeneous permeability from MEQ observation by SSBRC and improving
uncertainty quantification by projection method.

(b) permeability estimation RMSE (d) auxiliary ensemble spread

Coarse-Scale microseismicity density map

The number of observations is equal to the dimension of seismicity density map. To reduce the dimension
of the seismicity density map (number of observations to integrate) which is the major reason of the
ensemble spread underestimation we can build the seismicity density map on a coarse grid system instead
of the original fine grid system. So we only need to evaluate continuous seismicity density map on a new
coarse grid system.

In this 2D case study where the grid block configuration is 100x100 (N, = 10000, Nx = 100) we choose
the coarse seismicity density mesh size e.g. equal to 10x10 (N, = 100 seismicity observations, N req = 10)
which reduces the dimension of the observation vector by orders of magnitude. It should be noted that the
range of the observation error Std in coarse seismicity density approach is the typical range of 5% to 10%.
Different microseismicity density map sizes produces different number of observations and help in
reducing the number of observations to resolve the observation space redundancy and ultimately
ensemble spread underestimation in EnKF process. The dimension of microseismicity density map is
considered in terms of number of grid blocks in x direction (the field configuration is square). For
coarsening of the seismicity density map, we specify different sizes of Nx ..q equal to 10, 15, 20, 30, 50,
70 and 90, that decrease the number of observations to 100, 225, 400, 900, 2500, 4900 and 8100,
respectively where in the reference experiment by Ny req = Nx = 100, there are 10000 observations.
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Figure 23. Effect of coarse microseismicity density dimension on the performance of SSBRC in
homogeneous permeability estimation experiment, initial RMSE = 104.0444 (md).

The effect of different dimensions of microseismicity density map on the performance of SSBRC process
is shown in Figure 23. In this experiment seven different sizes of seismicity density map (Nxreq =
10,15,20,30,50,70,90) are chosen and the reference case density map size is Ny = 100 (seismicity
density map of 100X 100 where the number of microseismicity observations is equal to 10000). Figure 23
shows both final estimation RMSE and final (original and auxiliary) ensemble spread of these eight
experiments. Based on RMSE curve of Figure 23, it is seen that final RMSE is slightly decreasing by
increasing the mesh dimension however in this case with homogeneous permeability final RMSE value is
very insignificant and can be considered zero. It should be noted that we are looking for both low RMSE
and high spread simultaneously while as mentioned before final RMSE wvalue is acceptable in all
experiments. Figure 23 shows the final ensemble spread (both original permeability ensemble and
auxiliary ensemble) versus size of seismicity density map. As we already expected, by increasing the size
of the density map there will be higher number of observations which consequently results in further
underestimation of ensemble spread (lower ensemble spread value). As the result, the improvement of the
ensemble spread is obviously seen in Figure 23 by decreasing the size of the seismicity density map (or
using coarse seismicity density map) even though in homogeneous parameter estimation this
improvement is not very significant. Based on the obtained results, the density size of 10 (10x10 coarse
map in a 100x 100 field) for coarse-scale mesh can be a suitable choice.
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(a) permeability ensemble histogrm update through integration steps
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Figure 24. Estimating homogeneous permeability from MEQ observation by SSBRC and improving
uncertainty quantification by coarse seismicity density.

(b) permeability estimation RMSE (d) auxiliary ensemble spread

The estimation results of SSBRC with coarse seismicity density map Ny o4 = 10, are shown in Figure 24
which represents estimated ensemble histogram evolution, RMSE and spread curves. The histogram of
final estimated permeability ensemble in Figure 24.a falls exactly on the true value of permeability which
confirms the success of SSBRC in estimating permeability. Considering the performance of SSBRC with
coarse density in terms of auxiliary ensemble spread, Figure 24.d clearly shows appropriate amount of
ensemble spread (almost 85 %) at the final integration step. Continuous reduction of estimation error
(RMSE) by integration step in Figure 24.b and very low final RMSE confirm the suitability of SSBRC for
this estimation problem.

Experiment 5: 2D Heterogeneous, Resolving Spread Underestimation

In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0
to the experiment 2 in section 0 (reference experiment) to resolve the issue of ensemble spread
underestimation.

Inflated observation error variance

In this section to resolve the ensemble spread underestimation issue of SSBRC in experiment 2 section 0,
we apply inflated observation error variance method. First we investigate the sensitivity of SSBRC
performance to the range of the observation error Std. So we perform SSBRC with seismicity density on
fine (original) grid system for different values of observation Std. In this experiment, we also show the
sensitivity with respect to kernel band size, h. To resolve the ensemble spread underestimation, we find
the optimal observation Std percent. As shown in Figure 25, SSBRC was performed at different kernel
bandwidth sizes, h, and different observation Std percentages. To make the procedure of sensitivity
analysis faster, only one integration step (integrating the whole seismicity cloud at once) is considered.
Kernel bandwidth is changing from 0.1 to 5 (in terms of grid block size) which is color coded (50
different values) and o,,;,, is changing from 5 to 800 (100 different values) while gy, equals twice gyip-
We can find both optimal values of observation Std and Kernel bandwidth. For instance RMSE plot,
Figure 25.a, shows that the minimum value of RMSE occurs around 100 % observation Std.
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Figure 25. Sensitivity of the performance of SSBRC with respect to observation error Std (%) and the size

of the kernel band (the unit of kernel band is grid size).

To better investigate the effect of observation Std range, SSBRC results with different Std intervals are
also shown in

Table 4. The first row of

Table 4, test # 1, shows the results of reference model that is experiment 2 in section 0. These results
show improvement of final ensemble spread, characterized by Sp(m), (preserving more ensemble spread)
by increasing the observation error Std. It can be seen in

Table 4 column Sp(m) that with increasing observation Std we can improve final ensemble spread from
10 % to 50 %. The test # 4 from
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Table 4 (with 100 to 200 % observation Std range) is chosen as a representative experiment and its
estimation results are shown in Figure 26. Comparing test # 1 (reference experiment with the typical
range of observation Std) and test # 4 (improved uncertainty quantification) from

Table 4, we can see final ensemble spread increased from 10 % to almost 40 % and even estimation
RMSE slightly decreased that means improvement both in parameter estimation (RMSE reduction) and
uncertainty quantification (Sp(m) increase).

Table 4. Sensitivity of the SSBRC performance to different ranges of observation Std (standard SSBRC
with seismicity density on the original fine grid) in estimating 2D heterogeneous permeability

test# | anin () | omax (%) | 71 ENE |
1 (reference) 11 16 0.7576 9.39
2 34 90 0.7067 21.31
3 82 144 0.7078 32.03
4 100 203 0.7339 37.90
5 111 187 0.7394 41.09
6 143 227 0.7305 40.71
7 255 385 0.8075 51.42

Initial RMSE = 1.4478

In Figure 26 for concise illustration, only initial and final (at the sixth integration step) estimated maps are
shown. Figure 26.b shows initial permeability ensemble mean, ensemble Std map and an individual
permeability sample and Figure 26.c represents the final estimated ensemble mean, Std map and an
individual sample after assimilating all MEQ observations. SSBRC is very successful in inferring the true
permeability since the final estimated maps are very similar to the true permeability distribution.
Additionally SSBRC along with inflated observation error Std results in preserving ensemble spread
through estimation procedure which is shown by high Std map of Figure 26.c (middle plot). Estimation
RMSE, Figure 26.d, and ensemble spread, Figure 26.e, prove successful estimation and ensemble spread
improvement, respectively.
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Figure 26. The SSBRC estimation results with inflated observation Std for a 2D heterogeneous
permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left),
standard deviation map (middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after six update steps, and time
evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

Reduced-order projection
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The results of applying reduced-order projection along with SSBRC for different values of kernel
bandwidth Std, ;,, and truncation number, Nyqync, t0 €xperiment 2, section 0, are presented in

Table 5. The reference experiment (experiment 2, section 0) suffers from severe ensemble spread
underestimation with only 10 % final spread however

Table 5 shows promising improvement of ensemble spread towards 40 to 80 %. The estimation RMSE of
projection approach as shown in

Table 5 is not as low as reference experiment. It is clear from

Table 5 column 7y that reduced-order projection approach lowered the number of observations from
10000, in the reference experiment, to 25, 50 and 100, by spectral dimension reduction.

Table 5. SSBRC with observation projection approach. Sensitivity of the performance of projection
approach with respect to kernel bandwidth Std (o3,) and truncation number (Npync)-

Final RMSE Final spread
Test# on (%) | Merunc (Lperm) | (%) Sp(m)
1 25 100 1.02 50.61
2 25 50 0.9975 68.62
3 25 50 0.9682 64.84
4 25 100 0.9546 41.89
5 10 100 1.1382 28.41
6 25 25 1.1427 76.31

Initial RMSE = 1.4478

We choose test # 4 from

Table 5 as the representative experiment and its estimation results are shown in Figure 27. It should be
noted that for this experiment five integration steps are considered. As it is seen in

Table 5 test # 4, the truncation number, Nyyne, is 100 which means by applying reduced-order projection
we reduced the number of observations from 10000, in the reference experiment, to 100 in the improved
experiment.

The final estimated ensemble mean and individual sample (left and right plots of Figure 27.c) demonstrate
significant similarity with the true permeability map, Figure 27.a, and the estimation RMSE curve, Figure
27.d, is continuously decreasing. Therefore the estimation performance of SSBRC with projection
approach is promising. As Figure 27.¢ shows the final ensemble spread is 40 %. The final Std map,
Figure 27.c (middle plot), also demonstrates high values which confirms successful application of
reduced-order projection for resolving ensemble spread underestimation.
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Figure 27. The SSBRC estimation results with observation projection approach for a 2D heterogeneous
permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left),
standard deviation map (middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after six update steps, and time
evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

Coarse-scale microseismicity density map
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In this section preserving ensemble spread and improving uncertainty quantification is performed through
reducing the number of observations by interpreting the discrete MEQ cloud on a coarse-scale grid
system instead of original fine grid configuration. The reference experiment with ensemble spread
underestimation in the one in section 0. The dimension of microseismicity density map is considered in
terms of number of grid blocks in x direction (the field configuration is square). For coarsening of the
seismicity density map, we specify different sizes of Ny ¢4 €qual to 10, 15, 20, 30, 50, 70 and 90, that
decreases the number of observations to 100, 225, 400, 900, 2500, 4900 and 8100, respectively where in
the reference experiment by Ny o4 = Nx = 100, there are 10000 observations. In Figure 28, coarse-scale
microseismicity density maps generated on different coarse grid configurations are shown. It is clear from
Figure 28 that by coarsening the seismicity density map we are able to reduce the redundancy of MEQ
density and consequently reduce the number of observations. In this experiment where permeability is
heterogeneous the parameter dimension is also 10000.
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Figure 28. Continuous interpretation of MEQ cloud on different sizes of coarse-scale grid configuration.
(a) discrete MEQ cloud, (b)-(i) coarse seismicity density maps on different coarse grid systems.
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The results of sensitivity analysis of SSBRC performance with respect to coarse seismicity density size
are given in Figure 29. All these experiments are performed with the typical range of observation error
Std (5 % to 10 %). As we can see estimation RMSE is not very sensitive to size of the coarse grid system
so the determining factor in choosing the appropriate size is ensemble spread. Figure 29 clearly shows
that by increasing the dimension of the coarse grid system (rising the number of seismicity density
observations) the ensemble spread will decrease. Therefore using coarse-scale grid system for generating
seismicity density map greatly helps in preserving ensemble spread and avoiding ensemble collapse. As
the representative experiment, we choose coarse grid system of 10X10 (Nx r¢q=10) from Figure 29 and its
estimation results are shown in Figure 30.

Performance Measures vs. Coarse Seismicity Density Size
1 5 ' . v . " '

% 20 30 40 50 60 70 80 90 100
Coarse Seismicity Density Size

| —e— RMSE
—8— Aux. Ens. Spread % (x100)
—&— Original Ens. Spread % (x100)

Figure 29. Effect of coarse microseismicity density dimension on the performance of SSBRC in
heterogeneous permeability estimation experiment, initial RMSE = 1.4478.

Figure 30 presents the SSBRC estimation results with coarse-scale seismicity density map. The final
estimated maps of permeability (Figure 30.c) are very similar to the true map (Figure 30.a) and the
estimation RMSE curve is continuously decreasing which confirms promising estimation performance of
SSBRC. Utilizing coarse-scale seismicity density resolves the ensemble spread underestimation issue and
increases the final ensemble spread from 10 % in the reference experiment to 40 % in this improved
experiment (Figure 30.e). Comparing the final ensemble Std map of Figure 30.c (middle) to the same map
of reference experiment, Figure 15.g, indicates how effective coarse seismicity density approach is in
improving uncertainty quantification of SSBRC.
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Figure 30. The SSBRC estimation results with coarse-scale seismicity density approach for a 2D
heterogeneous permeability model: (a) the true log permeability model, (b) initial log-permeability
ensemble mean (left), standard deviation map (middle), and an individual realization (right), (c) final log
permeability ensemble mean (left), standard deviation (middle), and individual realization (right) after six
update steps, and time evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

Experiment 6: 3D Heterogeneous, Resolving Spread Underestimation
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In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0
to the experiment 3 in section 0 (reference experiment) to resolve the issue of ensemble spread
underestimation and ensemble collapse.

Inflated observation error variance

To resolve ensemble collapse problem with experiment 3 in section 0, in this section, we artificially
increase observation error standard deviation range. To investigate the effect of observation Std range,
SSBRC results with different Std intervals are shown in Table 6. The first row of Table 6, test # 1, shows
the results of reference model that is experiment 3 in section 0. These results show improvement of final
ensemble spread, characterized by Sp(m), (preserving more ensemble spread) by increasing the
observation error Std. It can be seen in Table 6 column Sp(m) that with increasing observation Std we
can improve final ensemble spread from 3 % to almost 20 %. The test # 3 from Table 6 (with 100 to 200 %
observation Std range) is chosen as a representative experiment and its estimation results are shown in
Figure 31. Comparing test # 1 (reference experiment with the typical range of observation Std) and test #

3 (improved uncertainty quantification) from Table 6, we can see final ensemble spread increased from 3 %
to almost 20 % and even estimation RMSE slightly decreased that means improvement both in parameter
estimation (RMSE reduction) and uncertainty quantification (Sp(m) increase). It is obvious from Table 6
that we can yet increase ensemble spread by further inflating observation error variance (increasing o
and 0py,a%)-

Table 6. Sensitivity of the SSBRC performance to different ranges of observation Std (standard SSBRC
with seismicity density on the original fine grid) in estimating 3D heterogeneous permeability.

st | o (6) | amax () | S
1 (reference) 11 17 0.8504 2.58

2 25 59 0.8236 5.49

3 99 194 0.8151 18.65

Initial RMSE = 1.7793

In Figure 31 for concise illustration, only initial and final (at the sixth integration step) estimated maps are
shown. Figure 31.b shows initial permeability ensemble mean, ensemble Std map and an individual
permeability sample and Figure 31.c represents the final estimated ensemble mean, Std map and an
individual sample after assimilating all MEQ observations. SSBRC is very successful in inferring the true
permeability since the final estimated maps are very similar to the true permeability distribution.
Additionally SSBRC along with inflated observation error Std results in preserving ensemble spread and
avoiding ensemble collapse through estimation procedure which is shown by high Std map of Figure 31.c
(middle plot). Estimation RMSE, Figure 31.d, and ensemble spread, Figure 31.e, prove successful
estimation and ensemble spread improvement, respectively.
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Figure 31. The SSBRC estimation results with inflated observation Std for a 3D heterogeneous
permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left),
standard deviation map (middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after six update steps, and time
evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

Reduced-order projection
The results of applying reduced-order projection along with SSBRC for different values of kernel
bandwidth Std, g5, and truncation number, Nnyne, to €xperiment 3, section 0, are presented in Table 7.
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The reference experiment (experiment 3, section 0) suffered from severe ensemble spread
underestimation and ensemble collapse with only 3 % final spread however Table 7 shows promising
improvement of ensemble spread towards 20 to 50 %. The estimation RMSE of projection approach as
shown in Table 7 is not as low as reference experiment. We choose test # 1 from Table 7 as the
representative experiment and its estimation results are shown in Figure 32. As it is seen in Table 7 test #
1, the truncation number, Nyryne, 1S 100 which means by applying reduced-order projection we reduced
the number of observations from 75000, in the reference experiment, to 100 in the improved experiment.

Table 7. SSBRC with observation projection approach. Sensitivity of the performance of projection
approach with respect to kernel bandwidth Std (ay,) and truncation number (N¢rync)-

Final RMSE Final spread
Test # °
“ w00 Mewe | (perm) | (%) Sp(m)
1 25 100 0.9785 19.52
2 25 40 1.0576 47.16

Initial RMSE = 1.7793

The final estimated ensemble mean and individual sample (left and right plots of Figure 32.c) demonstrate
significant similarity with the true permeability map, Figure 32.a, and the estimation RMSE curve, Figure
32.d, is continuously decreasing. Therefore the estimation performance of SSBRC with projection
approach is promising. As Figure 32.e shows the final ensemble spread is 20 %. The final Std map,
Figure 32.c (middle plot), also demonstrates high values which confirms successful application of
reduced-order projection for resolving ensemble spread underestimation and ensemble collapse.
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Figure 32. The SSBRC estimation results with observation projection approach for a 3D heterogeneous
permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left),
standard deviation map (middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after six update steps, and time
evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

Coarse-scale microseismicity density map

In this section preserving ensemble spread and improving uncertainty quantification is performed through
reducing the number of observations by interpreting the discrete MEQ cloud on a coarse-scale grid
system instead of original fine grid configuration. The reference experiment with ensemble spread
underestimation in the one in section 0. We investigated two different coarse-scale grid configurations as
reported in Table 8. These SSBRC experiments with coarse seismicity density are performed with the
typical range of observation error Std (5 % to 10 %). The first coarse grid system (Table 8 test # 1) is
10x10x5 which results in the coarse seismicity density dimension of 500. In fact we discretize the original
3D field to 10x10x5 configuration to generate seismicity density instead of using the original fine grid
system (50x50x30) which is used for numerical reservoir simulation. Therefore the number of
observations is reduced from 75000 in the reference experiment to 500 in the improved experiment. In
test # 2 of Table 8, the grid system is 15x15x10. In this case the number of seismicity density
observations is 2250. The results of sensitivity analysis of SSBRC performance with respect to coarse
seismicity density configuration are given in Table 8. Final ensemble spread values, Sp(m), in Table 8
clearly show that by coarsening the grid system the ensemble spread will increase. Therefore using
coarse-scale grid system for generating seismicity density map greatly helps in preserving ensemble
spread and avoiding ensemble collapse. As the representative experiment, we choose test # 1, coarse grid
system of 10X10x5, from Table 8 and its estimation results are shown in Figure 33.

Table 8. SSBRC with coarse seismicity density. Sensitivity of SSBRC performance with respect to the
size of coarse-scale grid system.

Coarse-scale | Final RMSE Final spread

Test# grid (Lperm) (%) Sp(m)
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configuration

1 10x10x5 0.9171 25.72
2 15x15x10 0.8208 12.97

Initial RMSE = 1.7793

Figure 33 presents the SSBRC estimation results with coarse-scale seismicity density map. The final
estimated maps of permeability (Figure 33.c) are very similar to the true map (Figure 33.a) and the
estimation RMSE curve is continuously decreasing which confirms promising estimation performance of
SSBRC. Utilizing coarse-scale seismicity density resolves the ensemble spread underestimation
(ensemble collapse) issue and increases the final spread from 3 % in the reference experiment to 25 % in
this improved experiment (Figure 33.e). Comparing the final ensemble Std map of Figure 33.c (middle) to
the same map of reference experiment, Figure 20.g (where ensemble collapse happened), indicates how
effective coarse seismicity density approach is in improving uncertainty quantification of SSBRC.
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Figure 33. The SSBRC estimation results with coarse seismicity density for a 3D heterogeneous
permeability model: (a) the true log permeability model, (b) initial log-permeability ensemble mean (left),
standard deviation map (middle), and an individual realization (right), (c) final log permeability ensemble
mean (left), standard deviation (middle), and individual realization (right) after six update steps, and time
evolution of (d) the log permeability RMSE and (e) normalized ensemble spread.

4.5 Description of Experimental Setup: Geomechanical Model

In this section we apply the SSBRC method to the fully coupled geomechanical forward reservoir
simulator. In these set of experiments we assimilate MEQ cloud (after converting it to continuous
seismicity density map) in EnKF analysis equation to infer hydraulic (permeability) and geomechanical
(Young’s modulus or elastic modulus, tensile strength, Cohesion) parameters of the reservoir. The
experiments in this section are performed on both homogeneous and heterogeneous 2D model and also on
heterogeneous 3D model. We use a 2D FEM model with point source injection by quadrilateral regular
mesh with 50x50 = 2500 elements (10000 nodes) and the reservoir size of 500 m x 500 m. The developed
coupled FEM model is capable of handling spatially distributed parameters (heterogeneous distributions)
such as permeability, Young’s modulus, tensile strength, cohesion and friction angle. We assign the
spatially distributed parameters to the nodes therefore 2D model parameter dimension is 10000. There is
one water injection well with constant injection rate at the center of the field. The fluid is assumed single
phase and the boundaries are closed to flow (No flow boundary condition). In 2D model, the stress
boundary condition or far-field stress regime is specified by maximum horizontal stress Sy yax, minimum
horizontal stress Sy min, and the initial field pressure Pp;. It should be noted that our simulations are
performed in isothermal reservoir conditions however the forward model is capable of handling thermal
effects. The rock and fluid properties are reported in Table 9. In the 2D forward simulation, time step
length is 720 (s) and there are 100 time steps. We also consider this 2D geomechanical model with
homogeneous parameter and perform estimation experiment with SSBRC to infer a single parameter (e.g.
the homogeneous Young’s modulus) from MEQ observations.

