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Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor any agency thereof, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.



Abstract:

Design and operation of energy producing, near “zero-emission” coal plants has become a national
imperative. This report on model-based sensor placement describes a transformative two-tier approach to
identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis
in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated
gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment
should be considered at a unit level or a systems level depends upon the criticality of the process
equipment, its likeliness to fail, and the level of resolution desired for any specific failure. Because of the
presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial
profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour
water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour
WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island,
including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level.
Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that
maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition
monitoring. This work could have a major impact on the design and operation of future fossil energy
plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the
same algorithms developed in this report can be further enhanced to be used in retrofits, where the
objectives could be upgrade (addition of more sensors) and relocation of existing sensors.



Table of Contents

o] P 1 4[] SRR T PP 2

R [ 01 oo [0 Tox o] TSSO P PP RPN 13
L1 PUIPOSE ...t 13
1.2 Relevance and IMPACES.........cciiiiiiieiirieie e 13
1.3 TaSK COMPIETION ...t 13
L4 APPIOBCI .t 14
1.4.1  Scientific and Technical REVIEW ...........ccoviiiiiiiiiiie e s 14
1.4.2  2-Tier SENSOr PIACEMENT .......cviiiiiiicie e 15
1.4.3  Problem Tractability .........ccooiiiieiiiiicc e 18

1.5 ComPULALION TOOIS........ciieieiiiecieeie et sre e re e te e sneennas 19
I ST oTol (@ a4 L1 o] [P RTS 19

2 ProCeSS MOUEIING ......cuiiiieieite ettt bbb 20
2.1 Sour Water Gas Shift REACION .........c.ccviieiieiesieseeie ettt 20
2.1.1  ProCess DESCIIPLION. ........ciiiiiieieieie sttt 22
2.1.2  Model DEVEIOPMENL........cciiiiiiieieie et 23
2.1.3  SOIULION APPIOACK .....ecvviieieiee et 27
2.1.4  Data RECONCIHIALION. .......oiiiieiieieese e 27
2.1.5  ReSUILS N DISCUSSIONS ......cuviuiirieiiiesiesiesiesieeeeeeie et st e e e be e s s e 31

2 LG B o 0 [od (U] o] USSP 41

N €T N 1 T U o] I 1000 42
2.2.1  MOGBIING ... 42
2.2.2  Computational APPrOACH .......cviiiiiie i 59
2.2.3  RESUILS AN0 DISCUSSIONS......cuveirereisiieeeesiesieesieeseesseesieeseesseesseeseesseesseesessessseessesseees 62
2.2.4  FaUlt SIMUIALION ......oiiiiie e e 76

2.3 Gasification ISIANG.........couiiii s 81
2.3. 1 MOdel DEVEIOPMENT......cciiiiie ittt 81
2.3.2  Study of FaUlt EFFECES ....c.eeeiieiiecic e 84

3 Model Simplification and Order REAUCLION. ..........ccoouiiiiiieiiie e 88

3.1 SCAING ANAIYSIS ...ttt bbbttt 88



3.1.1  Scaling of WGS reactor model eqUuations: ............ccocvveveiieiieeiesie e 89

3.1.2  Calculation of scales and reference factors...........ccveiereneninienieiere e 91
3.1.3  Calculation of reaction rate SCale............covvriiiriiiiieie e 91
3.1.4  Calculation of scales based on inlet reaction rate .............c.coovvverieieieneneneneeen 92
3.1.5 Reduced order model of WGS reaCtOr ..........ccocueieieiieiieicieiieee e 95
3.1.6  Reduced order model after SCaliNgG .........ccccuriiiriiiieici e 99

3.1.7  Comparison of simulation results from reduced order model with that of detailed
model 99

3.1.8  Comparison of scales with actual simulation..............cccccevevieiiiiic i, 101
3.1.9  Scaling of unsteady WGS MOUE .........cccoeiiiiiiieie e 104
3.2 Method Of CharaCteriStiCS .........ccvuieiiriiiiie it 106
3.3 In-Situ Adaptive TabUIAtioN...........cccciiiiiiicii e 109
3.3 1 AIGOMTERM . 109
3.3.2  BiINAry tre@ StIUCTUIE......uiiiiieiiee e bbb 112
3.3.3  ISAT TOr WGSR MOUEI ....oovviiieiiieece sttt 114
I @70 o [od 131 [ ] PSPPSR 114
System-Level SEnsSor PIaCEMENT.........coviiiiie e 115
A1 INEFOTUCTION ..ottt bbbttt et ntesbenbenbeerenneas 115
4.2 Sensor Placement APPrOACH...........ccuciieii ittt 116
4.3  SDG and FES Algorithms in the Presence of Numerical Simulations ........................ 117
4.4 Sensor Placement Using Magnitude Ratio............ccccveveiiiieeie e 119
4.5  Constraint matrix for FES and MR ........cccooiiiiiiic e 122
4.6 FOrmMUIAtION SUMMAIY.....cciiiiiiiiiiiertere bbbt 123
4.6.1  Optimization ProbIem ..o s 123
4.6.2  SOIULION APPIOACK ...ttt bbb 123
4.7 Network DECOMPOSITION .......cciviiiiiie ettt nas 123
O R |V 1 4o Yo PP SRSTRSP 125
4.7.2  Fault detection for decomposed SYStEM .........ccveiiiiiiiiiii e 127
Distributed SENSOr PIACEMENT .........c.eiiiiieiieeee e e 128
5.1  State Estimation DeVelOpmMENT........ccooouiiiiiiiiiiieeee e 128
5.1.1  INErOTUCTION .....eivieiiieieeie sttt st et esbaetesneesneeneeeneesreeneeas 128
5.1.2  State estimation OF DAE SYSIEIMS........ccooiiiiiiiiiiie e 129

5.1.3  Equality constrained state estimation of uncertain nonlinear DAES .................... 131



5.2  Distributed Sensor Placement Problem Formulation...........oooeeeeeeee e 136

5.2.1  INEOTUCTION ...ttt bbbttt bbb 136
5.2.2  Summary of WGS Model simplification ............ccccocceiveiiiiiiicie e 138
5.2.3  EKF for simplified model ............coooiiiiiii e 138
524  Genetic algorithm.......c.cooiiiiiie e e 140
INterpretation OF RESUILS. ..o s 140
6.1  System-Level Sensor PIACEMENT .........cooiiiiiiiiieeeeee e 140
6.1.1  CSTR CaSE STUAY ..ecveieieiiieie et e ettt ae e sreenesneesreanee s 141
6.1.2  FiVe-TanK Case StUAY........ccceeiueiieiiiie et re e 145
6.1.3  Tennessee Eastman Case StUAY .........cccccveieiieieeieiie e 148
6.1.4  SELEXOL Process Case StUAY ........ccceiveriiiieiieieiiesie e steesie e sie e snne e 151
6.1.5 Combined Cycle Case STUAY .......ccccoiiiiiiiiiiieicie s 154
6.1.6  System DeCOMPOSITION ......oiiiiiiiiieie ittt 164
B.1.7  CONCIUSION ...ttt et reesbe et e s e nreeneeeneenreeneens 167
6.2  Distributed SenSOr PIACEMENT ..........ooviiiiie et 168
6.2.1  State Estimation Validation ............cccoceiiiiiiiiiiiie s 168
6.2.2  Optimal Distributed Sensor PlaCement............cccocvevieiieiiiiie s 177
6.2.3  CONCIUSION ..ottt ettt bbb e enes 183
6.3  2-tier Sensor Placement for Gasification ISIand.............cccociviviiiiininiiienese s 185
6.3.1  FaUlt SIMUIALION......cciiieiiee e 185
B.3.2  RESUILS ...ttt ettt nre et neenre et 190
SUIMMIBIY ..t b ettt b bt h e e bttt b e b e e b e e nbe e b e beenne s 203
Recommendations and research OULPUL ...........ccoviieiiieneie i 203

R B O I CES ..ttt ettt st e e nnnnnnnnn 208



List of Figures

Figure 1. Schematic of the 2-tier sensor placement apProach ...........cccccveveiieiece e 15
Figure 2. Genetic algorithm apProaCh...........ccov e e ee s 16
Figure 3. Diagnostic approach for fault diagnosis and condition MONitoring..........cccceeveevverienienenesenennns 17
Figure 4. Diagram of the data reconCiliation ProCEAUIE ............oorverieiiiiiniise e 29
Figure 5. Arrhenius plot for the water gas Shift reaCtion .............cccooeiiiiiinii e 31
Figure 6. CO mole fraction profile along the reactor when length is increased to 40 m ..........cccccoevveviennne 32
Figure 7. (a)COS mole fraction (b) Gas temperature profile along the reactor when length is increased to

O o OSSPSR 33
Figure 8. CO mole fraction profile for different reactor diameters..........cccvvveievieiieeve s 34
Figure 9. Pressure profile for different reactor diameters ..........oovevveieiieie i 34

Figure 10 shows the relation between the L/D ratio and pressure drop at constant reactor volume. This
result indicates that as L/D increases, the pressure drop keeps increasing. It should be noted that a lower
pressure drop is desired in the WGS reactor system so that higher partial pressure of CO; can be achieved
in the AGR unit. This is particularly important for achieving higher efficiency of the physical solvent-
based CO- capture process in the IGCC plant.®'Figure 10. Pressure drop vs. L/D ratio of the reactor ...... 34

Figure 11. CO conversion profiles for different inlet gas temMperatures...........cccovvvveveieeveseciese e, 36
Figure 12. COS conversion profiles for different inlet gas temperatures ..........ccccoceveiveve v cicse e, 36
Figure 13. CO conversion transient for a step change in inlet temperature from 620 to 640 K ................. 37
Figure 14. Temperature transient at the outlet of the reactor for a step change in inlet temperature from
GYZ R (o LI SO 38
Figure 15. CO conversion profile for different steam/CO molar ratio............ccocevereieieiiniiinisseneees 39
Figure 16. Required (a) Diameter (b) Flow at different steam/CO molar ratios............ccccocvvvvrvnireneniennns 39
Figure 17. Effect of catalyst deactivation over time on CO CONVEISION .........cceevieevieieeiieseeiesre e 40
Figure 18. COS conversion along the reactor after the catalyst lifetime of 5 years..........cccocevveviiveiennnn, 41
Figure 19. Slag formation and detaChMeNt. ...........cc.oii oo e 43
Figure 20. Hybrid shrinking core shrinking particle (HSCSP) Model. .........ccccceviviiiiiiiie e, 45
Figure 21. Schematic of the formation mechanism of slag droplets and their deposition on the wall along
with char particles and the subsequent formation of a slag layer on the gasifier wall.................cc.ccoennnee. 46
Figure 22. Continuum phase domain for solid and gas integrated with the particle phase domain............ 47
Figure 23. Schematic representation of the notations for denoting solids fractions in the continuum model.
.................................................................................................................................................................... 48
Figure 24. Schematic of the recirculation MOdEL. ..........c.cccviiiiiiiiic i 49
Figure 25. Transfer of information between the particle model and continuum model...........c..cccovennnen. 52
Figure 26. Schematic showing the slag droplet deposition on the gasifier wall. ..............ccccooeviiiiinnn, 55
Figure 27. General plot showing the relation between the Vdep + and t+ redrawn from Guha®*. ............ 56
Figure 28. Schematic of the mass, momentum and energy interactions in the slag layer.............c.ccccoceue. 58
Figure 29. Control structure implemented to simulate dynamic runs for the slagging gasifier. ................. 62
Figure 30. Comparisons of the mole fractions of CO2, CO, H2 and —==H20O (on dry basis) at the exit of the
S O (g I L0 o - - RSO S 63
Figure 31. Comparison of the reaction rates between the shrinking particle model and hybrid shrinking
core-shrinking Particle MOEL. ..........oo et see e 64
Figure 32. Comparison of carbon conversion of carbon between the gasifier model and the complete

(o0 LTS ot=] o= T T L= SR 64

Figure 33. Comparison of solids temperature profiles between the shrinking core and HSCSP model..... 65



Figure 34. Variation of diameter of char particles, attached slag droplets, and average density of the char-

slag system along the GASITIEN. ......c.ov i s 66
Figure 35. Deposition flux and slag layer thickness profile for base case PSD...........ccccocooviniiiincnenne 68
Figure 36. Slag droplet deposition flux and slag layer thickness for cases SD-5-50 and SD 60-10........... 69
Figure 37. Comparison of the slag layer thickness for Case CC and base Case. ..........ccccevevveveieieerrenennn, 69
Figure 38. Effect of change in O2/coal ratio on slag layer thickness at gasifier exit............cccccevvvvivevnennnn, 70
Figure 39. Variation of the maximum and minimum slag layer temperature due to change in O2/Coal feed
LA oSSR 71
Figure 40. Effect of silica ratio on exit viscosity and slag layer thickness. ..........c.ccoceoeiiiiiniiiincnens 72
Figure 41. Effect of ramp change in coal slurry flow rate on slag layer thickness at final CV. ................. 73
Figure 42. Effect of ramp change in coal slurry flow rate on slag layer temperature at final CV. ............. 73
Figure 43. Change in outlet gas composition and carbon conversion during coal switch from Illinois #6 to
PILESOUIGN #8 COBL. ....c.vviiiiece et e et e s be e e sbeete e besreeneenre e 74
Figure 44. Deposition flux before and after change of coal from Illinois #6 to Pittsburgh #8. .................. 74
Figure 45. Slag layer temperature and viscosity profile before and after the coal switch. ......................... 75
Figure 46. Transient response of slag layer and wall temperature and slag thickness at gasifier exit. ....... 75
Figure 47. Slag penetration into the high chrome refractory at different time instances. ............cc.ccoeeevenee 77
Figure 48. Steady state temperature profile along the refractory across the four layers. ...........c.ccoceverienne 78
Figure 49. Coal slurry set point variation in the gasifier Model.............ccocoviiiiiniiiic s 79
Figure 50. Wall temperature at the grid point selected for simulating degradation..............cc.ccceeeevenennenn. 80
Figure 51. Time for first spall for the fOUr CASES.........cciviiiiiiic e 80
Figure 52. Schematic representation of the Sour Water Gas Shift Reactor system developed in MATLAB.
.................................................................................................................................................................... 82
Figure 53. Exchange of information between the SWGSR in MATLAB and the Selexol model in APD. 83
Figure 54. Temperature profile along reactor R2............cccoiiiiiiinieieicecies e 83
Figure 55. Profile of CO mole fraction along the length of reactor R2. ............ccocooeiiiiiiiiii s 84
Figure 56. Plot of COS mole fraction along R2...........c.ocuiiiiiiiiece e 84
Figure 57. CO at the end of R1 as a result of a ramp change in the porosity..........ccccccoevevevieciicie e, 85
Figure 58. COS at the end of R1 as a result of a ramp change in Porosity. .........cccccovvvieic v cicce e, 85
Figure 59. Temperature at end of R1 as a result of a ramp change in porosity. .........ccecoecevieeiiinieie e, 86
Figure 60. CO mole fraction at end of R2 as a result of ramp change in porosity.........ccccccoceevvivieieernennnn, 86
Figure 61. COS mole fraction at end of R2 as a result of ramp change in porosity. ..........ccccocvvereneniennns 87
Figure 62. Temperature response at the exit of R2 as a result of ramp change in porosity. ............c.ccce.... 87
Figure 63. CO response at the exit of the Selexol unit as a result of ramp change in porosity................... 88
Figure 64. Typical variation of exothermic reaction rate along the length of the reactor...............cc.cccoc... 92
Figure 65. Concentration profile of COS from detailed and reduced model for WGS reactor................. 101
Figure 66. Temperature profile from detailed and reduced model for WGS reactor.............c.cccccevevennne. 101
Figure 67. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas
temperature from detailed and reduced order model. ..o 106
Figure 68. Schematic figure showing the characteristic lines in (z-t) plane. .........ccccocevviniiniiieneen, 107
Figure 69. Schematic figure showing the approximation involved in the solution of dependent variable
A1ONQG ChATACTEIISTIC TINES. ...ttt bbbttt bbb b 108
Figure 70. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas
temperature from detailed and reduced order model. ...........cocooiiiii i 108
Figure 71. Concept of direct integration and ISAT when the model is solved several times. .................. 109
Figure 72. Addition of record in @ SOIULION SPACE. .......ceviriiiie ettt ene 111

Figure 73. Growth of EOA where grow EOA encompasses the initial EOA and the query point. ......... 112



Figure 74. Binary tree Showing Nodes and [€AVES. ...........ooviieiiiiee i 113
Figure 75. Binary tree shown in search space where represent a new query point . Corresponding binary

tree structure is shown on the right NaNd SIAE. ..........coveiiiiiiiiiee e 114
Figure 76. Dynamic simulation of WGSR model using ISAT with retrieval and direct integration (DI).114
Figure 77. Flowchart of FES algorithm in presence of numerical solution ............cccccccoeviieicin e, 119
Figure 78. Magnitude ratio for example in Table 18 ........cccceiiiieii i 120
Figure 79. Flowchart of MR algorithm.........c.ooiiiiii e 122
Figure 80. Representation Of adjaCENCY MALIIX.........cceiuiiiirirerieireieee e 125
Figure 81. Pseudo-fault representation for two SUD-SYSTEMS. .........cceiviiiiiiiiiiereeee e 127
Figure 82. Schematic of the CSTR SYStEMIB2 ... ......oiiieeeicee e 141
Figure 83. Schematic of the five-tank case-study®l ..............ccooeerrriiiieces e, 145
Figure 84. TE process FIOWShEEEI® ... ..ot 149
Figure 85. Schematic of the SELEXOL ProCESSI®.........cociieiiiieieeeeeee ettt 152
Figure 86. Schematic of the combined cycle POWEr PIANt. ..........c.coeviiiiiiiiiiere e 155
Figure 87. Schematic of the high pressure steam generation VESSEL .........ccccvevvieiie i ciiene s 156
Figure 88. Schematic of the heat exchanger between the syngas stream and the high pressure steam. ... 156
Figure 89. Schematic of the condenser where steam/condensate is cooled by cooling water. ................. 157
Figure 90. Schematic of the heat exchanger (part of HRSG) where the combusted syngas is used to
SUPEINEAL TNE SEEAIM. ...ttt ettt bbbt et et b bbb nen e 157
Figure 91. Schematic of the gas turbing COMBUSTON. .........cccciveiiiieeie e e 157
Figure 92. Heat exchanger cooling combusted syngas with intermediate pressure steam........................ 158
Figure 93. Volumetric flow rate of the leaking steam stream into the syngas stream due to Fault 2. ...... 159
Figure 94. Temperature change of the Syngas stream at the outlet of the Heat exchanger due to Fault 2.
.................................................................................................................................................................. 159
Figure 95. Flow rate change of the syngas stream exiting the heat exchanger due to Fault 2. ................. 160
Figure 96. Temperature change of the flue gas at the outlet of the superheater due to Fault 4. ............... 160
Figure 97. Change in Flow rate of Combusted Syngas stream due to Fault 4. ..., 161
Figure 98. Change in Temperature of the outlet Syngas stream due to Fault 7. .........cc.cccooevveviiniiciene. 161
Figure 99. Number of irresolvable faults (left) and the corresponding sensor network cost (right) at
different MR threShold VAIUES...........coviiieeeee et 163
Figure 100. Actual, measured and estimated values of differential variable Xi..........cccccevvvviviiniicieane. 170
Figure 101. Actual, measured and estimated values of differential variable Xa..........ccccceevvevivviiviicinne 171
Figure 102. Actual, measured and estimated values of algebraic variable z ............cccoccooviiniiienenn, 171
Figure 103. Schematic Of the WGSR SYSIEIM........cuiiiiiiiiiiie e 172

