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Abstract 28 

 29 

Understanding gene function and regulation is essential for the interpretation, prediction and 30 

ultimate design of cell responses to changes in the environment. An important step toward meeting 31 

the challenge of understanding gene function and regulation is the identification of sets of genes that 32 

are always co-expressed. These gene sets, Atomic Regulons (ARs), represent fundamental units of 33 

function within a cell and could be used to associate genes of unknown function with cellular 34 

processes and to enable rational genetic engineering of cellular systems. Here, we describe an 35 

approach for inferring ARs that leverages large-scale expression data sets, gene context, and 36 

functional relationships among genes. We computed ARs for Escherichia coli based on 907 gene 37 

expression experiments and compared our results with gene clusters produced by two prevalent data-38 

driven methods: hierarchical clustering and k-means clustering. We compared ARs and purely data-39 

driven gene clusters to the curated set of regulatory interactions for E. coli found in RegulonDB, 40 

showing that ARs are more consistent with gold standard regulons than are data-driven gene 41 

clusters. We further examined the consistency of ARs and data-driven gene clusters in the context of 42 

gene interactions predicted by Context Likelihood of Relatedness (CLR) analysis, finding that the 43 

ARs show better agreement with CLR predicted interactions. We determined the impact of 44 

increasing amounts of expression data on AR construction and find that while more data improve 45 
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ARs, it is not necessary to use the full set of gene expression experiments available for E. coli to 46 

produce high quality ARs. In order to explore the conservation of co-regulated gene sets across 47 

different organisms, we computed ARs for Shewanella oneidensis, Pseudomonas aeruginosa, 48 

Thermus thermophilus, and Staphylococcus aureus, each of which represents increasing degrees of 49 

phylogenetic distance from E. coli. Comparison of the organism-specific ARs showed that the 50 

consistency of AR gene membership correlates with phylogenetic distance, but there is clear 51 

variability in the regulatory networks of closely related organisms. As large scale expression data 52 

sets become increasingly common for model and non-model organisms, comparative analyses of 53 

atomic regulons will provide valuable insights into fundamental regulatory modules used across the 54 

bacterial domain.  55 

 56 

Introduction 57 

 58 

The inference of gene function and regulation represent intertwined challenges in Systems Biology. 59 

(Kitano, 2002). Regulon content often leads to the inference of functions for genes contained in the 60 

regulon, and assigned functions are often used to refine regulon structure. Microarray technologies 61 

(Young, 2000) accelerated the study of gene regulation by facilitating the production of thousands of 62 

expression datasets (Edgar et al., 2002), and next generation sequencing technologies massively 63 

increased the availability of reference genomes while also enabling the estimation of relative gene 64 

expression (Wang et al., 2009). Despite these advances, we still lack a complete understanding of 65 

gene function and regulation even in the most well studied bacterium, Escherichia coli 66 

(Kochanowski et al., 2013), which is the subject of thousands of phenotype experiments, gene 67 

expression datasets, and multiple regulation databases (Huerta et al., 1998;Salgado et al., 2013;Karp 68 

et al., 2014). 69 

 70 

A key step in the inference of gene regulatory networks, and a valuable step in the functional 71 

annotation of genes, is the decomposition of a genome into sets of co-expressed genes. Today, three 72 

general methods exist for identifying sets of co-expressed genes: (i) clustering methods; (ii) 73 

transcription factor binding-site (TFBS) analysis (Rodionov, 2007); and (iii) de novo reverse 74 

engineering from expression data (De Smet and Marchal, 2010). Classic clustering methods, such as 75 

hierarchical clustering (Murtagh, 1985) and the centroid k-means clustering (Lloyd, 1982), aim to 76 

group sets of objects based on some criteria; when applied to the analysis of gene expression data, 77 

the aim is to group genes with similar expression profiles. TFBS tools, such as the popular 78 

RegPredict (Novichkov et al., 2010), infer regulons based on the presence of conserved upstream 79 

regions of DNA, which are presumed to be cis-regulatory elements. De novo reverse engineering 80 

methods use expression data to infer gene-to-gene regulatory interactions. One of the most 81 

commonly used methods, Context Likelihood of Relatedness (CLR), has been successfully applied 82 

to infer novel regulatory interactions (Faith et al., 2007).  83 

  84 

Algorithms for computing co-expressed gene sets produce two different types of output: regulons 85 

comprising a transcription factor and an associated set of regulated genes, or a set of co-expressed 86 

genes. The first type of output is produced by TFBS binding-site analysis and de novo reverse 87 

engineering methods to produce gene sets consistent with the classical definition of a regulon –  88 

genes are merged together into a set only if they respond to a common transcription factor. It is 89 

possible for a gene to appear in multiple sets if it responds to multiple transcription factors. This type 90 

of regulon information is valuable as a building block for assembling transcriptional regulatory 91 

networks and can be used, for instance, in deriving constraints to represent regulation in metabolic 92 
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models (Shlomi et al., 2007;Chandrasekaran and Price, 2010). However, the overlap in their gene 93 

content and the resulting complexity in their interpretation make them less ideal for other 94 

applications of co-expressed gene sets. 95 

 96 

Purely data-driven algorithms, such as hierarchical clustering or k-means clustering, can be used to 97 

produce the second type of output, sets of co-expressed genes that are not necessarily associated with 98 

a transcription factor. We propose to call the sets of co-expressed genes that are always ON or OFF 99 

together, Atomic Regulons (ARs). We define an AR as a set of genes that have essentially identical 100 

expression patterns, indicating a strong likelihood that they are functionally related (i.e., the genes 101 

are always expressed as a set). Each gene can be a member of only one AR; some ARs are 102 

represented by a single gene. Thus, a genome can be thought of as being comprised of ARs, with 103 