Table 9. Rock/fluid properties used in simulations.

Fluid density, ps 1000 kg/m3

Fluid viscosity, n 1073 Pa.s
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Drained Poisson’s ratio, v 0.22
Undrained Poisson’s ratio, v, 0.46
Porosity, ¢ 0.30
Material constant, {4 20

Material constant, 84 1077

In this work, we also use a 3D fully coupled FEM model with point source injection by hexahedron
regular mesh with 30x30x15 = 13500 elements (108000 nodes) and the reservoir size of 750 m x 750 m x
370 m. The forward geomechanical model is very computationally expensive and in our case a single
forward simulation takes almost 5 (hr) to run (on a machine with Intel Xeon CPU 3.07 GHz and 6 GB
RAM). Consequently, SSBRC procedure which needs running multiple realizations in different
integration steps, has extremely high run time. While as discussed earlier the SSBRC procedure is already
implemented in parallel, the estimation process with 3D model is still very computationally intensive.
Therefore, as we already know the original SSBRC leads to ensemble spread underestimation we choose
to perform SSBRC with coarse seismicity density method. Here we only present the estimation results of
a single 3D experiment which is estimating Young’s modulus distribution from MEQ cloud using SSBRC
with coarse-scale seismicity density method.

To do EnKF data integration, we consider six integration steps. In each SSBRC estimation experiment,
we assume the spatial distribution of one reservoir property unknown (the parameter to estimate) and the
rest of the properties are assumed known. We can also estimate more than one reservoir property
distribution simultaneously from MEQ cloud.

4.5.1 Results and discussion

In this section we present the SSBRC estimation results with the geomechanical forward model. For the
2D model we first show the results of standard SSBRC that leads to ensemble spread underestimation and
then the results of improved uncertainty quantification with SSBRC are presented. The estimation results
of SSBRC with 3D geomechanical model are presented only by incorporating improved uncertainty
quantification methods.

Experiment 1: 2D Homogeneous

To demonstrate the applicability of the SSBRC method for geomechanical model, we first apply it to a
homogeneous parameter estimation problem. As the simplest experiment, we consider all parameters to
be constant (homogeneous or uniform over the whole field, i.e., spatially invariable) and then we consider
one of the parameters to be unknown and set out to estimate the unknown parameter (which is a scalar).
When the unknown parameter is homogeneous, the initial random ensemble of realizations for EnKF
consists of N, real numbers while each number (or scalar) is a realization or candidate of the unknown
parameter. Therefore, to show the ensemble we simply use a histogram. In this set of experiments we use
the standard SSBRC with high resolution seismicity density which is generated on the original fine FEM
mesh. The observation error Std range (Gpin> Omax) 1S also chosen as 15 % to 50 % which is inflated to
some extent comparing to typical range of observation Std (5 % to 10 %).

We consider integrating tensile microseismicity events to estimate the homogeneous reservoir parameters.
We consider Young’s modulus (E), permeability (k) and tensile strength (Ty) to be homogeneous (a
single value for all nodes) and consider tensile failure distribution as monitoring data. A single true
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geomechanical model is considered while in different estimation experiments different parameters are
estimated. We consider three different settings for estimating three different parameters (Young’s
modulus, permeability and tensile strength). For instance in the first setting we assume k and T, known
and E unknown then we integrate seismicity data to estimate homogeneous Young’s modulus E. By the
same procedure we setup the other two settings to estimate k and T, . Figure 34 shows the true
microseismicity cloud for the homogeneous parameter estimation experiment. The geomechanical model
specifications are also indicated in Figure 34. The result resembles a conventional hydraulic fracture
propagation.
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Figure 34. True seismicity cloud (tensile failures) of homogeneous parameter experiment; P,,; =
10 (MPa), Sy max = 25 (MPa), Sy min = 15 (MPa), Inj. Rate = 0.005 (I/s),E = 10 (GPa), k =
0.005 (md), Ty = —4 (MPa). The black cross shows the injection well location.

First we consider estimating the homogeneous Young’s modulus (E). To illustrate the ensemble of
realizations in homogeneous parameter estimation we can simply use a histogram. To show the estimation
procedure we plot the histogram of the ensemble at each integration step (six integration steps). Moreover,
as a measure of estimation procedure performance we show the evolution of Root Mean Square Error
(RMSE) of estimation through time (integration time steps). Figure 35 shows the estimation results of
homogeneous E by integration of tensile events of Figure 34. The red vertical line in the histogram shows
the true value of E (10 GPa) which we are trying to estimate. In all experiments we use 100 realizations
or samples of E i.e., the EnKF ensemble size is equal 100. Figure 35 shows the evolution of the ensemble
histogram from (a) to (g) through integration time steps. It can be seen that the EnKF process is very
effective in estimating the unknown parameter. The initial histogram (a) is very wide but by integration of
seismicity data the histogram narrows around the true E value and from integration step 3 to the end all
the realizations or samples of E almost coincide with the true value of E. Basically, we start with a
random set of E samples (100 samples) between zero and 50 (GPa) as the initial ensemble, and after
applying the EnKF and integrating true seismicity observations in time, all 100 samples converge to the
true E value of 10 GPa. In plots (d) to (e) only the red vertical line is visible meaning that all the samples
are equal true E value which shows the almost perfect estimation of E. The estimation error of E (RMSE),
Figure 35.h, goes to almost zero which indicates a perfect estimation of the unknown parameter.
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Figure 35. Results of homogeneous elastic modulus E, estimation; plots (a) to (g) show the evolution of
ensemble histogram at each integration steps. Plot (h) shows the RMSE of estimation. (True E = 10 GPa).

The uncertainty quantification performance of SSBRC is shown in Figure 36 in terms of ensemble spread
throughout the integration steps. As we expect in a homogeneous parameter estimation problem the final
original ensemble spread (Figure 36.a) is very insignificant (close to zero) since all the final estimated
realizations are almost equal to the true value of Young’s modulus. Figure 36.b still shows acceptable
final auxiliary ensemble spread of 15 % which yet can be improved by further increasing observation Std.

Original Ensemble Spread (%) Aux. Ensemble Spread (%)

60
40
20
1]
0 5 10 15 20 0 5 10 15 20
Time (hr) Time (hr)
(a) Young’s modulus ensemble spread (b)

Figure 36. Ensemble spreads in estimating homogeneous elastic modulus E, from MEQ events.

Figure 37 shows the estimation results of homogeneous permeability k, by integration of tensile events of
Figure 34. The red vertical line in the histogram shows the true value of k (0.005 md) which we are
trying to estimate. Figure 37 just represents the histogram of permeability ensemble in some specific
integration steps to make the representation more concise. In this estimation example we again see at
integration step 3 (Figure 37.d) the histogram fully narrows down to the true k value which means almost
perfect estimation of unknown permeability value. Figure 37.a, the permeability RMSE, also shows the
estimation error almost goes to zero.
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Figure 37. Results of homogeneous permeability k, estimation; Plot (a) shows the RMSE of estimation.
Plots (b) to (e) show the evolution of ensemble histogram in integration steps. (true k = 0.005 md).

The uncertainty quantification performance of SSBRC is also shown in Figure 38 in terms of ensemble
spread throughout the integration steps. As we expect in a homogeneous parameter estimation problem
the final original ensemble spread (Figure 38.a) is very insignificant (close to zero) since all the final
estimated permeability realizations are almost equal to the true permeability. Figure 38.b still shows fairly
promising final auxiliary ensemble spread of 45 % which yet can be improved by further increasing
observation Std or using other improved uncertainty quantification methods.
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Figure 38. Ensemble spreads in estimating homogeneous permeability k, from MEQ events.

In the next example setting we assume tensile strength T, to be the unknown parameter and estimate it by
seismicity data integration. Again the true model is shown in Figure 34 and we estimate homogeneous T
by integrating tensile events. The true tensile strength value is equal to -4 (MPa). Figure 39 illustrates the
estimation results including both T, estimation error and T, ensemble histogram evolution. Confirming
the previous homogeneous parameter estimation results, we can see the unknown homogeneous Ty is
estimated perfectly.
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Figure 39. Results of homogeneous tensile strength T, estimation; Plot (a) shows the RMSE of
estimation. Plots (b) to () show the evolution of ensemble histogram in integration steps. (true T, = -4
MPa).

Similar pattern is again seen in the ensemble spread results of Figure 40. The final T, ensemble spread
(Figure 40.a) is almost zero which is expected in homogeneous parameter estimation and the final
auxiliary ensemble spread (Figure 40.b) is equal to 30 % that indicates promising final spread value.

Original Ensemble Spread (%) Aux. Ensemble Spread (%)
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(a) tensile strength ensemble spread (b)
Figure 40. Ensemble spreads in estimating homogeneous tensile strength T, from MEQ events.

It should be noted again that we used a single true homogeneous model in three different estimation
settings to estimate three different reservoir parameters (true model of Figure 34 and three estimation
examples of Figure 35, Figure 37 and Figure 39). Based on these three examples for estimating
homogeneous geomechanical reservoir parameters, we see the promise of using EnKF to effectively infer
unknown reservoir parameters using MEQ data. In all these homogeneous parameter estimation
experiments with SSBRC we might see the issue of ensemble spread underestimation or ensemble
collapse that can be always handled with proposed improved uncertainty quantification methods of
section 0. However in this of experiments, we only emphasize on estimation performance of SSBRC
which is shown promising and we do not apply improved uncertainty quantification methods to preserve
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the ensemble spread throughout integration steps. Although we applied SSBRC with slightly inflated
observation error Std range (15 % to 50 %). It should be noted that in homogeneous parameter estimation
with SSBRC, obtaining good estimation result means reaching very low ensemble spread or namely
ensemble collapse.

Experiment 2: 2D Heterogeneous Tensile Strength

In this experiment we estimate heterogeneous tensile strength T, distribution from MEQ monitoring data.
The true model specifications are shown in Figure 41. Figure 41.a shows the microseismicity cloud (due
to only tensile failure) generated by the geomechanical forward model for a given distribution of tensile
strength Ty, (Figure 41.b). In this setup, elastic modulus E, is assumed to be spatially random distributed
and known. In this example the target parameter to estimate is tensile strength T, which is estimated by
incorporating MEQ data. In this experiment permeability k, is constant in space. In the estimation process
all the parameters except T, are assumed known and the unknown (assumed) T is estimated. We generate
Young’s modulus E, distribution from a normal probability distribution by specific mean and standard
deviation which is shown in Figure 41 (up = mean of normal distribution = 50 GPa, o5 = standard
deviation of normal distribution = 15 GPa).

Seismicity Cloud (Tensile) True TO (MPa) E (GPa)
500 . . - : " .

Y grids
Y grids

03 4 8 12 16 20(hn)

(a) true microseismicity

observation (b) true Tp map (c) E map

Figure 41. True model specification.
Shmin = 20 (MPa), Symax = 15 (MPa), P,,; = 10 (MPa), Inj. Rate = 0.006 (I/s), k = 0.005 (md),
Young’s modulus E, with Normal PDF (spatially random distribution) up = 50 (GPa), oz = 15 (GPa).
Black cross at the center shows the injection well location.

In this example the standard SSBRC method with MEQ density map on the original fine mesh is used for
data integration. The observation error Std range (Opin, Omax) 1S also assumed 20 % to 55 % which is
somewhat inflated comparing to the typical range of observation Std. Figure 42.a shows the estimation
results by illustration of ensemble mean evolution throughout integration steps. In this EnKF procedure
we use 100 random realizations of T, distributions as the initial ensemble. Before using any observation
(seismicity data) the mean of the initial ensemble does not have any spatial trend or feature because it is
made of 100 random realizations (as we can see in Figure 42.a, initial ensemble mean is almost uniform
and non-informative). By subsequent integration of seismicity observations we can see that the ensemble
mean is developing some special features in it, and finally the ensemble mean becomes very similar to the
true tensile strength Ty, map. From Figure 42.a it is clear that the final estimated ensemble mean
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(integration step 6) is very similar to the true map while the initial ensemble mean was completely non-
informative. Because the ensemble mean is so close to the true parameter, each of final realizations is also
very close to the true tensile strength. Figure 42.b shows the estimation error evolution in time which is
RMSE of T; and is decreasing with time which means the estimation error is decreasing and the estimated
map is becoming closer to true map. The tensile strength ensemble spread evolution throughout
integration steps is shown in Figure 42.c and it clearly shows severe ensemble spread underestimation of
standard SSBRC where the final spread in only 3 %.
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Figure 42. Tensile strength T, estimation results in terms of estimated ensemble mean map, RMSE and
ensemble spread

Figure 43 shows the evolution of a single realization or sample through integration steps. From Figure 43

we can see the initial realization is completely different than the true map while after 6 seismicity data
integration steps the differences become minor.

192



True TD Map (MPa)

Initial Sample Integration Step 1 (2 hr) Integration Step 2 (5.6 hr)

20
40

60

80

-,

=
100 = L 100 R 10 - -
20 40 60 B0 100 20 40 60 B8O 100 20 40 60 80 100 20 40 60 80 100 5

-10

Integration Step 3 (9.2 hr) Integration Step 4 (12.8 hr) Integration Step 5 (16.4 hr) Integration Step 6 (20 hr)

-20

20
40

60|

5 -l}_ J'!_
8o : d ] o ‘ 80 i
100 =¥ = 100 * ! = 100 ot *»I | § 0o 100L- *.l i ‘ s
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

Figure 43. Evolution of one tensile strength T}, realization throughout integration steps.

We start the estimation process with an initial ensemble of random samples. The initial ensemble
represents the uncertainty in the parameter before integrating the seismicity observation. Having made of
random samples the spread or uncertainty in initial ensemble is high. It means the standard deviation of
initial ensemble is large. In the integration procedure by incorporating new data the samples are corrected
and the new estimated ensemble will have smaller uncertainty or standard deviation (Std). So the
ensemble spread changes by seismicity integration. As we integrate more data, the uncertainty in the
ensemble decreases which results in reduction of the ensemble spread. To analyze the ensemble spread,
the standard deviation (Std) of the ensemble is calculated. Figure 44 shows the evolution of the standard
deviation of tensile strength T, ensemble and as it is seen, the uncertainty in the ensemble is reduced.
Uncertainty reduction in the ensemble is what we expect from the EnKF method. However as we
discussed before the standard SSBRC with high resolution seismicity density map leads to severe
ensemble spread underestimation. The initial (guess) ensemble is very wide and non-informative
(includes random samples) but after data integration, samples tend to develop a special shape or feature
which is shape of the true parameter distribution.
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Figure 44. Evolution of tensile strength T, ensemble standard deviation map throughout integration steps.

Figure 45 shows the initial and final state of 6 realizations of tensile strength distributions (out of 100
realizations). As we can see all 6 realizations change from their initial state (which is completely
dissimilar to true) to a final state which is very similar to true tensile strength T,;, map. Ensemble spread
reduction is also obvious from Figure 45, where 6 completely different distributions of Ty (wide variation
or spread) converge to a specific distribution (narrow variation or spread). Since all of the final estimated
samples are similar, the standard deviation of the final ensemble is extremely low (shown in Figure 44;
integration step 6). It should be noted that we did not apply improved uncertainty quantification methods
to this example.
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Figure 45. Representation of 6 samples or realizations of T, in their initial and final estimated state.

Experiment 3: 2D Heterogeneous Cohesion

The other simulation is carried out for estimating rock mass cohesion ¢ or €, from MEQ cloud when
there are only shear failures. Figure 46 shows the true model setup and its specifications used to estimate
cohesion C. In this experiment, tensile strength Ty, permeability k, elastic modulus E, and friction angle
¢ , distributions all are homogeneous and they are also assumed known parameters. The only
heterogeneous reservoir property is cohesion C, which is assumed unknown. The standard SSBRC
method with high resolution seismicity density map (on the original fine mesh) is used in this example.
The observation error Std range (0yin, Omax) 10 this experiment is equal 23 % to 66 % which is slightly
inflated.
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(a) true cohesion map (b) true seismicity cloud (shear events)

Figure 46. True model specification; Sp min = Sy max = Pini = 10 (MPa), Ryp,j = 0.006 (I/s), Ty =
—5 (MPa),k = 0.005 (md),E = 20 (GPa), ¢ = 25'.

It should be noted that the value of tensile strength Ty, does not have any effect in the model response
(shear-induced seismicity) in this experiment. The estimation results of Cohesion C, experiment are
shown extensively in Figure 47. The true cohesion C, distribution is again presented in Figure 47.a.
Cohesion estimation RMSE, Figure 47.b, shows continuous reduction and goes from 4.1 (MPa) (initial
RMSE) to 2.1 (MPa) (final RMSE) which confirms the promising estimation performance of SSBRC. In
Figure 47.c, the ensemble spread is presented which shows significant reduction and the final ensemble
spread is only 2 % that indicates ensemble collapse. For this experiment we did not apply any improved
uncertainty quantification methods to resolve ensemble spread underestimation. The evolution of
estimated ensemble mean and two realizations throughout integration steps are shown in Figure 47.d,e.f,
respectively. It is clear from the results that the final estimated maps (at integration step 6) are very
similar to the true cohesion map which confirms the suitability of SSBRC for geomechanical parameter
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estimation. The evolution of ensemble spread is shown in Figure 47.g, in terms of ensemble standard
deviation. In Figure 47.g, the final ensemble Std map (at integration step 6) clearly shows severe
ensemble spread underestimation.
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(g) ensemble standard deviation evolution
Figure 47: Cohesion C, estimation results.

Experiment 4: 2D Heterogeneous Elastic Modulus

In this experiment we present the application of standard SSBRC to estimate the heterogeneous
distribution of Young’s modulus E, from the MEQ cloud observation. To generate the seismicity density
map, the original fine mesh is used in this experiment. The synthetic tru¢ Young’s modulus distribution
(parameter to estimate) and the corresponding seismicity cloud as the observed data are shown in Figure
48. The far-field stress boundary conditions Sy max,» Shmin and P, are all assumed 10 (MPa) to
investigate only the effect of hydraulic stimulation (injection-induced stress) in the reservoir. Fluid
injection rate is equal 0.005 (Lit/s) and permeability is homogeneous in the field and is equal 0.005 (md).
Tensile strength Ty, is assumed spatially random distributed and its values come from a Uniform PDF in
the range of 5 (MPa) to 30 (MPa). In this experiment only tensile failures (as MEQ events) are considered.
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(b) True microseismicity cloud (tensile
events)

Figure 48. True model setup; true Young’s modulus distribution and the corresponding MEQ cloud.

(a) True Young’s modulus (E) map

This experiment was performed with the standard EnKF algorithm by a typical range of 5% to 10% for
observation error standard deviation. The number of unknown parameters to estimate and observations
are both equal to 10000 which is the number of nodes. Estimation results are shown in Figure 49. The
evolution of the estimated ensemble mean of Young’s modulus realizations, an estimated individual
realization and the standard deviation of the ensemble in integration steps are shown in Figure 49.d, e, f,
respectively. The estimated Young’s modulus maps in Figure 49.d, e, tend to identify the major high- and
low-value regions of elastic modulus in the reservoir. The final estimated maps (at 6™ integration step) of
Figure 49.d, e., are very similar to the true Young’s modulus map in Figure 49.a, which confirms the
promising estimation performance of SSBRC. It is evident from these maps that the EnKF can infer
information about the Young’s modulus distribution by integrating the data about the distribution of the
MEQ event locations. The decreasing trend of estimation RMSE in Figure 49.b, indicates increased
confidence in the updated ensemble after integrating the MEQ data. However, the problem with these
estimation results is a very low final ensemble spread and ultimately collapsing the ensemble to a single
realization. It is seen in Figure 49.c, the final ensemble spread is only 1% which means the ensemble
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loses 99% of its spread through data assimilation procedure. Figure 49.f (at integration step 6) also shows
almost no spread in final ensemble based on the ensemble standard deviation map that means ensemble
collapse (i.e. all final estimated realizations are almost the same). These estimation results point out the
ensemble spread underestimation issue with the original setup of SSBRC. The experiment of Figure 49 is
the reference experiment that we will improve its results (ensemble spread) by our proposed approaches.
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Young’s modulus E, estimation results of standard SSBRC with typical range of observation
error Std (the reference experiment)
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This experiment (and many others with the same setup but different reference reservoir property) shows
promising estimation performance of the SSBRC however the problem of ensemble spread
underestimation is evident. In the next set of experiments we apply the proposed methods for improving
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uncertainty quantification to this example (as the reference experiment) to resolve ensemble spread
underestimation issue.

Experiment 5: Improving Experiment 4

In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0
to the experiment 4 in section 0 (reference experiment) to resolve the issue of ensemble spread
underestimation.

Inflated observation error variance

The simplest way of avoiding spread underestimation or ensemble collapse is adding large amount of
noise to observation which can be done by specifying high observation standard deviation (Std) through
increasing oy,,x and oy, in equation (8). To observe the effect of observation Std range, different Std
intervals are tried in our experiments. The results of increasing the observation error Std range are given
in Table 10. The first row of Table 10, test # 1, shows the results of reference model that is experiment 4
in section 0. These results show improvement of final ensemble spread (preserving more ensemble spread)
by increasing the observation error Std. However the increased Std range (e.g. test # 3 with observation
Std of 100-200%) might seem unrealistic. It is also obvious from Table 10 that we can yet improve
ensemble spread by further increasing the observation error Std. Figure 50 shows the estimation results of
SSBRC with inflated observation error Std range (test # 3 from Table 10).