Figure 104. Actual (-), measured (*) and estimated (--) value at 9" grid-point on the reactor for (a) yco
(RMSEgata = 5.005 x 103, RMSEes= 3.852 x 103) (b) Yr20 (RMSEgaa = 5.003 x 10, RMSEes= 3.827 x
1073) (c) Tg (RMSEqgata = 7.978 x 1073, RMSEes= 4.945 X 1073).....cuiiviiiiiicieieneeeeeesee e 175
Figure 105. Actual (-), measured (*) and estimated (--) value at 9" grid-point on the reactor for (a) P
(RMSEgata = 1.998 x 10%, RMSEes= 0.894 x 107 using Filter 1) (b) P (RMSEes= 5.312 x 107 using

11 C=] o TSSOSO PRSP P U 175
Figure 106. Normalized fitness evolution for each model............cccoeiiiiiiiiiniec e 180
Figure 107. Change in CO mole fraction at the exit of the SWGSR due to faults...........cccccocvviireninnnne. 186
Figure 108. Change in COS mole fraction at the exit of the SWGSR due to faults. ...........c.ccocevireriennne 186
Figure 109. Change in outlet temperature of the SWGSR due to faults. .........ccooeeii i 187

Figure 110. HE configuration 1: leak simulated as mixing of inlet high pressure stream into outlet low
PIESSUIE STFBAIMN. ...ttt ittt ettt ettt ettt ettt et b e bt e s bt e s h b e e e b e e s ke e st e e bt e b et eb e e e hb e e ab e e ebe e sheesheesmbeenbeenbeebeenbnesrneas 189



Figure 111. HE configuration 2: leak simulated as mixing of outlet high pressure stream into inlet low

[S1 LSS U= (=T g o PO TR VPR PR 189
Figure 112. GA progress for different faults............ccooiiiiiiiiee e 192
Figure 113. Fault severity estimation using optimal solution for fault (a) Fzs (b) F2s (C) F27 (d) Fa1 (€) Fa2
.................................................................................................................................................................. 194
Figure 114. Fault severity estimation using final sensor network for fault (a) Fzs (b) F2 () F27 (d) Fs1 (€)
ST TSSOSO 196
Figure 115. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the reactor
L0 0 LTSS 198
Figure 116. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the reactor
L0 0 LTS 199
Figure 117. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the reactor
OT FAUIE F a7t bbb bbbt b bbbt b e e bt e bbbt n e 200
Figure 118. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the reactor
L0 = TU L SO RRUR T 201

Figure 119. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the reactor
L0 g =101 S RP 202



List of Tables

Table 1. Properties of Catalyst QB ...........cccuiuiiiieicceieee et 28
Table 2. Standard deviation of different variables®h®2 ..., 29
Table 3. Comparison of the reconciled and original mole fractions®..............ccoevevviiriicessi e 30
Table 4. SIMulation CONAItIONES ..............cceuiiiricecccccee et 31
Table 5. Model parameters and iNPUL CONAITIONS ..........ccuiiiieiiiiiiie e 60
Table 6. Proximate and Ultimate analysis of Illinois #6 and Pittsburgh #8 coal [As-Received (wt %)]....61
Table 7. Validation data from TECO power plant0............ccooiiiiieiieceeeese e 62
Table 8. Comparison between outlet mole fractions of SCM and HSCSP models ..........cccccovevevviienennnn 65
Table 9. Comparison of the results from this work with the existing literature®42................ccccovvvvennnns 67
Table 10. Simulated particle Size diStriDULIONS ............coiiiiiiiiiie s 68
Table 11. Silica ratios calculated for Illinois #6 coal taken from literature..........cccccoovvievvnciin e 71
Table 12. Parameters and inlet conditions fOr WGS r€aCION............cceiveieiiiiiieieseeeee s 95
Table 13. Values of dimensionless group for the WGS reactor model..........cccccevvevieviiiieiciieie e 97
Table 14. Metric for comparing reduced and detailed model simulation ............cccccovveviiiiicicin e, 100
Table 15. Exact values and approximate values of the SCales...........cccoeviiiiiiiiiic v 102
Table 16. WGS reactor dimensionless equations are shown as algebraic equations with their

corresponding values from simulation and scaling analysis............cccooiiiiiiiiieneiee e 103
Table 17. Summary of detailed and reduced order Model ............cccocvivieriiiieeiiiiie e 105
Table 18. SDG EXAMPIE ..ot bbbt 120
Table 19. Type and cost of each sensor used in all case Studies® .............cccoeeeeieiiciiieieieceeeeee e, 141
Table 20. List of measured variables in CSTR SYSIEM .......ccviiieieie e s 141
Table 21. List of simulated faults and the corresponding affected sensors in CSTR system ................... 142
Table 22. Results of applying different algorithms to CSTR SYStEM........cceviiiiiiieiiiece e 142
Table 23. Fault resolution by SDG, FES and MR in CSTR SYSIEM ......cccovvveiiiiiiiciecece e 143
Table 24. List of measured variables in five-tank Case-Study ...........ccooeiiiriiininiieees e 145
Table 25. List of simulated faults and the corresponding affected sensors in five-tank case-study ......... 145
Table 26. Results of applying different algorithms to five-tank case-study .........ccccceeveveviveierieiinerenennn, 146
Table 27. Fault resolution by SDG, FES and MR in five-tank Case-Study ..........c.ccoceoeivinieninninenenienns 147
Table 28. List of measured variables in TE Process ¥ ... 149
Table 29. List of simulated faults in TE ProCess ™ ..o 150
Table 30. Results of applying different algorithms to TE ProCess.......cccvvvveiieiiiiie v s 150
Table 31. Fault resolution by SDG, FES and MR in TE PrOCESS.......ccoveiiiieiiiiiiie et 151
Table 32. List of measured variables in SELEXOL PrOCESS .......ccvciveierieieeieiteseesiesteeire e etee e e ene e 152
Table 33. List of simulated faults in SELEXOL PrOCESS.........ccoierieieieieiniisiesiesie e 153
Table 34. Results of applying different algorithms to SELEXOL PrOCESS .......ccvvvvevvrveriereeiverieseerienennns 154
Table 35. Faults at different severity level simulated in the combined cycle model ..............ccccoeninenne 162
Table 36. Weight and threshold of each variable in the sensor placement algorithms ..............cccccceeenee 162
Table 37. SDG and FES algorithms reSUILS .........cc.ooioiiiiie e 162
Table 38. MR algorithm FESUILS .......c.ooiiie ettt see e 163
Table 39. Sensitivity analysis of number of SUD-SYSIEMS .........ccuoiiiiiiir e 165
Table 40. Sensitivity analysis of number of nodes and fault NOAES ...........cccccvvviveic i, 166
Table 41. Sensitivity analysis of number of Cross-CoONNECLIONS ...........cceviiiveiiiiiiiie e 167
Table 42. Comparison of RMSE and SSE values for measured and estimated values..............ccccccovene.n. 172
Table 43. Summary of equations for Water gas shift reactor ...........cccccocvvvvveiiiiiie s 172

Table 44. Summary of the parameters of the WGSR model used in this Work ...........cccccovvveveieiveniennnnn, 173



Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.

Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.

Table 58.
Table 59.
Table 60.

Sum of squared errors value when fixed points measure the same type of states..........c......... 176
Sum of squared errors with one missing MEASUrEMENT............curvrerererrerieeees s 177
SSE values with measurement COmMDINALION ..........cccooiiiiiiiiiie e 177
Wiater gas shift reactor model PArameters........c.ccieieeiieii i 178
Process noise variance values for different models ...........ccocoovvviriiininincii s 179
Sensor placement results and computation time for each model ...........c.cccooveiiiiiciiicie 181
Sensor placement results comparison of Model | and Model V for different number of sensors
................................................................................................................................................... 182
Effect of process noise covariance on the sensor placement results............cccoovvviiiiincnenne 182
Effect of initial error covariance on the sensor placement results ............cocoovoviinnciinenenne 183
Faults simulated on the SELEXOL side of the integrated model .............ccccooviviiiiiiiciens 188
Faults simulated on the SWGSR side of the integrated model .............ccccevvevivieniciciecce, 190
System-level sensor placement results of gasification island .............ccccevvvieviiiii e 190
List of sensors and unresolved fault sets for FES & MR algorithm with low MR threshold level
................................................................................................................................................... 191
Reactor and state eStimation PArameterS.........cocviiiirererieie e 192
Optimal location and type of sensors for different faultS...........ccccoveviveieiiiicninie e 193

Comparison of normalized fitness values for GA solution and final sensor network............... 197



1 Introduction
1.1  Purpose

The goal of this project is to establish a comprehensive methodology to determine the type, location, and
number of sensors required for component condition monitoring and fault diagnosis in fossil energy
systems. Through a transformative two-tier framework, the project seeks to develop a model-based sensor
placement methodology that addresses: (i) Sensor placement for fault diagnosis based on tractable models
that are developed from the system level dynamic model, (ii) Identification of precise locations for
component condition monitoring based on distributed component level models.

The theoretical and computational efforts undertaken as a part of this project are delivered as a framework
that can be used in combination with simulations of fossil energy systems. The framework developed in
this project can be enhanced to include any other simulation system through appropriate use of first-
principles modeling and state estimation techniques.

1.2 Relevance and Impacts

It is well known that considerable coal resources exist in the United States. However, coal utilization is
accompanied by the associated pollution related concerns. In response to this, design and operation of
energy producing, near “zero-emission” coal plants has become a national imperative. This report on
model-based sensor placement will provide a formal approach to identify the optimum placement,
number, and type of sensors that will be sufficient for condition monitoring and fault diagnosis in fossil
energy system operations. This work could have a major impact on the design and operation of future
fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In
addition, the same algorithms developed in this report can be further enhanced to be used in retrofits,
where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors.

1.3 Task Completion

Table | shows the list of tasks proposed in this project and the corresponding section in this report where
the results for the identified tasks are reported.

Table 1. Completed tasks and the corresponding sections for the completion of the project

Task Description Section
2.1.1
21 Development of the distributed sensor placement algorithm 3
' using UIF and genetic search 5
6.2
Development of the algorithm for sensor placement for 41-4.3
2 2.2 system-level fault diagnosis with enhancements to the 6 1‘ 1-6. 14
gualitative math model. Tested on SELEXOL plant T
Identification of the faults in the gasification island and in 2.1.2
23 the gasifier, further development of the water gas shift 2.2
' reactor model, and model enhancement to incorporate 6.2.2
simulation models for faults and disturbances in the WGSR 6.3.1
Implementation of the condition monitoring sensor
31 placement algorithm on the WGS model. System-level 621

3 faults will not be considered here but will be considered
once the two-tier sensor placement is complete
3.2 Further development of plant-wide sensor placement 4.4




algorithms to include the reliability approach and
development of Integer Linear Programming
Identification of faults and model enhancement to
incorporate faults in the combined cycle island

3.3 6.1.5

Identification of sensor placement for plant-wide fault

41 diagnosis using the plant-wide dynamic simulation model

6.3.2.1

Validation of the identified sensor placement for condition
monitoring in WGSR and make necessary enhancements
Thorough testing of the already identified distributed sensor
placement for condition monitoring using the nonlinear
WGSR model. Only the faults in the WGSR will be
considered. The impact of the system-level faults will be
evaluated after the integrated two-tier sensor placement is
completed.

4.2 6.2.1

4.3 6.3.2.1

Synthesis of the optimal sensor network by considering the
51 two-tier design algorithm for plant-level fault diagnosis and
5 ' unit-level condition monitoring and validation of the
algorithm

5.2 Summary of the project 7

6.3

1.4 Approach
1.4.1 Scientific and Technical Review

This report includes the development of algorithms that can determine the optimized sensor locations and
types for robust condition monitoring and fault diagnosis in a fossil energy-derived power generation
system. With these objectives in mind, in this report, we will develop algorithms for maximizing the
effectiveness of the sensor network for system-level fault diagnosis and component-level condition
monitoring. The root cause for productivity losses and shut-downs are called “faults” in this report. The
algorithms are developed for and tested on a high fidelity model of the integrated gasification combined
cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a
unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail,
and the level of resolution desired for any specific failure. Because of the presence of a higher fidelity
model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and
estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS)
reactor plays an important role. Yet, it is one of the equipment with the high likelihood to failure because
of the harsh conditions that it is subjected to. In view of this, we have considered condition monitoring of
the sour WGS reactor at the unit level, while a detailed plant-wide model of gasification island (including
sour WGS reactor and the Selexol process) is considered for fault diagnosis at the system-level. Finally,
the developed algorithms unify the two levels and identify an optimal sensor network that maximizes the
effectiveness of the overall system-level fault diagnosis and component-level condition monitoring.
Measurement and model uncertainties are naturally handled in the solution approach while sensor failure
probabilities and failure occurrence probabilities can be easily included, if required.

While there is considerable amount of literature on sensor placement, computationally efficient sensor
placement algorithms that provide a comprehensive solution as envisaged in this report are minimal.



Through a transformative two-tier sensor placement framework that incorporates already developed
technology, when available, in combination with novel ideas reported here, we seek to solve this
comprehensive sensor network problem. The sensor placement problem in its broadest sense has to use
information regarding - available sensors and their failure rates, available failure information and their
occurrence rates, component and system models, criticality of the individual components to the process,
nature of the component models available (lumped, distributed) - to provide recommendations regarding
the location, type, and number of sensors for an efficient component monitoring and fault diagnosis
network. This is a challenging problem because while component-level approaches will fail to utilize the
synergistic system-level interactions, a system-level view will result in computational intractability. This
has been a major challenge in developing efficient solutions to this problem. The reported solution
approach follows a “divide-and-conquer” philosophy. The key to the success of this philosophy is in
using appropriate models and information at the correct level of the problem. This is depicted in Error!
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Figure 1. Schematic of the 2-tier sensor placement approach

1.4.2 2-Tier Sensor Placement
The sensor placement problem is decoupled into two tiers. Tier | deals with system-level sensor
placement. A model that is appropriate at this level, that is, a qualitative math model is used. It should be
noted that a plant-scale coupled Partial Differential Equations (PDES) can run into thousands of equations
and solving them within an optimization loop for sensor placement will likely be computationally
intractable. The previous works have demonstrated the use of graph models such as the Signed Directed
Graph (SDG) model for plant-level diagnosis.234567 The objective function for sensor placement is a
critical component in the resulting sensor placement algorithms. Resolving all the hypothesized faults
could be one objective.® An alternate objective is to maximize reliability of the fault diagnosis network
with maximum possible resolution of failure origins as constraints imposed on the solution. The original
cost minimization formulation with maximum resolution satisfies the objective efficiently and will be
used in tier | sensor placement. The maximum resolution that is possible is a complex function of both the
system characteristics and the model that is used in the sensor placement approach. Our reported approach
ensures that all the faults that are resolvable are indeed resolved by the sensor placement algorithm and at
the same time the fault diagnosis network is highly cost effective. Bhushan and Rengaswamy® showed



how this sensor placement problem could be converted to an Integer Linear Programming (ILP) problem
using some transformations. This is the solution approach that will be used in this report. Tier | solution
will identify the optimal cost sensor placements that achieve the maximum resolution possible given the
system description and the qualitative cause-effect mathematical model of the system in presence of the
numerical solution (obviously this system model will also include the faults and sensors of the individual
components that are considered in tier I1). Moreover, our contention is that it is more natural to handle
this problem at a component level with high fidelity math models. This integrates system-level fault
diagnosis with component level condition monitoring. As a result, tier 1l sensor placement goal is
estimation of failure severity at the component-level. The sensors identified at this level help not only in
estimation of failure severity at the component-level but also in failure resolution when needed. This goal
is achieved by coupling appropriate state and parameter estimation techniques (can be thought of as an
unknown input filter (UIF)) with a Genetic Algorithm (GA) optimization approach as shown in Figure 2.
A filter needs to be used because of the need to estimate severity levels. By augmenting fault magnitudes
as parameters in the filter, failure severity can be estimated. The main objective of tier Il sensor
placement is the identification of the sensor locations. For this, the distributed model is converted to an
Ordinary Differential Equation (ODE) model that the state and parameter approaches work with. This is
achieved by discretizing the distributed model using method of lines. This is a well-known approach for

Current
sensor

converting PDE to ODE.

location
Genetic £ )
operations fvz:‘ uation
to obtain I0 t \e'sensor
new sensor ocatn:'rlnFusmg
locations ’
Selection
of desired

location

Figure 2. Genetic algorithm approach



Optimized sensor locations are identified using a genetic algorithm (GA) approach as shown in Figure 2.
The decision variables are discrete (1 if a sensor is placed at a particular distributed location and O if not).
The objective function is usually a squared error between the actual and estimated failure severities.
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Further, the objective function - which reflects how well the actual location and the severity of the fault is
captured for a particular sensor network - is nonlinear and does not have a closed form analytical
expression. This makes it difficult to optimize the sensor locations using standard math programming
based approaches. Evolutionary algorithm approaches have been demonstrated to successfully solve such
problems in several application areas.®%%1112 Once these sensor locations are identified, the actual fault
diagnosis and condition monitoring in real-time can also be achieved using the models and methods used
in the sensor placement algorithm as shown in Figure 3. Given a list of possible failures, plant-level data
with the qualitative model is used to obtain the optimal sensor network. Based on the faults, the
corresponding state and parameter estimator is run to estimate failure severity. Hence the sensor
placement algorithms seamlessly develop a fault diagnosis and condition monitoring approach for
eventual verification of the suggested sensor locations.

