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Abstract

Approximate Nearest Neighbor (ANN) algorithms are increasingly important in machine
learning, data mining, and image processing applications. There is a large family of space-
partitioning ANN algorithms, such as randomized KD-Trees, that work well in practice but
are limited by an exponential increase in similarity comparisons required to optimize recall.
Additionally, they only support a small set of similarity metrics. We present Local Area Fo-
cused Search (LAFS), a method that enhances the way queries are performed using an existing
ANN index. Instead of a single query, LAFS performs a number of smaller (fewer similarity
comparisons) queries and focuses on a local neighborhood which is refined as candidates are
identified. We show that our technique improves performance on several well known datasets
and is easily extended to general similarity metrics using kernel projection techniques.
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1 Introduction

Nearest neighbor search is a fundamental algorithm that returns the most similar members of a
dataset for a query based on a specified distance metric. It has been applied to a wide range of
applications in image processing, pattern recognition, and data retrieval [1]. In practice nearest
neighbor search becomes expensive and often impractical as the size of datasets grow larger. To
address this scaling research has focused on creating approximate methods for nearest neighbor
search [3][12][10][4][11].

To date a number of different approaches have been proposed for Approximate Nearest Neigh-
bor (ANN) search. These approaches build and populate a data structure that allow for fast queries
while only failing to find a small percentage of the true nearest neighbors (high recall). This data
structure is called an index. Space partitioning algorithms aim to divide the search space for fast
retrieval. These methods include KD-Trees, ball trees, and hierarchical K-Means trees [3][10].
They tend to be fast to construct and search but can be limited by poor partitioning and in the sim-
ilarity metrics they support. Another popular approach is to work in the domain of hash functions
such as Locality-Sensitive Hashing (LSH) [10]. These methods provide constant time queries but
are limited by the fact that creating a hash function for a specific dataset can be a difficult problem.
K-Nearest Neighbor graph is an approach that attempts to build a graph of the entire dataset where
edges represent neighbors [4][11]. These methods work well in practice but are limited by their
high construction cost. These examples represent just a fraction of the numerous methods that
have been developed to build efficient ANN search indexes. Conversely, there have been relatively
few techniques developed that focus on leveraging standard ANN indices and improving the way
queries are performed.

In this report we introduce the Local Area Focused Search (LAFS). LAFS takes advantage of
locality by searching neighbors of intermediate query results produced by a traditional index. This
allows LAFS to search in the real similarity space which greatly improves speed and performance
for kernel projected data.
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2 Proposed Method

2.1 Motivation

Space-partitioning approximate nearest neighbor indices rely on internal mechanisms to return
multiple candidate neighbors [10]. While they vary in construction, these mechanisms typically
track a set of potential paths not yet visited in the dataset. These paths are visited in order of like-
lihood that they will lead to a close neighbor of the query. The challenge is that these likelihoods
are approximate and can lead to either duplicate neighbors or candidates with low similarities to
the query being identified. Figure 1 illustrates this behavior by examining the number of similarity
calculations required to achieve a desired recall using a randomized KD-Tree index. A query tends
to find the majority of the true nearest neighbors within the first few hundred candidates it evalu-
ates. Finding the remaining true nearest neighbors requires examining an exponentially increasing
number of candidates.

Figure 1. Relationship of the number of similarity calculations
to recall for the top 10 nearest neighbors in the SIFT1M dataset
indexed by a randomized KD-Tree.

Instead of seeking to return all candidates with one query, our LAFS method combines the
results of several small queries (low number of returned candidate neighbors) which are performed
with similar neighbors. This exploits the strength of the ANN search while improving the recall
for the same number of similarity calculations. LAFS is detailed in following section.

9



2.2 Local Area Focused Search

Our method is inspired by the K-NN graph work of Dong et.al [4] and their principle that ”a neigh-
bor of a neighbor is also likely to be a neighbor”. While their focus is improved approximation
of K-NN Graphs, LAFS, as shown in Algorithm 1, applies this principle to improve the results of
a query using a standard ANN index. The concept is that the candidate nearest neighbors which
are returned during the process of a query provide better locality information than is offered by
standard space-partitioning ANN indices.