ARs considered to be the fundamental functional units of the cell. As the cell transitions from one 104 

functional state to another, it will activate some ARs, and deactivate others, with the functional states 105 

being defined by the set of active ARs. Cell states can be thought of as being organized 106 

hierarchically, with the ARs that represent core functions being constitutively expressed and the ARs 107 

that represent peripheral functions being expressed under specific conditions. In this way, analyzing 108 

expression patterns of ARs provide insights about gene functions and relationships among cellular 109 

systems.  110 

 111 

The concept of atomic regulons has many useful applications. ARs are commonly used to provide 112 

insights into functions of orphan genes using the guilt-by-association principle, most prominently in 113 

resources such as STRING (von Mering et al., 2005). ARs are also used to plug gaps in metabolic 114 

reconstructions and models (Benedict et al., 2014). In addition, we recently applied ARs in the 115 

curation of regulatory network models to map regulons to stimuli (Faria et al., 2016). ARs make a 116 

statistical inference based on input data and are uniquely suited to these applications because: (i) 117 

they do not overlap in their gene content; (ii) all of their genes are co-expressed; (iii) they do not 118 

exclude genes that are co-expressed; and (iv) they may be computed reliably from tractable amounts 119 

of data. 120 

 121 

Here we describe a new algorithm for computing ARs, which combines many of the advantages of 122 

the existing data-driven approaches, but integrates new evidence types including chromosome 123 

location and functional relationships to more quickly converge on a complete set of biologically 124 

meaningful ARs. We apply the new atomic regulon inference method to Escherichia coli, which has 125 

large amounts of expression data that represent many environmental conditions. We compare the 126 

new E. coli ARs with those produced by existing data-driven approaches, curated sets of regulons 127 

mined from literature (RegulonDB), and with CLR-derived gene clusters. We then compute ARs for 128 

a set of four bacteria with increasing phylogenetic distance from E. coli to begin to understand the 129 

nature of conserved and unique ARs across organisms.  130 

 131 

Materials and Methods 132 

 133 

Algorithm for computing atomic regulons 134 

 135 

Our atomic regulon inference algorithm is unique from other approaches in that it begins by 136 

constructing draft atomic regulons (gene sets) using a combination of operon predictions and SEED 137 

subsystem technology (Overbeek et al., 2005). A subsystem is a set of related functional roles that 138 

represents the group of proteins involved in a biological process or pathway (e.g., protein 139 
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biosynthesis or TCA cycle). In contrast to purely data-driven approaches, which start by forming 140 

gene clusters based only on available expression data, our approach applies expression data after 141 

initial gene clusters are formed in order to either extend or divide gene clusters to ensure they 142 

contain all co-expressed genes. 143 

 144 

Thus, the computation of ARs is derived from gene context information, functional annotation, and 145 

estimates of gene ON and OFF states from the expression data. The estimation of gene ON and OFF 146 

states is pre-computed as a separate step (see “Estimation of gene ON/OFF states” in Materials and 147 

Methods). Our AR inference process consists of six steps (Figure 1). 148 

 149 

Step 1. Generate Initial Atomic Regulon Gene Sets 150 

 151 

Compute a set of hypotheses in the form: 152 

 153 

Genes G1 and G2 should be in the same atomic regulon 154 

 155 

Initial clusters are proposed using two independent mechanisms: (i) gene clustering within 156 

putative operons; and (ii) membership of genes within SEED subsystems.  157 

 158 

Step 2. Process Gene Expression Data and Calculate Pairwise Expression Profile Similarities 159 

 160 

Integrate all available gene expression data for the genome, load the normalized data, and 161 

compute Pearson correlation coefficients (PCCs) for all possible gene pairs. PCCs are 162 

computed to provide a quantitative assessment of how similar the expression profiles are for 163 

each gene pair. 164 

 165 

Step 3. Expression Informed Splitting of Initial Atomic Regulon Gene Sets 166 

 167 

Split operon and subsystem-based clusters using the criterion that genes in a set must have 168 

pairwise expression data profiles greater than a PCC of 0.7. This ensures that the initial 169 

clusters contain genes that all share a substantial level of co-expression. 170 
 171 

** Figure 1** 172 

 173 

Step 4. Restrict Gene Membership to One Atomic Regulon Gene Set 174 

 175 

Merge the clusters built from operons and subsystems as, at this point, genes may be 176 

members of more than one cluster. We convert each cluster into a set of binary connections 177 

between all genes in the cluster. We then use the binary connections to form a single set of 178 

large clusters using transitive closure (e.g., if A is connected to B and B is connected to C, 179 

then A is connected to C). This leads to a condition in which any two genes that are 180 

connected are in the same cluster. This also ensures that no gene is a member of more than 181 

one cluster. 182 

 183 

Step 5. Filter Atomic Regulon Gene Sets to Remove Low Correlation Genes 184 

 185 
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Split the merged clusters based on a distance computed between every pair of genes using the 186 

formula  187 

 188 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  
(2 − (𝑃𝐶𝐶 + 1))

2
 189 

 190 

This corrects for genes with a low PCC value that may have been placed in a common 191 

cluster. New sub-clusters are formed by taking the two closest genes (based on the above 192 

defined distance) within the initial merged cluster and adding other genes to the growing sub-193 

cluster. At each point, the gene with the minimum average distance to genes in the growing 194 

sub-cluster is added to the sub-cluster, until no such gene exists with an average distance less 195 

than or equal to 0.25. If this simple accretion algorithm produces a single sub-cluster, no 196 

splitting is required. If not, the sub-clusters become the close to final AR gene sets. 197 

 198 

Step 6. Generate Final Set of Atomic Regulons 199 

 200 

Estimate the ON/OFF status of each cluster in any specific experimental sample by a simple 201 

voting algorithm using the ON/OFF estimates for the genes that make up the AR (see 202 

Estimation of gene ON/OFF states). We then merge these AR gene sets if they have identical 203 

ON/OFF expression profiles across all experimental conditions. It is important to note that 204 

the resulting set of atomic regulons is not comprehensive (i.e., not all genes are placed into 205 

an AR), but this set attempts to capture many of the operational groups of genes. This merged 206 

set becomes the final set of ARs. 207 

 208 

The source code for the AR inference algorithm is available on GitHub 209 

(https://github.com/janakagithub/atomic_regulons). Additionally, a service for AR inference has 210 

been implemented as a tool named “Compute Atomic Regulons” in the DOE Systems Biology 211 

Knowledgebase (KBase). Compute Atomic Regulons can be accessed at https://narrative.kbase.us. 212 

This service allows users to upload expression datasets and compute ARs for their genomes of 213 

interest. A tutorial detailing how to compute ARs in KBase is available in supplementary material.  214 

 215 

Estimation of gene ON/OFF states 216 

 217 

Our AR inference algorithm requires us to compute the correlation of expression for all genes across 218 

all available expression datasets. In this computation, we use expression values to assign all genes in 219 

all conditions to one of three possible states: ON, OFF, and UNKNOWN. These gene states are 220 

calculated for all genes in two steps.  221 

 222 

Step 1. Initial Estimates of ON/OFF Calls Using an A Priori Identified Set of “Always ON” Genes 223 

 224 

i) Determine the threshold for a gene to be considered ON based on the normalized 225 

expression of genes annotated with functions that are expected to be universally active. In 226 

total, we identified 80 functional roles from the SEED as universally active, largely from 227 

translation and transcription (see supplementary Table S1). We then consider the genes that 228 

implement these roles as ON. 229 

 230 

https://github.com/janakagithub/atomic_regulons)
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ii) Empirically set initial ON/OFF calling thresholds for each experiment. The “on” threshold 231 

for experiment i, called Ni, is set as the 10th percentile of observed gene expression values for 232 