As mentioned before, the IGCC plant will be considered for the sensor placement in this report. Although,
several configurations of IGCC plants are possible, the focus of the current work will be on a plant based
on case #2 from the baseline DOE study®® that incorporates a GEE-type gasifier with CO, capture and
removal. Gasification island and the combination cycle island are considered in this model. The plant
model includes an entrained, downflow, GEE-type gasifier with a radiant syngas cooler (RSC), a two-
stage sour water gas shift (WGS) conversion process with inter-stage cooling, a physical absorption
process, and two advanced "F" class combustion turbines partially integrated with an elevated-pressure air
separation unit (ASU). Typical faults in this plant include the blocking of the radiant syngas cooler
(RSC), leakage in pipes in the black water service, leakage in the sour syngas pipe before and after sour
WGS reactors, failure of the ASU MAC (Main Air Compressor), leakage in the Claus Catalytic Reactor,
mechanical failure of the main BFW (Boiler Feed Water) pump, poisoning of the sour WGS reactor
catalyst, poisoning of the Claus plant catalyst, fouling of the heat exchangers particularly those in the
black-water, and sour-water service and the exchangers in the Claus plant, etc. It is guaranteed that all the
possible faults are identified and considered, but the faults critical for improving the availability of the
IGCC plant are considered although some remain unresolved. The various types of sensors that will be
considered in this report include temperature, pressure, flow, level, and composition sensors. Base case
sensor placements will be generated using such sensors. The reports from the TECO IGCC plant at Polk
county, Florida provide immense insight into many of the typical problems. Let’s consider examples from
one such report and how that will be modeled in Aspen Plus Dynamics. In an assessment of the plant
availability during October, 2000-September, 2001 run of the TECO plant, the following faults were
mentioned that led to shutdown during this fifth year of operation: 5 forced outages due to syngas and
blackwater line leaks, plugged RSC outlet line, syngas scrubber outage, icing in the main exchanger in the



ASU due to missed steps in the regeneration cycle of the air dryer, deposit of the heat stable salt in the
MDEA absorber, etc.!* It was mentioned that, “We could have eliminated or mitigated the losses in most
cases.* These faults can be simulated in the Aspen Plus Dynamics and the transient results can be used in
the fault diagnosis algorithm. For example, the leak in the syngas line can be simulated by adding a pipe
with a valve to the syngas line and opening the valve slowly through a “Flowsheet Task” in Aspen Plus
Dynamics. The deposit of a solid in the tray of a distillation column can be simulated by slowly blocking
the open area of the tray implemented through script in Aspen Plus Dynamics. These changes can be done
manually or by some predefined function written in script of Aspen Plus Dynamics. The commissioning,
operational, and project execution experiences of the TECO IGCC power plant at Polk Country, Florida
are extensively used in this project for identification of the faults at the plant level as well as at the unit
level. A number of reports detailing the various phases of this plant are available in the public
domain.141516.17.18.19 The reports of the pilot plant studies and the issues faced in the commercialization of
the Texaco process are also available.?%2222 Cool Water IGCC plant also had Texaco gasifier, report of
which is also available.?*?® Project and operational reports of plants using non-GEE-type gasifiers are also
available.?8?” QOperational experiences of these projects will also be utilized whenever applicable. Issues
and concerns of various commercial gasifiers have been mentioned in a DOE report.?® A thorough review
of the existing literature has led us to come up with a list of frequent and important faults encountered in
an IGCC plant especially in sour WGS reactor.

The main problem in the sour WGS reactor is the catalyst poisoning that includes catalyst activity,
porosity and surface area reduction. These faults can be simulated by changing the activity, porosity or
surface area of the catalyst in the sour WGS reactor model, respectively. In this project, a 1-d first
principles sour WGS reactor model is developed and used. This model considers mass, momentum, and
energy balances as well as detailed kinetic models of the water gas shift and carbonyl sulfide hydrolysis
reactions.

1.4.3 Problem Tractability

1.4.3.1 Model Simplification and Order Reduction

Even if the first-principles model is tractable, embedding a first-principles model in an optimization loop
may be intractable. The component level sensor placement algorithm consists of three primary
computational modules that form an optimization loop: (i) solution to the first principles model, (ii)
solution to the filter problem, and (iii) GA-related computations. States in the process model are estimated
by solving the filter equations. If the process model is nonlinear, the model must be integrated and
linearized at every time step of the state estimation, which adds to the complexity of the problem. The GA
optimizes a defined objective function and searches in the vast solution space for the optimal solutions,
where each attempt of the GA requires performing a state estimation of the process model, thus, making
the component-level sensor placement significantly computationally intensive and time consuming. In
order to reduce the computational complexity, an efficient approach is to reduce the complexity of the
process model, thus, the computations will be reduced for the entire optimization loop. A simple way to
reduce the complexity of a process model is to linearize the model around the operating point. However,
in presence of faults, this approach may lead to unacceptable inaccuracies. The approach taken in this
project for model simplification and order reduction is a combination of scaling analysis, method of
characteristic and in-situ adaptive tabulation (ISAT). The model simplification is attempted and
implemented in component-level sensor placement. The method of characteristics and ISAT are
attempted to show how they can be implemented in the distributed sensor placement approach. The
implementation of scaling analysis at the component-level sensor placement is found to be sufficient for
the work envisaged in this project and the implementation of the reduced order models are recommended
for future efforts in component-level sensor placement.



1.4.3.2 Network Decomposition

The use of graph models for plant-level sensor placement promises significant reduction in computations
compared to the use of plant-scale coupled PDEs. Although the plant-level sensor placement is performed
by solving an ILP working on signed directed graphs, there are limitations on how large the graph
networks can be when considering fault resolution. Moreover, as more information is added to the plant-
level sensor placement algorithm, the plant-wide sensor placement will likely be computationally
complex. A general approach in graph theory for reducing the computational complexity is the use of
graph partitioning techniques. In graph partitioning techniques, the graph is divided into smaller
components with components holding specific properties. Due to the nature of graph partitioning
problem, these problems are generally solved by developing heuristic and approximation algorithms.
Typically, the graph partitioning problem attempts to group most interacting components together and
minimize the interaction between the groups. In this project, we have attempted to study the effect of
different parameters including computation time, fault resolution and sensor network cost on graph
partitioning algorithms with fault detection and diagnosis as the objective. The result of this study opens
the door for further progress and can help researchers when developing partitioning algorithms for fault
detection and diagnosis.

1.5 Computation Tools

MATLAB®, a computing environment developed by MathWorks®, is one of the main engineering
software used in this project for modeling and optimization. Except for the gasifier model developed in
Aspen Plus®, all of the system- and component-level sensor placement algorithms and the corresponding
simulations are performed in MATLAB environment. Aspen Plus is chemical process simulation software
developed by AspenTech that is used in this report for modeling and simulation of gasifier. The Simulink
interface developed by MathWorks links the Aspen Plus to MATLAB for simulation of integrated
systems including gasification island and combined cycle. IBM ILOG CPLEX® optimization toolbox for
MATLAB is used within MATLAB environment for solving integer linear programming problems in
system-level sensor placement while other optimization problems are solved using MATLAB’s default
optimization toolbox. The final optimization of component-level sensor placement which involves genetic
search can be efficiently performed in parallel. The parallel computation is provided by Texas Tech
University’s High Performance Computing Center (HPCC). HPCC’s computing resource, Hrothgar, has
86 teraflops in 7680 2.8 GHz cores and 12.3 teraflops in 1024 3.0 GHz cores. However, the regular
MATLAB parallel computation license on HPCC is limited to use of 12 cores (increased to 20 cores in
2015) per each computing job.

1.6 Report Organization

Section 1.0 — Introduction: Discusses the purpose, relevance and impacts of the study. The fundamental
information and overall approach of the study is briefly described.

Section 2.0 — Process Modeling: Describes the development of process models for sour water gas shift
reactor and gasifier in complete detail. Simulation studies for model validation and sensitivity studies are
also provided.

Section 3.0 — Model Simplification and Order Reduction: Provides a mathematical approach for
simplifying the sour gas shift process model, as well as well-known techniques for order reduction,
including the method of characteristics and in-situ adaptive tabulation.



Section 4.0 — System-Level Sensor Placement: Describes qualitative-analysis of causal models for fault
detection and introduces an enhancement to previously developed algorithms. Implementation of
algorithms in presence of numerical simulations is discussed as well. The necessity of graph partitioning
for fault detection, as well as a method for sensitivity analysis of network systems is described.

Section 5.0 — Distributed Sensor Placement: Explains the constrained state estimation and the genetic
algorithm involved in distributed sensor placement. For state estimation, the development and
formulation of constrained extended Kalman filter for differential and algebraic systems are described, as
well as the implementation on the sour water gas shift model and its simplified model. The optimization
problem for sensor placement and the genetic algorithm properties used for finding its solution are also
discussed.

Section 6.0 — Interpretation of Results: This section provides case studies for the algorithms developed
in the previous sections. After validating the results, the algorithms are implemented on the gasification
island to identify a 2-tier sensor placement approach for fault detection and fault severity estimation. The
faults that are considered in the gasification island are also explained in this section.

Section 7 — Summary: Discusses the overall study results and conclusions.

Section 8 — Recommendations: Discusses the direction for future research and provides explanation of
the use of 2-tier sensor placement framework for other systems. The publication output from the project is
also described.

Section 9 — References

2  Process Modeling

2.1 Sour Water Gas Shift Reactor
Fossil fuels are the main sources of non-renewable energy used by humans. Among these fuels, coal is
found in abundance in U.S., while costing less (on a specific energy basis) than other fossil fuels. The
major drawback to using coal is the growing concern of the impact of global greenhouse gas emissions
and the effect of tighter emission regulations on the coal-based power plants. In addition to carbon and
hydrogen, coal contains significant amounts of impurities, such as sulfur compounds and mercury, as a
result burnt coal not only produces carbon dioxide (CO-), a major component of greenhouse gas, but also
other pollutants that are hazardous to the environment. To overcome these problems, coal power plants
should capture and sequestrate CO.. However, efficiency of traditional coal power plants, such as
subcritical and supercritical power plants, are largely affected by addition of CO, capture.?® Therefore,
advanced technologies such as integrated gasification combined cycle (IGCC) have been developed over
the years that yield higher efficiencies in comparison to the traditional power plants and offer near-zero
emission power generation by allowing capture and sequestration of CO,.2°3! In an IGCC plant, the coal
is converted via a gasification process into syngas that is rich in hydrogen (H;) and carbon monoxide
(CO). The syngas, treated in a sour water gas shift (WGS) process, produces valuable H, removable CO;
by hydrolysis of unwanted CO, and removable hydrogen sulfide (H.S) by hydrolysis of the harmful sulfur
compounds such as carbonyl sulfide (COS). The syngas is then passed through an acid gas removal
(AGR) process to remove H,S and CO, and purified hydrogen is eventually burned in a combustion
turbine as part of the combined cycle to produce power. The combined cycle constitutes a combustion
turbine that produces energy by combusting the hydrogen and a steam cycle that first generates steam by
recovering the heat of combustion from the gas turbine effluent stream and then produces energy by
expanding the resulting steam in steam turbines. This combined cycle operation is more efficient than its
rival, traditional pulverized coal plants, which benefit only from power generation from steam turbines.



However, the cost, availability, and complexity are disadvantages of IGCC technology that must be
addressed before IGCC can be the prime technology for coal-based power generation. These
disadvantages can be addresses by utilizing a combination of developments including design and
optimization of each component of the IGCC plant.

To satisfy the overall CO; capture target in an IGCC plant with CO; capture, a certain extent of CO to
CO; conversion must be achieved in the WGS reactors.®! The water gas shift process can be sweet or
sour.®2 The activity of conventional sweet shift catalysts such as iron- or copper-based catalysts reduce in
presence of sulfur due to sulfur poisoning.®*34 Therefore, in a sweet shift process, the COS present in the
syngas is first hydrolyzed to H>S and then H.S is captured in an AGR unit before sending the syngas to
the WGS reactors. Therefore, the plants with sweet shift processes require two reactor systems- a COS
hydrolysis reactor system and a WGS reactor system. These are called reactor systems as one or more
reactors with inter-stage coolers may be needed depending on the desired extent of conversion and
process operating conditions. As the water contained in the syngas is cooled and condensed before
sending it to the AGR unit, the syngas must be reheated and before sending it to the sweet shift reactors,
substantial amount of steam must be injected to the syngas in order to drive the reaction equilibrium
towards the products. In an IGCC process, the syngas from the gasifier passes through a water scrubber.3!
The syngas at the outlet of the scrubber is saturated with water and can be made available at a temperature
that is suitable for the WGS reactor inlet. Therefore, if the sour syngas from the outlet of the scrubber is
shifted, a higher overall efficiency can be achieved in comparison to the sweet shift process because of
the higher temperature of the syngas and lower requirement of additional steam.35363738 However, a
sulfur-tolerant catalyst is required because of the presence of COS and H.S in the syngas. The sulfide-
treated Cobalt/Molybdenum (Co/Mo) and Nickel/Molybdenum (Ni/Mo) impregnated alumina catalysts
are sulfur-tolerant and can catalyze the shift reaction.®*4%4! In addition, typical sour shift catalysts can
convert COS and other organic sulfur compounds into H,S, which also helps in capturing H2S since it is
removed easier than COS from the syngas in the AGR unit.> Actually, sulfur-tolerant catalysts require
sulfur in the syngas to remain active and can operate in a wide temperature range.*® Moreover, the startup
procedure for the sour water gas shift catalysts is less complex.** In addition, the sour shift catalysts are
less sensitive to operational conditions.** Because of these advantages, a sour shift process is preferred in
an IGCC plant with CO; capture and a separate COS hydrolysis reactor is not needed.

The water gas shift reaction is a well-studied equilibrium reaction where several models of the sweet shift
reactor have been developed.*3#54647.4849 Gjunta et al.*® have performed an extensive study on a 2-D
heterogeneous dynamic model, validated with experimental data. In their work, consideration of the
intraparticle mass transfer limitations by the definition of effectiveness factor, although negligible at
catalyst diameters below 0.8 mm, returns good results for industrial-sized reactors, which have larger
catalysts.*” Adams and Barton*’ have developed a 1-D heterogeneous dynamic model and validated with
the work of Choi and Stenger®. Steady-state models of WGS reactor and their validation with the
experimental data have been reported in the work of Ding and Chan“® and Chen et al.*!. Francesconi et
al.*® have discussed optimization of the reactor at steady-state condition.

Most of the efforts in modeling the WGS reactors have focused on the sweet shift process where several
catalysts at different conditions have been studied.>>°3%*%°%¢ |n comparison to the vast amount of work on
the sweet shift catalysts, the amount of work on the sour shift catalysts is very little. A few experimental
works can be found that have investigated the performance of the sour shift catalysts and have performed
kinetic studies in the presence of a sulfiding agent such as COS or H,S, which are typically present at
reasonable concentrations in the syngas obtained from a coal-fired gasifier.3340.57:585980 Additionally,
computational models developed for sour shift reactors are rare. Bell and Edgar***® have developed 1-D
pseudo-homogeneous model of a reactor that is filled with the Co/Mo based catalyst, which is similar to
the catalyst used in this work with the exception that the catalyst used in this work is promoted with
cesium.®! Although they verified their steady-state and dynamic model with experimental results, their
lab-scale reactor model cannot be scaled up to an industrial reactor due to their assumptions that are



exclusive to lab-scale models and under-predict the results for industrial-scale reactors. In their work, they
have ignored the momentum balance while modeling their reactor; therefore, information on the pressure
drop across the reactor is not included. Pseudo-homogeneous models are sufficient only when intra-
particle heat and mass transfer limitations are negligible, which is not the case for an industrial-scale
reactor.®? Since a typical industrial-scale sour shift reactor is filled with larger catalyst particles and
operates at higher pressures compared to catalyst particle size and operating pressure in experimental
studies, their model cannot be used for studying the performance of the reactor under industrial
conditions. Here, all these issues are addressed and a model that is applicable to both lab- and industrial-
scale reactors is developed.

In almost all the papers, both experimental and computational, COS hydrolysis reaction concurrent with
the WGS reaction have not been studied. It must be noted that a significant conversion of COS in the shift
reactor(s) is desired so that the resulting H>S can be captured in the acid gas removal unit for satisfying
the overall specifications on sulfur emission.3* COS hydrolysis reaction would be expected to occur on
the sour shift catalysts since the typical sour shift catalysts use Co/Mo supported on alumina and alumina
has been reported to catalyze the COS hydrolysis reaction.®®%4%% With this motivation, we have developed
a dynamic model of a sour shift reactor by considering both WGS and COS hydrolysis reactions and have
used this model for the typical feed conditions of an IGCC plant. For validating the model, experimental
data are required for reactors where the feed contains COS in addition to the typical species present in the
syngas. Unfortunately, the only experimental data that we could find in the existing literature for such
feed conditions contain high measurement errors that necessitate reconciliation of the reported data.®!
Therefore, an algorithm is developed for data reconciliation and estimation of the kinetic parameters. The
developed model is then used to study the effect of the length and diameter of the reactor, the steam-to-
CO ratio, and the inlet temperature of the syngas on the key operating variables. In addition, dynamic
responses are studied by simulating the change in the inlet temperature and catalyst activity that might
occur due to poisoning of the catalyst or due to change in the catalyst microstructure during the course of
reactor operation.

2.1.1 Process Description
The two key reactions that take place in the catalytic sour WGS reactor are the water gas shift reaction,

CO + H,0 & H,+CO, (1)
and COS hydrolysis reaction,
CO0S + H,0 & H,S+CO, (2)

Both reactions are exothermic and feasible over wide range of temperatures. The standard heat of
reactions are 41.1 kJ/mol and 30.2 kJ/mol for WGS reaction and COS hydrolysis, respectively.®’ For both
reactions, low temperatures are preferred thermodynamically as the equilibrium will be pushed toward the
products whereas high temperatures are preferred due to the reaction kinetics. Thus, there is a trade-off
between thermodynamics and reaction kinetics for these reactions. Hence conventionally, this process is
carried out in 2-stages and involves high- and low-temperature reactors with inter-stage cooling.

The catalyst modeled is a Cs promoted Co/Mo impregnated alumina that is commercially available as
"Aldridge".®® Overstreet® and Berispek® have studied this catalyst extensively for different weight
percents of cobalt and molybdenum oxides and tabulated the results for each catalyst. In this report,
published experimental data for catalyst "Q" in the work of Berispek®® are reconciled by solving an
optimization problem and the intrinsic kinetic parameters of the WGS reaction are estimated by
performing regression analysis using the reconciled data.

In the next section, modeling of the 1-D heterogeneous sour WGS reactor is explained in detail. The
modeling is followed by a section that describes the data reconciliation procedure proposed for extracting



the kinetic parameters essential to the model. In the last section, a commercial size reactor that operates
within typical sour WGS process conditions is simulated and the effects of different parameters on the
performance of the reactor are presented.

2.1.2  Model Development

The mathematical model of the plug-flow reactor is developed by deriving the conservation laws for
mass, energy and momentum. For this, radial variations of transport variables are neglected and the
gradients are only considered in axial direction. In this section H,, CO, CO,, H.S, H,O and COS are
considered to be present in the system. Although in industries other gasses such as N2, Ar and O, may be
present, the model equations can be extended easily to include these components, as they are present in
very small quantities and do not react. In general, the model can be applied to any sour gas shift reactor
with any catalyst, but, since Kinetic parameters for sour gas shift reactor catalyst are rarely available, the
model is used to extract the kinetic parameters from available experimental data for the “Aldridge”
catalyst through a data reconciliation procedure.®® A previous study of COS hydrolysis over alumina-
based catalysts showed that the reaction follows an Eley-Rideal mechanism.®® Hence, kinetic parameters
for the COS hydrolysis are obtained from the work of Svoronos et al.®°, whereas the rate parameters for
the WGS reaction are obtained through data reconciliation considering a pseudo-first order reaction.®*

2.1.2.1 Physical Properties
The syngas heat capacity is calculated assuming ideal mixture, as shown in Eqgn. (3).5”

N
Cp = ZYiCp,i ()
i=1

The viscosity of the syngas, u, is estimated from E_qn. (4) as:¥’

YVildi

. = XM/ M )

where M is molecular weight of species denoted by indices i and j.

