
2EPO2B-08 [108] 1

1 23 4 5 6 7



2EPO2B-08 [108] 2

Development of ROACH firmware for microwave
multiplexed X-ray TES microcalorimeters

T. J. Madden, Member, IEEE, T. W. Cecil, L. M. Gades, O. Quaranta, D. Yan (闫代康), A. Miceli, D.T. Becker,
D.A. Bennett, J.P. Hays-Wehle, G.C. Hilton, J.D. Gard, J.A.B. Mates, C.D. Reintsema, D.R. Schmidt, D.S. Swetz,

L.R. Vale, J.N. Ullom

Abstract—We are developing room temperature electronics
based upon the ROACH platform to readout microwave mul-
tiplexed X-ray TES. ROACH is an open-source hardware and
software platform featuring a large Xilinx Field Programmable
Gate Array (FPGA), Power PC processor, several 10 GB Ethernet
SFP+ interfaces, and a collection of daughter boards for analog
signal generation and acquisition. The combination of a ROACH
board, ADC/DAC conversion daughter boards, and hardware for
RF mixing allows for the generation and capture of multiple
RF tones for reading out microwave multiplexed X-ray TES
microcalorimeters. The FPGA is used to generate multiple tones
in base band, from 10 MHz to 250 MHz, which are subsequently
mixed to RF in the multiple GHz range and sent through the
microwave multiplexer. The tones are generated in the FPGA by
storing a large lookup table in Quad Data Rate (QDR) SRAM
modules and playing out the waveform to a DAC board. Once the
signal has been modulated to RF, passed through the microwave
multiplexer, and has been modulated back to base band, the
signal is digitized by an ADC board. The tones are modulated to 0
Hz by using a FPGA circuit consisting of a polyphase filter bank,
several Xilinx FFT blocks, Xilinx CORDIC blocks (for converting
to magnitude and phase), and special phase accumulator circuit
for mixing to exactly 0Hz. Upwards of 256 channels can be
simultaneously captured and written into a bank of 256 First-
In-First-Out (FIFO) memories, with each FIFO corresponding
to a channel. Individual channel data can be further processed
in the FPGA before being streamed through a 10 GB Ethernet
fiber-optic interface to a Linux system. The Linux system runs
software written in Python and QT C++ for controlling the
ROACH system, capturing data, and processing data.

Index Terms—FPGA, Firmware, ROACH, microwave multi-
plexing, TES, superconducting microcalorimeters, superconduct-
ing detectors

I. INTRODUCTION

ADATA acquisition system for reading microwave multi-
plexed Transition Edge Sensors (TES) has been devel-

oped based on the ROACH platform [1]. The system consists

This research is supported by the Accelerator and Detector R&D program
in Basic Energy Sciences Scientific User Facilities (SUF) Division at the
Department of Energy. This research used resources of the Advanced Photon
Source and Center for Nanoscale Materials, a U.S. Department of Energy
Office of Science User Facilities operated for the DOE Office of Science by
Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Corresponding Author: T. Madden is with Argonne National Laboratory,
Chicago, USA e-mail: tmadden@anl.gov.

T. Cecil, L. Gades, A. Miceli, and O. Quaranta are with Argonne National
Laboratory

D. Yan is with Northwestern University and Argonne National Laboratory
D. Bennett, J. Hays-Wehle, G. Hilton, C. Reintsema, D. Schmidt, D. Swetz,

L. Vale are with National Institute of Standards and Technology
J. Gard, J. Mates are with University of Colorado, Boulder
D. Becker, and J. Ullom are with National Institute of Standards and

Technology and University of Colorado, Boulder

Fig. 1. ROACH TES Data Acquisition System. ROACH system includes
FPGA, ADC/DAC conversion, and IQ mixing. The FPGA/DAC generates
base band signals between 10 MHz and 250 MHz that are mixed to 5 GHz
before being sent to the cryostat, that contains TES sensors. Signals returning
from cryostat are mixed down to below 250 MHz, digitized, and analyzed by
the FPGA.