Let D bet a dataset of size N and dimension dim. Let I be an ANN index built from D. I
provides functionality to query a vector q. We define a function query(I,q,n) that searches I
for neighbors of q where n is the maximum number of considered neighbors. During a search,
duplicates are counted as neighbors therefore the number of unique neighbors returned may be
≤ n. In this paper, we focus on the randomized KD-Tree algorithm as defined by Silpa-Anan and
Hartley [12]. However, we believe this method can work with any space-partitioning style ANN
index.

Algorithm 1: Local Area Focused Search
Input: Index I, query q, similarity function σ , max number of considered neighbors n, and internal

query size ns

Output: Set of candidate nearest neighbors C
1 begin
2 P← emptyPriorityQueue ;
3 S← /0;
4 C← query(I,q,ns);
5 Calculate σ(q,c) ∀c ∈C;
6 addToQueue(P,c) ∀c ∈C;
7 cnt = |C| ;
8 while |P|> 0 and cnt < n do
9 s← dequeue(P);

10 S← S∪ s;
11 Cs← query(I,s,ns);
12 Cnew←{c|c ∈Cs,c /∈ S};
13 Calculate σ(q,c) ∀c ∈Cnew ;
14 addToQueue(P,c) ∀c ∈Cnew;
15 C←C∪Cnew;
16 cnt← cnt + |Cnew|;
17 end
18 return C
19 end
20

We start by performing a query for q in I and then calculating the similarity between q and
each returned candidate neighbor. The candidates are added into a priority queue P that provides
access to the candidates in ascending order by their similarity to q. After this initialization, we
repeat a process of dequeueing the first candidate in P, performing a query for that candidate in I,
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calculating the similarity between each resultant new candidate and q, and adding these to P. The
process is repeated until either P is empty or we have considered a total of n candidates including
multiple encounters of the same candidate.

LAFS requires an internal query size parameter ns ≤ n which dictates the number of candidates
requested by each internal query. The value of ns will vary per dataset and is chosen to produce
as good of recall as possible while minimizing the amount of required similarity calculations.
LAFS will perform approximately n/ns internal queries. For example, in Figure 1 a value between
ns = 250 and ns = 1000 would be chosen because values in this range produce the strongest recall
before the curve starts its fast growth.

In order to avoid repeating queries, LAFS maintains a set S of candidates that have already
been searched and does not let them be re-inserted into P. Additionally, any implementation should
ensure that the similarity between q and a candidate neighbor is only calculated the first time it is
encountered and not if it is found by subsequent internal queries.

2.3 Data Projection for General Similarity Metrics

Most space-partitioning ANN indexing methods require that the similarity metric be a Minkowski
metric which is of the form:

(
n

∑
i=1
|xi− yi|p)1/p (1)

Unfortunately, this type of metric is not appropriate for many types of data. To get around this
limitation, dataset D can be projected using kernel methods from machine learning. The concept
is that we can perform a non-linear transformation φ(x) on our data to take it from the original dim
dimensional space to a much higher dimensional space where it becomes linearly separable. This
projection creates a new representation of the dataset, Dφ , which can be compared via a Minkowski
metric and, therefore, indexed by space-partitioning ANN methods.

A standard method of kernel projection is Kernel Principal Component Analysis (KPCA). The
cost of a projecting data into the higher dimensional space is usually impractical but kernel meth-
ods, like KPCA, allow us to work only in the covariance matrix of D. The covariance between two
vectors is defined as the kernel function:

κ(x,y) = φ(x)T
φ(y) (2)

The kernel covariance matrix K over D is then defined as

Ki, j = κ(Di,D j) (3)
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where Di is the i-th row of D. K is then decomposed using Principal Component Analysis (PCA)
to produce a projection matrix W . As part of PCA, the dimensionality of the data can be reduced
by choosing a new dimension dimReduced < dim and preserving only the top dimReduced eigen-
vectors when creating W . The projected dataset Dφ is then created as follows

Dφ = KW (4)

Full details about KPCA are available in [15].