Assuming interactions between all pairs in the syngas, thermal conductivity of the mixture can be
approximated by using the molar average thermal conductivity, Eqgn. (5).

N
i=1
The effective diffusivity, D,, is related to binary diffusivity, D;;, through Eqn. (6):*
&
Deggij = Dyj (;) (6)

It is difficult to find accurate tortuosity values for the catalyst; however, since the tortuosity of water gas
shift catalysts are in the range of 2-9, a tortuosity value of 5 is chosen.*” The porosity of the catalyst, , is
assumed to be 0.38.”® The binary diffusivity,D;;, is the binary diffusivity of species i into species j. An
approximate equation for diffusion of species i into a mixture is given as:*’



1=y
A/

Zsi(pg )
An analysis of the diffusivity of reactants, CO and H:O, into the mixture in an industrial scale reactor
showed that the diffusivity of H,O into the mixture is the lowest and thus considered as the rate limiting
for the WGS reaction. The binary diffusivities are calculated using Eqn. (7a)-(7b).*""®

D;; = (AT®/P)[In(C/T)]"*Pexp(—E/T — F/T?) (72
Dj; = B/P (7b)

Note that useful information for calculating the heat capacity, viscosity, thermal conductivity and binary
diffusivity can be found in the work of Adams and Barton®’.

2.1.2.2 Model Equations for Catalyst Pellets
The 1-D heterogeneous model has been developed using the effectiveness factor to account for
intraparticle mass transfer limitations. For a first-order reaction, the overall effectiveness factor relates the
actual reaction rate, r, to the reaction rate evaluated at the bulk concentration using various system
parameters, such as reaction rate constant, k, and mass transfer coefficient, k.

=14 = 2kCy pyik (8)

where the overall effectiveness factor is defined as:

D im

Ui

NA=—
1+nk/k.a, ©)
The effectiveness factor is a function of Thiele modulus, ¢, and for a spherical catalyst it is calculated as:
3
n= F(d) coth¢ — 1) (10)
and Thiele modulus is given as:
dear | K
— - 11
¢ == D, (11)

The mass transfer coefficient can be calculated from Thoenes-Kramers correlation: ™
1—¢ Di,m

k. =
¢ € degt

Re'/2S5¢1/3 (12)

where the diffusion of H,O into the mixture is considered for D; ,,, since it is rate limiting. Schmidt
number, Sc, and Reynolds number, Re, are calculated from:

5c=p’;e (13)
pud qe

= L et 14

Re= -9 (14)

The surface area per unit volume of the pellet, a., is estimated by Eqgn. (15) and assuming ideal gas
behavior, the linear gas velocity, wu, is given by Eqn. (16):1%%
ac =6(1—¢)/dcqt (15)
_ GRT

u= T (16)



2.1.2.3 Species Balance
Conservation equations are derived for all gas phase species:

aCi 1 OFL 1-—=¢
-t , 17
ot Aqg 0z * (Z r‘) £ (n
The above equation is rewritten assuming ideal gas behavior for the syngas mixture:*°
ac; Tgas 9C; 10Tyes  Tyas OP 1—¢
Frin -G P oy Ui R P 9z P2 oz + (wes,i + Taya,)) —— . (18)

where C; is the molar concentration of species i, z is the axial position, T is the gas phase temperature, P
IS pressure, R is the universal gas constant, and G is the molar flux, calculated using Egn. (19) and the
total inlet molar flow rate, F,, entering the reactor with diameter d,.., as below:°

4F,

)
. €

(19)

The boundary condition at the inlet to the reactor (at z = 0) can be expressed as C; = C;in, Tyas = Tin,
and P = Py, where C;;,, T, and Py, are the concentration, temperature and pressure of the gas at the
inlet to the reactor.

2.1.2.4 Momentum Balance
A simplified momentum conservation equation is considered assuming pseudo-steady state. This
approach only requires a model for calculating the pressure drop along the reactor. The Ergun equation is
used for calculating the axial pressure profile in a packed bed, rewritten as:™

dP  pu®/1—c¢ 150
1.75 + — 20
dz dcat( &3 )( 5+Re) (20)

where p is the density of the fluid.

2.1.25 Gas phase energy balance
The temperature variation across the reactor can be obtained by deriving the gas phase energy balance:

oT, 1 0T, hra
gas g flc
o= P [—Cpa o T (Tear — Tgas)] (21)
where the heat transfer coefficient, ¢, can be estimated using:%

he = 1. 37( )(c GM )( tGM)O'Ssg (%)2/3 (22)

The boundary condition can be expressed as T4 (at z = 0) = Tj,, where Ty, is the temperature of the
gas at the inlet to the reactor.

2.1.2.6 Catalyst phase energy balance
Assuming that the temperature only varies in the z direction and neglecting radial temperature profile, the
adiabatic energy balance for the catalyst phase is:

0Tcat 1 azTcatt hfac
- Teat — Tyas) + TwesAH
ot PeatCpear| ¢ 022 ( cat = Tyas) + TwesDHrwes

(23)
+ THydAHR,hyd]



For the catalyst phase temperature, following boundary conditions are considered: dT,,;/0z (z=L) =0
and Teq:(z = 0) = Tyqs. Thermal conductivity of the catalyst is assumed to be the same as pure alumina,
35 W/m-K. Additionally, this equation requires the calculation of the heats of reaction using the enthalpy
defined as:

T
H; = AHlq + f Cp,i(T)AT (24)
298
2.1.2.7 The standard heat of formation of CO, CO,, COS, H,0 and HS are -110.5, -393.5, -142, -
241.9, and -20.63 kJ/mol, respectively.®’Reaction kinetics

Although the WGS reaction has been studied over sulfur-tolerant catalysts, such as Co/Mo catalyst,
kinetics of the COS hydrolysis on the sour Shift catalyst are rarely reported. Thus, the parameters of COS
hydrolysis are derived from the open literature for alumina-based catalyst.®® However, the parameters for
the WGS reaction are obtained by analyzing the available experimental data. However, since the presence
of measurement error is common in the data collected in experimental studies, a data reconciliation
procedure is developed to obtain consistent data.

The rate equation for COS hydrolysis considering Eley-Rideal mechanism is expressed as:*!

PCO.S‘
—Thva = K 2
hd Hrd 1+ Keq,hydPHZO ( 5)
where the partial pressures are in kPa and the rate and equilibrium constants are given as:%
25270 [-1]
knyq = 4223.32exp| ————— (26)
RTcat
10010[K]
Keghya = €xp (— — 15.89) (27)

cat

Considering a pseudo-first order equilibrium reaction, the rate equation for the WGS reaction can be
expressed as:

Xco, XH

—Twes = QkyesP <xco - #) (28)
eq,WGS XH,0

where P is the pressure in atm and the rate constant, ks, follows the Arrhenius equation and the

equilibrium constant, K, w¢s. is given by Moe'™:

—E

Kwas = koexp (2 (29)

4577.8[K]

Keqwes = exp ( - 4.33) (30)

cat
2.1.2.8 Pressure scale-up

The reaction kinetics derived from experimental data obtained at lower pressure are not applicable to

industrial-sized reactors since they result in over-prediction of the reaction rates by orders of magnitude.

Therefore, a pressure scale-up factor is used to address such over-predictions at high pressures. The

reaction rate at higher pressures is related to the rate at atmospheric pressure as:*’

"'wes = Pscate "wes (31)

where P4, is the pressure scale factor which is expressed as:*°



Pscate = P(O'S_SS;O) (32)

where P is the pressure in atm. Basically, Eqn. (32) implies that the reaction rate above atmospheric
pressure is in the range of 1-5 times the reaction at atmospheric pressure and the equation is reported to be
valid up to 55 atm.*” So, the rate equation for the WGS reaction in Eqn. (28) is rewritten for high
pressures as:

Xco, XH.

! — 2 2

—T'wes = RkwesPscate <xco - —K " (33)
eqWGS XH,0

2.1.2.9 Catalyst deactivation
The catalyst loses its activity over time mainly due to poisoning, fouling, and thermal and mechanical
degradation. However, here, the catalyst is assumed to deactivate only due to thermal degradation
(sintering). The catalyst activity is defined in terms of reaction rates for both WGS reaction and COS
hydrolysis as:?

UG
Ay = r(—) (34)
(O]
The catalyst deactivation equation is given by:?
da
= — m 35
It kq(a—ag) (35)

where m, the order of sintering, is reported to be either 1 or 2; a,, is limiting activity at infinite time; and
k4 is the sintering rate constant. In the work of Giunta et al.*, the catalyst activity is given at some point
in time which gives a good estimate for the a,, in this work.**"® Also here, m is assumed to be 2 and k is
found by integrating Eqn. (35) for expected life time of Co/Mo catalyst, 5 years, until the catalyst reaches
99% of its limiting activity.*%6.77

2.1.3  Solution Approach

The system consists of a set of partial differential equations (PDES) representing the state of the system.
The PDEs in the modeling equations are converted to ODEs using the method of lines, where the spatial
derivatives are discretized using a backwards difference method. However for solving the equations, the
rate parameters for the water gas shift reaction need to be obtained from the available experimental data.5!
The experimental data were generated from an isothermal reactor under steady-state conditions.®
Therefore, the energy balance equations are eliminated to achieve an isothermal reactor and the time
derivatives are set to zero. The resulting set of nonlinear equations is solved using a trust-region-dogleg
algorithm by 'fsolve' function in MATLAB. Later, a dynamic adiabatic reactor is simulated by scaling up
the reactor and using the obtained parameters. In the data reconciliation simulations, 100 grid points are
assumed for discretization of a 10 centimeter reactor. Increasing the number of grid points to 200, resulted
in less than 0.01% deviation in estimating the rate constant but increased the simulation time. Since the
reactor model is used multiple times in data reconciliation and gross error detection, to reduce the
simulation burden, 100 grid points are considered for the simulations. Equations are solved for the 26
meter long industrial reactor considering 300 grid points since increasing the grid points to 900 resulted
only in less than 0.1% improvement in error and substantially longer processor time to solve the
equations.

2.1.4 Data Reconciliation
The experimental data from Berispek®! are used to obtain the kinetic parameters of the WGS reaction. The
experimental work has a dry-feed with a given composition passing through a water saturator, which is
maintained at 60°C. Before entering the reactor, flowrate of the wet-feed is measured. The effluent of the
catalytic reactor passes through a gas sampling valve where the gas sample is collected and is analyzed by



a gas chromatograph. The outlet compositions from the sour shift reactor are reported for various reactor
temperatures and wet-feed flowrates. The reactor operates at close to atmospheric pressure (715 mm Hg
at the inlet) and the temperature is varied from 200 to 400°C in increments of 25°C. In this laboratory
reactor (with a length of 10 cm and a diameter of 3/16 inches), the temperature is maintained constant
along the reactor resulting in an isothermal condition and the reactor is filled with the “Aldridge”®®
catalyst. Even though several catalysts are investigated in the work of Berispek®!, Catalyst Q has been
considered here. Various properties of Catalyst Q, shown in Table 1, are used for obtaining the kinetic
parameters.

Table 1. Properties of Catalyst Q%

Property Value
Mesh range 20/60
Surface area 279 m?/g

Density 0.65 g/cm?

Porosity 0.38
Tortuosityt 5

Weight of the catalyst 524 ¢
Weight of the inert solids 129

tTortuosity is assumed for the catalyst

In general, experimental data obtained from instruments such as temperature sensors, flow meters, and
gas chromatographs are prone to measurement errors; however, mathematical techniques can be helpful in
correcting the errors in order to get estimates close to the actual values. In the Berispek’s®! experimental
work, COS and H.S are found in very small quantities, less than two percent, and high measurement
errors can be observed in the reported compositions. For instance, even though the feed to the reactor
contains COS, the results of gas chromatography show no sulfur compounds at the outlet of the reactor
for a particular catalyst while the results are considerably different for another catalyst.®* The discrepancy
in the outlet mole fractions of COS and H,S reported for different catalysts justifies our expectation that
these measurements are associated with high errors and require careful consideration as the sulfur
balances are violated. Therefore in our work, a data reconciliation technique is used to minimize the
Mmeasurement errors.

In the experimental data, the dry feed composition before the saturator, wet stream flowrate at the inlet of
reactor, and the gas composition at the outlet of the reactor have been reported.®! These data are
inadequate for calculating the mole fraction of the gas at the inlet of the reactor as the extent of saturation
in the saturator before entering the reactor is unknown. It should be noted that as the flowrate of the dry
gas feed is changed, it is expected that the extent of saturation can also vary. In addition, discrepancy in
the experimental data has been observed as reported before. Hence, the data on outlet mole fractions are
reconciled by a sequential process as described below. To perform the data reconciliation, the water
saturator used in the experiments is assumed as a stream of steam with unknown flowrate, which is well
mixed with the dry feed of known composition and unknown flowrate before entering the reactor.

Figure 4 shows the method used to obtain the reconciled data and the corresponding parameters. In this
approach, data corresponding to different operating conditions are individually reconciled, resulting in
reconciled data and consolidated reaction rate constants at specific flow rates and temperatures. Then, the
estimated reaction rate constants are used to calculate the activation energy and frequency factor of the
WGS reaction. An alternative approach is to include all the data in a single formulation and directly



estimate the activation energy and frequency factor. However, due to the presence of gross errors, this
approach results in undesired estimation errors.”®7°% A gross error detection approach based on the work
of Narasimhan et al.”®8 is performed and gross errors are detected in the reported mole fractions of COS
and HzS. To do this, a null hypothesis is assumed and the objective functions for all individual
experiments are calculated based on the sequential data reconciliation shown in Figure 4 and the objective
functions are summed up. Then, separate data reconciliations are performed assuming a single gross error
hypothesized. The test statistic is obtained as the maximum difference in objective function values
between the null hypothesis and the gross error model of each variable. This approach is done in series
until the test statistic is less than the test criteria, which is equal to chi-square value with the correct
degrees of freedom at 5% level of significance.”# This approach resulted in the identification of COS
and H.S sensors as having gross errors.

I New Guess forthe |
Decision Variables

Optimizer
I Experimental Data I
Initiz_al_Gucss t_‘or the :! | Sour WGS Reactor Model | Error Minimizaion I—> Rccqnc{lcd Data and
Decision Variables A Reaction Rate Constant

Figure 4. Diagram of the data reconciliation procedure

The decision variables for the objective function for this problem are: dry gas flow rate; Fq,; steam flow
rate; Fsm; and the rate constant for the water gas shift reaction, kygs. The WGS reactor model is
simulated to generate the outlet mole fractions by using the guesses for the decision variables. The
optimizer minimizes the sum of the squared error between the model output and the experimental data as
shown in Egn. (36) until it finds the optimal values of the decision variables. The objective function
involves two terms: the first term reduces the error between the outlet mole fractions from the model
(¥modaet) (reconciled values) and the experiments(ye,,), While the second term reduces the error in the
overall inlet flow rate. Since no information on the standard deviations for the gas chromatography
measuerments is provided in the work of Berispek®!, standard deviation values used in the objective
function are taken from the literature and are listed in Table 2. Note that COS and H»S are omitted from
the objective function due to the gross errors that exist in these measured values. The outlet mole fractions
and a consolidated rate constant are estimated by using the proposed optimization formulation. It is worth
mentioning that, as can be seen in Figure 4, the data reconciliation is performed using a sequential
approach. As a result, the model equations are embedded in the objective function and do not participate
as constraints in the formulation. Therefore, an unconstrained optimization problem is solved individually
for all flows at each temperature, which results in separate rate constants at each temperature. However,
since the problem is non-convex, multiple simulations with different initial conditions are performed and
the best solutions are retained. The optimization problem is solved in MATLAB using the 'fmin' function.

Table 2. Standard deviation of different variables8122

Species Standard deviation

H> 1%



CO 1%

CO; 1.4%

H.S 0.07%
H2OF 1%

COSt 0.07%
Flowrate 3%

+Standard deviation for H,O and COS are assumed

2
min
Fq, Fs, kwes,

2
ymodel,j - Yexp,j] + [Fdry + Fstm - Eaxp

O'.

, (36)

j =0, [ OrFexp

C04,H,0

Table 3 shows the inlet and outlet mole fractions and the feed flow to the reactor (Fyy, + Fstn,) for both

the experimental and reconciled outputs at a particular temperature and flowrate. Reconciled mole
fractions of Hp, CO,, CO and H0 are in reasonable agreement with the experimental data.

Table 3. Comparison of the reconciled and original mole fractions®:

Species Original Data Reconciled Data
H> 0.5467 0.5406
Cco 0.2286 0.2289
CO; 0.1314 0.1371
H.S 0.0062 0.0113
H.O 0.0852 0.0818
COS 0.0019 0.0003

Flowrate[cm?®/min] 92.6 92.5




Figure 5 is an Arrhenius plot for the obtained WGS reaction rate constant. Following values are obtained
for the parameters, E, is 56,332 J/mol and k is 810,125 mol/m?-atm-s. These rate parameters are used in
Eqn. (29) for simulating the industrial scale reactor as described in the next section.
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Figure 5. Arrhenius plot for the water gas shift reaction

2.1.5 Results and Discussions

A typical industrial sour gas shift process operates adiabatically and typically under high pressure.
Considering an overall target of 90% carbon capture in an IGCC plant, a 2-stage WGS reactor system
with high- and low-temperature reactors arranged in series with interstage coolers is required.®! However,
only the first stage is simulated here where the reactor is used to study the effect of different parameters
on the reactor operation and the carbon capture goals are not considered explicitly as a 2-stage would then
be required. The syngas in this simulation is composed of Hz, CO, CO2, H,S, H,0 and COS with mole
fractions of 0.21929, 0.23021, 0.08880, 0.00465, 0.45696 and 9x10°°, respectively.®® The reactor is filled
with "Aldridge"®® catalyst, catalyst Q, 2.2 mm in diameter and with porosity of 0.38; and the reactor is
assumed to have no heat loss to the surrounding to satisfy the adiabatic condition.®* With given
composition and pressure for an IGCC case study, the reactor volume and the inlet temperature are
adjusted to size a reactor with 10% overdesign and assuming length to diameter (L/D) of about 5.5.%
Table 4 shows the sizing and operating conditions of the reactor.