“always ON” genes in experiment i. The “OFF” threshold for experiment i, called Fi, is set as 233 

the 80th percentile of observed gene expression values that are below Ni in experiment i.  234 

 235 

iii) Update initial ON/OFF calling thresholds for each experiment by computing the 236 

difference, Di = Ni - Fi, in thresholds for each experiment, then finding the 25th percentile of 237 

Di across all experiments, D25th. For any experiment i where Di < D25th, set Fi = Ni - D25th. 238 

This ensures that the “ON” and “OFF” calling thresholds are never too close together for a 239 

particular experiment. 240 

 241 

iv) Using the updated ON/OFF calling thresholds for each experiment (Ni and Fi), make 242 

initial ON/OFF calls for each gene in experiment i by classifying any gene expression value 243 

less than Fi as OFF, greater than Ni as ON, and between Fi and Ni as UNKNOWN.  244 

 245 

Step 2. Updating Gene-Specific ON/OFF Calls Using Gene Sets to Ensure Maximal Consistency 246 

 247 

i) Construct draft sets of genes that are expected to be co-expressed with a high degree of 248 

confidence. Sets are constructed from: (i) operons; and (ii) subsystems.  249 

 250 

ii) Vote within each gene set to determine the ON/OFF status of the entire set in each 251 

experiment based on majority rule. For example, if a set of four genes has two genes initially 252 

called ON, one UNKNOWN, and one initially called OFF, we update the calls for all genes 253 

in the set to ON since that is the majority of the initial calls. Ties (e.g., two ON and two OFF 254 

or all UNKNOWN) are classified as UNKNOWN.  255 

 256 

Gene expression data 257 

 258 

Gene expression data were collected from the Gene Expression Omnibus (GEO) (Edgar et al., 2002) 259 

and M3D databases (Faith et al., 2008), as well as from the laboratory of Dr. Paul Dunman in the 260 

case of S. aureus. Expression data were downloaded in the form of Affymetrix GeneChip® cell 261 

intensity (CEL) files. For each organism, the expression data from the CEL files were background 262 

corrected, normalized and summarized using Robust Multichip Averaging (Irizarry et al., 2003) as 263 

implemented in R/Bioconductor (http://www.bioconductor.org/) using the rma function default 264 

settings. In addition, the probe sets for each Affymetrix GeneChip were mapped to gene identifiers 265 

in the SEED genome database (Tintle et al., 2012;Overbeek et al., 2014). 266 

 267 

Computation of hierarchical and k-means clusters 268 

 269 

In order to compare the performance of ARs with k-means and hierarchical clustering analyses, we 270 

applied these methods to the normalized gene expression values across all experiments to generate 271 

646 clusters, the same number of clusters identified using our AR approach for the purpose of 272 

illustration. K-means clusters were calculated with k set to 646 clusters using the Lloyd-Forgy 273 

algorithm (Lloyd, 1982) in R (Team, 2015). This approach is a non-standard use of the k-means 274 

clustering algorithm; the value of k was set to match the number of ARs for the sake of comparison. 275 

This clustering approach defines clusters by minimizing the Euclidian distance between individual 276 

points and cluster centers and is sensitive to variations in true cluster size and variance distributions. 277 
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For hierarchical clustering analysis, a Euclidean distance matrix was calculated between genes based 278 

on their normalized expression values across all experiments. We performed hierarchical clustering 279 

on this distance matrix using the average algorithm in R (Murtagh, 1985), which is equivalent to the 280 

unweighted pair group method using arithmetic mean (UPGMA). This clustering approach begins 281 

with each gene assigned to its own cluster and proceeds through an iterative process of joining the 282 

two nearest clusters together until all genes are linked into a hierarchical tree. We cut this tree at a 283 

given height in order to yield 646 clusters. 284 

 285 

Assessing similarity of gene sets 286 

 287 

We performed comparisons between gene sets produced by our AR inference algorithm and standard 288 

data-driven clustering algorithms to regulons in RegulonDB. We use the Jaccard coefficient, which 289 

measures similarity between finite sample sets. This coefficient is defined as the size of the 290 

intersection divided by the size of the union of the sample sets 291 

 292 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑅𝑒𝑔𝐷𝐵, 𝑅𝑥) =
|𝑅𝑒𝑔𝐷𝐵 ∩ 𝑅𝑥|

|𝑅𝑒𝑔𝐷𝐵 ∪ 𝑅𝑥|
   293 

 294 

where RegDB is a set of genes comprising a single regulon from the RegulonDB database, and Rx is 295 

a gene cluster inferred by one of the clustering algorithms being evaluated. 296 

 297 

Additionally, we performed comparisons of ARs for E. coli with ARs for four different organisms, 298 

limiting our comparison to functional roles contained in SEED subsystems that occurred both in E. 299 

coli and the other organisms. For each atomic regulon in E. coli (Ae), we computed the set of 300 

relevant functional roles occurring in Ae, calling this set Re. Then, for each atomic regulon occurring 301 

in one of the other genomes (Ax), we considered the set of relevant roles occurring in Ax, calling this 302 

set Rx. We then computed the Jaccard coefficient for Re and Rx. 303 

 304 

Context Likelihood of Relatedness (CLR) algorithm 305 

 306 

We performed a check on the gene contents of each regulon using the Context Likelihood of 307 

Relatedness (CLR) algorithm developed by the Gardner group at Boston University. Given a set of 308 

gene expression data, CLR predicts transcriptional regulatory relationships (Faith et al., 2007). The 309 

CLR algorithm belongs to a category of regulatory network inference algorithms that uses mutual 310 

information (MI) to analyze correlations in gene expression. In brief, the higher the MI score 311 

between two genes, the greater the information we derive on the expression states of the first gene 312 

from the pattern of states in the other, and therefore the greater the likelihood that one of the genes is 313 

directly or indirectly regulating the other, or that both genes are being regulated together. Our CLR 314 

calculations were done on the DeGNServer website, where the CLR algorithm has been parallelized 315 

to handle large gene sets (Li et al., 2013). A CLR score was recorded for each possible unique gene 316 

pair in E. coli (each possible gene-to-gene connection), resulting in a total of 9,367,956 CLR scores.  317 

 318 

We discarded all but the top 0.765% of the CLR scores, representing all scores with values that were 319 

at least four standard deviations above the mean score. All gene pairs associated with these top CLR 320 

scores are then said to have support from CLR. We used these regulatory interactions inferred by 321 

CLR to validate and assess the ARs inferred by our algorithm and gene sets produced by the 322 

clustering algorithms at the same level of granularity. In this validation, we calculated the fraction of 323 
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all possible gene pairs in each AR that have a regulatory interaction also predicted by CLR. For 324 

example, if an AR includes three genes, then it has three possible gene pairs (i.e., AB, AC, CB). If 325 