of a 100 mK cryostat housing NIST-designed Transition
Edge Sensors coupled to Superconducting Quantum Interface
Devices (SQUID), which in turn are coupled to microwave
resonators [2]. The ROACH system, consisting of large Xilinx
FPGA board, an ADC/DAC board, called the MUSIC board,
and an intermediate frequency (IF) mixing board simply called
the “IF Board” [3]. The FPGA generates signals sourced by
DACs from 10 MHz to 250 MHz, that are mixed to 5 GHz
to stimulate the microwave resonators. After passing through
the cryostat, the signal is mixed down to base band on the IF
Board, and digitized by ADCs to be analyzed by the FPGA.
When X-rays impact on the TES, the resulting electrical pulse
alters the phase and amplitude of the signal going through
the microwave resonator. The ROACH FPGA analyzes this
signal and extracts the X-ray pulse. A diagram of the system
is in Figure 1. The ROACH system is based on IQ (In-phase
and Quadrature) modulation, meaning that two DACs and two
ADCs are required for signal generation and digitization. The
goal of this work is to develop firmware which will not degrade
the energy resolution of hundreds of microwave multiplexed
X-ray TES readout simultaneously. In this paper, we present
our progress towards this goal. In particular, we present details
on the firmware specifically designed to readout microwave
multiplexed X-ray TES.

II. FIRMWARE DESIGN

The firmware was designed at Argonne National Laboratory
for the ROACH II hardware, hereafter called ROACH. The
ROACH board features a Xilinx Virtex 6 and accompanying
Power PC processor providing a Linux software interface to



2EPO2B-08 [108] 3

registers in the Virtex 6. The tool flow is the Casper MATLAB-
Simulink front end to Xilinx System Generator, where most
firmware is written by drawing MATLAB block diagrams.
Software was written in Python for control of the ROACH and
in C++ for data capture over 10 GB Ethernet. Our firmware
design was originally based upon ROACH I firmware written
by the Mazin group at UCSB, [4] which was designed to
readout optical Microwave Kinetic Inductance Detectors and
thus requires significant modifications to readout X-ray TES
using microwave SQUID multiplexers. Our current firmware
currently supports ROACH II, and returns data specifically
useful for TES detectors. Below we describe the firmware
design and we point out the modifications and improvements
relative to the UCSB firmware, and specific to our design.

An important consideration when designing FPGA firmware
is the clock rate at which the firmware must run. The
DAC/ADC hardware runs at a sample rate of 512 MHz.
Because FPGAs generally cannot run at this frequency, the
FPGA must either run at half the ADC rate at 256 MHz,
or one quarter of the ADC rate at 128 MHz. Running the
FPGA at a higher speed can create timing violations due to
placement and routing. Running the FPGA at a slower speed
requires more logic and DSP resources to accommodate four
simultaneous streams rather than two. This consideration has
far reaching effects on every firmware block in the design.

After having trouble meeting timing constraints working
with the two-stream UCSB firmware, we chose to redesign the
firmware based on four streams, thus halving the FPGA clock
speed. Ramifications of this design choice include a forced
redesign of the wave form generator, design of a four-port
ADC/DAC interface in Verilog for ROACH, and redesign of
the final mixing to 0 Hz. Further, some of the four-port blocks
in the Casper library had bugs, which motivated a redesign
of the FFT using Xilinx FFT blocks. Another advantage to
running the FPGA at 128 MHz rather than 256 MHz is that
the DRAM on ROACH cannot operate fast enough for a 256
MHz design. After compiling and debugging our design, we
found that we had ample FPGA resources despite the four-tap
design. Our design currently uses only 22% of available slices,
15% of Block RAM (BRAM), and 6% of DSP48’s.

The design of our firmware consists of two major parts. The
first part generates a plurality of complex sinusoid tones and
feeds them to two DACs for the real (I) and imaginary signals
(Q). Because the DACs run at 512 MHz and the FPGA is
clocked at 128 MHz, four samples per DAC are generated on
a single FPGA clock cycle and sent to the DACs.