Table 10. Sensitivity of SSBRC performance to different ranges of observation error Std

(in estimating Young’s modulus E)

| () | ) | gmn | e gy
1 (reference) 8 14 2.94 1.24
2 30 84 33 5.33
3 99 193 2.63 12.24

Initial RMSE = 6.8134 (GPa)

The decreasing trend of estimation RMSE in Figure 50.b shows promising estimation performance of
SSBRC even with greatly increased Std range of observation. Figure 50.d,e,f, represent the evolution of
ensemble mean, an individual realization and standard deviation map throughout integration steps. As
shown by final estimated Young’s modulus maps (at 6™ integration step) in Figure 50.d,e, SSBRC is
successful in capturing the trends of true elastic modulus of Figure 50.a. More importantly ensemble
spread underestimation problem of SSBRC is also resolved as can be seen in Figure 50.c that shows the
ensemble spread of the estimated parameter. From the final standard deviation map of (at integration step
6) Figure 50.f, it is also evident that the ensemble spread is preserved during integration steps by the
proposed method. (compare to the reference experiment results in Figure 49.c,f, where ensemble collapse
happens).
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Figure 50. Young’s modulus E, estimation results of SSBRC with increased observation error Std (test #
3 from Table 10), its true model is shown in Figure 48.
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this case) that is exploited by the EnKF update to reconstruct the trend in the reservoir property map.

Reduced-order projection

In this section we apply the projection method of section 0 to experiment 4 in section 0 to improve the

final estimated ensemble spread. As mentioned earlier, projection method has two tuning parameters;

kernel bandwidth standard deviation o, , and truncation number ny..,c that we investigate the
performance of SSBRC with reduced-order projection with respect to three different sets of these
parameters as shown in Table 11. As we can see from these three tests, the estimation RMSE is fairly low
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(still not as low as RMSE of reference experiment in Figure 49.b or test #1 Table 10) and as the objective
of the projection method, ensemble spread is greatly preserved (final ensemble spread is around 60%). It
should be noted that the number of observations is decreased from 10000 to 25, 50 and 100, by projection
method, as reported in Table 11, nyrync column. Therefore the proposed observation projection approach
is successful in preserving the ensemble spread and resolving ensemble spread underestimation of
SSBRC through observation dimension reduction. However, the resulted estimation RMSE with
projection approach is not as low as the standard SSBRC method. Detailed estimation results of test #3
from Table 11 is shown in Figure 51.

Table 11. Young’s modulus E, estimation by SSBRC with projection method. Sensitivity of the
performance of projection method with respect to kernel bandwidth Std oy, and truncation number nypc -

Final RMSE | Final ensemble
Test# Th (%0) Mrunc (GPa) spread (%)
1 25 25 4.3 67.7
2 25 50 4.12 55.65
3 25 100 3.70 54.34

Initial RMSE = 6.8134 (GPa)

By choosing test #3 from Table 11, we reduced the number of observations from 10000 (in the reference
experiment) to 100 (1y.ync) Which resolves the observation redundancy issue of SSBRC. Figure 51 shows
Young’s modulus E, estimation results by SSBRC with projection approach. The final estimated Young’s
modulus distributions of Figure 51.d,e, (at integration step 6) are very similar to the true E distribution in
Figure 51.a. The main advantage of projection approach in preserving ensemble spread and preventing
ensemble collapse is shown by final ensemble Std map in Figure 51.f (at integration step 6). Figure 51.c
shows that final ensemble spread is 54% which is significantly improved comparing to the reference
experiment (Figure 49) by final ensemble spread of only 1% (Figure 49.c).
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Figure 51. Young’s modulus E, estimation results of SSBRC with projection approach (test # 3 from

Table 11), its true model is shown in Figure 48.
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Coarse-scale microseismicity density map

The number of observations is equal to the dimension of seismicity density map. To reduce the dimension
of the seismicity density map (number of observations to integrate) which is the major reason of the
ensemble spread underestimation we build the seismicity density map on a coarse mesh or grid system
instead of the original fine mesh. So we only need to evaluate continuous seismicity density map on a
new coarse grid system. In 2D case studies where the node configuration size is 100x100 (N, = 10000,
Ny = 100) we choose the coarse seismicity density mesh size e.g. equal to 10x10 (N, = 100 seismicity
observations, Ny req = 10) which reduces the dimension of the observation vector by orders of magnitude.
It should be noted that the range of the observation error Std in coarse seismicity density approach is the
typical range of 5% to 10% which leads to ensemble collapse in the regular approach i.e. reference
experiment in Figure 49 (where the size of seismicity density mesh is equal to the size of parameter mesh).
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Figure 52. Microseismicity density maps (with different sizes) for final seismicity cloud. (b-e) show
coarse seismicity density maps. (f) reference seismicity density map. (black cross at the center shows the
injection well location)

Figure 52 shows the seismicity density maps with different sizes (based on final seismicity cloud of
Young’s modulus estimation problem from tensile seismicity events in section 0). Different
microseismicity density map sizes produces different number of observations and help in reducing the
number of observations to resolve the observation space redundancy and ultimately ensemble spread
underestimation in EnKF process. The dimension of microseismicity density map is considered in terms
of number of nodes in x direction (the field configuration is square). As explained before the number of
parameters to estimate is equal to the number of nodes so in this 100X 100 field, there are 10000
parameters to estimate (unknown Young’s modulus at each node). For coarsening of the seismicity
density map, we specify different sizes of Ny r..q equal to 10, 20, 30, 40, that decreases the number of
observations to 100, 400, 900, 1600, respectively where in the reference experiment by Ny .o.q = Nx =
100, there are 10000 observations.
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Figure 53. Effect of coarse microseismicity density dimension on the performance of SSBRC in Young’s
modulus estimation experiment (initial Young’s modulus RMSE = 6.8134 GPa)
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The effect of different dimensions of microseismicity density map on the performance of SSBRC process
is shown in Figure 53. In this experiment four different sizes of seismicity density map (Nxreq =
10,20,30,40) are chosen and the reference case density map size is Ny = 100 (seismicity density map of
100x 100 where the number of microseismicity observations is equal to the parameters). Figure 53 shows
both final estimation RMSE and final (original and auxiliary) ensemble spread of these five experiments.
Based on Figure 53.a, it is seen that there is an optimal size of the seismicity density map which results in
the minimum RMSE (at Ny ..q = 30). It should be noted that this coarse seismicity density map size is
optimal in RMSE sense however we are looking for both low RMSE and high spread simultaneously.
Figure 53.b shows the final ensemble spread (both original Young’s modulus ensemble and auxiliary
ensemble) versus size of seismicity density map. As we already expected, by increasing the size of the
density map there will be higher number of observations which consequently results in more
underestimation of ensemble spread (lower ensemble spread value). In the reference experiment (Figure
49) with microseismicity density map size equal to the size of the field (Ny = 100) as we see in Figure
49.c the final ensemble spread is only 1% which means ensemble collapse (losing almost all ensemble
spread). As the result, the improvement of the ensemble spread is obviously seen in Figure 53.b by
decreasing the size of the seismicity density map (or using coarse seismicity density map). To choose the
appropriate size of the density map, we are looking for fairly low RMSE and high spread in Figure 53.a
and Figure 53.b, respectively. Based on the obtained results, the density size of 10 to 30 (in a 100x100
field) for coarse-scale mesh can be a suitable choice.
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Figure 54. Effect of coarse microseismicity density size on final estimated ensemble mean and Std map
(Young’s modulus estimation experiment)
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The final estimated ensemble mean and standard deviation distributions are shown in Figure 54. It is clear
from Figure 54.c that the final estimation results in all five experiments with different sizes of seismicity
density map are almost the same and very similar to the true Young’s modulus distribution (Figure 54.a).
Therefore the determining factor to choose the appropriate size of the density map should be final
standard deviation (Std) maps. Final Std maps of Figure 54.d show that the appropriate final ensemble
spread occurs where Ny o4 = 10.
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Figure 55. Results of SSBRC with coarse seismicity density map Ny req = 10, for Young’s modulus
estimation. Its true model is shown in Figure 48.
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The estimation results of SSBRC with coarse seismicity density map Nx roq = 10, are shown in Figure 55
which represents the evolution of ensemble mean, an individual realization and standard deviation map
throughout integration steps. The final estimated ensemble mean and an individual realization (at
integration step 6), Figure 55.d,e, show appropriate performance of SSBRC in capturing the unknown
true Young’s modulus distribution in Figure 55.a. Considering the performance of SSBRC with coarse
density in terms of ensemble spread, final standard deviation map of elastic modulus ensemble is seen in
Figure 55.f (at integration step 6), which clearly shows appropriate amount of ensemble spread at the final
integration step. The estimation performance of SSBRC is also shown in Figure 55.b,c by RMSE and
spread. Continuous reduction of estimation error (RMSE) by integration step in Figure 55.b from 6.8
(GPa) to 3.7 (GPa) confirms the suitability of SSBRC for this estimation problem. From Figure 55.c, we
also see that the final ensemble spread is 45% which shows promising performance of coarse seismicity
density method in preserving the ensemble spread.

Experiment 6: 2D Heterogeneous Permeability (Shear Events)

In this experiment we estimate permeability distribution from MEQ cloud (shear failures). In this
experiment we apply the standard SSBRC method with high resolution seismicity density map on the
original fine mesh. The observation error Std range is also the typical interval of 5 % to 10 %. The true
setup of the model is shown in Figure 56. The far field stress regime (boundary condition) is assumed
[Snin» Smax » Pinitl = [20 15 10] (MPa). There is one injection well at the center of the model. Fluid
injection rate is equal 0.005 (Lit/s) and Young’s modulus E, is homogeneous in the field and equal 40
(GPa). Cohesion C, is assumed spatially random distributed with Normal PDF by 20 (MPa) and 7 (MPa)
as its mean and Std, respectively. Friction angle ¢, is assumed homogeneous and equal 25°.
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Figure 56. True model setup; true k distribution and the corresponding MEQ cloud.

Permeability estimation results are shown in Figure 57. The number of unknown parameters to estimate
and observations are both equal to 10000 which is the number of nodes. The evolution of the estimated
ensemble mean of permeability realizations, an estimated individual realization and the standard deviation
of the ensemble in integration steps are shown in Figure 57.d,e,f, respectively. The estimated permeability
maps in Figure 57.d,e, tend to identify the major high- and low-value regions of permeability in the
reservoir. The final estimated maps (at 6™ integration step) of Figure 57.d, e., are very similar to the true
permeability map in Figure 57.a, which confirms the promising estimation performance of SSBRC. It is
evident from these maps that the EnKF can infer information about the permeability distribution by
integrating the data about the distribution of the MEQ event locations. The decreasing trend of estimation

206



RMSE in Figure 57.b, indicates increased confidence in the updated ensemble after integrating the MEQ
data. However, the problem with these estimation results again is a very low final ensemble spread and
ultimately collapsing the ensemble to a single realization. It is seen in Figure 57.c, the final ensemble
spread is only 4% which means the ensemble loses 96% of its spread through data assimilation procedure.
Figure 57.f (at integration step 6) also shows almost no spread in final ensemble based on the ensemble
standard deviation map that means ensemble collapse (i.e. all final estimated realizations are almost the
same). These estimation results point out the ensemble spread underestimation issue with the original
setup of SSBRC. The experiment of Figure 57 is the reference experiment that we will improve its results
(ensemble spread) by our proposed approaches.
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Figure 57. Permeability k, estimation results of standard SSBRC with typical range of observation error
Std (the reference experiment).
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This experiment shows promising estimation performance of the SSBRC however the problem of
ensemble spread underestimation is still evident. In the next set of experiments we apply the proposed
methods for improving uncertainty quantification to this example (as the reference experiment) to resolve
ensemble spread underestimation issue.

Experiment 7: Improving Experiment 6

In this set of experiments, we apply the three methods of improving uncertainty quantification in section 0
to the experiment 6 in section 0 (reference experiment) to resolve the issue of ensemble spread
underestimation.

Inflated observation error variance

As discussed previously, artificially increasing observation error through specifying high observation
standard deviation (Std) through increasing oy,,x and op,i, in equation (8) helps in avoiding spread
underestimation or ensemble collapse. To observe the effect of observation Std range, different Std
intervals are tried in our experiment. The results of increasing the observation error Std range are given in
Table 12. The first row of Table 12, test # 1, shows the results of reference model that is experiment 6 in
section 0. These results show improvement of final ensemble spread (preserving more ensemble spread)
by increasing the observation error Std. However the increased Std range (e.g. test # 3 with observation
Std of 100-200%) might seem unrealistic. It is also obvious from Table 12 that we can yet improve
ensemble spread by further increasing the observation error Std. Figure 58 shows the estimation results of
SSBRC with inflated observation error Std range (test # 3 from Table 12).

Table 12. Sensitivity of SSBRC performance to different ranges of observation error Std

(in estimating permeability k)

test # Omin (%) Omax (%) Fma(lmlzl;/ISE Fllslgi :;15 e(z/r(l)l))le
1 (reference) 11 15 0.0011 4.44
2 22 81 0.0011 25.11
3 96 199 0.0010 36.97

Initial RMSE = 0.0021 (md)

The decreasing trend of estimation RMSE in Figure 58.b shows promising estimation performance of
SSBRC even with greatly increased Std range of observation. Figure 58.d,e,f, represent the evolution of
ensemble mean, an individual realization and standard deviation map throughout integration steps. As
shown by final estimated permeability maps (at 6™ integration step) in Figure 58.d,e, SSBRC is successful
in capturing the trends of true permeability distribution of Figure 58.a. More importantly ensemble spread
underestimation problem of SSBRC is also resolved as can be seen in Figure 58.c that shows the
permeability ensemble spread. The final ensemble spread increased from 4 % in the reference experiment
to 37 % in the improved case. From the final standard deviation map of (at integration step 6) Figure 58.f,
it is also evident that the ensemble spread is preserved during integration steps by the proposed method.
(compare to the reference experiment results in Figure 57.c,f, where ensemble collapse happens).
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Figure 58. Permeability k, estimation results of SSBRC with increased observation error Std (test # 3

from Table 12), its true model is shown in Figure 56.

Reduced-order projection

In this section we apply the projection method of section 0 to experiment 6 in section 0 to improve the
final estimated ensemble spread. As mentioned earlier, projection method has two tuning parameters;
kernel bandwidth standard deviation oy, and truncation number 1., that are set equal to 25 % and 100,
respectively in Table 13. As we can see from this test, the permeability estimation RMSE is fairly low
(still not as low as RMSE of reference experiment in Figure 57.b or test #1 Table 12) and as the objective
of the projection method, ensemble spread is greatly preserved (final ensemble spread is 70 %). It should
be noted that, in this experiment, the number of observations is decreased from 10000 to 100, by
projection method, as reported in Table 13, nyne column. Therefore the proposed observation projection
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approach is successful in preserving the ensemble spread and resolving ensemble spread underestimation
of SSBRC through observation dimension reduction. However, the resulted estimation RMSE with
projection approach is not as low as the standard SSBRC method. Detailed estimation results of this
experiment, Table 13, is shown in Figure 59.

Table 13. Permeability k, estimation by SSBRC with projection method. performance measures of
projection method and kernel bandwidth Std o3, and truncation number nync -

o Final RMSE Final ensemble
o-h (A)) ntrunc (md) Spread (%)
25 100 0.0014 70.71

Initial RMSE = 0.0021 (md)

Figure 59 shows permeability k, estimation results by SSBRC with projection approach. The final
estimated permeability distributions of Figure 59.d,e, (at integration step 6) are reasonably similar to the
true k distribution in Figure 59.a, however they are not as good as the reference experiment’s results, in
Figure 57.d,e. The main advantage of projection approach in preserving ensemble spread and preventing
ensemble collapse is shown by final ensemble Std map in Figure 59.f (at integration step 6). Figure 59.c
shows that final ensemble spread is 70 % which is significantly improved comparing to the reference
experiment (Figure 57) by final ensemble spread of only 4 % (Figure 57.c).
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Figure 59. Permeability k, estimation results of SSBRC with projection approach,

its true model is shown in Figure 56.

Coarse-scale microseismicity density map

In standard SSBRC method, the number of observations is equal to the dimension of seismicity density
map. To reduce the dimension of the seismicity density map (number of observations to integrate) which
is the major reason of the ensemble spread underestimation we build the seismicity density map on a
coarse mesh instead of the original fine mesh. So we only need to evaluate continuous seismicity density
map on a new coarse grid system. In 2D case studies where the node configuration size is 100x100 (N, =
10000, Nx = 100) we choose the coarse seismicity density mesh size e.g. equal to 15x15 (N, = 225
seismicity observations, Ny roq = 15) which reduces the dimension of the observation vector by orders of
magnitude. It should be noted that the range of the observation error Std in coarse seismicity density
approach is the typical range of 5% to 10% which leads to ensemble collapse in the regular approach i.e.
reference experiment in Figure 57 (where the size of seismicity density mesh is equal to the size of
parameter mesh). The number of parameters to estimate is equal to the number of nodes so in this
100X 100 field there are 10000 parameters to estimate (unknown permeability at each node). For
coarsening of the seismicity density map, we specify different sizes of Ny ¢q equal to 15 and 30, that
decreases the number of observations to 225 and 900, respectively where in the reference experiment by
Ny reqd = Nx = 100, there are 10000 observations.
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Figure 60. Effect of coarse microseismicity density dimension on the performance of SSBRC in
permeability estimation experiment (initial permeability RMSE = 0.0021 md).

100

The effect of different dimensions of microseismicity density map on the performance of SSBRC process
is shown in Figure 60. In this experiment two different sizes of seismicity density map (Nx req = 15,30)
are chosen and the reference case density map size is Ny = 100 (seismicity density map of 100x100
where the number of microseismicity observations is equal to the parameters). Figure 60 shows both final
estimation RMSE and final (original and auxiliary) ensemble spread of these three experiments. Based on
Figure 60.a, it is seen that there is an optimal size of the seismicity density map which results in the
minimum RMSE (at Ny req = 30). It should be noted that this coarse seismicity density map size is
optimal in RMSE sense however we are looking for both low RMSE and high spread simultaneously.
Figure 60.b shows the final ensemble spread (both original permeability ensemble and auxiliary ensemble)
versus size of seismicity density map. As we already expected, by increasing the size of the density map
there will be higher number of observations which consequently results in more underestimation of
ensemble spread (lower ensemble spread value). In the reference experiment (Figure 57) with
microseismicity density map size equal to the size of the field (Nx = 100) as we see in Figure 57.c the
final ensemble spread is only 4 % which means ensemble collapse (losing almost all ensemble spread).
The improvement of the ensemble spread is obviously seen in Figure 60.b by decreasing the size of the
seismicity density map (or using coarse seismicity density map). To choose the appropriate size of the
density map, we are looking for fairly low RMSE and high spread in Figure 60.a and Figure 60.b,
respectively. As the representative experiment, we choose the coarse-scale seismicity density size equal to
Ny req = 30, and show its estimation results in Figure 61.
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(f) standard deviation map evolution
Figure 61. Results of SSBRC with coarse seismicity density map Ny ro.q = 30, permeability estimation
experiment. Its true model is shown in Figure 56.

The estimation results of SSBRC with coarse seismicity density map Ny .4 = 30, are shown in Figure 61
which represents the evolution of ensemble mean, an individual realization and standard deviation map
throughout integration steps. The final estimated ensemble mean and an individual realization (at
integration step 6), Figure 61.d,e, show appropriate performance of SSBRC in capturing the unknown
true permeability distribution in Figure 61.a. Considering the performance of SSBRC with coarse density
in terms of ensemble spread, final standard deviation map of permeability ensemble is seen in Figure 61.f
(at integration step 6), which clearly shows appropriate amount of ensemble spread at the final integration
step. The estimation performance of SSBRC is also shown in Figure 61.b,c by RMSE and spread.
Continuous reduction of estimation error (RMSE) by integration step in Figure 61.b from 0.0021 (md) to
0.0011 (md) confirms the suitability of SSBRC for this estimation problem. From Figure 61.c, we also
see that the final ensemble spread is 35 % which shows promising performance of coarse seismicity
density method in preserving the ensemble spread.

Experiment 8: 2D Heterogeneous Permeability (Tensile Events)

The other simulation is carried out for estimating rock permeability k, from MEQ cloud when there are
only tensile failures. Figure 62 shows the true model setup and its specifications used to estimate
permeability k. In this experiment, elastic modulus E, distribution is homogeneous. Tensile strength T,
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distribution is assumed spatially random and its values come from a Normal PDF with pu7, = —15 (MPa)
and o, = 5 (MPa). We also consider tensile strength Ty, as a known parameter. The standard SSBRC
method with high resolution seismicity density map (on the original fine mesh) is used in this example.
The observation error Std range (0yin, Omax) 10 this experiment is equal 34 % to 81 % which is slightly
inflated that helps in resolving ensemble spread underestimation.

Seismicity Cloud (Tensile)

iy
¥

g 3 100 200 300 400 500
20 40 60 80 100 X (m)

: e
—;__6__!0“0 03 4 8 12 16 20(h)
(a) true permeability (k) map (b) true seismicity cloud (¢) Ty map

Figure 62. True model specification; Sy min = Symax = Pni = 10 (MPa), Inj. Rate = 0.005(1/s ),E =
20 (GPa), Ty with Normal PDF (spatially random distribution) us, = —15 (MPa), o7, = 5 (MPa).

The estimation results of permeability k, experiment are shown extensively in Figure 63. The true
permeability k, distribution is again presented in Figure 63.a. Permeability estimation RMSE, Figure 63.b,
shows continuous reduction and goes from 0.0021 (md) (initial RMSE) to 0.0009 (md) (final RMSE)
which confirms the promising estimation performance of SSBRC. In Figure 63.c, the ensemble spread is
presented which shows significant reduction and the final ensemble spread is 17 % which still is fairly
acceptable. The evolution of estimated ensemble mean and two realizations throughout integration steps
are shown in Figure 63.d,e,f, respectively. It is clear from the results that the final estimated maps (at
integration step 6) are very similar to the true permeability map which confirms the suitability of SSBRC
for hydraulic reservoir parameter estimation. The evolution of ensemble spread is shown in Figure 63.g,
in terms of ensemble standard deviation map.
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(g) ensemble standard deviation evolution
Figure 63. Permeability k, estimation results.