CLR predicted a regulatory interaction between two of these pairs (i.e., AB, AC), then the fraction of 326 

supported interactions would be 0.667 (67% support). See Supplementary Information for a full 327 

treatment of the method. 328 

 329 

Prediction of operons from genome sequence and gene calls 330 

 331 

We predict operons from genomic data to serve as initial gene sets for our AR inference algorithm. 332 

In our operon prediction approach, sets of genes in the same strand within 200 base pairs up and 333 

down stream of each other were placed into the same operon. This mirrors the existing standard 334 

algorithms for operon prediction (Salgado et al., 2000). 335 

 336 

Results 337 

 338 

Characteristics of E. coli K-12 Atomic Regulons 339 

 340 

Atomic regulons were computed for E. coli using the AR inference algorithm and expression data 341 

from the M3D dataset. E. coli was selected for initial construction of atomic regulons because it has 342 

the largest compendium of consistent gene expression data that is currently available, comprising 343 

microarray data from 907 experiments. The computation was performed in approximately 12 344 

minutes on a single dual-core CPU. Four metrics were used to characterize the set of ARs produced 345 

for a genome: (i) the total number of genes assigned to ARs; (ii) the number of ARs computed; (iii) 346 

the number of genes that were found to be always ON; and (iv) the number of genes found to be 347 

always OFF across all experiments.  348 

 349 

A summary of the results of the inference pipeline for E. coli is shown in Table 2, and the full set of 350 

atomic regulons is available in Supplementary Table S2. For E. coli, 2604 genes are assigned to 646 351 

multi-gene ARs, corresponding to approximately 60% of its genome. The largest ARs in the set 352 

contain 292 and 69 genes, representing the set of genes that are always expressed or are never 353 

expressed in the experimental conditions represented by the expression array data, respectively. The 354 

largest atomic regulon with variable expression in our available data is comprised of 52 genes, which 355 

are primarily related to the functions of motility and chemotaxis. The remaining 644 ARs contain 356 

less than 52 genes each, with an average size of 3.48. Approximately 85% of multi-gene ARs 357 

contain 5 or less genes, with 328 ARs containing only 2 genes. Again, we deployed our AR 358 

computation algorithm into KBase, and we demonstrate this method at work in computing ARs for 359 

E. coli in a KBase Narrative (https://narrative.kbase.us/narrative/ws.14533.obj.1). 360 

 361 

Comparison to clusters produced by hierarchical clustering and k-means clustering 362 

 363 

The AR inference algorithm was compared to data-driven clustering algorithms by assessing the 364 

consistency of gene sets to both a curated set of regulons present in the database RegulonDB and to 365 

interactions predicted by the CLR algorithm. Each of the gene sets was compared to the reference set 366 

of regulons for E. coli found in RegulonDB through the calculation of a Jaccard coefficient (details 367 

in the Materials and Methods). The analysis revealed that the co-expressed gene sets generated by 368 

our AR inference algorithm had a higher level of similarity to the gold standard regulons in 369 

RegulonDB than the gene sets generated by either hierarchical or k-means clustering (Figure 2a). 370 
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The data driven clustering methods produce gene sets that are much less consistent; less than 8% of 371 

gene sets show 50% or more similarity to RegulonDB regulons. In contrast, approximately 50% of 372 

the RegulonDB regulons show a >50% similarity with the gene sets generated by our AR inference 373 

algorithm, and approximately 20% have a similarity >70%.  374 

 375 

**Figure 2** 376 

 377 

Additionally, we performed a similar analysis to investigate the impact of the inclusion of SEED 378 

subsystems in the AR inference algorithm. We compared AR similarity to RegulonDB by computing 379 

ARs with and without SEED subsystems using three different subsets of the available experimental 380 

data: (i) Full dataset of 907 experiments; (ii) 403 randomly selected experiments (50% of the data); 381 

and (iii) 91 randomly selected experiments (10% of the data) (Figure 2b). With the entire dataset of 382 

E. coli experiments, we observe only a small improvement in the similarity with RegulonDB with 383 

the inclusion of SEED subsystems. For the subset comprising of 50% of the data, we observe a 384 

slightly larger improvement with the inclusion of SEED subsystems when compared to the full 385 

dataset. These results are corroborated by the analysis conducted on Figure 4, in which we conclude 386 

that starting at 60% of the data, the improvements in our AR computation grow markedly slower.  387 

 388 

For the subset comprising only 10% of the E. coli data, we see the largest difference in similarity 389 

with RegulonDB. In this case, the results are mixed. When the regulons have a larger degree of 390 

similarity with RegulonDB, they tend to be more accurate when generated with subsystems. When 391 

regulons have a lower degree of similarity with RegulonDB, they tend to be less accuracy when 392 

generated with subsystems. This result is due to the fact that the use of SEED subsystems will 393 

generally increase the average size of the regulons, as well as the fraction of the genome that is 394 

included in ARs. Note for example, that we have 150 ARs with at least some overlap with 395 

RegulonDB when subsystems are used, versus only 130 without. Thus, part of the observed decline 396 

in similarity at the lower end of the comparison curve is due to having more (and larger) regulons 397 

used in the comparison. This also emphasizes the vital role that the expression data plays in the AR 398 

algorithm. When limited data is available, it could make sense to apply our algorithm with and 399 

without subsystems and compare the results. 400 

 401 

CLR is a mutual-information-based approach for the inference of gene regulatory networks from 402 

gene expression data (Faith et al., 2007). The CLR algorithm has been applied extensively to 403 

validate E. coli regulatory interactions and to identify missing links in the E. coli regulatory network. 404 

Also, CLR has performed well in DREAM challenges (dreamchallenges.org/publications/) when 405 

compared against other inference algorithms. We applied CLR to the same set of expression data 406 

that was used to build the ARs and clustering algorithm gene sets for E. coli, computing CLR scores 407 

for every possible pair of genes in E. coli. These scores quantify the level of mutual information 408 

found between the expression profiles of each pair of genes, with higher scores meaning more 409 

mutual information and thus a greater chance that one gene in the pair is co-regulated with or 410 

regulates the other gene in the pair.  411 

 412 

**Figure 3** 413 

 414 

The ARs generated by our algorithm and gene sets generated from hierarchical clustering and k-415 

means clustering were assessed by binning ARs and gene sets into different ranges of support from 416 