The second part of the design consists of a dual ADC
interface that captures complex I and Q data after being
sourced through the cryostat. Because the ADCs run at 512
MHz, four samples per ADC are captured and processed
by the FPGA per clock cycle. The samples are windowed
with a hamming window using a ROACH library Polyphase
block before being sent to an FFT [5]. The windowed data is
processed by a 512-point complex FFT. The FFT coefficients,
representing “channels” with one TES per channel, are then
converted from rectangular to polar coordinates with a Xilinx
CORDIC block before being stored in a bank of FIFOs,
with one FIFO per channel. These FIFOs are addressable,

Fig. 2. Firmware Design. (a) QDR resident on the ROACH board stores
sinusoids of many frequencies for an I and Q signal. Two DACs are used to
generate the I and Q signals. (b) Two ADCs capture I and Q signals retrieved
from the cryostat. The signals are processed with a complex FFT, converted
to magnitude and phase, and arranged into individual streams with a FIFO
bank. Each channel stream is mixed to exactly 0 Hz with phase correction,
Flux Ramp Demodulated, and sent to a Linux system via 10 GB Ethernet.

with the address selecting the FIFO or channel of interest.
By storing into FIFOs each channel can be operated upon
as a continuous stream independent of other channels. The
firmware supports up to 256 channels at once. Because the
source frequency may not be at exactly an FFT bin center
frequency, a phase correction circuit operates on the phase
data to effectively mix the signal to 0 Hz (relative to the bin
center frequency). Following the phase correction circuit is a
flux ramp demodulation circuit. Information on what the flux
ramp demodulation circuit is for, and how it works can be
found in [6].

The data is finally sent to a local network via 10 GB
Ethernet using the fiber optic link included on the ROACH
board. Data can be streamed in various formats, including raw
noise data, noise plus flux ramp demodulation, or only flux
ramp demodulated data. A Linux computer system captures the
streamed data for further analysis. A diagram of our firmware
design is in Figure 2. Each channel has a sample rate of 1
MHz.

III. DETAILS OF FIRMWARE BLOCKS

A. FFT Block

Although the Casper Library contains an FFT block that is
used in the UCSB firmware, we found that when computing
four samples per clock there were problems with compiling the
block. For this reason, a new block was designed using Xilinx
FFT blocks [7]. Because the Xilinx FFT can only process
one sample per clock (i.e., only accepts a single input data
stream) four Xilinx FFT blocks were instantiated in the design,
with each FFT block accepting its own input data stream. To
compute a 512 point FFT, four 128-point FFT blocks are used.
The outputs of four FFT blocks, with each producing complex
outputs from complex inputs, are combined with “butterflies,”
or complex multiply-accumulate circuits. Coefficients for the
butterflies, called “twiddle” factors, are stored in BRAM.



2EPO2B-08 [108] 4

Fig. 3. FIFO bank implemented with bank of counters and two-port BRAM.
FIFO is selected by channel number. Separate select lines for read and write.
Larger banks created through multiplexing.

The resulting circuit is a 512 point FFT that accepts four
simultaneous data streams, and produces four output data
streams. The connection of FFT blocks with butterflies is based
on the definition of the FFT [8].

B. Addressable FIFO Bank
Because the FFT produces data in bin order, and it is desired

to operate upon a single channel or bin, the bins of interest are
stored to FIFOs, with a FIFO assigned to each bin. The FIFO
is selected with an address or channel both for reading and for
writing. Reading and writing can be done on different channels
simultaneously. Because of large FPGA resources required to
implement the FIFO bank with actual Xilinx FIFO blocks,
the FIFO bank was implemented with a BRAM block and
two banks of address counters for reading and writing. One
BRAM is associated with 16 address counters to essentially
create 16 FIFOs. To implement 256 FIFOs, FIFO banks are
multiplexed.

The firmware uses a BRAM and state machine to map
FFT bin indices to channels, that define which FIFO stores
a particular stream of data. See Figure 3 that shows the FIFO
bank design. The UCSB firmware relied on a ”Commutator”
circuit for channelization, that is functionally equivalent to a
FIFO Bank. However a FIFO Bank allows a more modular
design based on ”producers” and ”consumers” that are separate
firmware blocks.