Table 4. Simulation condition®

Condition Value

Length 29 m

Diameter 52m
Flow 4.9 kmol/s

Inlet Temperature 620 K



Inlet Pressure 54.437 atm

Figure 6 shows the CO mole fraction profile along the reactor with length increased to 40 meters. As the
water gas shift reaction is equilibrium-limited, conversion will not change after reaching the equilibrium.
This implies that for all operating conditions, a minimum length of the reactor is required to reach
equilibrium. As in Figure 6, equilibrium is reached within almost the first 29 m of the reactor. Figures 7a
and 7b show the COS mole fraction and gas temperature, respectively, as a function of the length of the
reactor. In Figure 7a, it appears that only 9 m of the reactor is required for COS hydrolysis to reach
completion. Since COS hydrolysis is faster compared to WGS reaction, as in the sweet WGS reactor, the
design would only require the first 29 meters of the reactor because no conversion is achieved after this
point. When considering the design parameters for the sour WGS reactor, the required dimensions should
be decided by considering the desired extent of WGS reaction. Although a longer reactor will have higher
overall conversion, several other factors such as equipment cost and allowable pressure drop should be
considered for deciding the final dimensions of the reactors. Note that in the subsequent studies the
reactor length is fixed at 29 m.
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Figure 6. CO mole fraction profile along the reactor when length is increased to 40 m
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Figure 8 shows the axial profile of CO mole fraction as the reactor diameter is changed. For a given
length, an increase in the diameter of the reactor increases the conversion of CO if equilibrium is not
reached. It should be noted that an almost complete COS conversion is achieved for all diameters shown
in Figure 8. Figure 9 shows the corresponding pressure profile. It is observed that as the diameter is
decreased beyond certain value, the pressure drop increases substantially.
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Figure 10 shows the relation between the L/D ratio and pressure drop at constant reactor volume. This
result indicates that as L/D increases, the pressure drop keeps increasing. It should be noted that a lower
pressure drop is desired in the WGS reactor system so that higher partial pressure of CO; can be achieved
in the AGR unit. This is particularly important for achieving higher efficiency of the physical solvent-
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Figure 9. Pressure profile for different reactor diameters

based CO, capture process in the IGCC plant.®!
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Figures 11-12 show the conversion of CO and COS along the reactor for different inlet gas temperatures.
As seen in Figure 11, the conversion at the outlet remains fairly constant, however, the conversion along
the reactor reduces as the inlet temperature decreases. Even though the conversion of CO is slightly
affected by the change in the inlet temperature, the COS conversion is not affected at higher inlet
temperatures as seen in Figure 12. Figure 11 shows that the CO conversion decreases as the inlet
temperature changes from 620 K. This happens due to the interplay between the thermodynamics and
reaction kinetics as mentioned before. However, one can argue that reducing the temperature will not
significantly reduce the conversion; and recovered heat from reducing the inlet temperature would
increase the efficiency of the steam cycle. This is later studied when considering the effect of catalyst
deactivation on the performance of the reactor.
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Figure 12. COS conversion profiles for different inlet gas temperatures

Figure 12 shows that high conversion is achieved at temperatures around the inlet operating temperature
of 620 K and the COS conversion is not sensitive to the inlet temperature as the studied inlet temperatures
are high enough to bring the COS hydrolysis reaction to completion. Although the magnified view in
Figure 11 shows that an increase in the temperature results in a slightly lower conversion of CO, the
reactor initially shows inverse response to step increase in inlet temperature as shown in Figure 13. Figure
13 is generated by introducing a step increase in the inlet temperature from 620 to 640 K. When the inlet



temperature rises, it takes some time for the temperature in the rest of the reactor to increase. So, initially
the CO conversion increases due to higher reaction rate, but decreases later as the reaction temperature
rises pushing the equilibrium to the left.
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Figure 13. CO conversion transient for a step change in inlet temperature from 620 to 640 K

Figure 14 shows the dynamic response of gas temperature at the outlet of the reactor for the mentioned
step increase in the inlet temperature. When the inlet temperature increases, more CO is consumed in the
area near the inlet of the reactor, thus, the CO conversion increases initially as seen in Figure 13. This
causes the CO concentration to reduce in the rest of the reactor, which at the same time reduces the
reaction rate. Since reaction rate is decreased, less heat is generated by the exothermic reactions, thus, the
temperature decreases initially. However, as the catalyst temperature slowly increases due to the higher
heat input from the front end, the temperature increases. The COS conversion remains unchanged as the
reactor temperature remains high enough to bring the reaction to completion in the early region of the
reactor.
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Figure 14. Temperature transient at the outlet of the reactor for a step change in inlet temperature
from 620 to 640 K

In IGCC plants, additional steam is added to the syngas feed to achieve the desired conversion of CO.
However, the required steam is extracted from the steam turbine.®* Therefore, the production of electricity
from the steam turbines gets reduced. It is therefore important to design the H,O/CO ratio at the inlet of
the WGS reactors appropriately by considering an optimal CO conversion in the WGS reactor system.
Figure 15 show this relation between CO conversion and H,O/CO ratio. In Figure 15, increasing the
molar ratio of steam to CO at constant dry flow rate (2,661 mol/s) increases the CO conversion until it
reaches a maximum at a steam-to- CO ratio of about 4. However, increasing the ratio requires higher flow
rate of steam, consequently, higher flow rate at the inlet to the reactor. Increasing the flow at the same
residence time and superficial velocity requires higher reactor volume. This can be seen in Figure 16a and
Figure 16b where the reactor diameter and the flow are non-dimensionalized with respect to the values in
Table 4. Thus, higher conversion must be weighed with respect to the capital cost of the reactor and the
amount of steam taken from the steam cycle. Since the partial pressure of steam is in the denominator of
Egn. (25), it seems that increasing the steam content will reduce the COS hydrolysis rate. However, the
COS conversion is not greatly affected by the amount of steam present in the syngas. This is because the
system's temperature is high enough to bring the COS hydrolysis to completion.
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The catalyst deactivation due to sintering can lower the conversion in a sour WGS reactor. Figure 17
show the effect of catalyst deactivation on CO conversion for different inlet temperatures over the catalyst
lifetime of 60 months (5 years).”” From an optimization perspective, it can be argued that a lower inlet
temperature would result in fairly acceptable conversion as can be seen in Figure 11 since lowering the
temperature from 620 to 580 K will only decrease the conversion by approximately 1%. In return, the
excess heat can be recovered to increase the efficiency of the steam cycle and the power generation.



However, Figure 17 shows that at lower inlet temperatures, catalyst deactivation has substantial effect on
the conversion of CO during the lifetime of the catalyst. Figure 17 shows that the CO conversion reduces
drastically over time at lower temperatures. However, COS conversion remains at completion for the
range of inlet temperature studied. Figure 18 shows the COS conversion along the reactor at different
inlet temperatures after the period of 5 years. As seen in Figure 18, since the length and temperature are
high enough for the range of temperature studied, the COS conversion remains at completion even in the
presence of the catalyst deactivation. Although, as can be seen in Figure 18, the COS conversion along
the reactor is drastically reduced at lower temperatures, this effect is compensated by the length of the
reactor. Therefore, there is a trade-off between the efficiency of steam cycle and the extent of the
reactions over catalyst lifetime. However, from the design perspective, the effect of catalyst deactivation
can be compensated by overdesigning the reactor.
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Figure 17. Effect of catalyst deactivation over time on CO conversion
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2.1.6  Conclusions
A 1-D dynamic model of a sour water gas shift reactor has been developed. The available experimental
data for a sour WGS reactor have been reconciled to obtain consistent data. The proposed data
reconciliation procedure uses the reactor model to reconcile the data while simultaneously extracting the
rate constant. A minimization problem is solved for each run of the experimental work and the
corresponding rate constant is obtained. The Arrhenius plot yields the pre-exponential factor and
activation energy for the WGS reaction.

A simulation study under typical conditions of a sour WGS reactor as part of an IGCC plant is
performed. The effects of different parameters on the performance of the reactor are investigated and
results are presented. This study shows that the reactor should be designed with due consideration of the
desired CO conversion as the WGS reaction is found to reach equilibrium further down the reactor. The
study shows that the L/D ratio of the reactors should be appropriately designed by considering the
pressure drop across the reactors as the efficiency of the AGR unit downstream of the WGS reactor is
affected by the outlet pressure from the shift reactor system. For the range of inlet temperatures studied,
i.e., 580-660 K, the COS conversion is found to be not affected by the feed temperature. In addition, even
though an increase in the temperature results in slightly lower CO conversion, the reactor shows inverse
response to a step increase in the syngas inlet temperature. At constant flow, as the steam-to-CO ratio
increases, the CO conversion reaches a maximum at steam-to-CO ratio of about 4 while the COS
conversion remains at its highest value for the range of steam-to-CO studied. It is observed that the CO
and COS conversions are not significantly affected by the catalyst deactivation if the inlet temperature is
sufficiently high.



2.2 Gasification Process
The gasifier is considered to be the heart of the IGCC power plant. Coal is converted to syngas, mainly
CO and hydrogen, which is cooled in the radiant syngas cooler (RSC) and sent to the shift reactors before
being processed in the acid gas removal section of the plant.

An entrained flow gasifier is considered in this section. The coal is crushed and mixed with water to form
slurry. The coal slurry, along with oxygen or oxygen enriched air is fed into the gasifier. Entrained flow
gasifiers typically operate at very high temperatures to achieve high carbon conversions®. Due to the high
temperatures, the ash associated with the coal melts and gets deposited onto the gasifier wall to form a
flowing layer of molten slag. The layer of slag can penetrate into the refractory wall and can cause
degradation of the refractory at an accelerated rate®>%, Refractory degradation is one of the leading issues
that impact economic viability of the entrained-flow gasifiers®’. This causes change in the thermo-physical
properties of the refractory material eventually leading to spalling which could result in irreversible
damage to the equipment. Therefore, refractory degradation due to penetration of slag into the refractory
and spalling of the refractory wall are considered to be the primary faults in the gasifier.

Another fault of interest is the rapid increase in the thickness of the slag layer on the refractory wall of the
gasifier. The viscosity of slag is a strong function of temperature and at lower temperatures; the slag layer
could rapidly increase thereby choking the exit of the gasifier exit. This could reduce the volume
available in the bulk of the gasifier and under extreme circumstances, lead to a sudden increase in the
pressure within the gasifier.

A gasifier model with slag flow has been developed, which captures the physics of the gasifier unit, along
with the processes of slag formation and detachment from the char particle, transport and deposition on
the gasifier wall and the formation of a slag layer on the gasifier wall. This model is then used in a
degradation model in order to obtain data on the degradation of the refractory. The time scales for the
gasifier mechanisms are very different from the degradation processes, and thus these models are solved
separately.

2.2.1 Modeling

A number of papers have investigated the flow of slag on the gasifier wall®:8999192 AJ| these papers have
considered that a fraction of the char particles hits the flowing slag layer on the wall of the gasifier. A
fraction of these char particles stick to the wall and continue to react. As a result, the ash contained in
these char particles melts contributing to the slag layer. Since it is assumed that the ash remains attached
to the reacting char particles in the bulk of the gasifier, a shrinking core model is considered to describe
the kinetics®°193% |n the shrinking core model, the ash contained in the char particles is assumed to form
a solid shell around the unreacted carbon core. The overall size of the char particle remains unchanged
while its density decreases as the core shrinks.

However, due to the very high operating temperature of the entrained-flow gasifiers, it is expected that the
ash gets molten in such environments as suggested by a number of researchers®%:9 . There are several
papers that have reported that for combustion systems, liquid slag does exist as droplets in the
bulk®910.101 Depending upon the composition of the ash content in coal, the melting points of ash can
vary greatly. Ash from the Illinois #6, Pittsburgh #8, and PRB coals for most of the seams is expected to
have a melting temperature lower than 1350°C%2, The exit temperature from the entrained flow gasifiers
is typically 1350-1600°C. The temperature immediately after the devolatilization section in which the
combustion reactions take place, often exceed the outlet temperatures by a few hundred degrees.
Therefore, for a major section of the gasifier, the temperature would exceed the melting point of the ash in
an entrained flow gasifier.

Since slag is highly non-wetting on the surface of carbon®1% when the ash melts, it is likely that it will
agglomerate into one or several slag droplets rather than spread over the surface of the char particle.
Several papersi®1%197 jn the literature have shown, using SEM, the existence of liquid slag droplets on
the char surface but there is hardly any work that has modeled this phenomenon.



If the slag exists in the form of droplets on the char surface rather than as a solid shell around the
unreacted char particle, then the widely-used shrinking core model (SCM) does not seem physically
correct. Rather, a shrinking particle model (SPM) would be more physically realistic representation.
Unlike the shrinking-core model that assumes the diameter of the char particle to be constant!®, the
shrinking-particle model considers the char particle to shrink while the slag droplet(s) would build up on
the particle’s surface. Eventually the slag droplets may detach from the char surface moving into the
gasifier bulk. More included mineral matter gets exposed on the surface leading to the formation of new
droplets. This suggested mechanism is shown in Figure 19.
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Figure 19. Slag formation and detachment.

Very few papers in the area of modeling look into the process of slag detachment. The dominant
mechanism for the addition of ash to the slag flow layer on the refractory is assumed to be due to the
impaction of char particles. However, deposition of slag due to char impaction may not be the only
mechanism by which slag gets added to the flowing slag layer on the wall. A fraction of these slag
droplets that separate into the bulk of the gasifier can also get deposited on the wall in addition to the char
particles.

The deposition rate of char particles and slag droplets depends on their size, density, and the bulk flow
conditions!®®110.111112 The sjze distribution of the slag droplets in the bulk of the gasifier is difficult to
estimate as the mechanisms for detachment of the slag droplets are complicated and depend on several
variables such as solids temperature, coal type, ash composition, ash quantity, coal particle size, rate of
heating of char particle, feed nozzle design, profile of transport variables, probability of attrition, and so
on. Experimental studies using drop tube furnaces show that the size distribution of the slag droplets also
strongly depends on the mechanism by which they get detached from the char particles'!®. Condensation
of volatile components of the ash content is expected to result in the formation of sub-micron slag
droplets’. Char particles from certain coal types can readily break up due to the rapid volumetric
increase of carbon and volatile materials within the coal particle. This mechanism can lead to the
formation of slag droplets of the order of a few microns®®. Shedding can also be a dominant mechanism



when the temperature of the solids is much higher than the melting point of the ash. The size of the
liberated slag droplets also depends on the conversion rate of the char particles. In the limiting case,
complete coalescence can take place where all the ash content within a coal particle coalesces to form a
single slag droplet®10%113.115 Thijs case is similar to the dominant assumption of no ash separation in the
existing literature. During rapid reaction, the char surface recedes rapidly and the molten ash minerals do
not have sufficient residence time on the surface to coalesce. Under these circumstances, the minerals
inside the char matrix, also known as the included minerals, would detach from the coal particle without
coalescing!%"1%°, Between the two limiting cases, slag droplets can separate after they partially coalesce?®.
Therefore, a particle size distribution (PSD) of detached slag droplets would be expected in the bulk. The
deposition of char particles, as well as slag droplets, has not been considered in the open literature to the
best of the authors’ knowledge and there is rarely any information on the contribution of slag deposition
to the net slag deposit on the wall and how this deposition flux is affected by the size of the slag droplets.

The existing literature shows that slag layer models have been developed and implemented in gasifiers
and combustors8:89.91.92116-124 ‘However, slag deposition flux to the wall is difficult to model and a number
of assumptions are often made. Deposition flux is typically assumed to be constant®% or set to a fraction
of the total solid flow rate entering the gasifier'?’. Another common assumption is to consider a fixed
profile for slag deposition along the wall*?® during steady state and dynamic simulations. Obviously, these
assumptions are somewhat arbitrary and difficult to justify especially during transient operation of the
gasifier. A number of authors have developed CFD models®!18119 that track particle trajectories to
calculate the net amount of slag deposition on the wall. However, it is computationally intractable to
extend these rigorous models to perform dynamic simulations on a commercial-scale gasifier.

As noted before, since the slag layer thickness is an important variable, the objective of this study is to
obtain a better estimate of the slag layer thickness as the operating conditions are changed. Therefore, the
dynamic effect of a number of key variables such as coal flow rate and O/coal ratio on the slag layer is
evaluated. In addition, when the coal switching takes place, there can be a significant impact on the slag
layer depending on the type of the coal, unless the operating conditions are changed appropriately.
Therefore, a study has been conducted to observe the effect of coal switching. These simulations will help
to determine the conditions under which the flowing slag layer thickness will increase rapidly.

From the previous discussion, a shrinking-particle model seems more physically correct for the region
where the gasifier bulk temperature well exceeds the ash melting temperature. However, in the early
region of the gasifier, where the bulk temperature remains lower than the ash melting temperature, a
shrinking-core model seems more appropriate. Therefore, in this work, we have developed a novel first
principles, one-dimensional, non-isothermal, pressure-driven dynamic model for a downward-firing,
entrained-flow, slurry-fed, oxygen-blown (GEE-Texaco type) gasifier using a hybrid shrinking-core-
shrinking-particle reaction model. A novel sub-model for slag formation on the char surface and
detachment into the bulk is included in the present work. Slag deposition and slag layer models have been
developed and integrated into the novel gasifier model where slag deposition due to char impaction and
slag droplet impaction have been considered. It is desired that the models should be reasonably accurate
yet computationally tractable so that the dynamic model can be used for estimation and control studies.
First the model development is described followed by a number of studies conducted using the model.

2.2.1.1 Background and description
The shrinking-core model used in this work has been previously presented by Kasule®!% et al. and is
used for the early region of the gasifier where the bulk temperature is below the ash melting temperature.
Details of that model can be found in the work of Kasule et al. It should be noted that in entrained-flow
gasifiers, burners are designed to promote swirling motion at the top of the gasifier that results in quick
evaporation of water and the subsequent devolatilization step followed by combustion of the liberated
volatile matter leading to a significant temperature peak. The high carbon residue formed after this
process is called char. From that region to the exit of the gasifier, the solids temperature remains well



above the melting point of ash. Therefore the shrinking particle model is applied to that region. Figure 20
shows the regions where shrinking core and shrinking particle models are applied.
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Figure 20. Hybrid shrinking core shrinking particle (HSCSP) model.

A PSD is considered for the detached slag droplets. A model is developed to calculate the deposition flux
for both char particles and slag droplets, both of which contribute to the slag flow along the wall that
eventually leaves the gasifier from the bottom. A schematic of the proposed model is shown in Figure 21.
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Figure 21. Schematic of the formation mechanism of slag droplets and their deposition on the wall

along with char particles and the subsequent formation of a slag layer on the gasifier wall.

The following assumptions have been made in developing the gasifier model with slag flow:

1.
2.
3.

ok

Char particles and slag droplets are spherical.

Radial distribution of char particles and slag droplets is uniform.

The constituents of the coal particle are assumed to be uniformly distributed. Slag separation
occurs uniformly for all char particles.

No particle-particle interaction; system is assumed to be sparse.

Excluded minerals, or minerals not associated with the char particles, are not considered in this
study.