CLR (Figure 3a). The highest category of support for an AR or gene set is one in which all of the 417 
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gene pairs in the set have a high CLR mutual information score with at least one other member of 418 

the gene set; 62% of ARs fall into this category, whereas 26% and 21% of hierarchical and k-means 419 

clustering gene sets fall into this category, respectively. We evaluated if a bias existed for the 420 

agreement between CLR and our AR inference algorithm based on AR size (Figure 3b). Given that 421 

larger ARs involve more possible gene pairs and thus more possible interactions that need to be 422 

validated by CLR, it was possible that there would be lower CLR support for the larger ARs. 423 

However, all 15 of the ARs with 13 or greater gene members were found in the two highest 424 

categories of CLR support (80-100% and 100%). More details on this analysis are available in the 425 

supplementary material. In particular, see supplementary Tables CS-1, CS-2A, CS-2B, and CS-2C. 426 

 427 

Sensitivity of AR inference algorithms to the amount of available expression data 428 

 429 

While advances in sequencing technology have led to the ability to produce expression data for non-430 

model organisms, it remains the case that E. coli has the largest amount of expression data available 431 

among bacteria to date. The expression data have also been obtained in a large number of 432 

experimental conditions. This sets up a seemingly ideal case for the calculation of atomic regulons. 433 

However, most organisms will not have as much data available as E. coli, and it may be possible to 434 

obtain meaningful ARs with less expression data. Thus, we studied the impact of decreasing 435 

amounts of expression data on the inference of atomic regulons. We randomly selected different 436 

subsets of the E. coli data, repeated the AR analysis with each data subset, and compared the end 437 

results. For our subsets, we selected all increments of 10% of the available data (i.e., considering 438 

10%, 20%, 30%, etc.). We repeated the analysis 100 times for each data size, selecting a different 439 

random subset of data with each simulation.  440 

 441 

We evaluated the atomic regulons computed in each simulation based on four metrics. The first 442 

metric was the number of genes assigned to ARs of size two or greater. If insufficient data are 443 

available, natural noise in gene expression patterns will overwhelm any correlations that exist 444 

between genes, preventing the consolidation of ARs based on correlation of gene expression. Thus, 445 

the expectation is that fewer genes will be integrated together into multi-gene ARs. The second 446 

metric was the number of multi-gene ARs computed. As before, the signal to noise ratio that occurs 447 

with smaller amounts of data will prevent some multi-gene ARs from forming. Additionally, with 448 

fewer experiments, fewer genes will be differentially expressed. This will prevent some large ARs 449 

from being broken up into smaller ARs. The third and fourth metrics are the number of genes that 450 

are always ON and the number of genes that are always OFF, respectively. Fewer experiments may 451 

represent fewer experimental conditions and fewer differentially expressed genes, leading to an 452 

expectation of more genes that are either always ON or always OFF.  453 

 454 

**Figure 4** 455 

 456 

 457 

The results of the random sensitivity analysis support the expectations. As the amount of available 458 

data increases, the number of genes in ARs (Figure 4a) and the total number of ARs increase 459 

(Figure 4b). Additionally, the numbers of always ON genes (Figure 4c) and always OFF genes 460 

(Figure 4d) decrease with increasing amounts of expression data. Interestingly, in all cases, large 461 

improvements in each of the metrics are observed as the amount of data used increases from 10% to 462 

~60% of the available data. Continued improvements in all metrics are observed until 100% of the 463 

data is used, but the improvements grow markedly smaller as more than 60% of the data is 464 
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considered. We also performed a simple 2-fold cross validation of the data, randomly splitting the 465 

907 experiments for E. coli into equal non-overlapping sets (Table 1). When we compare the 466 

regulons computed from these two data subsets, the average Jaccard coefficients (0.83 ± 0.31 and 467 

0.80 ± 0.35, mean and standard deviation) were nearly identical to the comparison of atomic 468 

regulons computed from the full dataset to either of the subsets (0.81 ± 0.35 and 0.80 ± 0.37 469 

respectively). This result shows that the atomic regulons are very similar when only half the 470 

available experimental data is used. 471 

 472 

**Table 1** 473 

 474 

These results show that there is enough existing gene expression data for E. coli to enable the 475 

generation of high quality ARs, capturing a large portion of the atomic regulon space for this 476 

organism. Further, it is possible to compute ARs for E. coli with approximately the same quality 477 

using a much smaller amount of data. 478 

 479 

**Figure 4** 480 

 481 

Computation of atomic regulons across taxa 482 

 483 

Studies of the evolution of bacterial transcriptional regulatory networks show conservation of 484 

regulatory modules/motifs and that gene co-regulation tends to be more conserved than regulatory 485 

genes and mechanisms. This conservation is observed across large phylogenetic distances for 486 

organisms with similar lifestyles (Madan Babu et al., 2006). Atomic regulons should be well suited 487 

to explore these trends. Thus, the AR inference algorithm was applied to study the consistency of 488 

gene co-regulation across five diverse genomes. ARs were computed for four additional organisms 489 

that have sufficient high-quality expression data available: Shewanella oneidensis MR-1, 490 

Pseudomonas aeruginosa PAO1, Thermus thermophilus HB8 and Staphylococcus aureus subsp. 491 

aureus Mu50 (organisms are ordered approximately from the closest to the farthest in terms of 492 

phylogenetic distance). To minimize noise, all the experimental datasets were selected by 493 

considering the same microarray platform with the same process of applied data normalization (see 494 

Materials and Methods). However, it should be noted that any source of expression data that is 495 

converted into normalized ON/OFF estimates can be used to infer ARs, ensuring that the technique 496 

is applicable to the increasing number of RNA-Seq experiments available for model and non-model 497 

organisms and to considering emerging data in combination with the rich amount of existing 498 

microarray expression data. The basic metrics describing ARs for each of the organisms are shown 499 

in Table 2. We demonstrate the application of our method to computing ARs for these genomes in a 500 

KBase Narrative (https://narrative.kbase.us/narrative/ws.14533.obj.1). 501 

 502 

**Table 2** 503 

 504 

The descriptive statistics for the ARs from the five organisms suggest interesting trends. It appears 505 

that there is a correlation between the number of expression experiments available for an organism 506 

and the percentage of genes included in a multi-gene AR. For both T. thermophilus and S. aureus, 507 

the same proportion of genes were included as for E. coli. Each of these have a number of 508 

experiments corresponding to greater than 60% of the data available for E. coli, consistent with the 509 

analysis above where subsets of the data were used to calculate ARs for E. coli. The organisms with 510 

fewer expression experiments (~26% of the experiments available for E. coli) have a lower 511 
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percentage of genes included in ARs. Given the caveat that the number of experiments does not 512 

necessarily reflect the number of unique environmental conditions represented in the set of 513 

experiments, it is interesting to speculate that more experimentation in these organisms would lead 514 

to inclusion of more genes in the calculated ARs. However, it is also apparent that the number of 515 

genes considered to be ON or OFF varies greatly, and that two of the three genomes with the highest 516 

number of ON genes have the highest number of experiments associated with them. This could 517 

reflect the diversity of the conditions represented by the experiments that leads to genes failing to be 518 

differentially expressed, the quality of the available expression data, or limitations of establishing 519 

thresholds for the ON/OFF state of genes in those organisms.  520 

 521 

In order to compare the ARs inferred for the different organisms, Jaccard coefficients were 522 

computed for each AR in E. coli versus all ARs in each of the four other genomes. The distribution 523 

of these computed coefficients for each genome analyzed reveals that regulation appears to be more 524 

similar in genomes that are closer to E. coli both phylogenetically and in terms of lifestyle (Figure 525 