C. DAC/ADC Interface
When the firmware was designed there existed no DAC or

ADC converter four-tap interface for the MUSIC DAC board
for ROACH [3]. A new “yellow block,” a ROACH community
term for certain Simulink blocks in the Casper library, was
created in Verilog to interface to the MUSIC DAC/ADC board.
This design was based on the ROACH I yellow block written
by Bruno Serfass, Sean McHugh and Ran Duan. [3].

D. Phase Correction Circuit
When capturing sinusoids from the cryostat generally the

sinusoid frequency does not fall exactly in the FFT bin center.
The result is that the FFT mixes the signal to near to but not
exactly 0 Hz. For bin k at frequency ωk the FFT coefficient
Xωk

is computed as

Xωk
=

N−1∑
n=0

hne
iωsne−iωkn = hn ∗ ei(ωs−ωk)n, (1)

Fig. 4. Phase Correction circuit implemented as one adder that integrates a
ramp. Ramp slope and current value are stored in BRAMs and indexed by
channel number.

which is the convolution of the window function hn with the
frequency error between bin center frequency ωk and signal
frequency ωs. The FFT is a block transform in that it operates
upon 512 samples at some clock time, then operates upon the
next 512 samples exactly 512 sample clocks later. For signals
not at bin center, the phase for each successive in time

6 Xωk
= (ωs − ωk)512m, (2)

where m is a time index denoting successive FFT computa-
tions, equal to 512 ADC sample clocks and 128 FPGA clocks.
It is apparent that the phase term is an ever increasing ramp.
To provide useful data, this ramp is removed by subtracting
a ramp of same slope. The circuit is implemented as a single
adder with one BRAM storing the current ramp value for 256
channels, and a second BRAM storing the phase increment
or ramp slope for 256 channels. The phase naturally wraps
every 2π radians. Figure 4 shows the Phase Correction circuit
design. The Phase Corrector circuit, designed specifically for
our firmware and not appearing in the UCSB firmware, was
designed because the four-tap data flow of our firmware used
up more external DRAM then the 2-tap data flow. The Phase
Corrector replaces many MB of DRAM usage with a few kB
of FPGA-resident BRAM.

E. Wave Generation

The signal to be sent to the cryostat is a summation of
complex sinusoids, or cosines sent to the ”I” DAC, and
negative sines sent to the “Q” DAC. The original UCSB
firmware written for ROACH I used DDR. However, we found
the DDR hardware on our ROACH II system to be unstable.
We chose to use the two Quad Data Rate (QDR) static RAMs
resident on the ROACH board to store the tones. Because the
Casper library provides a software addressable interface to the
QDR’s the waveforms can be easily sent to the QDR with a
Python script. Reading out the QDR’s and sending the signal
to the DAC’s is done with a state machine written with a Xilinx
M-Code block. Because the firmware operates on four samples
per clock, the QDR must store a total of eight samples per
address, or four 16-bit values for the I and Q signals. Because
this requires a data width of 128 bits, two QDR blocks are
needed in the design.



2EPO2B-08 [108] 5

Fig. 5. IV curves obtained with ROACH. (Left) The current-voltage (IV)
curves of three microwave multiplexed hard X-ray TES taken simultaneously
using the ROACH. This demonstrates the ability of the ROACH to read out
multiple TES simultaneously. (Center) Current-voltage (IV) curves for a single
TES at different bath temperatures taken using the ROACH. (Right) The IV
curves plotted as power-voltage curves. The TES transition region appears as
the flat regions in the curve.

F. Flux Ramp Demodulation

Flux Ramp Demodulation (FDR) is the computation of a
Discrete Fourier Transform on a set of phase values of the
FFT coefficients. We have implemented and tested an FDR
circuit in our firmware. The design is based on [6].