The char particle and detached slag droplet velocity are assumed to be equal and solved for using a
single momentum balance equation. For entrained flow gasifiers, it is found that the volume
fraction of solids is very small, less than one percent®. Furthermore, the solid particle sizes
considered are < 100 microns in diameter and for such systems, the differences in gas and solid
velocities are found to be very small*?’. The detached slag droplets are smaller than the char
particles and therefore would tend to flow at the gas velocity. The solid phase velocity calculated
on the basis of the char particle and slag droplets can be expected to be even closer to the gas
velocity and therefore the error in calculating the solid velocity using a single momentum balance
equation is assumed to be small.

The capture efficiency for char and slag droplets at the wall is assumed to be unity when the solids
temperature exceeds the melting point of ash. The assumption for the char particles has been made



based on the observation of the results from the present model that when the char particles impact
the wall, they already contain substantial amounts of slag. Therefore, it is likely that the impacting
slag droplets will be fully captured.

8. Slag layer properties including thermal conductivity, specific heat, and density are assumed to be
constant.

9. Due to the small thickness of the slag layer, a linear temperature profile is assumed in the slag
layer.

10. The slag layer viscosity is assumed to be constant along the slag layer thickness.

11. The momentum equation for the slag layer is solved analytically and used in the model.

Both the solid and gas phases are modeled as continuous phases. A particle model is developed to account
for the slag droplets that are attached to the char particles and for the detached slag droplets that exist in
the bulk and is integrated with the continuous phase model. Both, the continuous and the particle models
are solved integrated and solved simultaneously. A schematic of the integration is shown in Figure 22.
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Figure 22. Continuum phase domain for solid and gas integrated with the particle phase domain.

A few notations need to be described before presenting the model. The gas phase volume fraction is
denoted as €. The volume fraction of the detached slag droplets is represented by &g,4. The volume fraction
of the attached slag droplets is denoted by e,. A particle size distribution is considered, where the
detached slag droplets are divided into four size bins depending on the diameters of the slag droplets: 1-
10, 10-20, 20-30 and greater than 30 um. The volume fractions of these bins in the bulk are denoted
by €41, €42, a3, aNd &4 4, respectively. Figure 23 shows the schematic representation of the notations
used in this work.
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Figure 23. Schematic representation of the notations for denoting solids fractions in the continuum
model.

The overall mass balance of the solid phase is modeled by Eqn. (106) . Solids are lost to the gas phase due
to the heterogeneous reactions and due to the deposition of char particles and slag droplets onto the wall.
These loss mechanisms are represented by the second and third terms on the right hand side of Eqn. (37),

respectively.

d 1—¢ 0 1-9)U 4m 37
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Here, ps qv4 is the average density of the solid phase comprising of the char particles and slag droplets, U;
is the solid phase velocity, I's_ is the sum of all heterogeneous reaction rates, mg,,, is the net deposition
flux to the wall considering deposition of both char particles and slag droplets and D; is the internal
diameter of the gasifier. The term (1 — &)(1 — &5, )(1 — &4 ) represents the volume fraction occupied by
the char particles.

Eqgn. (38) shows the gas phase mass conservation equations.

(38)
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pg are the average gas density, U, are the gas velocity, the recirculation effect in the gas phase is
captured by the terms m,.4, which is the mass of gas that leaves the control volume (CV) because of

recirculation, and m,, 4, which is the mass of gas that gets added to a CV due to recirculation. These terms
are calculated by the following equations:
Myg = Myecir/ArL> (39)

Mpg = Myecir/ArL1 (40)



Myecir = A Mip (41)

where A is the cross section area, L. is the length of the zone from where the recirculating gas is removed
and L is the length of the zone where the gas is added into the bulk gas stream, « is the recirculation ratio
and my, is the inlet gas stream. A schematic of the recirculation model is shown in Figure 24.
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Figure 24. Schematic of the recirculation model.

Egn. (42) and (43) show the species conservation equations for the solid and gas phases, respectively.
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ot
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The volume fraction corresponding to the char particle volume, shown in Figure 23 is used in Eqgn. (42)
for each of the terms. The last two terms in Eqgn. (43) correspond to the recirculation of gas species out of
and into the control volume similar to the overall gas balance equation. y,; is the mass fraction of the

species i. y,;qvg denotes the average mass fraction of species i in the circulating flow. Details of the
recirculation model can be found in the work of Kasule et al®.

The gas phase density is calculated by assuming ideal gas law in the form given by Eqn. (44).
5 = P 1 (44)
97 nT "N (Vi
RTg §V=1 (yl/MWi)

In Eqn. (44), N is the total number of gaseous species and y; and MW; are the mass fraction and molar
weight of the i% gaseous species.



As the char undergoes reactions, slag associated with the matrix becomes free and forms slag droplets that
are attached to the surface of the char particle. The ash is assumed to be homogeneously distributed in the
coal particle. Based on the mass fraction of the ash and carbon, the amount of ash that gets exposed on the
surface per mass of carbon reacting can be calculated. The mass conservation equation for the attached
slag droplets is given by Eqgn. (45).

6((1 - 5)(1 — &sd )gsa) (45)
Pst ot
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4
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Here, pg; is the slag density, w,gy, is the ratio of ash to carbon mass fraction, pg,; ,, is the number of slag
droplets detached per unit volume per unit time from the char surface corresponding to the size bin n and
M4 is the mass of the slag droplet of critical diameter corresponding to the size bin n. The second term
on the right side of Eqn. (45) represents the rate of formation of the slag droplets due to the heterogeneous
reactions. The final term represents the sum of the rates of detachment of slag droplets into their
respective size bins.

Detached slag droplets belong to one of the four size bins. The mass conservation equation for the slag
droplets in each of the bins is given by Eqgn. (46).
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Mgy qepn 1S the deposition flux of the slag droplets in bin size n. Eqn. (46) is written for three of the four
bins. In addition, a summation equation shown in Eqn. (47) is written.
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The overall detached slag mass conservation equation is shown in Eqgn. (48).
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The continuum model tracks the mass of slag droplets in the bulk based on pg; ,, and Ms gepn.

2.2.1.2 Particle model

For calculating the term pg,;,, used in the continuum model, a particle model is required. This model
tracks the growth of the slag droplets on the char particle and helps to identify the locations of detachment
and the detachment rate into each of the bin sizes. A particle size distribution is used as an input to the
model and is assumed to be constant throughout the length of the gasifier. In the present framework, it is
also assumed that the ash content of all the char particles in a control volume is constant and the growth
and detachment phenomena of slag droplets from a char particle are similar for all char particles in the
same control volume.

The number of slag droplets that belong to bin size n that could detach from the char surface is termed
as Wgern i- After the slag droplets detach, the residual mass left behind gets added to the slag generated in
the next control volume. This mass of remaining slag is denoted by Mg, ;. Mg, ; and wgee,; are
calculated using Egn. (49)-(50).
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Here, wgsp,; is the ratio of ash to carbon mass fraction, I's_ ; is the sum of all heterogeneous reactions on
the carbon of the char particle, V., ; is the char particle volume, V4 ,, is the detachment volume of the slag
in size bin nand M, ,, is its corresponding mass.

The total slag mass that could possibly separate from the char surface per unit volume of the reactor for
each of the size bins is denoted by My, 557, and is calculated using Eqn. (51). Based on the PSD, the
total mass of slag that does finally separate into each of the bin sizes in a CV is calculated using Eqgn.
(52).

Msl,poss,n,i = Wdet,n,iNch,iMcd,n (51)

(52)
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Here, fr, is the input to the model and is the fraction of mass present in bin size n over the total slag mass
in the bulk. The sum of fr;, for all bin sizes is unity. N, ; is the number of char particles per unit volume
in the CV and is calculated using Eqgn. (46), which is obtained directly from the definition of the volume
fractions.

NeniVeni = (L —&)(1 — €50, J(1 — &5q,: ) (53)
Finally, the slag detachment rate into each of the bins is calculated using Eqn. (54)-(55).
PsiniMcanTpi = Msisepn (54)
Lo (55)
i Us,i

where, t,,;is the residence time of the particles in a CV. Eqg. (53)-(54) are the key equations for
connecting the continuum and particle models. Eqn. (49)-(52) and Eqn. (54) are written for each of the
bin sizes. Additional equations are written for the shrinking char particles as shown in Egn. (56)-(57).

Mch,i = Veni Pch (56)
Mepi = Mepi—1 — Ts_giVeni Tpi (1 + wgsn) (57)

A figure showing the important equations and exchange of information between the continuum model and
the particle model is shown in Figure 25. The continuum and particle model equations are solved
simultaneously.
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Figure 25. Transfer of information between the particle model and continuum model.

2.2.1.3 Momentum balance equation
It is assumed that the velocities of the slag droplets, both attached and detached, are the same as the char
particle since the system is found to be dilute in terms of solid concentration and the difference in gas and
solid velocities are found to be inconsiderate. This assumption has been made mainly for simplicity and
ensures the computational expense remains tractable for a dynamic model. But certainly, the model can
be easily enhanced by relaxing this assumption. Under this assumption, momentum balances are required
only for the gas phase and the overall solid phase and these balances are shown in Eqn. (58) and (59),
respectively.
d(epgUs) dP, (58)

i —e—t epgg — (1 —8)fs

d((1 = &)ps,avgU?) dpP, (59)
dxs = - = _(1 - S)E + (1 - S)ps,avgg + (1 - g)f:?

where, f; is the drag force per unit volume of particles, Uy and Ugare the solid and gas phase velocities

respectively, P, is the total pressure in the system. The drag force is calculated using the equation from

Arastroopour and Gidaspow'?® as;




_ 3Cppy(1— &) 25 (Uy — Uy)|Uy — Us| (60)

s 4d gpg
where the Cp is the drag coefficient taken from Rowe and Henwood'?. This is given as
4
_ }=[14 0.15Re®87] ; Re < 1000 (61)
Cpb = {Re
0.44; Re = 1000
The Reynolds number is given as
|U; — U] (62)

Re =(1- g)pgdavg
g
where, ug, is the viscosity of the gas phase and d,,4 is the weighted average diameter of the slag droplets
and char particles, calculated on the basis of their respective volume fractions.

2.2.1.4 Energy balance equation
The energy balance equations for the gas and solid phases are shown in Eqgn. (63) and (64). The
temperature of the slag droplets and the char particle are assumed to be equal. This is done mainly for
simplicity and keeping the computational expense tractable for a dynamic model. The model can be easily
enhanced by relaxing this assumption.

9(£pgCpgTy) n 9(Ug2pgCpgTy) (63)
Jat D ox
n .
= A_Rl{hw—g [Tw - Tg]}
6
-(1-9 d {egFg—sg[T; - Ts4] + hg—s[Tg - Ts]}
char
gas—phase

reactions
+ Z s(—AernJ-)rj — Myghyg + Myghmg
j

g ((1 - g)ps‘a’pg Cp,angs) + a(Us(l - g)ps,avg Cp,angs) (64)
at dx

_ nD; 4 4 6 4 4
= —Fys[Tw = TN+ (1 — &) —— (eyFy—s0[Ty — T + hg—s[T, — T5])

AR dchar

solid—phase

reactions
+ z (1 - 5)(_Aern,k)rk
k

where F,_; and F,_¢ are the view factors between gas-solid and wall- solid, respectively. In the gas
phase energy balance equation, m,.4h,4 is the enthalpy leaving and m,, s h,,4is the enthalpy entering the
control volume due to recirculation. AH,.,,, ; and AH,..,, . are the heat of reaction for the homogeneous
and heterogeneous reactions, respectively. The heat of reactions and kinetic parameters have been taken
from the literature cited in Kasule et al®®. The authors could not find the heat of fusion for the ash in
Illinois #6 coal, however, based on the limited literature, it seems that the heat of fusion for ash in
coal®% js usually very small in comparison to the heat of reaction of the heterogeneous reactions.
Therefore, the heat of fusion is not explicitly considered in this model. Furthermore, ash transformation
reactions are not considered separately, but are assumed to take place spontaneously along with the char



conversion reactions. Due to this assumption, the latent heat of fusion for ash can be readily included in
the energy balance equations by modifying the heat of reaction for the heterogeneous reactions. In the
solid phase energy balance equation, C, 4,4is the average specific heat calculated using the weighted
average of the void fractions of char, slag droplets attached and slag droplets in the bulk. Egn. (65)-(66)
show how h,.; and h,,, are calculated.

N T
hrg = Zylf Cp,l'dT
- 298

1=

1 r
hmg = ;Z hrg,k
k=1

where N is the number of components in the gas phase, r is the number of control volumes in the
recirculation zone and m is the number of control volumes in the mixing zone.

(65)

(66)

Eqgn. (67)-(69) are used for the calculation of the average density and specific heat that is used in the
momentum and energy balance equation for the solid phase.

Ps,avg = €saPst T (1 — &sq)€saps + (1 — &50) (1 — &5q)Pcn (67)
davg = Ssddcr + (1 - gsd)gsadsa + (1 - gsd)(l - <‘:sa)dch (68)
Ps,avgCp,avg = €saPsiCpsiag T 1- gsd)gsapslcp,slag + (1 —&q)(1— gsa)pchcp,ch (69)

2.2.1.5 Reaction rates
The gasifier can be divided into several reaction zones based on the dominant reactions/processes that
occur in the solids. These reactions/ processes include drying, devolatilization, combustion, and
gasification. The first three of these processes tend to occur much earlier in the gasifier, and result in a
dramatic increase in the solid temperature. Gasification reactions are slower and continue till the end of
the gasifier. In both shrinking core and shrinking particle models, all reactions are considered at all
locations.

Water vapor evaporation, devolatilization and the homogeneous reactions are modeled in the same
manner as shown in Kasule et al®®. Water evaporation is modeled similar to the work of Rao et al.**2 A
point to note is that the water in the slurry and the moisture content is considered together in calculation
of the evaporation rate. For devolatilization, the products and kinetic parameters for the reaction /
processes given by Syamlal and Bisset™*® are used in the model.

The overall reaction rate for the shrinking core model is given by:
1 (70)

Koveraun =
1 1 1 1
Tairr | Fasn (1-¢)+ AZ

where Y is the ratio of the diameters of unreacted core and the char particle, and kg;ff, kg5, and k; are the
gas film diffusion coefficient, ash diffusion coefficient and surface reaction coefficient respectively.

In contrast to the shrinking-core model, the shrinking particle model considers no resistance due to ash.
The overall rate constant for a shrinking particle model is given by:

1 (71)

Koveran = 1 N 1
ks

kairr



It can be noted that all rate constants are in the units of g.cm?2.atm?s? The expressions for the
coefficients are taken from the work of Wen and Chaung®**. Typically, a conversion factor of 6/dchar is
used to give the overall reaction rate constant in terms of volumetric units. For the present model, the
surface reaction rate constant term cannot be evaluated at a shrinking particle size since the reaction rate
would tend to infinity as the diameter of the char particle shrinks to zero. The surface reaction rate
constant is instead converted to volumetric units by evaluating the factor 6/dchar at the fixed char particle
size. The particle size used by Wen and Chaung'* had considered while developing these kinetics was
350um.

2.2.1.6  Slag transport and deposition
While most of the slag droplets that are detached into the bulk remain in the gas phase, some of the
droplets and char particles in the vicinity of the wall can impact the molten slag layer and get captured as
shown in Figure 26. The deposition flux of the impacting particles and droplets is a key input required for
the slag layer sub-model. The deposition flux depends on the number density of the particles and droplets
as well as the deposition velocity.

y-direction
> \
Deposition
Char particle / slag velocity
droplet ---=3
1
o
x-direction Axial |
velocity‘:'

Liquid slag layer = = = = = = = = = =

Refractorylayer = = = = = = = — =

Figure 26. Schematic showing the slag droplet deposition on the gasifier wall.

Since the present model is a 1-D model of the slagging gasifier, an analytical expression is required in
order to calculate the velocity of the char particles and slag droplets. Experimental and computational
works are available in the open literature where the transport and deposition of solid particles or liquid
droplets suspended in a flowing fluid are studied. The results are usually presented in the form of a
dimensionless velocity as a function of dimensionless relaxation time graph!l0111112121122 35 seen in
Figure 27. The relaxation time is a function of flow conditions as well as particle density and size and is
calculated using Egn. (72).

_ ppdy u? (72)
RETPICE
In Eqgn. (72), p, is the particle density, d,, is the particle diameter, u, is the fluid friction velocity, p, is

the gas phase velocity and 9 is the kinematic viscosity. The deposition velocity is calculated using Eqn.
(73).
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Figure 27. General plot showing the relation between the Vdep + and 1+ redrawn from Guha'',

As seen in Figure 27, the dominant deposition mechanism(s) and deposition velocity can vary greatly
depending on the value of 7. Particles that are a few microns in size fall in the regime where the
deposition is mainly due to turbulent diffusion. In this case, the deposition velocity is small. Larger
particles with higher relaxation time deposit due to eddy diffusion impaction. In this regime, the
deposition velocity increases rapidly with increase in particle size. Deposition velocity levels out as the
relaxation time increases further. In this third regime, particle inertia is the dominant deposition
mechanism.

A few authors'!t'?1122have used correlations between the dimensionless relaxation time and
dimensionless velocity to calculate the deposition rate in combustors and gasifiers. In the present study,
the correlations proposed by Wood!* are used to calculate the deposition velocity of the char particles
and the slag droplets of different sizes.

For particles depositing due to turbulent diffusion and eddy diffusion impaction, V. is given by Eqgn.
(74).

3V3 (D23 i (74)
Vaep+ = ﬁ(?) + 4.5x107* 7,2
where, D,, is the particle diffusivity and is given by;
kT 75
D, = (75)
3rud,

In Eqn. (75), k is the Boltzmann’s constant, T is the absolute temperature and u is the gas phase viscosity.
The dimensionless deposition velocity for particles that deposit due to particle inertia can be calculated



using Egn. (76). The dimensionless deposition velocity is assumed to be constant and independent of
particle size'°.

Vaeps = 0.175 (76)

The fluid friction velocity and friction factor can be calculated using Eqn. (77)-(78) for the current range
of fluid Reynolds number and are taken from Haaland*®.

. (f S (77)
" _<E) "
1 “/ 6o (78)
_f_ —1.8l0g10 <?> +E

In the present work, it is assumed that the molten slag layer has a smooth surface and the term associated
with surface roughness in Eqgn. (78) i.e. (S*/D) is set to zero.

Using Eqn. (74)-(78), the deposition velocity of the slag droplets in different bin sizes and the char
particles can be calculated. For the current flow conditions, it is found that the slag droplets of the size 1-
10 microns deposit due to turbulent diffusion and eddy diffusion impaction with values for 7, less than
15. The slag droplets in the larger bin sizes have t, values ranging from 50 to 400, depending upon
location in the gasifier and size droplet sizes. Droplets in these size bins fall in the particle inertia
dominant regime. The char particles enter the gasifier at a size of 100 microns which correspond to 7, as
high as 1000. As the char particles react, they shrink in size and can exit the gasifier with 7, values lower
than 50. As a result the char particles also fall in the particle inertia dominant regime and therefore have
the same deposition velocity as the larger slag droplets as shown in Egn. (76).