KPCA becomes extremely expensive as the size of D increases due to the need to compute
the full covariance of the dataset. To mitigate this problem Jiang et.al [8] describe a method to
randomly sample numReps rows from D, where numReps << N and use this set to construct K.
We refer to this reduced set of random representatives as R. We then build a covariance matrix Kr
over R

Kri, j = κ(Ri,R j) (5)

PCA is applied to Kr as above to create W and may include a further dimensionality reduction
by choosing a dimReduced < numReps. The covariance for the dataset is now computed against R

Ki, j = κ(Di,R j) (6)

and it is projected as in equation 4.

2.4 LAFS for Kernel Projected Data

LAFS is easily updated to accommodate kernel projected data. We start by using KPCA, as de-
scribed in the previous section, to project D to Dφ and we build our index Iφ from Dφ . The
projection matrix W and random representative set R are preserved and used to project query q to
qφ which is in the same space as Dφ as shown in equations 7 and 8.

Kri = κ(q,Ri) (7)

qφ = KrW (8)

An important feature of LAFS is that the similarity between a query and its candidate neighbors
is calculated independently from the internal queries of Iφ . This means that we can use the exact
similarity to prioritize candidates for subsequent internal searches instead of the approximation in
the projected data space. This makes it much more likely we are searching the optimal local area
around the query.
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The LAFS algorithm for kernel projected data, shown in Algorithm 2, is very similar to the
standard algorithm. The main difference is the similarity metric is calculated on the raw (non-
projected) version of the data. It is assumed that the raw version of the data can be accessed in
constant time and is denoted by the raw() function in the algorithm.

Algorithm 2: Local Area Focused Search for Kernel Projected Data
Input: Index built from projected data Iφ , projected query qφ , similarity function σ , max number of

considered neighbors n, and internal query size ns

Output: Set of candidate nearest neighbors C
1 begin
2 P← emptyPriorityQueue ;
3 S← /0;
4 C← query(Iφ ,qφ ,ns);
5 Calculate σ(raw(qφ ),raw(cφ )) ∀cφ ∈C;
6 addToQueue(P,cφ ) ∀cφ ∈C;
7 cnt = |C| ;
8 while |P|> 0 and cnt < n do
9 sφ ← dequeue(P);

10 S← S∪ sφ ;
11 Cs← query(Iφ ,sφ ,ns);
12 Cnew←{c|c ∈Cs,c /∈ S};
13 Calculate σ(raw(qφ ),raw(cφ )) ∀cφ ∈Cnew;
14 addToQueue(P,cφ ) ∀cφ ∈Cnew;
15 C←C∪Cnew;
16 cnt← cnt + |Cnew|;
17 end
18 return C
19 end
20

2.5 Complexity Discussion

Here we present a few observations on the cost of the LAFS algorithm. The complexity of a
single traversal through a KD-Tree is O(log2(N)) [12]. Since we are limiting our randomized
KD-Tree implementation to a constant number of visited leaves (nearest neighbor candidates) n,
the complexity of a query remains the same order. After candidates are generated, their similarity
to the query must be calculated. While the complexity varies depending on the similarity metric,
the most basic ones, such as Minkowski metrics, will be O(dim). This implies that the cost of
calculating the similarities will dominate algorithm time when

2dim > N (9)

which applies to most real-world data problems.
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For each query, LAFS performs n/ns internal queries, calculates similarities between the query
and all candidates, and has additional bookkeeping costs such as managing the priority queue and
set operations. Since n remains constant, none of these operations changes the overall complexity
from O(log2(N)) along with the O(dim) for calculating the similarities. Theoretically, this is the
same as using KD-Trees. In practice, depending on implementation, it is likely that LAFS will
do slightly more work than a single KD-Tree query for the same number of similariy calcuations.
With time being dominated by the similarity calculations, the extra work will negligible.

It is important to note that there are a number of ANN use cases where the similarity between
the query and candidate nearest neighbors does not need to be calculated. In these cases, the
metadata associated with the returned candidates is enough to support a decision. Since calculating
similarities is central to our method, LAFS is not an appropriate choice for these use cases.
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3 Performance Analysis

3.1 Analysis Setup

In this section, we will examine the effect of using LAFS over 3 different datasets. All analyses are
performed using a randomized KD-Tree index. We use our own implementation which is similar
to the version presented in the FLANN library [10]. For the purpose of simplicity, we will use the
term KD-Tree Index to refer to a randomized KD-Tree index for the remainder of this section.