Experiment 9: 3D Heterogeneous Elastic Modulus

In this section, we apply SSBRC to the developed 3D fully coupled thermo-poroelastic finite element
method (FEM) model. We present the results of estimating 3D Young’s modulus distribution from MEQ
cloud using SSBRC. In this experiment we use coarse-scale seismicity density method to preserve the
ensemble spread through update steps.

In the 3D model the injection well as a point source is at the center of the field. Permeability distribution
is homogeneous in the field and equal to 0.5 (md). We suppose there are only tensile failures, so in order
to avoid any shear failures, the cohesion as a homogeneous property in the field is assumed a very high
value of 1000 (MPa). In this experiment, the far-field stress boundary conditions including initial
reservoir pressure Pj;, minimum horizontal stress Sy i, maximum horizontal stress Sy max and vertical
stress Sy, are equal 10 (MPa), 13 (MPa), 15 (MPa) and 18 (MPa), respectively. In each forward
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simulation, time step length is 3600 (s) and there are 72 time steps so the stimulation period is 72 (hr).
The injection rate scenario is shown in Figure 64.

Injection Rate (Lit/s)
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Figure 64. Injection rate scenario

The true Young’s modulus distribution (as the parameter to estimate), the assumed tensile strength
(failure criteria) and the MEQ cloud response (the true monitoring MEQ data to be integrated in EnKF)
are shown in Figure 65. In Figure 65.c, the microseismic events are tensile failures as mentioned
previously. By SSBRC stochastic estimation algorithm, we estimate the 3D Young’s modulus distribution
(Figure 65.a) which is assumed unknown from discrete MEQ cloud observation (Figure 65.c).

True (E) Young Modulus (GPa) Tensile Strength, Ta (MPa) True MEQ Cloud

72 (hn)

370

Z(m)
g 88

¥ (node #) : X (node #) Y (node #) X (node #) Y (m) 00 X m)

(a) true Young’s modulus distribution (b) T, distribution (c) true microseismicity cloud
Figure 65. True model setup; true Young’s modulus and T, distribution and the corresponding MEQ
cloud.

The vertical black line in MEQ cloud plots (e.g. Figure 65.c) indicates the location of the injection well
and the injection point (point source) is at the center of the model (at the middle of the black line). To
better illustrate true MEQ data, Figure 66 represents it in 4 different views.
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Figure 66. True MEQ cloud in different views.
In SSBRC estimation procedure we consider 6 integration time steps. The true MEQ cloud is shown
throughout these 6 integration steps in Figure 67. We sequentially integrate the monitoring MEQ data at
each integration step by EnKF to estimate the Young’s modulus distribution.
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Figure 67. True MEQ cloud through integration steps
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As already mentioned discrete MEQ data are not directly amenable to be used in EnKF algorithm so we
use a KDE-based continuous interpretation method to convert discrete MEQ cloud to MEQ density maps.
The corresponding seismicity density maps of true MEQ cloud of Figure 67 are shown in Figure 68 on
the original fine mesh. In fact, 6 seismicity density maps of Figure 68 are the continuous observation data
that can be used in EnKF to estimate unknown reservoir parameter (108000 parameters) which in this
case is Young’s modulus. The continuous interpreted MEQ density on the original fine mesh has a very
high resolution (108000 observations) and will result in redundant data which causes ensemble spread
underestimation and biased estimation in SSBRC. Therefore we consider using coarse-scale seismicity
density method to reduce the number of observations.

Full MEQ Density Int. Step 1 (12 hr) 4 Full MEQ Density Int. Step 2 (24 hr) . Full MEQ Density Int. Step 3 (36 hr)

(b) (©)

Full MEQ Density Int. Step 6 (72 hr)

(d) (e) ®
Figure 68. True MEQ density maps through integration steps (on full size mesh).

The final true MEQ cloud is converted to MEQ density map with different sizes of coarse-scale mesh and
the resulted density maps are shown in Figure 69. From the investigation of Figure 69 and performing the
EnKF analysis equation after one integration step with different sizes of coarse scale mesh we chose
20x20x10 mesh as the appropriate size for coarse-scale continuous MEQ interpretation.
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Figure 69. Final (at 6th integration step) true MEQ density maps on different coarse size meshes.

As seen in Figure 69, it is clear how the resolution of the seismicity density map reduces by coarsening
the continuous interpretation mesh which consequently results in reducing the number of observations. As
of Figure 69, the number of observations in plots (a), (b), (¢) and (d) are 500, 4000, 13500 and 108000
respectively. The coarse-scale seismicity density map on 20x20x10 mesh is shown in Figure 70
throughout integration steps. By using 20x20x10 coarse scale mesh, we reduce the dimension of the
observation from 108000 to 4000 which results in preserving the ensemble spread through data
integration using EnKF. In our SSBRC estimation experiment the seismicity density plots of Figure 70
are observation data.
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Figure 70. True MEQ coarse-scale density maps through integration steps (on 20x20x10 mesh).
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For the EnKF algorithm, the ensemble size (number of realizations) is assumed 100. We also considered 6
integration steps regularly specified in 72 (hr) of total forward run simulation. As we mentioned, each 3D
geomechanical model forward run takes almost 5 (hr) to run therefore our SSBRC experiment with 100
realizations and 6 integration time steps (utilizing parallel EnKF algorithm with confirmation step) and
assuming 4 available CPUs, takes almost 20 (days). Because of the extremely high computational load of
SSBRC with 3D model, we managed to split the job and run it on multiple machines and finally we
reduced the run time to almost one week. Initially to make sure we will resolve ensemble spread
underestimation of SSBRC we utilize coarse-scale seismicity density method. Since the forward 3D
model is very computationally expensive to run, it was not convenient to run SSBRC with coarse-scale
density for different sizes of coarse mesh. Therefore to find the appropriate size of coarse mesh, we
investigated different sizes of coarse-scale seismicity density map after one integration step only. So we
propagated the initial ensemble till the first integration step and performed the first EnKF analysis
equation with different coarse mesh configuration then we decided about the optimal size based on the
best values of RMSE and Spread. By applying coarse-scale seismicity density method in SSBRC for this
experiment, we estimate or update 108000 parameters (Young’s modulus value at each node) from 4000
observation values (coarse seismicity density map dimension for 20x20x 10 mesh configuration) at each
integration time step. In the estimation procedure we assume all the parameters of the true model are
known but the Young’s (elastic) modulus distribution. The true model setup is shown in Figure 65.

As the first estimation result we show the estimated mean of elastic modulus ensemble through
integration steps in Figure 71. While the initial ensemble mean (Figure 71.b) is almost homogeneous and
completely uninformative about the true elastic modulus (Figure 71.a), as we can see in Figure 71.b-h by
marching through integration steps and integrating MEQ data the estimated ensemble mean becomes
more similar to the true Young’s modulus distribution (Figure 71.a) and ultimately the final estimated
ensemble mean (Figure 71.h) captures the trends and features of the true parameter distribution.
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Figure 71. Young’s modulus estimation results: evolution of estimated ensemble mean through
integration steps.

The estimation performance of SSBRC is also represented by the root mean squared error (RMSE) of
estimated elastic modulus ensemble through time (Figure 72.a). Continuous reduction of estimation
RMSE from 5.5 (GPa) to 2 (GPa) through integration steps confirms successful application of SSBRC in
characterization of 3D geomechanical models by MEQ data. Uncertainty quantification performance of
SSBRC estimation procedure is shown by the ensemble spread which should not reduce to a very low
value. Both the original Young’s modulus ensemble spread and auxiliary ensemble spread are shown in
Figure 72.b,c, respectively. The ensemble spread percentage is defined as the ratio of the ensemble spread
at each integration step to the initial ensemble spread. As can be seen the final ensemble spread is 30 %
which is a promising in EnKF estimation procedure and it confirms that ensemble collapse did not happen
and the ensemble spread underestimation issue is resolved.
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Figure 72. Estimation performance measures.

To better represent promising estimation performance of SSBRC, evolution of a single sample
(realization) through integration steps is shown in Figure 73. Again we start with an initial elastic
modulus sample (Figure 73.b) that is completely different than true modulus distribution (Figure 73.a)
and through integration steps the estimated sample captures the features of the true elastic modulus
distribution and the final estimated realization (Figure 73.h) is very close to the true model.

True (E) Young Modulus (GPa) Initial S I
nitial Sample
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Figure 73. Young’s modulus estimation results: evolution of a Young’s modulus realization (sample)
through integration steps.

In Figure 74, the corresponding MEQ responses of the estimated sample of Figure 73 in different
integration steps are shown. The MEQ forecasts of Figure 74 becomes more and more similar to true
MEQ cloud (Figure 74.a) as we advance in integration steps because the estimated elastic modulus
distribution gets closer to the true elastic modulus distribution.
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Figure 74. Corresponding MEQ cloud response of the estimated sample in different integration or update

steps.
Another estimated sample evolution through integration steps is shown in Figure 75. Once more we can

see how a dissimilar initial sample (Figure 75.b) changes to become close to the true elastic modulus
distribution (Figure 75.a) throughout the sequential data integration procedure.
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Figure 75. Young’s modulus estimation results: evolution of another Young’s modulus realization
(sample) through integration steps.

As mentioned before the uncertainty quantification performance of SSBRC is evaluated by ensemble
spread or ensemble standard deviation. Therefore the evolution of the ensemble standard deviation map is
shown in Figure 76 which represents the reduction of the ensemble spread throughout the integration
steps that means the realizations are becoming more and more similar and in the same time they are
getting close to the true elastic modulus distribution. Reduction of ensemble spread or standard deviation
shows that the initial guesses are becoming more similar to true value.

Initial Std Map
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Figure 76. Evolution of the standard deviation map of Young’s modulus ensemble.

The results of the above experiments (and many others with similar well setup but different reference
reservoir property maps that were not included) indicate that the EnKF can be used to successfully infer
hydraulic and geomechanical reservoir parameter distributions from continuous interpretations (through
KDE) of the discrete MEQ monitoring measurements. This outcome has important implications for
characterization of subsurface reservoirs from MEQ events as an emerging monitoring technology in
several important energy and environmental applications. While simple and easy to implement, the EnKF
proves to be an effective model calibration tool for nonlinear problems where the optimality requirements
of the original Kalman filter update equation, namely jointly Gaussian states and measurements and linear
state-space model assumptions, are not strictly met. While the examples illustrated in this report clearly
show the feasibility of applying the EnKF to constrain different reservoir parameter distributions based on
microseismic event locations, we did not consider the seismic analysis step that is required to provide the
MEQ sources locations. In addition to event locations, other information about the seismic source may be
extracted from the raw seismic data (e.g., the magnitude and confidence of events) and be used to further
constrain rock property distributions. An important aspect that was not considered in this study is the
presence, initiation and propagation of fractures in the rock during the hydraulic fracturing process. In
general, microseismic events can carry important information about the location and geometrical
attributes of the fractures, which can be exploited for fracture model calibration purposes.

5. Conclusions

Seismicity-based reservoir characterization is a promising approach for monitoring and improving
reservoir performance in a number of important energy and environmental applications. We formulated
an EnKF-based model calibration approach to integrate discrete MEQ events into the description of
reservoir property distributions in both pore-pressure diffusion and fully coupled geomechanical forward
model. Since the EnKF is a continuous estimation approach, we introduced a new interpretation of the
MEQ event locations as a continuous seismicity density map that is amenable to assimilation with the
EnKF. A main advantage of the EnKF to previously introduced SBRC methods is that it is a stochastic
inversion that provides an ensemble of solutions to facilitate uncertainty assessment. Other important
advantages of the EnKF are the ability to systematically incorporate uncertainty in models and
observations, and its generality for application under any forward model, failure criteria, and MEQ event
triggering mechanisms. In addition, the simple and versatile implementation of the EnKF allows for
estimation of different types of parameters from various data types.
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In this work, we developed a coupled geomechanical reservoir simulator with rock failure criteria and
damage mechanics model, and focused on developing a framework called stochastic seismicity-based
reservoir characterization (SSBRC) for automatic and robust integration of MEQ-type discrete data sets
using the EnKF. We first developed 2D and 3D FEM fully coupled thermo-poro-elastic models with
Mohr-Coulomb failure criterion (including tension cut-off) and, permeability and damage model to relate
hydraulic and geomechanical reservoir parameters to discrete microseismicity cloud. An important
property of the EnKF is that its sequential update scheme provides different representations of unknown
parameters after each update. By construction, the EnKF is designed to update time-varying states of a
system. In forward geomechanical model that rock damage is reflected in the alteration of elastic modulus
and permeability, field stress disturbances change the rock physical properties (parameters) with time, the
EnKF-type sequential filtering techniques prove quite useful for estimation of dynamically varying
parameters. We also set up 2D and 3D pore-pressure diffusion forward models using a finite difference
based commercial reservoir simulator that relates permeability distribution to MEQ cloud distribution.

In pore-pressure forward model, by applying SSBRC we can infer permeability distribution from MEQ
data. Considering the coupled flow and geomechanics-based forward model, SSBRC method is capable
of inferring permeability, elastic modulus, tensile strength, cohesion and friction angle from MEQ event
cloud. Here, both tensile and shear failures are considered as microseismicity events.

Using KDE to generate seismicity density map on the same fine grid system of pore pressure diffusion
model or fine mesh of FEM model leads to high-dimensional and redundant observation. EnKF update
with large number of correlated observations results in severe ensemble spread underestimation. We
proposed three methods to preserve the ensemble spread and improve uncertainty quantification of
SSBRC. We resolved this issue by either artificially adding large random noise to observation or reducing
the number of observations by spectral and spatial dimension reduction. As the simplest method of
avoiding ensemble collapse, we proposed to inflate observation error variance. We also proposed
projecting the microseismic data onto a low-dimensional subspace that is defined by left singular vectors
of the perturbed observations matrix, and lastly using coarse-scale continuous representation of the
microseismic data. The proposed KDE approach for transforming the discrete MEQ data in this work
inevitably introduces some error into the estimation results. A more natural estimation approach for
integration of MEQ data is one that does not convert the discrete events into continuous measurements.
Developing discrete data integration algorithms can eliminate the discrete data quantification step and
potentially lead to additional improvements in the estimation results.

Here, a continuum approach has been used and discrete fracture systems were not explicitly considered in
the estimation. Further refinements of the workflow may also be possible by including seismic modeling
as one of the components in the inversion framework that can help better characterize the MEQ events
both in terms of their distribution and intensity. Analyses of the raw microseismic data can lead to
additional information about the induced fractures and their properties.
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Chapter 3. Three-Dimensional Fully Coupled FEM Analysis of Geothermal
Reservoirs with Stochastic Fracture Networks

1. Introduction

Simulation the response of an engineered geothermal reservoir (EGS) requires analyzing the THM
response of the reservoir rock, which are generally fractured and with heterogeneous properties to some
extent. The THM response of the reservoir rock includes the opening and propagation of natural fractures,
and the failure process of intact rock. To assess the mechanical (deformation) and hydraulic (permeability
enhancement) response of fractured rock during stimulation, three sub-models are required: a fracture
network model, a rock heterogeneity model, and a coupled THM model. The rock heterogeneity model
and the FEM THM model have been explained in detail previously (Chapter 1). The emphasis of this
chapter is fracture network modeling and its implementation for seismicity generation.

2. Fracture Network Model Development

Fractures serve as hydraulic conductors, barriers, channels of chemical contaminants transport, and play
important roles in the stability of engineered structures and excavations. The presence of natural fractures
in the reservoir puts challenges for designing, exploration, evaluation, and modeling of the reservoir.
Major challenges for numerical modeling from natural fractures include but are not limited to: 1) how to
identify, locate, and characterize natural fractures? 2) How do flow and transport occur in fracture
systems? 3) How can changes in fracture systems be predicted and controlled. In this work,
countermeasures to above concerns are 1) developing a conceptual model to represent the fracture
network geometry; 2) developing a mathematical model to represent fluid flow and solute transport in
fractured media; 3) building a hydro-mechanical model which can analyze the coupled fluid and solid
response, and simulate the fracture deformation and porous rock response simultaneously.

There are generally two classes of fracture models, stochastic fracture models and deterministic models.
There are also works that utilize combined deterministic and stochastic fracture networks. In most
reservoir stimulation and fracture modeling, the thermo-poroelastic coupling process has been either
neglected or simplified to empirical correlations (Cladouhos et al. 2001; Willis-Richards et al., 1996;
Bruel, 2002). Three-dimensional THM models have been developed and applied to reservoir stimulation,
development, and well bore stability analyses (Zhou and Ghassemi, 2009; Lee and Ghassemi, 2011).
However, the reservoir rock was modeled as continuous porous media with possibly a few major fractures.

In this work, a fracture network is introduced into a coupled poroelastic model with heat transport.
Poroelastic stresses in the rock matrix are computed at each time step, and are interpolated onto the
natural fracture faces when calculation the fracture apertures change. The overall permeability of
fractured rock is estimated using the equivalent permeability (Tezuka and Watanabe, 2000). An iterative
method is employed to retrieve the stress-dependent permeability at each time step. Considering the
problem complexity and the computational cost, the rock strain and fracture geometry changes are
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considered independent from the thermal response. The heat transport in the reservoir is assumed to occur
via fluid flow within the fractures, and the heat conduction from rock matric to the fracture fluid.
Compared to heat convection via fracture flow, heat convection within rock matrix is insignificant in
early stage of injection and is neglect in this work. The heat conduction from rock matrix to the fracture
fluid is assumed to be linear and governed by 1-D diffusive equation.

2.1 Natural Fracture Network Model

There are generally two classes of fracture models, stochastic fracture models (Cladhuous et al. 2011;
Bruel et al. 1994; Willis-Richards et al. 1996; and Tezuka et al. 2005) and deterministic models (Kolditz
and Clauser 1998, Ghassemi et al. 2007, and Safari and Ghassemi 2011). According to the treatment of
fluid flow through fracture systems, fracture models can also be classified in to equivalent continuum
models (Carrera et al. 1990) and discrete fracture models (Hudson and La Pointe, 1980; Long et al., 1982).
This work develops a hybrid method using discrete stochastic networks in building a continuum
approximation.

In a conventional equivalent continuum model, the induced rock heterogeneity by fractures is modeled
using sub-regions with different local properties. Individual fractures are not explicitly present unless
their scale is large enough to be considered separately as determined unit in the model. Each sub-region
has uniform properties, such as poroelastic modulus and permeability, which are resulted from the
volume-averaged behavior of many fractures inside the sub-domain. For example, flow through a sub-
domain is calculated in every direction and is used to form the equivalent permeability tensor for the sub-
domain. In this work, a sub-domain is viewed as one FEM (Finite Element Method) element. If the
properties for the equivalent continuum are used as being known with certainty, the model is deterministic.
If the coefficients are viewed as randomly distributed with a probability, the model is stochastic (Long et
al. 1982, Robinson 1984, Dershowitz 1984, and Hudson and LaPointe 1980). In stochastic framework,
fractures are reproduced only in a statistical sense to capture the overall connectivity of the entire region
and not distinguished locally higher or lower than average zones. It is important to note that, in order to
approximate the conductive fracture geometry (the inner connection of fractures), interference testing and
tracer testing is critical to see how is the system interconnected (National Research Council, 1996).

2.2 Stochastic Fracture Network Model

In stochastic fracture network model, the fracture network consists of series of penny-shape fractures, the
distributions of which is determined by the statistic descriptions of fracture density, size, and orientation.
The stochastic distribution function of fracture network properties can be fitted from field survey data or
experience. In this work, fracture network generation is inherited from Cacas et al. (1990). The fracture
density, size, and orientation are described by Poisson distribution, log-normal distribution, and Fisher-
von Mises distribution respectively. Parameters for these three distributions are from field data. However,
slight modification can be made to the distribution function case by case. ALTAROCK (2011) suggested
an elliptical Fisher distribution fits better for field data from Newberry site. In our numerical model,
Poisson’s parameter (1) indicates the total number of fractures expected in the modeled volume. The
variables from a Poisson random generator are the coordinates of fracture centers, which give the location
of fractures in the modeled domain. There are two parameters in the log-normal distribution. u is the
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mean of log(radius), and o is the standard deviation of the log(radius) with the radius in meters. The
variables from a log-normal random number generator indicate the radius of the fractures. Fracture
orientation can be defined by its altitude and azimuth. The two angles are generated according to Fisher
von Mises distribution (Equation 2.1) independently. The parameter x is from field data fitted curve.

fla)= 2S%h(k)exp(k cos(a))sin(«) (1)

where « is the angle variable and «is the concentration parameter. A fracture network with five hundred
penny shape fractures is shown in Figure 1. Geometry algorithms for visualization of 3D penny shape
fractures network is presented in the Appendix.

The initial fracture aperture is related to the fracture size () with a coefficient £
a=pr" 2)

where a is the initial aperture. f equals 0.004, estimated from average virgin permeability (Willis-
Richards, 1996), . fis a field dependent factor and requires careful evaluation. We use n = 0.5, which
adopted from Tezuka and Watanabe 2000.

z

-

Figure 1. A stochastic fracture network with 500 penny shape fractures.

2.2.1 Fracture locations (density)

The distribution of fracture centers follows Poisson distribution (Equation 3) in this work. Poisson
distribution is a discrete probability distribution that describes the probability of a given number of events
occurring in a fixed domain (time or space). In this work, the expected value of x in Equation (3) is the
expected number of fractures in our modeling domain, i.e. the fracture density.
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f(xsA)= 3)
X

Fracture location can be obtained by randomly generating center coordinates following Equation (3).
Figure 2 shows examples of fracture center distributions with different density parameters in a
500x500x500 m® volume.

100

:mmf‘

400

Figure 2. Fracture center distributions with different density parameters.