The deposition flux terms used in Eqgn. (37), (46) and (48) are calculated using Eqgn. (79)-(81).

_ (1 - g)gsd‘sd,npslvdep,n (79)
msl,dep,n - 2
_ (1 - g)(l - gsa)(l - gsd)pcharvdep.char (80)
mch,dep - 2
* (81)
Myep = Mepgep T Z Msi,dep,n
n=1

Here, Vgepn is the slag deposition velocity for different bin sizes and Vjep cnar IS the char particle
deposition velocity. The slag deposition velocity is calculated using the Sauter mean diameter of the size
range of the bins.

2.2.1.7 Slag flow model
It is important to ensure that the wall temperature in a refractory-lined entrained flow gasifier be high
enough to avoid the formation of a solid slag layer. Slag solidification can lead to a rapid reduction in the
available volume for reactions in the gasifier and can eventually clog the equipment. The maximum
viscosity for slagging gasifiers is considered to be 250 Poise to avoid build-up of the slag layer'®. To
simulate the dynamics of the slag layer on the wall, a liquid slag layer sub-model is incorporated into the
gasifier model described previously. A linear temperature profile across the slag thickness, i.e., in the
radial direction is assumed. An analytical expression for the momentum balance is used and the mass and
energy balance equations are solved using continuum equations. Several heat transfer mechanisms have
been considered in the energy balance equation of the slag layer including convective heat transfer
between the gas and the slag layer, conductive heat transfer between the refractory wall and the slag layer
and the radiative heat interaction between various sections of the inside wall of the gasifier, and the solid



particles in the gasifier bulk, with the slag layer. Such an involved heat balance equation for the slag layer
has not been considered previously in the literature to the best of the author’s knowledge. A schematic of
the slag model is shown in Figure 28.
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Figure 28. Schematic of the mass, momentum and energy interactions in the slag layer.

The mass balance equation is shown in Eqn. (82)%.

psl”DiAxW = Mipi + Mexi—1 — Mey,i

Min,; 1S the mass deposition rate onto the control volume, m,, ; is the mass flow rate of slag flowing out
of the control volume and m,, ;_, is the mass flow rate of slag flowing into the control volume and w; is
the slag layer thickness. m., ; is calculated using Eqn. (83)"%.

_ 1nDipgy*gw;® (83)
Mext =3 Nsti

ns1i 1S the viscosity of the slag in the slag flow layer and g is acceleration due to gravity.

The expression for viscosity is calculated by the BCURA S # correlation®’ using Eqn. (84)-(85).

650 4
—7.44 (84)

logions = 446852 +

sl
oo Sio, (85)
Si0, +Fe,0,+Ca0+MgO

where, s is known as the silica ratio.
A slag layer heat balance equation is derived and shown in Eqn. (86).
dTg ; (86)

dt
= Gin,i — Yout,i + min,iCp,sl,i (Ts,i - Tsl,i) + mex,i—lcp,sl,i(Tsl,i—l - Tsl,i)

pleCp,sl,iT[DiAx



where C, 5 ; is the specific heat, g;,,; is the sum of the energies flowing into the slag layer from the bulk
side of the gasifier, g,y ; is the heat conducted to the refractory, Ty;; and Ty ;_; are the temperatures of
the slag layer in the current and previous control volume, respectively, and T ; is the temperature of the
incoming slag droplet, which is assumed to be equal to the solid phase temperature. q;, ; is calculated
using Eqn. (87)-(92). The heat transfer mechanisms considered in this work are similar to Kasule et al.*.

Qin,i = TD;Ax. [qconv,sl—g + Graasi-p + Qraasi-b T Graasi-top T Qrad,sli—sla”pil] (87)
Qconvsl-g = hsl—g (To - Tg) (88)

Qrad,sl-p = sl—pUsl—p(TSL - Ts4) (89)

Qrad,si-b = Fg_p05-p(Ty — T,(end)*) (90)

Qrad,si—top = sl—topUsl—top(TSL - Tw(0)4) (91)

(92)

rad,sl;—slgaz1 — Z elesli—sla (To4i - T:a)

a
Here, qconv,si—g 1S the transfer due to convection from the gas phase in the bulk, g,q4s—p1S the radiation
heat transfer between the particles to the slag layer, q,qqsi—p aNd Grqasi-cop are the radiation heat
transfer between the slag layer and the top and bottom wall of the slagging gasifier respectively and
Grad,sli-slaq-1S the radiation heat transfer between different control volumes of the slag layer. F

represents the view factor for the corresponding radiation heat flux terms. The equations for the friction
factors are shown in Eqn. (72)-(75) and were obtained from Siegel and Howell*3,

93
Fy_p= [((Zsl—p/Di)z + 0'5)/\/(Z51—p/Di)2 + 1] — (zsl_p/Dl-) (93)
Fgp= [((Zsl—b/Di)Z +0.5)/+/(zg1-p/D1)* + 1] = (zs-p/Dy) (94)
(95)

Fsl—top = [((Zsl—top/Di)z + 0'5)/\/(Zsl—top/Di)2 + 1j - (Zsl—top/Di)

Fsti—stgam =1 — [1 — [(2(za1-p/D1)* + 3(z51-/D1)) / (2(251-/D;)? + 1)]1'5] dz (96)

z is the distance between the surfaces. T, in Eqgn. (87)-(92) is the temperature at the hot face of the slag
layer and is given by Eqn. (97)%.

T,=2Tg— T, (97)
Qout,; IS Obtained using Eqn. (98).
Qout,i — 2mAx. (To - Tw)/lsl (98)

2.2.2 Computational Approach
The slagging gasifier model, the slag transport and deposition model, and the model for the slag layer are
integrated and solved using Aspen Custom Modeler® (ACM)™*. In this formulation, wge; »,; IS an integer
variable making it difficult to solve the problem in software like ACM. In order to obtain a solution, an
offline calculation is first done to obtain initial values of wg,, ,, ; for the solver. This approach worked for
obtaining steady state solutions, however, for a dynamic simulation, this approach is not feasible. The
error in results is assessed by assuming that the detachment process is continuous rather than discrete for
a number of cases. The error was found to be acceptable for slag droplets with detachment diameters of 1-
10 microns. Therefore, the resulting error in calculation of the deposition flux is expected to be small



since only a fraction of the detached droplets are deposited. The assumption of continuous detachment of
slag droplets can also be extended to larger slag droplets if the deposition velocities of these droplets and
char particles are the same. This is because the total amount of slag deposited is calculated by summing
up the slag deposition due to impaction of both char particles and slag droplets. As mentioned previously,
as both large slag droplets and char particles belong to the particle inertia dominated regime, their
deposition velocities are expected to be similar.

Due to the assumption of continuous detachment, Eqn. (45) is replaced by Eqgn. (99).
&q =0 (99)

The slag mass does not remain on the surface and continually detaches into the slag size bins in the bulk
according to the particle model. The slag volume fraction in each bin is calculated using Eqn. (100). The
total detached slag fraction can be calculated by summing up Egn. (100) for all size bins and is given as
Egn. (101). Therefore, Eqn. (46) and (48) are replaced by Egn. (100) and (101).

a((l - E)‘Ssdgdn) (100)
Psi ot

a((l - g)gsdgdnUs)
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_ 4 * msl,dep,n
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9((1—&)egq) (101)
Psi ot ( )
0((1 —¢e)egqU
= TPst ox L4 (I—e)(1— &5 )1 —&gq )Fs—gwash
_ 4 * Z?l:l msl,dep,n
D;

It should be noted that by using larger number of bins or a detailed particle size distribution and more
accurate calculation of deposition velocities, especially in the particle inertia regime, a more accurate
value for the slag thickness can be obtained. However considering both accuracy and computational
tractability for a dynamic simulation, the authors believe that the current approach is reasonable.

The dimensions of the gasifier used in the present model are taken from the literature for the TECO
gasifier®. The dimensions along with the operating conditions are shown in Table 5. The base coal type
used in the steady state and dynamic simulation of the slagging gasifier model is Illinois #6. A dynamic
run where the coal type is changed from Illinois #6 to Pittsburgh #8 is also simulated. The proximate and
ultimate analyses for both the coal types are shown in Table 6.

Table 5. Model parameters and input conditions

Parameters/Conditions Value

Gasifier parameters
Length (m) 6.62
Internal diameter (m) 1.79

Operating conditions



Coal slurry flow rate (kg/hr)
Particle diameter (um)
Water to coal ratio
O to coal ratio
Inlet Temperature (°C)
Inlet Pressure (bar)
Recirculation ratio

220,438
100
0.4115
0.8347
29.85
28.33
15

Table 6. Proximate and Ultimate analysis of Illinois #6 and Pittsburgh #8 coal [As-Received (wt %0)]

Analyses Ilinois #6 Pittsburgh #8
Proximate analysis
Fixed Carbon 44,19 52.38
Ash 9.99 9.17
Volatile matter 34.70 35.82
Moisture 11.12 2.63
Ultimate analysis (DAF)
C 63.75 73.15
H 4.50 4.97
o) 6.88 6.22
N 1.25 1.46
S 2.51 2.36
Silica ratio 0.5266 0.6105

The control structure for the dynamic runs is shown in Figure 29.



o 3 At fommemmeem

‘ Coal FC
Remote SP e ,é

,,,,,,, » A el
Coal slurryin %—»[%7
Slurry valve X
Ratio \ Gasifier
controller
L . () PO
: ! f v
Outlet valve

O, richgasin

Gas valve k_/

Figure 29. Control structure implemented to simulate dynamic runs for the slagging gasifier.

To avoid an oxygen-rich environment in the gasifier when the coal flow needs to be increased, first the
coal flow is increased and then oxygen flow is increased. While decreasing the coal flow, first oxygen
flow is increased. An O/coal ratio controller is used to generate the setpoint for the oxygen flow
controller. The gasifier pressure is controlled by a valve in the exit line. It should be noted that for an
IGCC plant, the gasifier pressure is controlled depending on the control strategy that is used. For a gas-
turbine-lead-gasifier-follow strategy, the gasifier pressure is controlled by manipulating the slurry
flowrate to the gasifier. For the gasifier-lead-gas-turbine-follow strategy the gasifier pressure is controlled
by manipulating the syngas flow to the gas turbine. The current control system setup mimics the later
strategy, but the pressure controller is placed right at the gasifier outlet as the balance of the plant is not
considered in this study.

2.2.3 Results and Discussions
The results from the HSCSP model are summarized below. These include the validation of the data as
compared to the TECO power plant*, comparison with the traditional shrinking-core model, profiles of
key variables and a sensitivity analysis on the detachment diameter.

2.2.3.1 Model Validation
In this section, the results were obtained assuming complete coalescence of slag droplets, which should
closely resemble the results from the shrinking-core model assuming no slag detachment. This is
compared first with the industrial data of TECO power plant'“°. The gasifier configuration of the TECO
power plant and the operating conditions are shown in Table 7.

Table 7. Validation data from TECO power plant#

Conditions TECO

Gasifier configuration'*




Internal diameter (cm) 179
Length (cm) 662

Operating conditions

Coal feed rate (kg/s) 40

Coal particle size (um) 100
Oxygen/coal ratio 0.82806
Water/coal ratio 0.4108
Pressure (atm) 26

The data from the TECO power plant are available for the clean syngas that is downstream of the radiant
syngas cooler (RSC). In the RSC, steam is produced by utilizing the energy in the gasifier exit stream. It
has been reported that certain gas-phase reactions, such as the water-gas shift reaction, continue to take
place in the initial section of the RSC®. Therefore, for comparing the results with the TECO Power plant,
a simple model of the RSC was developed in Aspen Plus.

The RSC is modeled using a plug flow reactor. This model is implemented in a similar manner as done in
the work of Kasule®. A constant cooler temperature of 609 K was assumed.
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Figure 30. Comparisons of the mole fractions of CO2, CO, H2 and —=—=H20O (on dry basis) at the exit
of the RSC with TECO data.
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Figure 30 shows that the results from the HSCSP model shows a good qualitative agreement with the
TECO data.

2.2.3.2  Shrinking core vs HSCSP model
The results from this work are compared with the shrinking-core model developed by Kasule et al.*® For a

fair comparison, feed composition, flow rates, pressures, and O,/Coal ratio are set to be the same in both
the models.
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Figure 31. Comparison of the reaction rates between the shrinking particle model and hybrid
shrinking core-shrinking particle model.

Figure 31 shows the heterogeneous reaction rates for both the models after combustion of char takes
place, i.e., in the region where the SPM is applied. In the SCM, the overall reaction rate is limited by the
resistance due to the ash layer which is zero for the SPM model. Furthermore, the diffusion resistance of a
shrinking particle would be lower than that calculated in the SCM. However, the volume of the particle
keeps decreasing in the SPM. Overall, there is hardly any difference in the heterogeneous reaction rate as
shown in Figure 31.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

e HSCSPM
e e e oeSCM

Conversion

0 0.2 0.4 0.6 0.8 1
Dimensionless length of the gasifier

Figure 32. Comparison of carbon conversion of carbon between the gasifier model and the complete
coalescence model.

Figure 32 compares carbon conversion obtained in this work to that obtained using the SCM. In both the
cases, a significant amount of carbon gets converted very early in the reactor followed by slower
conversion, which is mainly due to the gasification reactions.
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Figure 33. Comparison of solids temperature profiles between the shrinking core and HSCSP
model.

Figure 33 compares the temperature of the char particle using the SCM with the HSCSP model developed
in this work. As mentioned earlier, in the initial region of the gasifier up to the point when the bulk
temperature exceeds the ash melting temperature the HSCSP model considers shrinking core assumption
and therefore, the solid and gas temperatures closely match that from the SCM in this region. Therefore in
Figure 33, the solids temperature profile beyond this initial region is compared. The solids temperature
from the HSCSP model is found to be little higher towards the beginning of this section. However,
towards the end, both models reach similar conversion and the exit temperatures are the same. The gas
temperature also follows the same trend (not shown here).

Comparing the mole fractions at the exit of the gasifier for the SCM and HSCSP models in Table 8, we
see that there is very little difference between the two models.

Table 8. Comparison between outlet mole fractions of SCM and HSCSP models

Component SCM HSCSPM
CO: 0.22396 0.22531
CO 0.47236 0.47052
H> 0.01848 0.01842
H-0 0.20823 0.20883

2.2.3.3 Complete coalescence scenario
In this scenario, it is assumed that the slag droplets are not detached from the char particles. Figure 34
shows that even though the char conversion is high, the char particle still exits at some finite size that
exits the gasifier. The slag droplet attached to the char particle grows rapidly initially when the
conversion is high. It begins to level off towards the end due to the decrease in conversion rate.
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Figure 34. Variation of diameter of char particles, attached slag droplets, and average density of
the char-slag system along the gasifier.

Figure 34 shows the profiles for the diameters and densities in the zone where the SPM is applied, i.e.,
after the bulk temperature increases beyond the ash melting temperature. Figure 34 also shows that the
average density calculated using Eqgn. (67) keeps increasing along the gasifier as char content continues to
decrease while slag content keeps increasing, which is because the slag droplets have higher density than
the char particles. In contrast, in the SCM, the density keeps decreasing as mass disappears while the
volume of the char particle remains constant.

2.2.3.4 Model Validation — Slag Deposition and Flow
Data for the slag layer of a commercial scale slagging gasifier are scarce in the open literature as it is
extremely difficult, if not impossible, to obtain using current measurement technology. Therefore, for
model validation one option is to consider the computational models published in this area. While some
CFD models®®°1°2 have been developed for upward-firing, membrane-cooled slagging gasifiers, very little
information exists on slag layer thickness or deposition rate for refractory-walled downward-firing
gasifiers. Table 9 shows validation of the present slagging gasifier model under steady state conditions.
Two variables, deposition % and slag layer thickness, are compared with the results available in two
references®®142 that have developed CFD models. However, as noted before, these CFD models consider
char deposition as the only mechanism for slag deposition.

Bockelie et al.** have simulated a CFD model of a downward-firing commercial scale gasifier fed with
Illinois #6 coal using similar operating conditions as the current work. The fraction of solid mass flow
entering the gasifier that subsequently gets deposited is reported in their work. As Bockelie et
al.%*considered only char deposition, a complete coalescence case (i.e., no slag detachment) is considered
for our model so that the results from our model can be compared with the work of Bockelie et al.®1. As
seen in Table 9, the fraction of the total solid mass entering the gasifier that gets deposited is comparable
for both the models. In the current model, 2% of the total solid mass entering the gasifier gets deposited
onto the walls of the gasifier. It should be noted that the dimensions of the gasifier in our work are
somewhat different than the work of Bockelie et al.**, where the L/D ratio was considered to be 2.

Monaghan and Ghoniem*? developed a dynamic, reduced order model for a commercial scale gasifier.
Using a silica ratio similar to their work, the current model shows that the slag layer thickness is expected



to be much lower as seen in Table 9. One reason for this difference between our results and the work of
Monaghan and Ghoniem*? is due to the difference in the estimated slag layer temperature. The average
refractory wall temperature in the current model is about 120°C higher than the work of Monaghan and
Ghoniem!*? leading to a decrease in the slag layer thickness. This could be due to difference in the
operating conditions and the energy conservation model. The energy conservation model used in this
work is similar to the comprehensive model developed by Kasule et al.®, which considers additional
radiative heat transfer mechanisms in between the wall segments. When the refractory wall temperature
in the present model was reduced to similar values in the work of Monaghan and Ghoniem?#2, it was
found that the slag layer thickness increased from 3.1 to 4.5 mm. Another reason for the difference in slag
layer thickness is because Monaghan and Ghoniem**? assumed that 10% of total solid mass entering the
gasifier is deposited on the wall while the current model makes no such assumption.

Table 9. Comparison of the results from this work with the existing literature®-14?

Source Inlet coal Gasifier Gasifier  Deposition Slag layer
flowrate (kg/h)  diameter (m)  length (m) % thickness (mm)
Bockelie et al.* 125,000 - - 2.7 -
Monaghan & 113,586 2.74 8.31 10 6-7
Ghoniem?42
Present model 156,251 1.79 6.62 2.02 3.11

2.2.3.,5 Steady State Simulation Results

Effect of PSD. Combustion or gasification conditions are often simulated using drop-tube furnaces. The
ash resulting from these tests is segregated on the basis of its size and mass. A wide variation in PSD is
observed depending on the coal type, coal particle size, gas flow rates, temperatures and other operating
conditions in experimental wor%"1431%° The mechanisms for the formation of droplets of different sizes
differ and depending upon the conditions, some mechanisms may be dominant. Some tests show the
presence of ash particles in the millimeter range which can form due to melting of larger excluded ash
particles. In the present study, a PSD of slag droplets that form only due to the liberation of included slag
droplets has been considered™°. The gas-solid system in the gasifier is assumed to be dilute and therefore
the formation of large slag droplets due to the collision of two or more char particles is not considered. In
the present model, slag droplets of the largest size can form when most or all of the ash initially present in
the char particle separates as a single slag droplet. Smaller slag droplets of sizes between 1-10 microns
can form due to liberation or shedding of included ash while partial coalescing of the included ash before
separation would result in slag droplets with sizes between the two size ranges.