5a). The only Gram positive genome we included in our study, S. aureus, was, as expected, a distant 526 

genome in terms of AR variation. The most distant genome in terms of AR variation was T. 527 

thermophilus, which, despite being "Gram negative", is phylogenetically distant and found in 528 

environments that are highly distinct from that of E. coli. Another interesting observation is how 529 

much variation exists in AR content between E. coli and the closest genomes analyzed, S. oneidensis 530 

and P. aeruginosa. Although these genomes are close to E. coli phylogenetically, only a small 531 

fraction of their atomic regulons have high compositional similarity. In contrast to expectations, the 532 

composition of co-regulated gene sets appears to be highly variable among closely related 533 

organisms. This result could support the notion that regulation is a highly adaptable system in the 534 

cell, but experimental studies specifically dedicated to this type of comparative analysis are needed 535 

in order to confirm this result. 536 

 537 

**Figure 5** 538 

 539 

Conservation of atomic regulons across taxa 540 

 541 

In addition to conducting pairwise comparisons between E. coli and four other genomes, we focused 542 

on the specific atomic regulons that display the greatest consistency across the greatest number of 543 

genomes. To do this, we compared the Jaccard coefficients computed for each E. coli AR across all 544 

combinations of four, three, and two genomes. For each regulon, we retain the lowest Jaccard 545 

coefficients among the genomes being compared, with that coefficient being indicative of the 546 

compositional similarity of the AR among the full set of genomes (Figure 5b).  547 

 548 

The analysis revealed 35 ARs with 100% compositional similarity between E. coli and at least one 549 

other genome in our set (the distribution of these 35 ARs across all genomes compared can be 550 

estimated from Figure 5a). This number is larger than the highest number of 100% identical ARs 551 

from our pair-wise AR comparisons (18), which indicates that the ARs with 100% similarity 552 

between E. coli and each individual genome have significant differences (i.e., different ARs were 553 

identical in each species). No identical regulons across E. coli and the four other genomes were 554 

observed, consistent with the large number of differences found between the ARs of E. coli and the 555 

ARs for T. thermophilus and S. aureus. 556 

 557 
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There were nine atomic regulons with at least 75% similarity across E. coli and two other genomes 558 

(Table 3). All ARs in Table 3 were conserved with and were most similar to ARs in S. oneidensis, 559 

the organism with the smallest phylogenetic distance to E. coli in this study. The two largest ARs 560 

conserved among E. coli and two other genomes are both functionally related to cellular respiration. 561 

The largest was compositionally identical across three genomes (E. coli, S. oneidensis, and P. 562 

aeruginosa) comprising 13 genes, most of which are annotated with functions related to the NADH-563 

ubiquinone oxidoreductase chain. All genes in this AR are members of the SEED Subsystem 564 

“Respiratory Complex I”. These functions have been characterized in E. coli and are responsible for 565 

proton translocation in the electron transport chain (Weidner et al., 1993). The gene order is also 566 

highly conserved when compared to other bacterial genomes. Studies report these functional roles to 567 

be present in T. thermophilus (Yano et al., 1997), however, these functions were grouped into a 568 

much larger AR in this study, possibly due to the lack of expression data needed to decompose this 569 

large AR. The second largest identical AR is comprised of seven functional roles involved in the 570 

biogenesis of c-type cytochromes. These functional roles have been described in E. coli (Thony-571 

Meyer et al., 1995) and each were present in the S. oneidensis and P. aeruginosa atomic regulons. 572 

None of the respiratory chain associated functional roles in the two largest ARs identified through 573 

this analysis were present in S. aureus, consistent with known diversity of respiratory chain 574 

components among bacteria. 575 

 576 

The third and fourth largest ARs shared among E. coli and two other genomes are both shared with 577 

S. oneidensis and S. aureus. One AR comprising six functional roles is associated with tryptophan 578 

synthesis. In T. thermophilus and P. aeruginosa, only 40% of the functional roles are present in the 579 

corresponding AR. These results are consistent with research on the evolution and dynamics of the 580 

tryptophan biosynthesis pathway that found some functional roles are conserved across multiple 581 

organisms, while others were lost due to events such as operon splitting or gene fusions (Xie et al., 582 

2003). The fourth largest AR contains functional roles associated with phosphate transport in E. coli 583 

(Amemura et al., 1985), and it was 100% identical to the AR identified in S. oneidensis  and 80% in 584 

S. aureus. All results from the comparative analysis of ARs are reported in supplementary Table S3.  585 

 586 

**Table 3** 587 

 588 

To aid in genome annotation efforts, we integrated the computed ARs for this study into the SEED 589 

database. They can be accessed in the interface showing information for all genes that are members 590 

of a computed AR: http://pubseed.theseed.org/?page=AtomicRegulon&genome=all. Additionally, 591 

we implemented the AR inference algorithm in KBase (www.kbase.us), allowing the computation of 592 

AR for any genome of interest given an expression data set (see Material and Methods). 593 

 594 

Discussion 595 

 596 

Atomic regulons represent fundamental regulatory units of a cell, namely, the sets of genes that are 597 

always co-regulated. We have demonstrated a new method for the inference of atomic regulons that 598 

outperforms purely data-driven clustering methods for deriving sets of co-regulated genes. The 599 

approach relies on the formation of putative atomic regulons based upon operonal organization of 600 

genes and the highly curated sets of associated functions for genes (subsystems) used in the SEED 601 

and PATRIC databases (Overbeek et al., 2014;Wattam et al., 2014). These serve as high quality 602 

starting points that allow for the efficient determination of biologically meaningful co-regulated sets 603 

of genes. The inference algorithm is impacted by the current estimate of SEED Subsystems that are 604 

http://www.kbase.us)/
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continuously improved by the SEED annotation team. We apply SEED subsystems to build and 605 

refine our initial gene clusters, meaning that errors in the assignment of genes to subsystems can 606 

potentially lead to errors in initial clusters (which is mitigated by the concurrent use of expression 607 

data). More critically, clusters involving primarily genes that are not assigned to SEED subsystems 608 