It should be noted that three random arrays, representing x-, y-, z- coordinates of centers, are generated
independently. The density parameter (A), from logging, well-imaging, or other methods, usually
indicates one dimensional fracture density, i.e. number of fractures per length. More realistic three-
dimensional distribution can be obtained by well correlation, which is outside the scope of this study.
Here we assume the fracture distribution has the same density and is independent in x-, y-, and z-
directions.

2.2.2 Fracture size
Fracture sizes are generated following log-normal distribution. In this work, the two parameters of the
log-normal distribution are the mean and standard deviation of the fracture radius’s natural logarithm. We
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assume the sizes of all fractures in the simulated domain follow one single distribution with one set of
parameters. However, sub-sets or different distributions can always be applied using similar algorithms,
when suggested by field data. Figure 3 shows examples of penny shape fractures having same location
and orientation but different size distribution.

(=100, n=02,6=0.9] (=100, p=16=109]

Figure 3. Fracture networks with different size parameters.

2.2.3 Fracture orientation

Fisher von Mises distribution is usually used in directional statistics to describe the distribution of
directions on a sphere. Figure 4 shows examples of Fisher von Mises distribution with mean direction at
(-1, 1, 1) and different k parameters. In this work, modified Fisher von Mises distribution (Equation 1) is
used (Cacas et al. 1990). First, an array of direction angles is generated randomly. Then these values are
substituted into Equation 1, generating the fracture orientations. Finally, direction angles that fall outside
the range of fracture orientations are eliminated. Figure 5 shows comparisons of fracture networks with
different orientation distribution parameters.
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Figure 4. Fisher von Mises distributions with mean direction at (-1, 1, 1) and k =, 1, 4, and 8.
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Figure 5. Fracture networks with different orientation distributions.
2.3 Conversion from Discrete Fracture Network to Continuum Media

The fracture flow model is based on the assumptions that fluid moves through the reservoir body within
an interconnected fracture network, and that flow from the rock matrix to fractures is negligible in
comparison with the flow in the fracture (Figure 6). Therefore, within one elemental volume, we consider
fracture flow and matrix flow separately, and superpose these two parts together at the end of elemental
evaluation using volume weighted averaging (Equation 4). We use Darcy’s for matrix flow calculation.

(4)
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Figure 6. Illustration of x- directional flow through a fractured element.

The fluid flow in fracture is assumed to be governed by the cubic law shown by the following equation:

_wa' &p
124 AL

Q )

where Q is the volumetric flow rate in m’/s, w is the length of intersection line between fracture and
element interface in m; a is the aperture of the fracture in m; u is the fluid viscosity; Ap is the pore
pressure change in Pa after the flow travel through AL distance in m. In numerical simulations, the
reservoir block is divided into small elements as shown in Figure 7. The fractures have apertures (a) and
intersect the elements with an intersection length (/). The directional conductivity of the element can be
expressed in the following way (e.g., Rahman et al. 2002):

< ail’/‘
k= L i=x,y,z2 6
: leAi y (6)

/=

Where, 75 is the total number of fractures in the element, which contributes to the flow in i directional. a;
and /; are the aperture and intersection line length of the j™ fracture on the intersected element surface. 4;
is the cross section area of the corresponding direction, which is the interface of two elements in this
model. The total permeability of the individual elements is obtained by the superposition of the rock mass
permeability and the equivalent permeability of fractures using Equation (4). Geometry algorisms for
calculation intersections between penny shape fractures and element faces can be found in the Appendix
at the end of this dissertation.
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Figure 7. Conversion of fracture permeability into equivalent permeability of FEM element.
2.4 Mechanical and Hydraulic Properties of Fractured Rock

The simulation domain in this model is treated as continuum. It is essential to mapping fracture properties
into rock matrix, and forming a continuum with equivalent mechanical and hydraulic properties. The
parameter sensitivity and mesh sensitivity of this conversion is also evaluated.

2.4.1 Mechanical properties of fractured rock

Finite Element Method (FEM) is used in our numerical modeling. In simulations, the simulated domain is
discretized into finite elements (meshing). In FEM simulation, each element is required to have its
individual properties, such as Young’s modulus, Poisson’s ratio, and permeability, etc. In modeling of
rock heterogeneity, we statistically distribute the local properties into individual elements. In some cases
when rock mass with natural fractures are considered, it is necessary to calculate the equivalent elemental
properties of elements that contain fracture(s) before conducting Finite Element analysis. In the following,
Young’s modulus is used as an example to explain the equivalent technique for modeling the properties of
fractured sample. The basic concept is similar to the equivalent permeability method introduced
previously. As conservation of flow rate is used in permeability conversion, the balance of displacement
is used accordingly for the equivalent Young’s modulus. The overall displacement of the fractured rock is
equal to the displacement of converted continuum mass with equivalent Young’s modulus under the same
external loading. Rosso 1976 illustrated correlations among joint stiffness, axial and transverse strains of
rock sample, and Young’s modulus of intact rock during a triaxial test (Figure 8):

Coefficient of friction: y=7/0,

(6, —&,)D+d, cosb
sin @

Average joint displacement: d_ =
(o] .
Average joint closure: d, = KEIL - Ele —(&, —&,)Dcot 9} sin@

Joint shear stiffness: K = di

N
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Joint normal stiffness: K, = d—”

n

Shear stress: 7 = (o, — 0;)sin @ cos &
.2
Normal stress: &, = 0, + (0, — o, )sin® @

€1

Un

€3

Ug ™

v
.

Figure 8. Illustration of relations between variables in triaxial test of a fractured specimen.

In above correlations and Figure 8, & is axial strain; & is small transverse strain; & is large transverse
strain; D is sample diameter; @ is angle between the joint surface and the sample axis; L is sample length;
E is elastic modulus determined from the competent specimen; o is axial stress; o3 is confining pressure.

From above relations, we can derive an expression of vertical equivalent Young’s modulus in terms of
properties of intact rock and fracture.

. 3 .
9y - 2450 0,0:5M0 _ %4 Gngeos? 0+t (7)
E KL KL KL E

s

where deviatory stress o, = 0, —0;; E’ is equivalent Young’s modulus of the fractured sample; and

other parameters are same as defined above. Here we assume the fracture properties and intact rock
properties are known. Figure 9 shows the comparison between lab test result and calculated result using
Equation (7). We can see that that equation approximates the lab test result well in elastic part.
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Figure 9. Comparison between Equation 7 results with lab test data.

When the scale gets bigger, or the mesh gets coarser depending on modeling requirements, a single
element can contain several fractures. In practice, average local properties can be calculated using
different averaging approaches depending on the definition of the problem. A single element can be
divided into finite number of sub-elements such that one sub-element only includes one cut-through
fracture. Then the averaging formula can be applied to find equivalent elemental properties. This method
has been validated by comparing it to numerical simulations. Results show that the equivalent Young’s
modulus is less depended on fracture location in the element, but highly depended on the fractured level
(number of fractures per volume). In the numerical model, Young’s moduli of sub-elements are randomly
distributed and five random samples have been selected. The results are sufficiently close to calculation
using the averaging formula (Equation 8). Therefore, in later simulations related to fractured rock, the
equivalent Young’s modulus of an element will be calculated using averaging formula.

nels
E=(S g%y (8)
nels <5
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Figure 10. Comparison between Equation 2.8 results with numerical simulation results.

2.4.2 Hydraulic properties of fractured rock

The equivalent permeability technique converts fracture networks into a continuous media with
equivalent permeability. The conductivity of the resulting continuous media is dramatically influenced by
the connectivity of the fracture network, and is also affected by the finite element mesh selection. An
example is shown in this part to analyze the parameter sensitivity of fractures connectivity and to test the
mesh sensitivity of the equivalent permeability technique. In the following example, a network of 500
fractures is created within the domain matrix block using different fracture orientation and distribution
parameters. Three different sizes of finite element mesh were used to investigate the impact of the mesh.

Figure 11A-D shows the influence of fracture orientations on the fracture network directional
conductivities. The blue color shows the connectivity of fracture networks whose orientations are derived
using the Fisher von Mises distribution (FVM) (group I) and the random distribution (group II). We can
see that the fracture network with random orientations has higher conductivity in x- and y- directions and
a lower conductivity in the z- direction when compared with Fisher von Mises distributed fracture
networks. Considering the geometric average conductivity (Figure 11D), group (II) fractures also show
higher values than group (I). These two groups have the same number of fractures, and the same size
distributions. The finite element meshes are the same as well. By comparison, we can see the connectivity
of fracture networks is significantly influenced by the fracture orientations.
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Figure 11B. The equivalent y- directional connectivity on FEM mesh of networks with Fisher von Mises
(above, k = 2.8) and random orientation distribution (below).
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Figure 11C. The equivalent z- directional connectivity on FEM mesh of networks with Fisher von Mises
(above, k = 2.8) and random orientation distribution (below).
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Figure 11D. The equivalent elemental average connectivity on FEM mesh of networks with Fisher von
Mises (above, k = 2.8) and random orientation distribution (below).

The equivalent permeability is evaluated on each element’s surfaces. Figure 12A-B shows the effect of
mesh size on the permeability evaluation. The same two fracture groups -as above are used. The matrix
block is discretized in to 1000, 8000, and 27000 elements for three test cases, respectively (I, 11, III series
in Figure 12A and B). We can see that after the fractures and the matrix elements are converted to a
continuous media, the patterns of heterogeneity of the element conductivity are similar in all three cases (I,
1L, III) with different mesh sizes. However, as the mesh becomes finer, connectivity deteriorates. For the
mesh with 27000 elements, most of the high conductivity zones are isolated. The isolated high
conductivity zones will negatively impact fluid flow and heat transfer in the model. Comparing plots in
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Figure 12A (Fisher von Mises distribution) with those in Figure 12B (random distribution), we can see

that the randomly distributed cases have higher connectivity for all three mesh sizes.

II
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Figure 12A. The equivalent fracture connectivity on different mesh sized of networks with Fisher von
Mises orientation distribution (k = 2.8).
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Figure 12B. The equivalent fracture connectivity on different mesh sized of networks with random
orientation distribution.

Average permeability of the entire reservoir is used to evaluate the mesh size effect on fracture
connectivity. Harmonic mean, geometric mean, and arithmetic mean are commonly used for permeability
averaging of a heterogeneous reservoir. In practice, harmonic mean is used to get the effective
permeability for layered-vertical flow. For a system with log-normal permeability distribution, the
geometric mean approximation is better than harmonic or arithmetic averages (Warren and Price, 1961).
However, some studies suggested that the effective permeability of 3D composite is a 1/3 power average
(Equation 9) for log-normal system (Neotinger, 1994; Hristopulos and Christokos, 1999):
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= 1 & 1/313
K=(—>(K)") ©)

els i=l1
where K is the variable of each elements, 7, is the total number of elements.

We use the 1/3 power average to approximate the average permeability of the entire block, and to
quantify the mesh size effect on fracture connectivity. Figure 13 shows the correlation between mesh size
and effective permeability of the entire reservoir. Two fracture networks with same stochastic parameters
as in group (I) of Figure 11 are analyzed (fracture network with FVM orientation distribution). As the
mesh becomes finer, the average permeability decreases and converges to some smaller value. Also, the
curves for the two stochastic fracture networks in Figure 13 show that the horizontal permeability (x- and
y- directions) is slightly higher than the vertical permeability (z- direction), which is consistent with the
results from Figure 11.
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Figure 13. Change of overall average permeability with mesh size.

2.4.3 Heat transfer via fracture flow

In some cases, heat transfer can be de-coupled from mechanical response analysis. For example, heat flow
(convection) in interconnected fracture network takes place so rapidly that the convection from adjacent
rock to fracture can be ignored during the simulation time. Bi-linear heat transfer model include two parts:
1) 1D linear heat conduction from adjacent rock into fracture; and 2) 1D linear heat convection through
channels formed by interconnected fractures (Figure 15, Equation 11). In this model, it is assumed that 1)
fluid flow (heat convection) primarily occurs in channels within fractures; 2) heat conduction develops
perpendicular to the fracture face; and 3) No heat is retained by the volume of fluid with in the fractures
(Bruel 2002). In heat transfer calculations, the water flow through the rock matrix is ignored, therefore,
the heat convection is confined within the interconnected fracture network. Assuming that no energy is
retained by the fluid stored within the fracture, the energy conservation is obtained (Brue, 2002) at each
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fracture center by balancing the heat convection (via fluid flow) and heat conduction between adjacent
rock mass and the fluid in the fracture. It is assumed the temperature at fracture face is continuative (Brue,
2002):

T, =T, aty=0 (10)

The energy balance equation can be expressed as:

out

AL, +prchijTﬁAt:Zk:pfchikakA’ (11)
J

dT,
dy

by conduction (diffusive equation, Equation 12). ¢; and g; represents the fluxes flow in a given fracture 7,

Where AE, =k,,S.(

) =0 At denotes the energy from the heat flux at fracture walls which is governed

from fracture j and flow out to fracture k& with temperature 7j; and 7j, respectively (Figure 14). The fluid
exits to the fracture £ having the same temperature as the current temperature in fracture 7. Similarly, fluid
flows from fracture j to fracture 7 having the same temperature as the current temperature in fracture j.

-

[ESPS. J0

Figure 14. Energy conservation of fracture i.

The heat exchange across the fracture face can be described as (Brue, 2002):
dE, = ®,S.dt
(Di = km(d]—:n /dy)y:O

orT,
ot

oAT, = (12)

The above diffusive equation is solved using the finite difference method. Given the fracture temperature
at time ¢, the solution will return the temperature distribution from the fracture face to the other end of the
rock cylinder. After that, the heat flux @; can be obtained and the energy exchanged (AE;) calculated. At
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each fracture center, one energy balance equation is set up, and the set of equations is solved for g; at
each time step. Parameters that appear in the above equations are prand p,, are the fluid and rock density

respectively, C,, is the solid heat capacity, «, is the heat diffusivity of rock mass, 5 is the fracture face
area, and k,, is the heat conductivity of rock mass.

The shape of the heat source rock block is assumed to be cylindrical with a radius equal to the fracture
radius. The length of the cylinder is chosen so that the temperature on the other end of the cylinder
remains unchanged during stimulation (Marin, 2010). The results show that the temperature changes will
not develop at a long distance within test time period. Therefore, the cylinder to cylinder interaction and
the thermal stress effects are ignored at this stage. According to characteristic length definition (Marin,
2010), the length of a cylinder of rock with a heat diffusivity of 1.15x10°® m%s, is approximately 12 m.
This length ensures the temperature on the opposite end of the matrix block is unchanged during one year
of heat transfer. The 1D heat diffusive equation for heat conduction can be written as

k, oI, 0T,
" = (13)
p,C, Oy ot
Defining o/, = —"— , then equation (13) becomes:
PnC

, . _oT, 14)

"oyt ot
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Figure 15. Bi-linear heat transfer in interconnected fracture network.

It is easier to solve above equation using Finite Difference Method (FDM) than using FEM. The right
hand side can be discretized in y- coordinate direction as:

oT, T,(i+1)-2T,()+T,(i—1)
oy’ (Ay,)?

(15)
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The one dimensional heat conduction takes place in a cylinder which has a cross section area of 4 = .
Therefore, the volume of each element (i) has a volume of V; = m”Ay,. We can then write the discretized
form of equation (14) as:

a, A

@Al i1y, (] =v D -TalO

[T, Gi+1)-T, )]+ A, v

(16)

i

If we use uniform element size, i.e. Ay = const., then according to central differentiation, we can denote
the coefficients as

am

K, (i+)=K,(i-)= 17
() =K, (i-) ) (17)

And finally the diffusion equation can be written in matrix form as

(1= K, ADT,, (1) = T, (10) (18)

The temperature distribution ( 7,,|y) in the rock cylinder at time ¢ can then be calculated. The temperature
gradient d7,,/ dy at fracture wall is needed in the heat convection calculation as the heat gain of the
fracture from adjacent rock. In this model it is approximated by (T-Tomo)c/Ay.

In the heat transfer part, the fluid flow is confined within the connected fracture networks. Therefore, it is
necessary to find out the connected fractures. A search algorithm is used to determine the connectivity.
Every fracture is checked whether or not it belongs to a connected flow path. Then, dead ends and
isolated fractures are removed. An iterative analysis is employed to do the searching.

In order to solve the system of equation for heat transfer, the fluid flow in fracture network need to be
solved first. As explained in the equivalent permeability section, fluid flow is confined within fracture
networks. Fluid flow in fractures is assumed to be similar to that of parallel surfaces. Then the cubic law
provides the volumetric flux (m*/s) through a fracture with aperture @ and length /:

B —a3ld_p
121 dl

Q (19)

The flow network considers each connected fracture as a 1D pipe linking the centers of adjacent fractures
(Figure 16). Let k; and k; represent the conductivity of fracture i and j, and let p; and p; be the pore
pressure at each fracture center. L; and L; are the channel length in fracture i and j, respectively. The
volumetric flow rate between fractures i and j can be write as:

=D, L +L.
Qii = kij M; ki/ = ' J (20)
T L+L, 7 Llk+L/k,

Conductivity of each fracture can be obtained from the modified cubic law:
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Figure 16. Flow channel between two connected fractures. C; and C; are centers of fractures i and j, L; and
L; are the channel lengths in fractures i and j, respectively.

The system of equations for solving fluid flow between fractures can be generalized using flow-in equals

to flow-out ZQU + source=0 (22)
[K-1[p]=12] (23)
Flow-in

Flow-out

Figure 17. An example of pipe model for interconnected fracture network.

Taking node 4 in Figure 17 as an example, the above matrix equation can be expanded as

0 0 ofpl=|0. (9
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where ZKij — K, + Kis + K + Ky .
L Ly Ly Lg Ly ’

ij

[2,1= (P12 Pos Pss Pas Pss Pes Prs Pss Po» Pro )
[Ql] = [qin ’0’0’0’050’0’0’0’ qout ] .

After obtaining the nodal pore pressure, using Equation (20) we can find out the g;; terms in Equation (11).
And finally we can solve for the temperatures in each fracture. Figure 18 shows the result of a 2D pipe
network example, and Figure 19 shows the result of a 3D pipe network example. All interconnected
fractures are represented as pipes.

Flow Out

iction Point

ction Point

Flow In

Figure 18. Temperature distribution in 2D channels formed by 1D pipes.
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Figure 19. Temperature distribution of a 3D pipe network.

2.5 Fracture Slip, Seismicity, and Permeability Enhancement

Fracture dilates during shear slippage. As the shear stress acting on fracture surface exceeds fracture shear
strength, shear failure occurs and induces rock deformation of the surface of rupture. This permanent
displacement is referred as shear displacement which has significant influence on permeability
improvement of natural fractures. Shear slippage criterion can be derived from the theory of shear failure
using the linear Mohr-Coulomb criterion. Using Patton’s method (Patton 1966), the shear strength of the
fracture can be calculated as:

[r— eﬁ
¢, o anlon. +05) *

where ¢’ is the effective normal stress acting on fracture surface. ¢, is the basic friction angle which is
a material property of the fracture surface, usually varies between 30° and 40° (Rahman et al. 2002). gpjf;"
is the effective shear dilation angle which is related to the roughness of fractures, can be calculate from

laboratory-measured dilation angle, ¢, as:

off D 26)

Par =14 96"/ 0 .

256



o . is the effective normal stress which causes 90% closure of the compliant aperture. When the shear

nref
stress on fracture surface exceeds the shear strength, shear slippage occurs. And the resulted shear
displacement can be estimated by:

7,-7,
U, = 27)

s

7, is the shear stress applied on fracture surface. 7, is the shear strength described above. K is the

fracture shear stiffness, can be expressed as:
G
K, = 7/— (28)
7 is a geometric parameter which is used as Z* in this model (Eshelby, 1957). r is the penny shape
fracture radius. G is the surrounding material shear modulus.
The change in aperture due to excessive shear stress can be calculated from shear displacement, as:
=U, tan(p)) (29)

When the fracture surfaces are in contact, the “in contact” fracture aperture is given by (Willis-Richards
et al. 1996):

=—2C —ta +a,, 30
1+90'/o; Lo (30)

nref
where a,, represents the residual aperture at high effective stress, taken to be zero in this model. a, is
the initial total compliant aperture of the fracture. And a, is the aperture change due to shear slippage, as

discussed above.

For fully open fractures, the opening aperture is the normal displacement multiplied by 2. For a circular
shape fracture of radius R under normal stress o, the normal displacement of any point of the crack
surface is given by (Jaeger and Cook, 1969):

u(r)z%\/R2 —r’ 31)

Resulting in the maximum width at the center:

4(1-v)R
= (32)
G
The volume of the penny shaped crack is obtained from:
4(1- z))R 8(1-v)R’o,

v =2 =2 TR G, 33

f G M=% (33)
Indicating an average aperture of:

8(1-v)R
a-vim =1"VRko, (34)
372G

The updated aperture due to new stress distribution will be input for the equivalent permeability
calculation of next time step as described previously.
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The magnitude of radiated elastic energy is calculated according to McGarr et al. 1979 and Hanks and
Kanamori, 1979. The seismic moment due to slip “U_ ” over the slip area, can be obtained from:

M, =[GU,d4 (35)
z

G is the shear modulus of the rock. The magnitude of a mini-earthquake generated by the slippage can
then be estimated as:

2
M = )log,, M, =107 (36)

2.6 Analysis of Near Wellbore Response

This simulation focuses on utilizing a stochastic fracture network and poroelasticity to simulate the
thermal-hydro-mechanical response of near wellbore fractured zone during the fluid injection process,
and to assess the permeability enhancement in the stimulated zone. The fractured geothermal reservoir is
modeled using a system of rock blocks some of which contain stochastically-distributed fractures and
fractured zones. The effect of the fractures on permeability is introduced into the model by using the
equivalent permeability approach. The rock matrix is assumed to be poroelastic and the fractures are
allowed to deform and to slip. Heat transport within the fractures and the associated thermal stress on the
rock is also considered. A series of simulations are carried out to analyze the rock mechanical response
and permeability evolution for a Newberry-type reservoir. In granitic fractured reservoirs, like Newberry-
Tuff, the overall fluid flow pattern is dominated by flow within the interconnected natural fracture
network, since the conductivity of fractures is much higher than intact rock. However, the heat energy is
stored in the rock mass surrounding the fractures, and it takes time to heat-up the fracture fluid to a
desirable temperature. Therefore, to engineer a geothermal system, one need to enhance the
permeability/connectivity of the pre-existing natural fractures without creating massive hydraulic
fractures.