G. 10 GB Ethernet Interface

The data to be sent to the local network is organized into
UDP packets and transmitted via a 10 GB fiber optic link.
The data sent is formatted to include headers and “packets” of
streamed FFT coefficients. Because the formatted data packets
do not line up with the UDP packet size, the firmware must
break up data packets before sending. Software on a Linux
system receiving data must reassemble the formatted data into
individual channel streams. In short, the firmware breaks up
the FFT coefficients into many streams for individual channel
processing, then serializes the channels back into one stream
only to be deserialized by software. The GB Ethernet interface
is specific to our firmware because the original ROACH I, and
hence UCSB firmware, had no 10 GB Ethernet interface.

IV. SOFTWARE DESIGN

No firmware is of any use without some sort of software
control. Our ROACH system software has two components.
First, Python scripts with Graphical User Interface(GUI) func-
tion to set up the ROACH and control it. The Python scripts
borrow from the Casper library and were originally adapted
from the scripts from [4]. Second, a QT C++ program was
created from scratch to capture data from the 10 GB Ethernet
interface. Because of the high data rates, this program runs
multiple threads for capturing UDP packets (without packet
loss), parsing packets into individual channels, user interface,
communication with the Python scripts, detection of pulses,
and data saving to disk.

V. CURRENT STATUS AND FUTURE WORK

Currently, we have validated our ROACH firmware’s ability
to measure three microwave SQUID multiplexed TES IV
curves simultaneously which are shown in Figure 5. We have
validated the operation of 256 channels in RF loopback mode,
though optimization is needed to assure no FIFOs overflow
when all channels are simultaneously read out. Because of
speed limits in the 10 GB Ethernet link, we can reliably

read continuous noise from 16 channels at once. Optimization
of the firmware to improve the speed of the 10 GB link is
planned. Future work includes implementing firmware pulse
detection as well as validating the noise performance for
simultaneous TES readout. The software will be improved by
adding EPICS support and real-time pulse analysis [9]. Our
ROACH firmware can be found online at [10].

VI. ACKNOWLEDGEMENT

The authors would like to thank B. Mazin and his team,
and Ran Duan for help on their firmware.

REFERENCES

[1] Casper collaboration website. [Online]. Available: https://casper.
berkeley.edu/wiki/ROACH

[2] D. A. Bennett, J. A. Mates, J. D. Gard, A. S. Hoover, M. W. Rabin, C. D.
Reintsema, D. R. Schmidt, L. R. Vale, and J. N. Ullom, “Integration of
tes microcalorimeters with microwave squid multiplexed readout,” IEEE
Transactions on Applied Superconductivity, vol. 25, no. 3, pp. 1–5, 2015.

[3] Music readout. [Online]. Available: https://casper.berkeley.edu/
wiki/MUSIC\ Readout\ (Kinetic\ Inductance\ Detector\ (KIDs))

[4] R. Duan, S. McHugh, B. Serfass, B. A. Mazin, A. Merrill, S. R. Golwala,
T. P. Downes, N. G. Czakon, P. K. Day, J. Gao et al., “An open-source
readout for mkids,” in SPIE Astronomical Telescopes+ Instrumentation.
International Society for Optics and Photonics, 2010, pp. 77 411V–
77 411V.

[5] The polyphase filter bank technique. [Online]. Available: https:
//casper.berkeley.edu/wiki/The\ Polyphase\ Filter\ Bank\ Technique

[6] J. Mates, K. Irwin, L. Vale, G. Hilton, J. Gao, and K. Lehnert, “Flux-
ramp modulation for squid multiplexing,” Journal of Low Temperature
Physics, vol. 167, no. 5-6, pp. 707–712, 2012.

[7] Xilinx fast fourier transform. [Online]. Available: http://www.xilinx.
com/products/intellectual-property/fft.html

[8] W. T. Cochran, J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel,
W. W. Lang, G. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch,
“What is the fast fourier transform?” Proceedings of the IEEE, vol. 55,
no. 10, pp. 1664–1674, 1967.

[9] Experimental physics and industrial control system. [Online]. Available:
http://www.aps.anl.gov/epics/

[10] Argonne-developed firmware. [Online]. Available: https://github.com/
argonnexraydetector/RoachFirmPy