We compare the performance of a KD-Tree Index versus a KD-Tree Index enhanced with
LAFS. As described in the previous section, the cost of calculating the similarity metrics dominates
algorithm time, so we will present all results in the form of Number of Similarity Calculations vs.
Recall. Recall is calculated as the percentage of the top k nearest neighbors returned as candidate
neighbors from a query. Unless otherwise specified, k = 10 in the following sections.

3.2 SIFT1M

The SIFT1M dataset, provided by INRIA, is widely used for performance analysis of ANN algo-
rithms [6]. It contains a database of 1,000,000 SIFT descriptors and a test set of 10,000 independent
SIFT descriptors along with ground truth. SIFT descriptor similarity is calculated as L2 distance
so we assess the performance using the basic LAFS algorithm.

Figure 2. Performance comparison on SIFT1M for standard KD-
Tree vs. KD-Tree using LAFS for indices of 5 (left), 10 (center),
and 25 (right) trees.

Figure 2 shows the increase in performance created by LAFS using ns = 250. LAFS produces
a significant performance increase for KD-Tree indices built with 5, 10, and 25 trees. The im-
provement becomes less pronounced as the number of trees increases but this is likely due to the
fact that the performance is approaching the upper limit in general.
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Figure 3 shows the effect that the ns parameter has on the performance of LAFS for a KD-Tree
index of 10 trees. A value of ns = 250 outperforms both ns = 50 and ns = 1000. At ns = 50, we are
likely searching too small a local area and not finding enough unique candidates. At ns = 1000,
we are likely searching too large an area and performing extra similarity comparisons without any
benefit.

Figure 3. Effect of ns value on recall on SIFT1M dataset using
LAFS with a KD-Tree Index built with 10 trees.

3.3 Jittered MNIST

The MNIST database is a widely used handwritten digits classification dataset provided by [9]. The
dataset consists of 60,000 28x28 pixel images along with 10,000 independent images for testing.
The images are all centered to make them directly comparable without translation.

Figure 4. Examples of corresponding images from MNIST (left)
and Jittered MNIST (right).
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We modify MNIST in a way that allows us to test LAFS on kernel projected data using a real
world image processing dataset. We introduce ”jitter” into MNIST by randomly shifting each
image by ±3 pixels in both the x and y directions. See Figure 4.

The recall performance of the Jittered MNIST database is severely degraded as shown in Figure
5.

Figure 5. Performance of MNIST vs Jittered MNIST using stan-
dard KD-Tree Index built with 25 trees.

For these images similarity must be measured by checking all possible alignments via 2D
cross-correlation

xcorr2D(a,b) = argmax
i, j

< a,bi, j > (10)

where bi, j represents a shift of image b by i pixels in the x direction and j pixels in the y direction.

Cross-correlation itself is not a valid kernel but it can be converted to one via a number of
methods [7]. After some experimentation, we determined that the standard kernel for correlation

κ(a,b) = expxcorr2D(a,b) (11)

worked better than other kernels, even those proposed specifically for cross-correlation such as the
one suggested in [14]. We project the data using KPCA with numReps = 100 and further reduce
the dimensionality so that dimReduced = 20.
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Figure 6 shows a similar increase in performance as Figure 2 created by LAFS. MNIST is a
relatively small dataset so we choose a smaller value for ns = 100. As with SIFT1M, LAFS sees
improvement for all tree configurations with its highest performance improvements on smaller
numbers of trees.

Figure 6. Performance comparison on Jittered MNIST dataset
for standard KD-Tree vs. KD-Tree using LAFS for indices of 5
(left), 10 (center), and 25 (right) trees.

3.4 Seismic Waveform Data

Seismic signals are time series recorded at seismic stations of ground motion caused by distant
seismic sources such as earthquakes. One important problem in seismic signal analysis is deter-
mining the location on the Earth of the seismic event that generated an observed seismic signal.
This is a very complex problem that usually requires signal detections from multiple stations and
accurate models of the internal geology of the Earth.