2.5.1 Stochastic fracture network

In this work, a natural fracture network of 500 penny-shape cracks is introduced into the poroelastic
model (Figure 20). The 3D hydraulically conductive fracture network is generated using stochastic
descriptions of its characteristics: Poisson distribution for fracture location, log-normal distribution for
fracture size, and Fisher von-Mises distribution for fracture orientation. The parameters of these
distributions are usually found from field tests or experimental data. The fracture data can be complied in
to form a network by defining location, size, and orientation of the fractures. One of such stochastic
fracture network (Table 1) is shown in Figure 20. The parameters of the fracture distribution used herein
are from fracture analysis of Newbery field (AltaRock 2011), and from empirical suggestions (Cacas et al.
1990). Fracture apertures are assigned following the relationship with the fracture size (Tezuka 20005):

a=ar (39)
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Table 1. Parameters of the probability functions of stochastic fractures in Figure 20.

Density [m™] 1.0
Mean of the log(radius) [radius in meters] 0
Standard deviation of the log(radius) [radius in 07
meters]

Fisher von Mises distribution parameter 2.8

a 4.0 X10°
Number of fractures 500

Figure 20. A stochastic fracture network.

2.5.2 Model set-up

In order to investigate the near wellbore reaction, a small scale reservoir model of size 40 m x 40 m x 20
m is considered. Figure 21 shows the simulation domain with selected finite element mesh, and Figure 22
shows the fractured zone that contains 500 stochastic fractures (half domain). Rock properties are from
experiment conducted on Newbery Tuff core plugs (Li et al. 2012). A constant wellbore pressure
increment is applied to this model. The outer boundary of the reservoir block is assumed to be a no flow
boundary.

Table 2. Parameters used in near wellbore simulation.

Rock properties Fracture properties

. 3 40 x 40 x ) 1
Model size (m’) 20 Fracture density(m™) 1
Young’s modulus(GPa) 27.24 Fisher parameter, x 2.8
Poisson’s ratio 0.4 Mean fracture radial (lognormal) | 0
Skempton’s coefficient 1 Standard deviation of fracture 0.7
Matrix permeability (md) | 5 radial, s ’
Porosity 0.025 Fracture basic friction angle (°) 50.2
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Fluid density (kg/m’) 1000 Stress State

Fluid bulk modulus (MPa) | 3291 Vertical stress (MPa) 67
Fluid viscosity (Pa s) 1.0 x 10* | Maximum horizontal stress (MPa) | 62
Fluid viscosity (Pa s) 1.0 x 10* | Minimum horizontal stress (MPa) | 41
Shear dilation angle (%) 3.0 In-situ pore pressure (MPa) 25
90% closure stress (MPa) | 100 Injection pressure (MPa) 5

2.05
1.85
165
145
1.25
1.05
085
0.65
045
025
0.005

Figure 22. Fractured zones shown in half domain. Color bar shows the equivalent permeability of the
fractured zone.
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2.5.3 Simulations and results

Pore pressure developments after 2 hours of injection and the corresponding micro-seismic events are
plotted in Figure 23 and Figure 24, respectively. Figure 23 shows the pore pressure distribution of three
fracture networks with different stochastic parameters. In these figures, x is the fracture orientation
parameter and s is the fracture size parameter (Table 2). We can see from both the pore pressure and the
seismic clouds that the fracture properties dramatically influence the stimulation results. The seismic
events of the fracture network with fisher von Mises orientation distribution are limited near the injection
well. The randomly distributed fracture network has a larger zone of micro-seismic events and higher
pore pressure build up. The fracture size also has influence on the permeability improvement result
(Figure 24B and C). The location of shear slippage is different from each case. This phenomenon
indicates the important role of characterizing fracture properties for reservoir stimulation modeling and
design.
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Figure 23. Pore pressure development at t = 2 hour in the fractured reservoir.
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Figure 24. Micro-seismic events at t = 2 hour of three blocks with different fracture properties.

To illustrate the permeability improvement, Figure 25 shows the comparison of injection in two reservoirs
have the same fracture networks, but with different rock type. One of them (group B) is assumed to have
rigid rock which does not allow failure during the injection. The other one (group A) has the same rock
type as tested before. We can see that before shear dilation happens, the pore pressure distributions are the
same in both reservoirs. After shear dilation, the pore pressure distribution in rock A is affected by the
updated permeability, and higher pore pressure is shown in the upper zone (Figure 25 A2). We can see
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from Figure 25 A3 and B3, after 10 hours of injection, the pore pressure built-up in reservoir A has been
delayed. Higher reservoir pressure is shown in Figure 25 B3. This observation resulted from the fracture
opening and permeability increasing in reservoir A.
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Figure 25. Iso-surfaces of pore pressure distribution for reservoirs with (A) and without (B) permeability
improvement at (1) t = 0 hour, (2) t = 2 hour, and (3) t = 10 hour of injection.

The flow rate vs. time profile of the above two reservoirs is shown in Figure 26. The green line shows the
flow rate profile of a permeability improved reservoir. Red line shows the flow rate profile of rigid rock
reservoir. We can see that, in the stimulated reservoir, the flow rate increases quickly after the shear
dilation. Figure 27 shows the seismic events at t = 5 hour, when a large of flow rate is observed in Figure
26. Large shear slippages are recorded, which is one of the reasons for the large increase of flow rate at t
= 5 hour (the well pressure is maintained constant during injection). The flow rate will also increase when
the injection fluid front reaches the higher permeability zones. Therefore, we can see periodic increase of
flow rate from both curves. To show the permeability improvement, slices of permeability contours of the
reservoir A at t =4 hour and t = 5 hour are plotted in Figure 28. Permeability changes at all locations of
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shear slippage shown in Figure 27. But, all the change cannot be shown in a single contour map because
of the rather broad range of permeability values (5 x 107 m* to 6.2 x 10" m?) with the simulation domain.
Therefore, only the values in the range of 2.5 x 10™"° m® to 8.5 x 10" m* are plotted in Figure 28 for
illustration purpose. The results show the correlations between seismic events, permeability improvement,
and flow rate increase.
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Figure 26. Wellbore flow rate profiles with time for reservoirs with (A) and without (B) permeability
improvement.
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Figure 27. Micro-seismic events plot at t = 5 hours. Bubble size indicates the shear slippage value.
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Figure 28. Near-well permeability showing the center layer at t = 4 hours and t = 5 hours. Only 25 Darcy
to 850 Darcy permeability range is plotted for the best illustration.

2.5.4 Near-well response using a line injection source

Larger scale stimulation cases are also carried out to get a general view of stimulated zone. Considering
the scale of the simulation domain and the computational cost, the injection well section is represented as
three vertical injection elements served as a line source (15 m vertical interval) (Figure 29). Instead of
using wellbore mesh, uniform grid mesh 50 x 50 x50 is used. The reservoir domain is 100 m x100 m
%100 m size. Far field boundary is set to be no flow, and traction specified boundary. The injection rate of
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the line source is specified (per unit volume) and well pressure during the injection will be calculated. The
far field tractions are equal to the in-situ stresses. The rock properties are the same as Table 2. The
fracture properties are as Table 3. And one of the fracture geometry is shown in Figure 30. Figure 31
shows the resulting high permeability fractured zone.

No flow boundary

3 well elements

Figure 29. Model size and setup for large scale simulation test.

Table 3. Parameters used in line source simulation.

Fracture properties

Fracture density(m™) 1
Fisher parameter, x 1.7
Mean fracture radial (lognormal) 0
Standard deviation of fracture radial, s 0.7
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Figure 30. Fracture geometry of a fracture network with 1000 fractures.
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Figure 31. Fractured zone permeability heterogeneity due to the fracture network shown in Figure 40.

Figure 32 shows the pore pressure distribution development at 1 hr., 3 hr., 6 hr., and 9 hr. during the
stimulation of 12 hours. Figure 33 shows the injection well pressure profile with prescribed injection rate.
The results show that the shear failure of natural fractures do not have significant influence on the
injection pressure vs. injection rate profile, considering the size disparity of reservoir and injection source,
as well as highly fractured transport media. Figure 34 shoes the pressure distribution and shear slippage
failure location at time = 9 hour on the center slice (z = 0). We can see that the stimulated zone indicated
by micro-seismicity cloud shows similar shape as pore-pressure developed zone. In this model, the pore
pressure is the only disturbance applied to initially balanced in-situ state. Therefore, the stress change of
the rock and hence the displacement of the fracture can only happen where the induced pressure
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developed. Figure 35 gives a 3D view of the potential micro-seismicity cloud at 9 hours, which indicates
the stimulated zone volume at that time.
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Figure 32. Excess pore pressure development due to stimulation.
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Figure 34. Pressure distribution and shear slip failure location at time = 9 hour on the center slice (z = 0).
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Figure 35. Shear slippage failure location (accumulative) at time = 9 hour at the center plane.

Mont Carlo tests are usually request for models using stochastic distributions, because different random
data set can deliver varsity results. Stochastic data analysis is out of the scope of this study, but it is
necessary to verify that the influence of data set selection on the simulation results. Figure 36 shows the
pore pressure distributions at 9 hours of two models, in which the fracture networks are generated using
same stochastic parameters but different random seeds. We can see that the overall results, such as
induced pore pressure m pressurized zone shape and stimulated volume, show consistency. Local
inconsistent can be caused by the different distribution of fractures in two networks. Figure 36 compares
the well pressure profiles of two sets. The overall patterns of the profiles are similar. Set 1 shows smaller
fracture conductivity compared to Set 2, which is indicated by the slight higher built-up well-pressure in
set 1 than Set 2. However, the difference is with-in practical error tolerance.
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Figure 36. Pore pressure distributions of fractured reservoirs, in which natural fractures are generated
from different random data sets with same stochastic parameters.
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2.5.5 Case summary

This simulation example shows different aspects of permeability enhancement in EGS. The model is
shown to be capable of analyzing the stress variations, pore pressure distributions, and potential injection
induced micro-seismicity. From the results, we have seen the important role of fracture network
properties (fracture distribution, orientation, and fracture network connectivity) in geothermal reservoir
design and development. The fracture aperture changes with stress variations associated with injection
and directly influence the reservoir permeability evolution. The orientation of the fractures in the
reservoir dramatically influences the permeability development. In a fractured reservoir, properties of
fracture network have a significant impact on pore pressure and seismic events distribution. Results also
show a correlation between pore pressure increase, fractures slip and MEQs. A comparison with field/lab
test needs to be conducted in the future work. Calibration of fracture distribution parameters and damage
induced permeability change are being considered and will be reported in the following context.

2.6 Large Scale Reservoir Response Analysis

2.6.1 Model set up

This model is also applied to a fractured geothermal reservoir, in which the natural fracture network is
connected to the injection well via a hydraulic fracture, as shown in Figure 37. A one-wing elliptical
hydraulic fracture on x-z plane is centered at coordinates (670.0, 242.5, 250.0) with a major axis (x-
direction) of 300 meters and s miner axis (z-direction) of 150 meters. The elliptical fracture has a uniform
width of 5 mm. The modeled reservoir has a length of 1000 meters in x-direction, a width of 500s meter
in y-direction, and a thickness of 500 meters in z-direction. The injection well is set vertically along the
minor axis of hydraulic fracture, and the open-hole injection section is 160 m (140 m-300 m). The
injection rate is held at 26.56 1/s for 40 hours. The injection water temperature is set to be 50°C and the
reservoir temperature is 115°C. The whole domain is selected large enough to eliminate boundary effects.
We assume fixed displacement and fixed pressure difference boundary condition at far field. This domain
is discretized into 20,000 uniform finite element bricks and subject into the fully coupled FEM model.
The in-situ stress state is indicated in Figure 37A also. The maximum horizontal stress is in x-direction,
and this is a normal regime stress state where the largest in-situ stress is vertical. A cluster of natural
fractures, 1000 count, is located in front of the hydraulic fracture. The coordinates of the center of natural
fracture network is (450, 250.0, 250.0), and the fractured zone is 500 m X 500 m X 500 m. Figure 37B
shows more details about natural fracture network and hydraulic fracture. Rock properties and fracture
network parameters are listed in Table 4. Rock and fracture properties are from AltaRock (2011) on
Newberry reservoir and Li et al. 2012.
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Figure 37. (a) Reservoir geometry and in-situ stress state. (b) Details on natural fracture network and
hydraulic fracture.

Table 4. Rock and natural fracture properties used in large scale simulation.

Rock density 2700 kg/m’

Fluid density 1000 kg/m’

Rock permeability 324 X 10" m%/s

Rock porosity 0.2989

Young’s Modulus 10 GPa

Boit’s coefficient 0.915

Poisson’s ratio 0.219 (drain), 0.461(undrain)
Bulk Modulus (fluid) 3.291GPa

Number of fractures 1000

Fracture size (Log EX) 0.0
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Fracture orientation, & 2.8

Fluid viscosity 3.0X10" Pas
Basic friction angle 0.698
Dilation angle 0.052

90% closure stress 100 MPa
Thermal expansion coefficient (solid) 1.8X 10° K
Thermal expansion coefficient (fluid) 3.0 X10* K
Thermal diffusivity 6.0 X 10"* m%/s
Fracture density 1.5m"
Fracture size (Log SD) 1.0
size-aperture coefficient 40X10°

2.6.2 Simulations and results

The response of natural fracture network to injection is analyzed. At first, two sets of fractures are tested
individually. These two sets of fractures have same distribution and orientations, different size and
aperture. The resulting micro-seismic events location is the same for both sets. Results show the
significant influence of fracture orientation on the occurrence of shear slippage. Figure 38 is a plot of the
normal to the slipped fractures and their corresponding MEQ events at time = 10 hour. Gray circles
represent all the fractures, while color rectangles are the slipped fractures. The color bar gives the
magnitude of slippage induced micro-seismicity. It can be seen that shear slippage happens on fractures
whose normal orientation falls into a certain range as indicated in the plot. The direction cosines of a
fracture plane can be written in terms of its fracture dip and azimuth. From Figure 38, we can see that
most fractures with azimuth between (-30°, 30°) slip after 10 hours of injection. Slipped fractures are
sorted and plotted in Figure 39. Colors on fractures indicate the magnitude of MEQ events. It is evident
from the figure that the event magnitudes are less related to the fracture orientation, size, or the distance
to the injection source. We observe same magnitude of events on different size of fractures. We also
observe higher magnitude of events on fracture far from injection source than the near ones. And from
Figure 38, we can see the same magnitude events occur on fractures with large range of azimuth angles.
However, due to our assumption of the dependency of fracture aperture and size (aperture is 10™ of
fracture size, Equation 13), the correlation between the fracture aperture and event magnitude is not
evident. In order to characterize the sensitivity of fracture slip to injection, fluid gravity is ignored in this
work, and we can see slippage occur on shallow fractures (Figure 39). By adding fluid gravity, the lower
part of reservoir would be pressurized first, as discussed in Wang and Ghassemi, (2012b).
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Figure 38. Slipped fractures’ normal directions are plotted as colored squares. Gray circles show all the
normal directions of natural fractures.

Pore pressure distributions within fracture network from time = 1 hour and time = 10 hour are shown in
Figure 40. It can be seen that injection fluid mainly pressurizes interconnected fractures. This indicates
small amount of fluid is transported through matrix and most of it occur within the interconnect fractures
test. We can see from results that the pore pressure development is mostly controlled by the connectivity,
and there is less pore pressure development in some isolated fractures near injection source (hydraulic
fracture). This is reasonable because the rock permeability is much lower (two orders of magnitude) than
fracture permeability, and injected fluid mostly goes into high permeable zones.
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Figure 40. Pore pressure distributions in individual fractures at time = 1 hour and time=10 hour.
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Figure 41. The permeability enhancement of fracture network. y-z plane view. Thick black line indicates
location of the hydraulic fracture.

282



Time = 1 hour

— — 350
|| Permeability
| 2.00E-08 ||
1.72E-08 ||
1.43E-08
1.15E-08 .
8.70E-09
5.87E-09
3.056-09 || |
2.20E-10 250
N
200
150
100
100 150 200 250 300 350 400
y
Time =10 hour
— r— 350
| Permeability
| 9 2.00€E-08
| 1.72€-08
1.43E-08
1.15E-08 300
8.70E-09
5.87E-09 || |
3.05E-09 || |
2 20E-10 || | N
| N
— 200
150
100
100 150 200 250 300 350 400

y
Figure 42. Improvement of averaged permeability of elements, low permeability zone (< 2.0x10"° m?/s)
has been blank out. y-z plane slice at x = 450.0 m (center of fracture network).

In the fracture deformation mechanism, there are two sources of permeability improvement: fracture
opening and shear dilation. By comparing slipped fractures in Figure 39 and fracture permeability
enhancement n Figure 41, much of the large permeability increases happen where no slippage is observed.
For example, the permeability of the fracture located on 270Y-300Z in Figure 41B, has been enhanced by
approximately one order of magnitude. We do not observe any shear slippage event on this fracture in
Figure 39B. Therefore we can conclude the permeability enhancement of this fracture is caused by
fracture opening by pressurization (and thus eventual mode I propagation). There are also fractures where
permeability decreases at lower part of near hydraulic fracture zone. This decrease can be caused by
fracture closing or shear squeezing, which could lead to aperture reduction.
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In this model, not all the natural fractures have been utilized in calculation (when small fractures are
contained totally within one element their attribution of the permeability is not take into account). . As
discussed previously, only fractures that intersect the finite element mesh faces are considered for
permeability evaluation. Figure 42 shows the permeability improvement in terms of equivalent
permeability of finite elements at time = 1 hour and time = 10 hour, respectively. We can see that there
are zones where permeability is increased after injection. Also, there are zones where permeability is
decreasing during injection. In this study, the fracture deformation is assumed to be elastic and reversible.
As can be read from figures, the maximum accumulate permeability enhancement is approximately four
folds.

We also examine the thermal effects during injection. The results show that during stimulation, the
temperature variation is very little due to low thermal conductivity of the material, as can be seen from
Figure 43. The reservoir temperature is 115°C, and the injection fluid temperature is 20°C.
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Figure 43. Temperature variation during injection at Time = 1 hour and Time = 44 hour.
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2.6.3 Case summary

The 3D Thermal and Poroelastic model developed in this work calculates the performance of fractured
reservoir during stimulation. The permeability enhancement of the natural fracture networks, and the
corresponding slippage induced MEQ events have been analyzed. The result shows that the as one would
expect, fractures orientations have a major influence on the initiation of shear slippage. From permeability
improvement, we can conclude that as the pressure field changes during injection, fracture permeability
can be enhanced. Also, stress change can also cause fracture closure, hence decrease the local
permeability. Shear slippage does not necessary indicates permeability enhancement according to the
simulation results. Some fractures’ aperture decreases while shear slipping. Since the zone of temperature
disturbance is so small (not even reach the fractured zone as shown in Figure 21), we do not observe
cooling effect in this studying case.

This model is useful to analyze the geothermal reservoir response during stimulation. It can give
assistance when design an injection schedule and to predict the effects of the stimulation. By comparing
simulation result and field observations, this model can also be used to evaluate the fracture network
models.

3. References

ALTAROCK. 2011. Newberry volcano EGS demonstration stimulation planning. GRC Annual Meeting,
San Diego, CA, October 25, 2011.

Barton N., S. Bandis, K. and Bakhtar. 1985. Strength, deformation and conductivity coupling of rock
joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstracts 22(3):
121-140.

Biot, M.A. 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12(2):
155-164.

Bruel, D. 2002. Impact of induced thermal stresses during circulation tests in an engineered fractured
geothermal reservoir. Oil & Gas Science and Technology 57(5): 459-470.

Bruel, D., M.C. Cacas, E. Ledoux, and G. Marsily. 1994. Modeling storage behaviour in a fractured rock
mass. Journal of Hydrology 162: 267-278.

Cacas M.C., E.Ledoux, G. De Marsily, and B. Tillie. 1990. Modeling fracture flow with a stochastic
discrete fracture network: calibration and validation 1. The flow model. Water Resources Research 26(3):
479-489.

Carrera, J., J. Heredia, S. Vomvoris, and P. Hufschmied. 1990. Modeling of flow on a small fractured
monzonitic gneiss block. Selected Papers in Hydrogeology of Low Permeability Environments,
International Association of Hydrogeologists, Hydrogeology: 2: 115-167.

Carter, J.P. and J.R. Booker 1982. Elastic consolidation around a deep circular tunnel. International
Journal of Solids Structures18(12): 1059-1074.

Chen, Z.H., L.G. Tham, M.R. Yeung, and H. Xie. 2006. Confinement effects for damage and failure of
brittle rocks. International Journal of Rock Mechanics and Mining Sciences 43(8):1262-1269

Cheng, A.H.D. and E. Detournay. 1988. A direct boundary element method for plane strain poroelasticity.
International Journal for Numerical and Analytical Methods in Geomechanics 12(5): 551-572.
Cladouhos, T.T., M. Clyne, M. Nichols, S. Petty, W. Osborn, and L. Nofziger. 2011. Newberry volcano
EGS demonstration stimulation modeling. GRC Transactions 35: 317-322.