will not benefit from this aspect of the algorithm. Additionally, our algorithm for setting the “ON” 609 

threshold for gene activity depends on the identification of a set of genes in the genome that are 610 

expected to be universally active. We currently identify these genes based on the functional roles 611 

assigned to them by the SEED. If these genes are not accurately annotated by the SEED, it will 612 

impact our ability to set an accurate “ON” threshold for gene activity.  613 

 614 

Assessments of the gene sets produced from the AR inference algorithm and two popular clustering 615 

algorithms suggest that using a biologically meaningful starting point rather than clustering based 616 

solely on expression data produce co-regulated gene sets that are much more consistent with 617 

independent measures of gene regulatory interactions. This includes the calculation of the Jaccard 618 

coefficient for each AR and that of an independent information-theoretic method, CLR; atomic 619 

regulons were shown to be more consistent with gold-standard regulons found in RegulonDB and 620 

with mutual information coefficients between pairs of genes as determined by CLR. Further, the AR 621 

inference algorithm is robust to varying amounts of expression data and can be applied to diverse 622 

organisms. These properties make the described AR inference algorithm attractive for addressing 623 

questions of the regulation of fundamental cellular processes, the interactions amongst those 624 

fundamental processes, and the conservation of the processes across cellular life. 625 

 626 

The atomic regulons inferred for E. coli constitute a large portion of the genes in the organism, with 627 

most ARs comprising 3 genes, on average. The two largest ARs also represent the two gene sets 628 

whose genes are always ON and always OFF in the set of expression experiments studied; we refer 629 

to these as static ARs. The 292 genes comprising the static AR that is universally expressed are 630 

primarily annotated with functions related to core cellular machinery. A large fraction of the genes 631 

code for ribosomal proteins and tRNA synthetases. These functions are considered to be constitutive, 632 

and were selected to set the threshold for active gene expression used in our ON/OFF calling 633 

algorithm. The remaining genes were classified as constitutively expressed and merged into the 634 

static AR as part of the inference algorithm. These functions are associated with core cellular 635 

machinery, such as DNA synthesis and ATP synthetases. Additionally, multiple genes with 636 

unknown functions are members of this atomic regulon. The 69 genes comprising the static AR that 637 

are not expressed are poorly annotated, with 63% annotated as hypothetical, putative or 638 

uncharacterized. These genes are inactive in all conditions studied, meaning they likely contribute 639 

little to cell fitness in any of the conditions tested. It is expected that the static ARs would break 640 

apart as more conditions are represented in the expression experiments. Our sensitivity analysis 641 

revealed that the ARs were somewhat insensitive to random reductions in the E. coli dataset, until 642 

those reductions exceed 50% of the dataset. This said, it is the diversity of experimental conditions 643 

included in the dataset that has the most significant impact on the accuracy of predicted regulons 644 

(Nicolas et al., 2012), and a simple count of the number of datasets is not necessarily an effective 645 

measure for this diversity. Unfortunately, we lack sufficient metadata for available expression 646 

datasets to rigorously explore the relative impact of experimental diversity on regulon quality. 647 

 648 

An initial assessment of the conservation of atomic regulons across a diverse set of bacterial 649 

organisms reveals several interesting observations. First, it is clear that there is great variability in 650 

the membership of atomic regulons for different organisms. None of the ARs were fully conserved 651 
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among E. coli and the four organisms studied. This supports the notion that many strategies for the 652 

regulation of sets of functions by organisms exist. Second, despite variability among the ARs in 653 

different organisms, some ARs are well conserved over both short and long phylogenetic distances. 654 

Nine ARs were identified as conserved above a level of 75% of shared genes among E. coli and 655 

three of the organisms. Two of these were absolutely conserved with respect to gene membership; 656 

both were related to respiratory functions and each of the organisms are members of the Gamma 657 

Proteobacteria. Conservation was also identified for E. coli, S. oneidensis, and S. aureus, for two 658 

ARs associated with tryptophan amino acid biosynthesis and transport of phosphate. Third, having 659 

different levels of expression data for each organism has an impact on the quality of the ARs 660 

inferred. This can be seen as fewer genes being included in ARs and a higher proportion of genes 661 

being grouped into the static ARs. 662 

 663 

We are continuing to investigate more statistically rigorous ON/OFF calling algorithms, which, 664 

instead of dichotomizing gene calls, yield a confidence metric that the gene is ON/OFF in a given 665 

condition. A calibrated continuous approach to ON/OFF calling may allow for more robustness in 666 

the calls. As new technologies are developed, and as current next generation sequencing 667 

technologies become more widely used and affordable, expression data for more experimental 668 

conditions will become available. This will lead to an improvement of the inference of ARs for the 669 

organisms considered in this study and any organism for which sufficient expression data are 670 

produced. 671 

 672 

While improvements in the AR inference algorithm can be made, the current implementation of the 673 

method has been successfully used to extend our knowledge of the B. subtilis regulatory network 674 

(Faria et al., 2016). In that work, the atomic regulon inference approach was used to propose new 675 

additions to the B. subtilis regulatory network and led to the proposal of new functional annotations 676 

for genes. We integrated the ARs computed for this study into the SEED, allowing users to see the 677 

co-regulation of all genes in the ARs. These data complement the set of comparative genomics tools 678 

available in the SEED system. This information can be exceptionally valuable for researchers and 679 

curators, as co-regulation can group genes with well-known annotated functions with hypothetical 680 

genes, providing clues for new functional annotations. The AR inference algorithm and underlying 681 

gene ON/OFF calling algorithm have been included as a tool in KBase (www.kbase.us), which 682 

allows users to analyze their expression data in a feature rich platform designed to aid the discovery 683 

of new biological insights through the integration of multiple data types. We anticipate that a readily 684 

accessible implementation for the calculation of atomic regulons will enable many researchers to 685 

explore the relationships among these fundamental units of cellular function not only within their 686 

organism of choice, but also across the bacterial domain. 687 

  688 

 689 

 690 

691 
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 839 

Tables and Figures 840 

 841 

Tables 842 

 843 

Table 1 Average Jaccard similarity coefficient between each set of atomic regulons from 2-fold 844 

the cross validation. 845 

 Set1  Set2 All ARs 

Set1 1 0.80 ± 0.35* 0.89 ± 0.26 

Set2  0.83 ± 0.31 1 0.92 ± 0.19 

All ARs  0.81 ± 0.35 0.80 ± 0.37 1 

*Mean ± Standard Deviation  846 

 847 

Table 2 Atomic regulon statistics for Shewanella oneidensis MR-1, Pseudomonas aeruginosa 848 

PAO1, Thermus thermophilus HB8 and Staphylococcus aureus subsp. aureus Mu50 and 849 

Escherichia coli K-12. 850 

 Array 

datasets 

No. 