Seismic signals have the interesting property that signals recorded at the same station from
seismic events that are very nearly co-located to each other look very similar (Figure 7) but look
different than signals from events that are far apart from each other. Research is ongoing into using
nearest neighbor search algorithms to scan archives of historical waveforms via waveform cross-
correlation searching for similar signals. Given a new signal and a similar signal from the archive,
the geographic location of the event that generated the new signal can be immediately assigned to
the same location that generated the historical signal [13][17]. Recent work has focused on using
ANN techniques to search historical earthquake archives, which can be very large and continue to
grow at a rapid rate [16].

We have developed an example dataset containing 308,219 analyst reviewed signals from
known seismic events detected by the station MKAR, located in Kazakhstan, over the time pe-
riod 2002-2013. We built a test set with 25,865 analyst reviewed signals from known events from
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Figure 7. Example of seismic signals detected over 12 years at
station MKAR in Kazakhstan from the same earthquake source in
the Kuril Trench.

the same station during 2014. These data are publicly available from the Incorporated Research
Institutions for Seismology [5].

For each signal detection, we take a 30 second sample starting 2 seconds before the time that
the signal was detected at the station. The data are sampled at 40Hz meaning that each signal is
comprised of 1200 samples. The starting time for each signal is chosen by a human analyst with
an estimated uncertainty of ±0.5 seconds. Due to this uncertainty, the dataset similarity must be
measured by checking a sliding set of alignments via 1D cross-correlation

xcorr(a,b) = argmax
i

< a,bi > (12)

where bi represents a shift of signal b by i in time. As with the jittered MNIST dataset, we use the
standard correlation kernel.

κ(a,b) = expxcorr(a,b) (13)

We project the data using KPCA with numReps = 500 and then further reduce the dimensionality
so that dimReduced = 200.

Figure 8 shows a dramatic increase in performance when utilizing LAFS on seismic data with
ns = 1000. In seismic data, we find that outside of a few very strong matches the majority of
neighbors cluster with very similar correlation scores. The kernel function is likely not discrim-
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inative enough to differentiate between these small differences. LAFS mitigates this problem by
calculating the similarities in the real cross-correlation space.

Figure 8. Performance comparison on seismic dataset for stan-
dard KD-Tree vs. KD-Tree using LAFS for indices of 5, 25, and
100 trees.
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4 Conclusion

This paper presents Local Area Focused Search (LAFS). LAFS enhances standard ANN index
searches by evaluating local neighborhoods over a number of small internal queries. We show
that LAFS improves recall for the same amount of similarity comparisons on SIFT1M, a jittered
MNIST dataset, and a seismic waveform data set. Our algorithm improves performance on kernel
projected datasets by allowing similarity to be calculated in the real instead of projected space.
We believe further optimizations to LAFS are possible such as pulling candidates deeper from
within the priority queue to avoid repetition and slightly expand the search space. We leave this
optimization along with integration with other nearest neighbor index types such as hierarchical
k-means trees or LSH as future work.

21



22



References

[1] Mohammad Reza Abbasifard, Bijan Ghahremani, and Hassan Naderi. A survey on nearest
neighbor search methods. International Journal of Computer Applications, 95(25):39–52,
June 2014.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, January 2008.

[3] Jon Louis Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18(9):509–517, September 1975.

[4] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for
generic similarity measures. In Proceedings of the 20th International Conference on World
Wide Web, WWW ’11, pages 577–586, New York, NY, USA, 2011. ACM.

[5] IRIS. Incorporated research institutions for seismology. https://www.iris.edu.

[6] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neigh-
bor search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, January 2011.

[7] Hao Jiang and Wai-Ki Ching. Correlation kernels for support vector machines classification
with applications in cancer data. Computational and Mathematical Methods in Medicine,
10.1155/2012/205025, 2012.

[8] Ke Jiang, Qichao Que, and Brian Kulis. Revisiting kernelized locality-sensitive hashing for
improved large-scale image retrieval. CoRR, abs/1411.4199, 2014.

[9] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. http://yann.lecun.
com/exdb/mnist/, 2010.

[10] Marius Muja and David G. Lowe. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In In VISAPP International Conference on Computer Vision Theory and
Applications, pages 331–340, 2009.
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