Dershowitz, W.S. 1984. Rock joint systems. Ph.D. thesis, Massachusetts Institute of Technology,
Cambridge.

Detournay, E. and A. H-D. Cheng. 1988. Poroelastic response of a borehole in a non-hydrostatic stress
field. International Journal for Numerical and Analytical Methods in Geomechanics 25(3): 171-182.

285



Ekbote, S. and Y. Abousleiman. 2006. Porochemoelastic solution for an inclined borehole in a
transversely isotropic formation. Journal of Engineering Mechanics 132(7): 754-763.

Eshelby, J.D. 1957. The determination of the elastic field of an ellipsoidal inclusion, and related problems.
Proceddings of the Royal Society of London. Series A, Mathematical and Physical Sciences 241(1226):
376-396.

Fujii, Y., Y. Ishijima and T. Kiyama. 1999. Confining pressure-dependency of coefficients in the simple
constitutive equations for brittle rock. Processing 1999 Japan-Korea Joint symposium on Rock
Engineering. 323-330.

Ghassemi, A. and A. Diek. 2003. Linear chemo-poroelasticity for swelling shales: theory and application.
Journal of Petroleum Science and Engineering 38(3-4): 199-212.

Ghassemi, A. and G.S. Kurma. 2007. Changes in fracture aperture and fluid pressure due to thermal stress
and silica dissolution/precipitation induced by heat extraction from subsurface rocks. Geothermics 36(2):
115-140.

Ghassemi, A., Q. Tao, and A. Diek. 2009. Influence of coupled chemo-poro-thermoelastic processes on
pore pressure and stress distributions around a wellbore in swelling shale. Journal of Petroleum Science
and Engineering 67(1-2): 57-64.

Griffiths, D.V. and .M. Smith. 1991. Numerical methods for engineers. Oxford: Blackwell Scientific
Publications Ltd.

Hallinan Jr., A. 1993. A review of the Weibull distribution. Journal of Quality Technology 25(2): 85-93.
Hanks, T.C. and H. Kanamori. 1979. A moment magnitude scale. Journal of Geophysical Research: Solid
Earth 84(B5) 2248-2350.

Heidug, W.K. and S.W. Wong. 1996. Hydration swelling of water-absorbing rocks: a conostitutive model.
International Journal for Numerical and Analytical Methods in Geomechanics 20(6): 403-430.
Hristopulos, D.T. and G. Christakos. 1999. Renormalization group analysis of permeability upscaling.
Stochastic Environmental Research and Risk Assessment 13(1-2): 131-160.

Hudson, J.A. and P.R. La Pointe. 1980. Printed circuits for studying rock mass permeability.
International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts 17(5): 297-
301.

Jaeger, J.C. and N.G.W. Cook. 1969. Fundamentals of rock mechanics. New York: Chapman and Hall.
Jaeger, J.C., N.G.W. Cook, and R.W. Zimmerman. 2007. Foundamentals of rock mechanics.4™ edn.
Blackwell Publishing.

Johnson, N.L., S. Kotz, and N. Balakrishnan. 1994. Continuous univariate distributions, Vol. 1, 2" Edn.
New York: Wiley.

Kachanov, L.M. 1958. On the creep fracture time. Izv Akad, Nauk USSR Otd. Tech. 8: 26-31.

Kachanov, L.M. 1986. Introduction to continuum damage mechanics. The Netherlands: Martinus Nijhoff
Publishers.

Kolditz, O. and C. Clauser. 1998. Numerical simulation of flow and heat transfer in fractured crystalline
rocks: application to the hot dry rock site in rosemanowes (U.K.). Geothermics 27(1):1-23.

Krempl, E. 1977. On phenomenological failure laws for metals under repeated and sustained loading
(fatigue and creep). Conf. on Environmental Degradation of Engineering Materials, Blaksburg, VA.
Kurashige, M. 1989. A thermaoelastic theory of fluid-filled porous materials. International Journal of
Solids Structures 25(9): 1039-1052.

Lee, S-H, and A. Ghassemi. 2011. Three-dimensional thermo-poro-mechanical modeling of reservoir
stimulation and induced microseismicity in geothermal reservoir. Proceedings, Thirty-sixth Workshop on
Geothermal Reservoir Engineering, Stanford University, Stanford, California, 31 January — 2 Feburary,
2011.

Lemaitre, J. 1985. A continuous damage mechanics model for ductile fracture. Journal of Engineering
Materials and Technology 107(1): 83-89.

Li, L.C.,, C.A. Tang, G. Li, S.Y. Wang, Z.Z. Liang, and Y.B. Zhang. 2012. Numerical simulation of 3D
hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique. Rock
Mechanics and Rock Engineering 45(5): 801-818.

286



Li, X., L. Cui, J-C. Roegiers. 1998. Thermoporoelastic modeling of wellbore stability in non-hydrostatic
tress field. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstracts
35(4): 584-588.

Li, Y., J. Wong, and A. Ghassemi. 2012. Mechanical properties of intact and jointed welded tuff from
Newberry volcano. Proceedings of Thirty-Seventh Workshop on Geothermal Reservoir Engineering,
Stanford University, Stanford, California, 30 January — 1 Feburary, 2012.

Liang Z.Z. 2005. Three-dimensional numerical modelling of rock failure process. Ph.D. Thesis. Dalian
University of Technology, Dalian, China.

Mandel, J. 1953. Consolidation des sols (etude mathematique). Geotechnique 3: 287-299.

Marin, E. 2010. Characteristic dimensions for heat transfer. Latin-American Journal of Physics Education
4(1): 56-60

Maury, V.M. and J-M. Sauzay. 1987. Borehole instability: case histories, rock mechanics approach, and
results. SPE/IADC Drilling Conference, New Orleans, LA, March 15-18, 1987.

McGarr, A., A.M. Spottiswoode, N.C. Gay, and W.D. Ortlepp. 1979. Observations relevant to seismic
driving stress, stress drop, and efficiency. Journal of Geophysical Research.: Solid Earth 84(BS) 2251-
2261.

McTigue, D. 1986. Thermoelastic response of fluid-saturated porous media. Journal of Geophysical
Research 91(B9): 9533-9542.

Mody, F.K. and A.H. Hale. 1993. Borehole stability model to couple the mechanics and chemistry of
drilling fluid shale interaction. Proceedings, SPE/IADC Drilling Conference, Amsterdam, 23-25 Feburary
1993.

Muller A.L., E.D.A. Vargas Jr,, L.E. Vaz, and C.J. Goncalves. 2008. Borehole stability analysis
considering spatial vairiability and poroelastoplasticity. International Journal of Rock Mechanics and
Mining Sciences 46(1): 90-96.

Murakami, S. and N. Ohno. 1980. A continuum theory of creep and creep damage. 3 IUTAM
Symposium on Creep in Structures, Leicester.

Murthy, D.N.P., M. Xie, and R, Jiang. 2003. Weibull models. New York: Wiley.

National Research Council. 1996. Rock fractures and fluid flow. Washington, D.C.: National Academy
Press.

Noetinger, B. 1994. The effective permeability of a heterogeneous medium. Transport in Porous Media
15(2): 99-127.

Rahman, M.K., M.M. Hossain, and S.S. Rahman. 2002. A shear-dilation-based model for evaluation of
hydraulically stimulated naturally fractured reservoirs. International Journal for Numerical and
Analytical Methods in Geomechanics 26 (5): 469-497.

Rice, J.R. and M.P. Cleary. 1976. Some basic stress-diffusion solutions for fluid-saturated elastic porous
media with compressible constituents. Reviews of Geophysics and Space Physics 14(2): 227-241.
Robinson, P. 1984. Connectivity, flow and transport in network models of fractured media. Ph.D. thesis.
Oxford University, Oxford, UK.

Robotnov, Y.N. 1969. Creep problems in structural members. North-Holland.

Rosso, R.S. 1976. A comparison of joint stiffness measurements in direct shear, triaxial compression, and
in situ. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, Abstracts 13(6):
167-172.

Rubin, Y. 2003. Applied stochastic hydrogeology. Oxford: Oxiford University Press.

Safari, M.R. and A. Ghassemi. 2011. 3d analysis of huff and puff and injection tests in geothermal
reservoirs. Proceedings 36th Workshop on Geothermal Reservoir Engineering, Stanford University,
Stanford, California, Jan. 31- Feb. 2, 2011.

Schoenball, M. and T. Kohl. 2013. The peculiar shut-in behavior of the well GPK2 at Soultz-sous-Forets.
GRC Transactions 37: 217-220.

Schoenball, M., T.M. Muller, B.L.LR. Muller, and O. Heidbach. 2010. Fluid-induced microseismicity in
pre-stressed rock masses. Geophysical Journal International 180(2): 813-819.

287



Shapiro, S.A., P. Audigane, and J.J. Royer. 1999. Large-scale in situ permeability tensor of rocks from
induced microseismicity. Geophysical Journal International 137(2): 207-213.

Smith [.M. and D.V. Griffiths. 2004. Programming the finite element method, fourth ed. New York: John
Wiley.

Smith, L. and F.W. Schwartz. 1984. An analysis of the influence of fracture geometry on mass transport
in fractured media. Water Resources Research 20(9): 1241-1252.

Sneddon, I.N. 1946. The distribution of stress in the neighborhood of a crack in an elastic solid.
Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 187: 229-260.
Tang, C.A., L.G. Tham, P.K.K. Lee, T.H. Yang, and L.C. Li. 2002. Coupled analysis of flow, stress and
damage (FSD) in rock failure. International Journal of Rock Mechanics and Mining Sciences 39(4): 477-
489.

Terzaghi, K. 1923. Die Berechnung des durchlassigkeitsziffer des tones aus dem verlauf der
hydrodynamischen spannungserscheinungen. Sitz. Akad. Wiss. Wien, Abt.Ila. 132: 125— 38.

Tezuka, K. and K. Watanabe. 2000. Fracture network modeling of hijiori hot dry rock reservoir by
deterministic crack network simulator (D/SC). In proceedings of World Geothermal Congress, Kyushu-
Tohoku, Japan, 28 May — 10 June, 2000.

Tezuka, K., T. Tamagawa, and K. Watanabe. 2005. Numerical simulation of hydraulic shearing in
fracture reservoir. In proceedings of World Geothermal Congress, Antalya, Turkey, 24 —29 April 2005.
Warren, J.E. and H.S. Price. 1961. Flow in heterogeneous porous media. SPE Journal 1(3): 153-169.
Weibull, W. 1939. A statistical theory of the strength of material. Ing. Betenskapa Acad. Handlingar.
Stockholm. 151.

Weibull, W. 1951. A statistical distribution function of wide applicability. Journal of Applied Mechanics
18:293-297.

Westmann, R.A. 1965. Asymmetric mixed boundary-value problems of the elastic half-space. Journal of
Applied Mechanics 32(2): 411-417.

Willis-Richards, J., K. Watanabe, and H. Takahashi. 1996. Progress toward a stochastic rock mechanics
model of engineered geothermal systems. Journal of Geophysical Research 101(B8): 481-496.

Zhou, X. and A. Ghassemi.2009, Finite element analysis of coupled chemo-poro-thermo-mechanical
effects around a wellbore in swelling shale. International Journal of Rock Mechanics and Mining Science
46(4), 769-778.

288



Chapter 4: Geomechanics-Based Stochastic Analysis of
Microseismicity Considering Fracture Networks

1. Introduction

Fractures which represent discontinuities in rock have a significant effect on the fluid transport capability
of a reservoir. Fractures orientations, spacing, connectivity are important features that control network
permeability. Table 1 summarizes common properties used for characterizing fractures and fracture
networks. Table 2 summarizes the properties of a fracture set which could constitute a fracture network.
Despite their essential role in reservoir development, there still are uncertainties regarding direct and
indirect diagnostic technologies for characterizing fractures orientations in-situ. In the last several
decades, many methods have been used to constrain the uncertainty in measuring the fractures
orientations. Those methods are mainly geophysical in nature, ranging from simple extrapolation of field
observations to high resolution seismic survey and transient electromagnetic method (see Table 3). Active
geophysical methods can naturally be divide into three distinct scales: (1) large scales associated with
surface geophysics, (2) intermediate scale associated with surface-borehole and borehole-borehole, and
(3) small scales associated with measurements made on rocks immediately adjacent to a borehole or
tunnel. In general, active geophysical methods that probe into the subsurface have a poor ability to
spatially resolve the fracture geometry. Borehole logging and camera and outcrop mapping commonly
suffer from lower dimensional limited exposures (Einstein and Baecher 1983; Williams and Johnson
2004; Li, Feng et al. 2013). Furthermore, the description of fracture geometries obtained from local field
surveys has to be scaled up from the local scale to the entire reservoir which can cause loss of geometric
characteristics of the fractures. The question of how to establish a reliable fracture pattern away from the
borehole remains a challenging issue. Thus, fracture pattern in numerical analysis are commonly treated
in a stochastic framework (Leung and Zimmerman 2012, Berrone, Pieraccini et al. 2015, Farmahini-
Farahani and Ghassemi 2015, Ghassemi and Tao 2016). Thus, the numerical simulation results are
uncertain and might not be reliable for optimizing completions design and production assessment.

Table 1. Properties commonly used to characterize a fracture.

SI
Characteristic Fracture property unit definition
UCS Pa | Uniaxial compressive strength
JCS Pa | Joint compressive strength
Wall rock | JRC - Joint roughness coefficient
rheology Pa
Kn /m | Fracture normal stiffness
Pa
K /m | Fracture shear stiffness
2D 0 Fracture strike
G t . . . T
sometty Orientation 3D 0 Fracture dip and dip direction
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Filling

Length(l) m | Length of a fracture trace on a surface
Area m? | Area of the fracture surface
Size Volume m3 | Volume of fracture void
Mechanical(a,, ) m | Distance between two fracture walls
Effective fluid transport relevant fracture
Aperture Hydraulic (ap) m | aperture
Measure of shear displacement for
Shear direction fracture wall
Normal Measure of normal displacement for
Displacement | direction m | fracture wall
Description of the material inside the
- fracture void

Table 2. Properties commonly used to characterize fracture networks.

Fracture network property SI unit definition
Areal(P20) m~2 Number of fractures per unit area
Volumetric(P30) m3 Number of fractures per unit volume
Density(p) sets - Number of sets in this field
Linear(P10) m™t Number of fractures per unit length
Areal(P21) m-m~2 | Fracture length per unit area
m2
Intensity(1) Volumetric(P32) -m~3 Fracture area per unit volume
Spacing(S) m Average distance between fractures
Mean length(l,,) m Average fracture length
Scanline Trace length of fractures intersecting with a
sampling - scanline
Length Window
distribution sampling - Trace length of fractures inside a sampling area
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Table 3. Fracture detection methods.

Methods Length scale of investigation and
resolution Remarks

Differential methods 0.1 — 5000 m

Elastic methods: seismic band (10 —

100H 100 — 5000
z) m Zero shear modulus of

Elastic methods: sonic band (2 — 20Hz)

0.1-10m fluids
Elastic = methods: ultrasonic  band Fracture aperture is
(200 — 2000Hz2) 01-5m critical
Borehole televiewer Detects  fractures in
10 —30cm [0.3 — 5 cm] boreholes
Electrical methods 10 — 300 m
Electromagnetic methods [10 — 300 m] Rgsistivity of fracture
Radar methods fluid
3—-100m
Conventional well logs Near-borehole
0.1-10m environment
Geological observation . .
0.1 — 500 km Surface lineations
Tiltmeter methods 100 — 2000 m Expansion of fracture
flowmeters Directly detects fracture
1-100m flow

A source of data on the nature of reservoir fracture network is micro-seismic data or micro-earthquakes
(MEQs). Cold water injection perturbs the pore pressure and the in-situ stress state within the reservoir
leading to fracture initiation and/or activation of discontinuities such as faults and fractures which is often
manifested as multiple MEQs. Detection and interpretation of MEQs using downhole receiver arrays
(Brady, Withers et al. 1994; Warpinski, Wright et al. 1999) can be analyzed to provide useful information
on the stimulated zone, created reservoir permeability and fracture growth, and geometry of the
geological structures and the in-situ stress state(Pine and Batchelor 1984; Gutierrez-Negrin and Quijano-
Leon 2003; Warpinski, Wolhart et al. 2004; Gao and Ghassemi 2016) MEQs are believed to be
associated with rock failure in shear, and shear slip on new or pre-existing fracture planes (Pearson 1981;
Ye, Janis et al. 2017). The generated MEQs contain information about the sources of energy that can be
used for understanding the hydraulic fracturing process (Talebi, Young et al. 1991; Shapiro, Huenges et
al. 1997; Foulger, Julian et al. 2004) and the created reservoir properties. The growth of the fractured
zone direction can be determined using inverse modeling of micro-seismic observations. This inverse
modeling is commonly referred to as seismicity based reservoir characterization (SBRC) and can been
used to estimate the rock mass permeability tensor resulting from stimulation without explicitly
considering the fracture network and its mechanical characteristics and response (Shapiro, Patzig et al.
2003). In the work (Shapiro, Huenges et al. 1997), developed a diagnostic technique to estimate the
reservoir permeability from MEQs. Pore pressure diffusion model was used to link MEQs to equivalent
permeability at reservoir scale assuming the rock to be in the limiting state. Therefore, MEQs are assumed
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to generate at the onset of injection. The hydraulic diffusivity can be determined using the diffusion
length-time curve fit for the onset of seismicity. This approach is very simple and lacks quantitative
analysis of the relation between the true MEQs (TMEQs) and the theoretically generated MEQs
(GMEQs). This framework was further improved by combining a geomechanics model and ensemble
Kalman filter (EnKF) to infer reservoir permeability and geomechanical property from MEQs as part of
our DOE-funded research (Ghassemi 2012; Tarrahi and Jafarpour 2012; Ghassemi 2013; Tarrahi,
Jafarpour et al. 2015). Figure 1 show that the workflow of EnKF.

A Kernel Density Estimation (KDE) was used to smooth the MEQs as continuous seismicity density since
most inversion algorithms (e.g. EnKF) are designed to integrate continuous data. However, a noticeable
limitation of KDE is that it cannot capture the discrete natural of MEQs and the value of discrete MEQs is
compromised. There are also several limitations for the EnKF used as tool for interpreting MEQs,
including (a) EnKF used in large data results in sever ensemble spread underestimation. (b) EnKF can
only handle continuous data and MEQ data is a type of discrete data. (¢) EnKF cannot handle a highly
nonlinear relation between the flow data and unknown parameters so that it may not converged.
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Figure 1. Overall workflow of EnKF with KDE.

Other traditional MEQs interpretations have relied on grouping MEQs based on the graph operations
which rely on the locations of the MEQs hypocenters (Fehler, House et al. 1987; Fehler and Johnson
1989; Fehler 1990; Jones and Stewart 1997). Another type of approach is to first group the MEQs within
similar waveforms (e.g., focal mechanisms, ratio of S wave to P wave amplitudes) and then search for
self-similar MEQ clusters to define the fractures (Aster and Scott 1993; Roff, Phillips et al. 1996; Kuang,
Zoback et al. 2017). So, sets of clusters are grouped into fault planes that can be defined as the best fit for
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each cluster. An objective function depending on the ratio of S wave to P wave amplitudes and maximum
separation distance is proposed to measure the matching level between different MEQs (Roff, Phillips et
al. 1996). A further study suggests a four-term objective function that becomes much more
complex(Kuang, Zoback et al. 2017). In these approaches, the focal mechanism solution with the largest
value of the objective function is most likely to be the best. However, due to arbitrariness of the objective
function and low magnitude of MEQs, this method seems to be poorly constrained and contains large
errors. Furthermore, these methods suffers from three limitations: 1) the objective function is complex
resulting in convergence difficulties; 2) waveform of MEQs is probably disorganized and amplitude is
very low, so only very strong MEQs can be selected; 3) there is no general theoretical framework to
quantitatively measure the matching level between the MEQs.

1.1 Objectives

The objective of this part of the research work was to develop an alternative method to help characterize
fractures orientations in the reservoir. We first apply the concept of similarity measure which is a real-
valued function which quantifies the similarity between two objects (Jarvis and Patrick 1973; Frey and
Dueck 2007). The core of the similarity measure is to build the distance metrics between the two objects.
For instance, the distance metrics is calculated from the center of one object to the center of another
object. In this study, we use this approach to develop a stochastic framework called Geomechanics-Based
Stochastic Analysis of Microseismicity (GBSAM) to integrate TMEQs as prior information to infer
fractures orientations. GMEQs are generated when the shear stress at the center of fractures are larger
than the shear strength according to the Mohr-Coulomb failure criterion. If one fracture slips, the stored
shear strain energy is calculated and it is supposed that a certain part of the shear strain energy will be
released as seismic energy. If the released seismic energy is larger than the threshold energy of MEQs,
additional MEQs are generated on the fracture plane stochastically. The threshold energy of MEQs can be
defined as the minimum detection capacity of sensors. Mahalanobis distance (Huberty 2005) is then
applied to measure the similarity between TMEQs and GMEQs. The uniqueness and existential of
solution from GBSAM also has been investigated. Finally, the GBSAM is applied to a data set of MEQs
recorded during phase 2.2 of Newberry Volcano EGS demonstration project, Fenton Hill EGS and
Mississippi Hydraulic fracturing.

2. Analytical and Numerical Procedures

2.1 Poroelastic Solution of Finite Duration Line Injection

Water injection will disturb the initial pore pressure and stress fields in the reservoir and fractures are
reactivated and potentially induce MEQs. This problem can be approximated via a line injection source in
permeable zone which is bounded by two semi-infinite impermeable zones (Figure 2). The line injection
source (r = 0) extends over the thickness of the permeable layer and fluid is injected into the surrounding
rock masses at a constant volumetric rate Q over the finite time interval 0 < t < T. The shear modulus G
and Poisson’s ratio v and other poroelastic constants are assumed known. The fractures are stochastically
distributed throughout the permeable zone which is assigned an effective permeability. The effective
permeability of fractures is assumed as the same as the permeable zone. Poroelastic and thermal effects
are neglected in this study. Initially (t = 0), all the hydraulic and mechanical fields are assumed to be in
equilibrium state.
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Figure 2. Geometry of the problem: a line injection source with fractures in permeability layer. The red
point is the center of the fracture.