ARs 

% Genes in 

ARs  

Gene 

always 

ON 

Gene 

always 

OFF 

Genome 

size 

Escherichia coli K-

12 

907 646 2604 (60%) 292 69 (1.6%) 4309 

Shewanella 

oneidensis MR-1 

245 335 1559(37%) 265 32 (0.8%) 4167 

Pseudomonas 

aeruginosa PAO1 

236 423 2427(43%) 557 78 (1.4%) 5682 

Thermus 

thermophilus HB8 

543 196 1422(63%) 692 27 (1.2%) 2239 

Staphylococcus 

aureus subsp. 

aureus Mu50 

852 397 1749(63%)  447 28 (1%) 2770 

 851 

 852 

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 
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Table 3 Atomic regulons similarity >75% across E.coli and two other genomes. 861 

AR 

ID 

AR 

Size 

Associated 

genomes 

Functional role summary 

15 13 S. oneidensis MR-1  

P. aeruginosa 

PAO1 

NADH-ubiquinone oxidoreductase chain 

54 7 S. oneidensis MR-1  

P. aeruginosa 

PAO1 

Biogenesis of c-type cytochromes 

57 6 S. oneidensis MR-1  

S. aureus  

Tryptophan synthesis 

112 5 S. oneidensis MR-1  

S. aureus  

Phosphate transport system 

316 3 S. oneidensis MR-1  

P. aeruginosa 

PAO1 

Molybdenum transport system 

362 2 S. oneidensis MR-1  

S. aureus  

Heat shock proteins 

398 2 S. oneidensis MR-1  

P. aeruginosa 

PAO1 

Paraquat-inducible proteins 

500 2 S. oneidensis MR-1  

S. aureus  

Ribonucleotide reductase  

 862 

 863 

 864 

Figure legends 865 

 866 

Figure 1: Atomic Regulon Inference. Six steps of Atomic Regulon (AR) inference algorithm. Step 867 

1. Generate Initial Atomic Regulon Gene Sets. Initial clusters are proposed using gene clustering 868 

within putative operons and membership of genes within SEED subsystems. Step 2. Process Gene 869 

Expression Data and Calculate Pairwise Expression Profile Similarities. Integrate gene expression 870 

data, load the normalized data, and compute Pearson correlation coefficients. Step 3. Expression 871 

Informed Splitting of Initial Atomic Regulon Gene Sets. Split operon and subsystem-based clusters 872 

using the criterion that genes in a set must have pairwise expression data profiles greater than a set 873 

Pearson correlation coefficient (PCC) threshold. Step 4. Restrict Gene Membership to One Atomic 874 

Regulon Gene Set. Merge the clusters built from operons and subsystems then use the binary 875 

connections to form a single set of large clusters using transitive closure. This also ensures that no 876 

gene is a member of more than one cluster. Step 5. Filter Atomic Regulon Gene Sets to Remove 877 

Low Correlation Genes. Split the merged clusters based on a distance computed between every pair 878 

of genes. This corrects for genes with a low PCC value that may have been placed in a common 879 

cluster. Step 6. Generate Final Set of Atomic Regulons. Estimate the ON/OFF status of each cluster 880 

in any specific experimental sample by a simple voting algorithm using the ON/OFF estimates for 881 

the genes that make up the AR. This merged set becomes the final set of ARs. 882 

 883 
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Figure 2: Comparison of RegulonDB regulons with hierarchical clustering, k-means clustering 884 

and atomic regulons. a) The Jaccard coefficient comparing E. coli RegulonDB regulons vs. the 885 

clustering methods is shown as a percentage of similarity. b) Comparison AR similarity to 886 

RegulonDB regulons with and without inclusion of SEED subsystems using 100%, 50% and 10% of 887 

experiment data.  888 

 889 

Figure 3: Degree of CLR support. a) CLR support compared between our ARs, and ARs produced 890 

via k-means clusters and hierarchical clusters. b) CLR support for our AR construction method, 891 

broken down by different AR sizes. 892 

 893 

Figure 4: Sensitivity analysis of Atomic Regulon inference for Escherichia coli K-12. a) Average 894 

number of genes in atomic regulons. b) Average number of atomic regulons. c) Average number of 895 

genes always ON d) Average number of genes always OFF. Standard deviation error bars represent 896 

the variation across 100 data set randomizations from random sampling of experiments. 897 

 898 

Figure 5: Comparison of E. coli Atomic Regulons versus all other ARs for Shewanella 899 

oneidensis MR-1, Pseudomonas aeruginosa PAO1, Thermus thermophilus HB8 and 900 

Staphylococcus aureus subsp. aureus Mu50.  a) The % of similarity is given by the Jaccard 901 

coefficient, which is defined as the size of the intersection divided by the size of the union of the 902 

sample sets. b) The % of similarity is given by the Jaccard coefficient, which is defined as the size of 903 

the intersection divided by the size of the union of the sample sets. Jaccard coefficients computed for 904 

each E. coli AR across all combinations of four, three, and two genomes. The number of Atomic 905 

Regulons in the y-axis is represented in a log2 scale. 906 

 907 

Supplementary Material 908 

 909 

Supplementary Table S1: 80 functional roles considered to be “always ON”. 910 

 911 

Supplementary Table S2: Complete set of atomic regulons computed for E. coli. 912 

 913 

Supplementary Table S3: Results from comparative analysis. 914 

 915 

CLR Supplementary Table CS-1 - CLR Support for Atomic Regulons (ARs). Method: percentage of 916 

support for an AR is given by the percent of genes in the AR that have at least one high-scoring CLR 917 

edge that links to another gene in the same AR. 918 

 919 

 CLR Supplementary Table CS-2A - Support for our Atomic Regulons (ARs). Method: percentage 920 

of support for an AR is given by the percent of all possible gene-to-gene connections in the same AR 921 

that have a corresponding high-scoring (above > SD4) CLR edge. This is a much tougher support 922 

criterion to meet than the criterion used in CLR Supplementary Table CS-1. 923 

 924 

CLR Supplementary Table CS-2B - Support for k-means clusters. Method: percentage of support for 925 

an AR (k-means cluster) is given by the percent of all possible gene-to-gene connections in the same 926 

cluster that have a corresponding high-scoring (above > SD4) CLR edge. 927 

 928 



   Computing and Applying Atomic Regulons 

 

This is a provisional file, not the final typeset article 

22 

CLR Supplementary Table CS-2C - Support for hierarchical clusters. Method: percentage of support 929 

for an AR  (hierarchical cluster) is given by the percent of all possible gene-to-gene connections in 930 

the same cluster that have a corresponding high-scoring (above > SD4) CLR edge. 931 
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