This problem can be transformed into a scaled form by introducing the following dimensionless variable

T z t 14
p=5 (= T=13, P=; @

Where p* = Q/8mkh is the characteristic pressure and k is the permeability coefficient and p is the pore
pressure, t* = h?/4c is the characteristic time and c is the diffusivity coefficient. The pore pressure field
P(p, 7, {) in subsurface is given as

— PT‘(.DIT)I I(I S 1
P(p,1,{) = {0’ 12> 1 2

P.(p,7) is the pore pressure field in reservoir. To drive the analytical solutions for pore pressure
generated by a uniform line source density over the thickness of the reservoir, the diffusion equation is:

o _ w2
5 = VD (3)

The diffusion equation (3) can be re-written as:
oP _ 0Py _ 10Pr _
5t opr sy = >0 1)
Equation (4) can be solved together with the initial conditions and boundary conditions to get the pore
pressure field B.(p, 7).
In this work, we consider constant volumetric rate Q over the finite time interval 0 < T < T. This is
simply achieved by superimposing the solution for injection rate Q starting at T = 0 with the solution for
withdrawal rate Q beginningatt =T :
2
E (%), 0<t<T
’ 5 ®)

B (5)-6(5) T

Where E; is the exponential integral:

Ei G0 = 7 dt ©®)

Pr(p: 7) =
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Figure 3 shows a plot of the equation (5) withT = 10. After fluid injection stops (shut-in), the pore
pressure continues to increase for some time and then declines. Equation (6) can be simplified using
asymptotic expansions for small and large x. Thus equation (5) can be also approximated by the first term
of its asymptotic expansions for small and large p? /7.

p?
ln(—)—y, 0<t<T 2
P.(p,T) = sz 52 for pT < x )
ln(T) —ln(T_—T), T<rt
02
e T
7 0<t<T
B ={ for £2x,=20=T)  ®
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Figure 3. Pore pressure field in the reservoir during finite duration injection at a constant volumetric rate,
at p = 2 and = 4 . Dotted vertical line indicates the shut-in time.
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Figure 4. Three evolving regions defined by xgand x4 in the permeable zone.

2
In equation (7), y is the Euler constant(= 0.577), x, =~ 0.03 . In equation (8), x; equate to%(r =T).

x¢ corresponds to a relative error of about 1% between equation (5) and equation (7), while x4
corresponds to the shut in time T. Interpretation of these asymptotic bounds for the similarity variable
p?/Tin terms of a radius function of time leads to the introduction of the pseudo steady-state radius
ps(T) = \/E and the diffusion radius p;(7) = \/xd_T . Those two radii divide the permeable zone into
three evolving regions (Figure 4)(Marck, Savitski et al. 2015). In the inner region, the pore pressure field
evolves uniformly with time and spatial gradient is time independent. In the intermediate region, the
compressibility of fluid and porous media affects the pore pressure variations. In the outer region, the
induced pore pressure is negligible due to the injection shut-in and its distance from the sources. Those
three regions may indicate the generating mechanism of MEQs based on a purely diffusion conceptual
model. For example, if the MEQs are located in inner region mean generated of MEQs are dominated by
value of pore pressure. If MEQs are located in outer region mean that generated of MEQs are dominated
by late in time diffusion processes.

2.2 Point Injection Source: The Distribution of Stress and Pore Pressure
The constitutive equations for an isotropic, poroelastic rock relate the strains g;; linearly to the stresses
ojjand changes in pore pressure p. To drive the analytical stress and pore pressure solutions for
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continuous fluid injection into an infinite homogeneous poroelastic rock, we use the poroelastic equation

in the form proposed by Rice and Cleary (1976):

(1-2v)
2pey = oy — %Gkk&j + TY,(XP% )

Where p is shear modulus, v is the drained Poisson’s ratio (that is for no change in pore pressure), and «
is the Biot coefficient. A second constitutive equation relates the change in pore fluid mass per unit
volume of solid (measured in the unstrained state) to the volumetric strain and pore pressure. Rudnicki
(Rudnicki 1986) gives the solution for a point source of fluid mass injection at timet=0andr =0,
where r = ||X||, . From this, superposition yields the pore pressure and stress for a specified injection

history q(t):
1 - Ay +2p)

t g2
PO = s e e [ a() e de (10)
1 HAy—2A) rt XiXj
0i§(X 0 = s aterzm Jo 9 |85(g — &) + 2 (5 — 39)| v (11)

where the similarity variable & is
r

The function g and g’ are defined as:
1
j_e‘ziz (13)

1
g(®) = erf (5 E) —=
(© = Lo = Lgze (14)
We also defined the constant flux, q(t) = q equation can be integrated exactly yielding:

p(X, D) = Pt B erfe (1) (15)
004 = e (s ek () 2 24)] + 25 e () o250 0

L
NS
at a partial location without in-situ stress with specially parameters.

The variable & is now § = Figure 5 show the distribution of stress and pore pressure change with time
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Figure 5. Stress and pore pressure change with time at a partial location without in-situ stress.
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Figure 8. Induced 0, in MPa. Values of stress larger than 20 are set as 20.
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Figure 9. Induced pore pressure, p in MPa.
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We use Equation (9) - (16) to calculate the pore pressure and stress induced by point injection source.
Fig. 5 shows the radial and tangential stress changes for a particular representative case as a function of
time since the beginning of injection to a fixed position (here 200m distance to the injection point).
Figures 6 - 8 show the stresses induced by a point injection source. Figure 9 shows the pore pressure
distribution due to point injection. There are considerable differences in radial and tangential stress
changes created by the same pore pressure change. 0,4 is larger than oy,, and only after some time has
passed dose the pore pressure, p exceeds radial stress, 6,4 . This can be interpreted as indicating that the
stress is transferred poro-elastically faster than the pore pressure diffuses through the medium. Also, note
that in the same time interval o, is negative. A similar analysis has been carried out by (Segall and Lu
2015).

2.3 MEQs Generation
Here MEQs is generated when the fractures fail in shear. To do so, the effective normal stress a,, and
shear stress a; acting on an arbitrary plane whose unit normal is [nx, Ny, N, ] at the center of fracture (red

point in figure 11) are calculated. From the Cauchy’s law, the traction vector t" on fracture is
al-'jnj, with al-'j as the effective stress. The normal stress on the fracture is o0, = t™ - n and shear stress g

is y/|t"|2 — 62 . The slip direction on the fracture S is [01_0" Ny,

Os Os

02— 0n 03— 0n
le,
Os

n, ] Figure 10 shows the

definition of each variable.
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Figure 10. Geometry of the fracture: (a) fracture orientation and (b), (c) stress field on the fracture.

The Coulomb failure function (CFF) which describes the proximity of fracture to frictional slip is:
CFF=05 — uo, — C (W)

Where p is the friction coefficient and C is the cohesive strength. In this analytical study, the geometry of
the fracture is treated as a mass point which is inherits all the geometrical and mechanical properties of
the fracture (Figure 11(a)) and is located at the center of fracture (Figure 11(b)). So the mechanics of the
mass point represents the mechanics state of entire fracture. Another essential assumption in the current
formulation is that if any physical point (element) on the fracture fails, one GMEQ is generated. Thus the
processes of generating MEQs have severe mesh-dependency issues. Recently, different numerical
methods such as discrete element method (Zhao and Paul Young 2011; Khazaei, Hazzard et al. 2016),
hybrid boundary element/finite element(Safari and Ghassemi 2016) are applied to simulate MEQs. A
fracture plane can have multiple MEQs and usually some heuristics are used to control the number of
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MEQs. From this aspect, numerical methods do not necessarily provide a significant advantage. Due to
the scale mismatch between the physical point (element) and the fracture, we propose a new simple
method to outline the location and the number of GMEQs that will be generated on a fracture plane. If
CFF is large than zero and the fracture is slipping, one GMEQs will be occurred at the center of fracture.
In this configuration, the stored shear strain energy of fracture is calculated. One third of stored shear
strain energy in the contact surface is supposed to be released in the form of seismic wave during the
fracture slipping processes. If the released seismic energy is larger than the pre-defined threshold energy
of MEQs, additional MEQs will be generated (Figure 11(b)). Specially, the locations of additional MEQs
are randomly distributed on the fracture plane.
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Figure 11. Assumptions nade in GBSAM: (a) mass point assumption and (b) generation of additional
GMEQ:s.
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2.4 Mahalanobis Distance and Similarity Measure

The concept of similarity is essential to the pattern recognition problems and is applied to the data
classification and clustering in data sciences (Cha 2007). From the data scientist’s perspective, similarity
is defined as a quantitative degree of how far apart are two discrete or continuous objects. Hence, the
concept of similarity is appropriate for measuring the matching level between the GMEQs and TMEQs.
The fracture orientation in the forward model with the smallest value of similarity is most likely to be the
best and is considered to be the same as the true fracture orientation in the reservoir. Here, the
Mahalanobis distance (MD), a concept of similarity, is used to quantify the matching level between
GMEQs and TMEQs. MD is defined on both the mean and variance of the predictor variables and the
covariance matrix of all the variables, and therefore it takes advantage of the covariance among variables.
For instance, suppose we have two data groups of MEQs and they are all two dimensional. Data group 1
is X (x},xiz) and Data group 2 is Y(yjl,yjz) . The number of MEQs in each group may not be the
same (i # j). The center of each data group can be calculated as X — mean(X) and Y — mean(Y)
respectively. In the next step, we center these two data groups on the arithmetic mean of each variable as
follow:
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Where n; and n, is the number of data in group 1 and group 2, respectively. The covariance matrix of
each group is computed using the centered data matrix. The pooled covariance matrix of two data groups
is computed as weighted average of the covariance matrices as follow:

S = e 51+ L 52 @)

ni+n, ni+n,
The value of MD is simply quadratic multiplication of the mean difference and inverse of pooled
covariance matrix.

dX,Y) =X =V)TS"1 (X - 7) 21
Now, suppose a 3D reservoir an unknown fracture orientation n = {nx, ny, nz} or {dip, dip direction}
and the goal is to identify the unknown fracture orientation by performing inverse analysis. Since it is
difficult to determine the components of fracture orientation from a highly complex reservoir system,
some necessary assumptions are made. The locations of the fractures are assumed to be the same as the
TMEQs. The fractures are assumed penny-shape and the radius is pre-defined. The parameters in the line
source model are also assumed to be known (Cheng and Ghassemi 2016). Fracture population is equally
divided into several sets in random form in every cycle. For instance, there are only one set in dip and
three sets in dip direction. In each set, the fractures orientation are followed by normal distribution.
To interpret TMEQs for fracture orientation we propose a general inverse analysis named GBSAM. These
assumptions preserve the GBSAM characteristics while optimizing the inverse analysis. Here we need to
point out that GBSAM cannot predict the orientation of each individual fracture and it only provides the
likely orientation of each set.
The procedures of the computational algorithm for extracting fractures orientation from TMEQs, plus an
additional converged analysis are summarized as follows:

Step 1. Define the all parameters but fracture orientation. It is assumed that the reservoir has two sets of
fractures. The location and number of fractures are the same as the TMEQs. The initial fracture
orientation of each set is
{ni,n},ni}={0.1,0.01,v1—-0.12-0.012} and {nZnZnZ}={0.1,0.01,v1—-0.12-0.01%2} . In

order to simplify the inverse analysis, n} and n?2 is constant and equated to 0.1.

Step 2. The members of each set are also different in every cycle because each set is randomly selected
from the fractures population. The number of set 1 is equated to set 2 and properties are assigned to the
reservoir and the fracture for execution of geomechanics model with boundary and initial conditions.

Step 3. Compute the distribution of induced stress and pore pressure and stored strain energy on the
fractures planes.

Step 4. Check whether the CFF is larger than zero. If CFF is positive, frictional sliding occurs on a
fracture and a GMEQs will be generated. Check whether the ratio of stored strain energy to threshold
energy of MEQs is larger than one. If yes, the number of GMEQs which lower the ratio will be generated.
Step 5. Compare the TMEQs with GMEQs via MD.

Step 6. Store the value of MD w; and the current properties of the reservoir, fracture orientations and the

current number of cycles i . Calculate the average value of MD v;. So ¥ is equated to the average value

of MD v;.

Step 7. Repeat calculation from step 2 to step 6 until the number of cycles i equals the maximum number
of cycles c. Check whether the |v; — v;_1| < € (¢ is a small number) is satisfied. If yes, the inverse
analysis in this cycle has converged.
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Step 8. Update fracture orientations {n},n},nl} ={0.1,0.01,v1 —0.12 — 0.012} and {n2,n2,nZ} =

{0.1,0.02,¥1 — 0.12 — 0.022}.
Step 9. Repeat calculating from step 1 to step 8 via tree traversal.
Step 10. The fracture orientation with the minimal average value of MD v; is assumed as to represent the

reservoir conditions.

One needs to check whether the GBSAM has converged during the solution process. For instance, Figure
6(a) show the evolution of the value of MD, w, with the number of cycles when n, = 0.33 andn; =
0.61. The orientation of individual fractures is randomly allocated and then fracture population are
equally divided into two sets in random form in every cycle. Thus, Figure 12(a) also show that the value
of MD seems disorganized, yet they still are distributed around a certain value. Figure 12(b) shows that,
the average value of the MD becomes smooth and constant when number of the cycles is larger than 300.
So in this configuration, the GBSAM has converged and the maximal cycle number is 300. Figure 12(c)

is an error bar analysis which show that when n? is from 0 to 1, so that GBSAM has also converged.
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Figure 12. Convergence analysis of GBSAM: (a) the evolution of value of MD with cycles; (b) the
evolution of average value of MD with cycles; (c) the error bar analysis for GBSAM.

From the above analysis, one needs to select an appropriate maximal cycle number to ensure GBSAM
convergence during the process. For instance, when the maximal cycle number is set to 300, the GBSAM
converges under the orientation combination n} = 0.33 and nZ = 0~1 . Another check has to be perform
under different orientation combinations. In the current, the maximal cycle number of 300 is satisfactory
for GBSAM convergence.
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2.5 Newberry EGS Example

In this section, GBSAM is applied to estimate the fractures orientation of Newberry Volcano EGS
demonstration, phase 2.2. Phase 2.2 of Newberry EGS stimulation began from September 23, 2014 to
November 21, 2014. During this time period, about 2.5 million gallons (9464 m3) of water was injected.
A fall-off test was carried out from October 15 to November 10. During phase 2.2 stimulation, 344 MEQs
were located and recorded (Figure 13(a), (b) and (c)). Borehole tele viewer (BHTV) was installed to map
the fractures and 399 fractures were recorded. In order to predicate the fracture orientation of Newberry
EGS, further assumptions are needed. The orientation of fracture system are supposed to be followed a
normal distribution. Specially, there is only one dip grouping of the fractures and two dip direction
groupings. The standard deviation is kept constant while the mean varies the inversion analysis.
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Figure 13. (a) the Lat-Lon view of TMEQs; (b) the Lon-depth (km below sea level) view of TMEQs and
(c) Lat-depth (km below sea level) view of MEQs.
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In this study, we use a line source of length almost equal to half the length of the open hole section of

3
well NWG 55-29, having the same average inject rate Q = @. The length of the open section of well

NWG 55-29 is 906 m. The reservoir properties in GBSAM used are shown in Table 3. The permeability
used is estimated value for the John Day formation(Cladouhos, Petty et al. 2015).

Table 3. Parameters used in this work for Newberry simulations.

Parameter Variable Value and unit
Vertical Stress (z direction) Oy 67MPa
Maximum Horizontal Stress(x direction) Oy 46 MPa
Minimum Horizontal Stress(y direction) gy 30 MPa
Injection time t 58 days
Injection rate Q 0.0063m3 /s
Biot coefficient a 0.65
Undrained Poisson’s ratio vy 0.35
Shear modulus u 10GPa
Drained Poisson’s ratio v 0.3
Fluid Viscosity n 0.85-10"*Pa-s
Permeability k 0.01-10715m?
Hydraulic diffusivity c 19.00- 1072 m?/s
Cohesive strength T 0 Pa
Friction coefficient mu 0.52
Total number of cycles 300
Permeability zone of thickness 2h 200m
Standard deviation for dip degree V80
Standard deviation for dip direction degree V160
Time of injection shut in T 58 days

The results from the GBSAM show that the fractures dip are {u, 0} = {60", \/%0} and the fracture dip

direction are {u,0} = {100",\/1 Oo} and {u,0} = {270",\/1 00}. Figure 13 shows the results from

GBSAM and the results from BHTV. As can be observed from Figure 14(a), fracture dips from GBSAM
are in good agreement with observations from BHTV. Figure 14(b) shows that the fracture dip direction
from GBSAM are also in good agreement with observation from BHTV. The total number of GMEQs is
370. From Figure 14(c)-(e), GMEQs has a good match with TMEQs.
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Figure 14. (a): Comparison between fracture dip from GBSAM and fracture orientation from BHTV; (b):
Comparison between fracture dip direction from GBSAM and fracture orientation from BHTV.
(c)~ (e) show the map view of GMEQ and TMEQs.

2.6 Fenton Hill HDR Example

The Fenton Hill HDR project was carried out from 1970 to 1995 at Fenton Hill, New Mexico. During this
time period, the Los Alamos National Laboratory created and tested two reservoirs at depths in the range
of 2.8-3.5 km. The first reservoir, named the Phase I reservoir, was created at a depth interval of 2800-
2950m. The second reservoir, named the Phase II reservoir, was created at a depth of around 3500m.
Figure 15 show the location map of Fenton Hill HDR and a simplified geological map of the Jemez
volcanic field and the Espanola Basin of the Rio Grande Rift in north-central NewMexico. Figure 16 is a

schematic showing the depth of Phase I and Phase II reservoirs with the geological formations and the
geothermal gradient at Fenton Hill, NM, USA.
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Figure 15. Location map of the Fenton Hill HDR site and simplified geological map of the Jemez
Baldridge et al., 1995).
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Figure 16. A schematic showing the depth of Phase I and Phase II reservoirs with the geological
formations and the geothermal gradient at Fenton Hill, NM, USA.)Source: (Brown, Duchane et al. 2012).

Downhole and surface geophones were installed in the vicinity of the experimental site for seismic
monitoring. An on-line system for recording and locating 3886 MEQs were developed and deployed. The
distribution of MEQs for Phase 11 Expt2032-MHF is shown in Figure 17.
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Figure 17. MEQs from Fenton Hill EGS: (a) is the x vs, y and (b) is the x vs Depth. (c) is the y vs depth.
(Brown, Duchane et al. 2012).

The injection profile for Phase II is given in Figure 18. Table 4 list the input parameters for GBSAM.
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Figure 18. Injection profile of Well GT-2: well head pressure and flow rate in Phase 2. (Brown, Duchane
et al. 2012).
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The results of inversion analysis in comparison with field MEQs from Fenton Hill are shown in Figure

Table 4. Parameters used in Fenton Hill HDR (Brown, Duchane et al. 2012)

Parameter Variable | Value and unit
Vertical Stress (z direction) o, 90 MPa
Maximum Horizontal Stress(x direction) Oy 45 MPa
Minimum Horizontal Stress(y direction) ay 30 MPa
Injection time t 2.5days
Injection rate Q 0.097 m3/s
Biot coefficient a 0.40
Undrained Poisson’s ratio vy 0.25

Shear modulus U 21 GPa
Drained Poisson’s ratio v 0.2

Fluid Viscosity n 0.85-10"*Pa-s
Permeability k 0.5- 10715 m?
Hydraulic diffusivity c 21.13-1072 m?/s
Cohesive strength To 1 MPa
Friction coefficient mu 0.52

Total number of cycles 300
Permeability zone of thickness 2h 200m
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The results from the GBSAM (Figure 20) show that the fractures dip is {u, 0} = {60", \/@0} and fracture

dip direction are {u,0} = {80",\/1 00} . Figure 20 also shows the results from GBSAM and from

BHTV. From Figure 20(a) fracture dip from GBSAM are in good agreement with observations from
Raft’s results and from Figure 20(b) fracture dip direction from GBSAM are also in good agreement with
observation from Raff’s results. The total number of GMEQs is 3886. From Figure 19(a)-(c), GMEQs has
a good match with TMEQs.
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3. Conclusions

Constraining the fracture orientation in reservoir is the high interest to hydrocarbon industry. The fracture
orientation (3D) or strike (2D) can be used to reconstruct the stress field, which led to the formation of the
fracture. Fracture orientation are typically estimated from 1-D scan lines in outcrop and boreholes
imaging log, or 2D circular sampling in outcrops. Recently, terrestrial laser scanner allow a
comprehensive fracture analysis of an entire outcrop in 3D, which is therefore less subject to observation
biases than scan lines or window samplings of limited sizes (Cecile Massiot 2017). In this work, we
propose GBSAM to constrain the fracture orientation based on the microseismic data. The core steps in
GBSAM are to handle with discrete MEQs data and measure similarity between field MEQs and
stimulated MEQs. Here we apply Mahalanobis distance, a common tool from data sciences to measure
similarity between field MEQs and stimulated MEQs and also handle with discrete data. The mechanism
of generating MEQs is also improved which indicate one fracture may have multiple MEQs. The number
of MEQs on a fracture is defined as the ratio of released seismic energy to threshold seismic energy. In
order to verify model, GBSAM is applied to extract information of fracture orientation (dip and dip
direction) in three examples, Newberry EGS and the Fenton Hill HDR. Results from GBSAM have good
agreement with results from boreholes image logging or previous studies in those examples.
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