Based on the slag droplet sizes that can be expected from detachment of included ash, the PSD is divided
into four bin sizes. It is difficult to obtain a good estimate of the fraction of the slag droplets in each size
bin along the gasifier. Since there is significant uncertainty in the estimated fraction of slag droplets in
each bin, it was necessary to perform sensitivity studies by changing these fractions. Three different
cases shown in Table 10 were evaluated. In Table 10, the variables fry, frz, frs and frs denote the mass
fraction of the total slag in the 1-10 microns, 10-20 microns, 20-30 microns, and 30+ microns size bins,
respectively. Obviously, for the complete coalescence case, denoted by case CC, all these fractions are
zero.



Table 10. Simulated particle size distributions

PSD case fr1 fra frs fra
SD35-10 0.35 0.30 0.25 0.10
SD60-10 0.60 0.20 0.10 0.10
SD5-50 0.05 0.15 0.30 0.50
cC 0 0 0 0

Case SD35-10 is used as a base case for the model. The cases SD60-10 and SD5-50 are considered as
limiting cases where the majority of the slag mass is considered to be in the small and large size bins,
respectively.

Figure 35 shows the char and slag droplet deposition fluxes separately as well as the slag layer thickness
profile along the gasifier for the base case PSD. It should be noted that for char particles impacting the
gasifier wall, the char flux only represents the ash being added to the slag layer and the carbon continues
to burn at the same rate as in the bulk of the gasifier.
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Figure 35. Deposition flux and slag layer thickness profile for base case PSD.

Figure 35 shows that the slag layer thickness rapidly increases in the initial section of the gasifier and that
slag addition due to the impact of char particles is the dominant mode of slag addition in this section. This
is because the deposition velocity in the initial section is high and also because very little ash has
separated as slag droplets from the char particles into the bulk of the gasifier. As a result, the amount of
ash content in the impacting char particles is high. As the char particles react, increasing amounts of slag
droplets are separated into the bulk and slag deposition becomes the dominant mode of slag addition to
the layer. Towards the end of the gasifier, char impact adds little to the growth of the slag layer. In total,
about 82% contribution to the slag layer comes from slag droplet impact and the rest from char impact.
As stated previously, no slag is assumed to deposit onto the wall in the shrinking core section of the
model.

Figure 36 shows the slag droplet deposition flux and the slag layer thickness for Case SD5-50 (PSD with
higher mass fraction of larger particles) and for Case SD60-10 (PSD with higher mass fraction of smaller



particles). The char deposition flux, not shown here, was found to be identical for the PSD cases. Even
though the number density of the smaller slag droplets is higher, the deposition velocity and mass of the
smaller slag droplets are lower in comparison to the larger slag droplets. Initially the slag layer thickness
profile is similar since ash deposition due to char impaction is dominant. The profile begins to differ as
the ash deposition begins to dominate. However the slag layer thickness does not differ appreciably.
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Figure 36. Slag droplet deposition flux and slag layer thickness for cases SD-5-50 and SD 60-10.

Figure 37 shows the slag layer thickness profile for the Case CC in comparison to the base case. The
difference in slag layer thickness is small.
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Figure 37. Comparison of the slag layer thickness for Case CC and base case.

From Figure 35-37, it was found that the PSD did not have a significant effect on the slag layer thickness
for the range of slag droplet sizes that were considered in this study. However, since it is has been shown
that the ash can separate from char particles as slag droplets and these droplets could vary in sizes, the
inclusion of a PSD for the detached slag droplets would be a more physically realistic representation of



the system. To the best of the author’s knowledge, the present formulation has not been done previously
and this work could be useful to evaluate the deposition flux and slag layer thickness for the various cases
at other operating conditions. For the subsequent runs, the base case PSD is used.

Effect of change in input conditions. Disturbances in the O, or coal flow rate can result in the slag layer
temperature dropping below its critical viscosity, leading to thickening of the slag layer. The effect of
change in Oy/coal ratio on the slag layer thickness can be seen in Figure 38.
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Figure 38. Effect of change in O2/coal ratio on slag layer thickness at gasifier exit.

Changes in the O/coal ratio affect the gasifier bulk temperature and thus the slag layer temperature
resulting in a change in its viscosity. With a change in the ratio from 0.79 to 0.85, it is seen that the slag
layer thickness decreases by approximately 35%.

The effect of change in the O/coal ratio on the maximum and minimum slag temperatures and carbon
conversion is shown in Figure 39. The maximum temperature occurs near the gasifier inlet while the
minimum temperature occurs at the exit.
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Figure 39. Variation of the maximum and minimum slag layer temperature due to change in
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For Illinois #6 the fluid temperature was found to be 1600 K in a reducing environment!3, If the O,/coal
ratio is decreased below 0.79, the slag may cease to flow because of the lower temperature and higher
slag viscosity. Even though it is observed in Figure 38 and Figure 39 that a higher O/coal ratio results in
higher carbon conversion and lower slag layer thickness, the resulting high temperature has strong
detrimental effect on the refractory life. Thus the O/coal ratio should be optimally controlled by
evaluating these tradeoffs.

2.2.3.6  Effect of change in ash composition
The composition and amount of ash can vary widely between coal types as well as for the same coal from
different seams. Since the viscosity at a given temperature strongly depends on the ash composition, ash
composition needs to be carefully considered during gasifier operation. In Table 11, the silica ratio of
Illinois #6 coal from different authors is presented. A silica ratio of 0.527 is used as a base case and is
calculated for “Lab No. Christian ¢-10142” taken from a report of Illinois #6 coal™®.

Table 11. Silica ratios calculated for Illinois #6 coal taken from literature

Source Silica ratio
Present model 0.527
McCollor et al.’? 0.627
Nowok!%? 0.690
Cho et al.1%3 0.700

The coal composition in this study is kept constant in order to assess the effect of changing only the silica
ratio. The effect of silica ratio on slag layer thickness and exit viscosity can be seen in Figure 40 for the
base case operating conditions shown in Table 5.
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Figure 40. Effect of silica ratio on exit viscosity and slag layer thickness.

It can be seen that there is a strong variation in slag layer thickness and viscosity due to a change in the
silica ratio. Under the present operating conditions, the exit slag temperature is found to be about 1417°C.
Figure 40 shows that even though all operations in the given range are feasible, the slag layer thickness
can be more than double depending on the silica ratio.

2.2.3.7 Dynamic Simulation Results

Change in coal slurry flowrate: To study the effect of change in the gasifier throughput on slag layer
thickness, the coal slurry flow rate was ramped up by 10% for a duration of 10 minutes. The oxygen rich
air flow rate also is ramped by the ratio controller to maintain the desired O»/coal ratio. The change in the
flow rates is shown in Figure 41. The slag layer thickness is found to increase by about 6%. This increase
happens due to two reasons. First, the overall mass flux of char particles and slag droplets to the wall
increases. Second, there is also a small change in the slag layer viscosity due to a decrease in the
temperature of the slag layer at the exit of the gasifier. The transient temperature profiles of the
temperature of the slag layer and the wall at the end of the gasifier are shown in Figure 42. While the slag
layer temperature is responsive to the O2/coal ratio entering the gasifier, the wall temperature has a much
slower dynamic response. The final temperature is lower, but by a small amount.
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Figure 42. Effect of ramp change in coal slurry flow rate on slag layer temperature at final CV.

2.2.3.8 Coal feed switch

In this study, the coal feed to the gasifier is changed from Illinois #6 to Pittsburgh #8 over a period of 1
hour. The coal switch is initiated after 30 seconds of operation, and is achieved by ramping the
normalized ultimate and proximate analysis parameters. These parameters for the two coals have been
reported in Table 6. The Oy/coal ratio and the coal/water ratio is left unchanged to observe the effect of
only the change in the coal type. It should be noted that usually during a coal switch, the O»/coal ratio and
coal/water ratio are normally adjusted and if these ratios are adjusted, the results would vary. The silica
ratio is also ramped accordingly. For Pittsburgh #8 coal, the silica ratio is calculated on the basis of ash
composition available in a report from the U.S. DOE’s National Energy Technology Laboratory'?,

Figure 43 shows the change in the mole fraction and carbon conversion due to switching the coal. The
carbon conversion decreases from about 99% to 93%.
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Figure 43. Change in outlet gas composition and carbon conversion during coal switch from Illinois
#6 to Pittsburgh #8 coal.

Figure 44 shows the trend of char and slag droplet deposition fluxes as well as the slag layer thickness
profile before and after the coal switch from Illinois #6 to Pittsburgh #8. The drop in conversion means
that less ash is being separated from the char particle and this ash is depositing on the slag layer with the
deposition velocity of the char particles. A decrease in the slag droplet deposition flux is due to a decrease
in the number density of slag droplets in all the bins and the decrease in ash content of Pittsburgh #8 coal
as can be seen from Table 6.
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Figure 44. Deposition flux before and after change of coal from Illinois #6 to Pittsburgh #8.

Although the net deposition flux decreases by 5% after the coal switch, the slag layer thickness increases
tremendously. Figure 45 shows the slag temperature profile and the viscosity profile along the gasifier
before and after the change has been implemented. For Pittsburgh #8 coal ash, the fluid temperature is



found to be around 1600K in a reducing environment!%, It can be seen that the slag temperature
approaches this temperature at the end of the coal switch. Due to the large decrease in slag layer
temperature, and the change in the ash composition as the coals are switched, the viscosity increases
significantly.
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Figure 45. Slag layer temperature and viscosity profile before and after the coal switch.

Manipulating the O/coal ratio can alleviate the issue of high slag layer thickness as observed before. The
O-/coal ratio can be changed to control the gasifier exit temperature or to control carbon conversion, if it
can be estimated. Kasule et al.!?® have implemented the later control strategy. Their work shows that the
O./coal ratio for the Pittsburgh #8 coal for same carbon conversion as the Illinois #6 coal is about 0.9. For
this Oj/coal ratio, the slag temperature at the exit of the gasifier is found to be around 1703 K, which is
slightly higher than that for the Illinois #6 coal. The slag layer thickness for these conditions reduces to
0.25mm.
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Figure 46. Transient response of slag layer and wall temperature and slag thickness at gasifier exit.



An interesting difference between the temperature time scales of the slag layer and the wall is observed in
Figure 46 using the base case O»/coal ratio. Even though the final wall and slag layer temperatures are
similar, the dynamics of the slag temperature is faster. As mentioned earlier, the deposition flux of slag to
the wall remains almost the same. Therefore, the increase in slag layer thickness is mainly due to the
decrease in slag viscosity. Therefore, the slag layer thickness dynamics have a similar time constant as the
slag temperature dynamics.

2.2.4  Fault Simulation
Refractory degradation is one of the key issues highlighted in the operation of gasifiers in the literature.
Replacement of refractory bricks is done every 3 months to 2 years. The replacement is expensive and
also results in the downtime of the entire power plant. Due to the harsh operating condition inside a
slagging gasifier, direct, in-situ measurements of either the transport variables or refractory degradation
are not possible with current state-of-the-art technology. Non-destructive tests to assess the life of the
refractory layer online do not provide reliable answers due to the interference of the slag layer.

Several mechanisms have been identified that contribute to the degradation of the refractory layer. Ash is
one of the components of coal that melts within the gasifier and is known to deposit on the refractory
layers as slag. The slag can directly interact with the refractory layer through corrosion and erosion of the
brick. Another way through which the slag results in degradation of the refractory is through a process
known as compressive spalling. Slag penetrates into the brick thereby changing the mechanical properties
of the section that is penetrated. The slag penetrated section also has a different thermal expansion
coefficient which results in a strain being developed. The penetrated region begins to buckle after a
certain depth and can ultimately spall.

Refractory degradation can also take place in the absence of slag through mechanisms such as creep and
thermal fatigue. These are generally slow processes, taking place over periods of months, however they
could become dominant in high temperature operation. They lead to formation of micro-cracks that can
change material properties such as the Young’s modulus, maximum tensile stress, etc. resulting in the
weakening of the material. Thermal shock is an example of a fast mechanism where sudden change in
temperature could result in immense build-up of stresses near the hot face surface. This is analogous to
guenching of a material, which results in the formation of cracks and defects on or near the surface.

For the project, slag penetration and spalling as a result of compressive spalling have been identified as
the main methods of degradation of the refractory layer and are modeled and simulated as faults. A slag
penetration model is first developed to identify the location that is most susceptible the degradation
mechanism. A refractory degradation model is developed for this location using the compressive spalling
mechanism to calculate the time and depth at which the first spall is expected to occur. The time scale for
the refractory degradation is in months or years, while the gasifier reactions dynamics take place in
seconds. Due to this difference in time scales, the two models are not integrated. The gasifier model is
simulated and the results from the simulation are used in the refractory degradation model.

2.2.4.1 Model
The gasifier refractory is made up of several layers. The innermost layer is the high chrome layer.
Refractory containing up to 95% chrome is used. The purpose of the layer is to withstand high thermal
shocks and attrition. Following this layer, there is the castable alumina layer. This layer is thicker than the
chrome refractory layer. The third layer consists of silica bricks. The purpose of this layer is that of
insulation. The final layer is the metal layer of the gasifier unit.

In order to simulate the process of slag penetration into the refractory, a dynamic model would be
required. As the slag penetrates deeper into the refractory, the rate of penetration will change due to the
decreasing temperature and/or change in gasifier operating conditions. In order to identify the location in



the gasifier where refractory degradation due to slag penetration would occur the fastest, a 2D model for
the concentration profile and heat transfer in the refractory was developed. The gasifier refractory layers
are modeled as composite cylinders and the heat balance equation is written for all layers. The
concentration equation is solved only for the first layer, viz. the high chrome layer as this layer is the most
susceptible to spalling due to slag penetration because it is directly in contact with the slag.

The inner hot wall temperature profile is taken from the gasifier model results shown earlier at a base case
steady state condition. The refractory layer thickness is kept the same as the gasifier model. It is assumed
that the slag penetration and refractory degradation model do not have a significant effect on the gasifier
model, and thus the exchange of information is only from the gasifier model to the refractory degradation
model.

The heat balance equation is given as Eqn. (102).
c dTen 1d ( chh) d*T,, (102)
Pentpen =g = Fen | \" ar dz?

Here, p.p, is the density of the chrome layer, Cp . is the specific heat, ken is the thermal conductivity and
Ten is the temperature in the chrome layer. Equations similar to Eqn. (102) are written for the remaining
three layers as well.

The concentration equation is given in Eqgn. (103).

dCslag _ li rdCsla_g +dZCslag (103)
dt T \rdr dr dz?

Here, Csag is the concentration of slag in the refractory and Desr is the diffusivity of slag in the high

chrome layer. Diffusion is a function of the temperature®, and for this case, an average penetration front
temperature is selected at which the concentration of slag in the refractory brick pores is 30%.

A time evolution video was made for slag penetration into the high chrome wall along the gasifier length
that shows the slag concentration at different locations. This was presented in the AIChE as part of the
presentation. Snapshots of the video at different times are shown below in Figure 47.
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Figure 47. Slag penetration into the high chrome refractory at different time instances.



The dimensions of the wall chosen for this study are 660 cm length and 12 cm thickness of the high
chrome layer. The 2D model has cylindrical coordinates. In the first 10% of the gasifier length, no slag is
assumed to be on the wall of the refractory. At 5 hours, the slag penetration into the refractory appears to
be uniform. At 500 hours, it can be seen that the slag penetration at a distance of about 66 cm from the
gasifier inlet is highest. This is because, the wall temperature is very high at this location and diffusion
variable is a function of temperature. After significant penetration into the refractory however, the slag
penetration rate in the radial direction decreases as the temperature reduces. Some diffusion in the axial
direction is seen after this point.

The location where slag penetration takes place the fastest is selected for the refractory degradation
simulation. The wall temperature at this location is found to be 1800 Kelvin. The steady state temperature
profile is shown in Figure 48.
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Figure 48. Steady state temperature profile along the refractory across the four layers.

2.2.4.2 Compressive Spalling model
The model equations for refractory degradation due to spalling have been taken from the work of
Williford®’. Compressive spalling occurs due to slag penetration and exchange of Fe ions in the slag with
the chromium ions in the refractory. Slag diffuses in the pores in the first layer and the exchange of ions
renders the diffused material to have different properties. Due to this, there is a thermal expansion
mismatch that eventually leads to spalling.

The slag penetration depth is calculated using the concentration equation at the location where the slag
concentration is 30%. The minimum distance required for spalling is given in Egn. (104).

po o Tetl-w) (104)
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where, T is the toughness, ¢ is a dimensionless parameter, y,, is the Poisson’s ratio, E is the Young’s

modulus of the penetrated region and Ae;,;,; is the total differential strain caused by differential growth

and differential thermal expansion of the penetration in comparison to the refractory. Ae;,:q; IS given as:
Agtotal = Agg + Agth (105)

AV
where, Ag; = —£-
3V

and Ag;;, = AaAT in which Aa is the difference in thermal expansion coefficients
Cr

between the slag and refractory and AT is the temperature gradient between the refractory inner wall and
the slag penetration front.

When the slag penetration depth exceeds the minimum depth at which spalling can occur, a spall is
assumed to take place. In order to test the refractory degradation model, four cases were simulated. The
first was a base case where the gasifier is operated at a design inlet flow rate of 60,000 gm/sec of coal
slurry. The second case is when thermal cycling is done in the gasifier. For maintenance purposes, the
gasifier feed is oscillated in a sinusoidal manner. This could also be done in response to the variation in
demand of power during day and night. To simulate a cycle, the coal slurry is varied within 10% of its
base case value with a time period of 1 hour as can be seen in Figure 49.
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Figure 49. Coal slurry set point variation in the gasifier model.

The temperature variation at the same position is recorded for the two cases. The temperature profile for
the oscillating case of coal feed is fit to a sinusoidal curve. The temporal temperature profiles are then
used as an input to the degradation model. Two other case studies were also simulated where a high and
low fixed temperature values were assumed as the hot face temperature.. The high temperature value of
1850 K and low temperature value of 1775 K are used in these cases. The temperature profiles for the
four cases used in the refractory degradation model are shown in Figure 50.
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Figure 50. Wall temperature at the grid point selected for simulating degradation.

From Figure 50, it can be seen that although in the second case the inlet flow rate of the coal slurry is
fluctuated by 10%, the wall temperature at the selected grid does not vary more than 15°C on average.
The refractory degradation model is simulated for all four cases and the results are plotted in Figure 51.
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Figure 51. Time for first spall for the four cases.



From Figure 51, it can be seen that the time for the first spall to occur when the base case wall
temperature is 1800 K is around 1471 hr. For the thermal cycling case, the curve seems to closely flow
that of the base case but the first spall occurs around 100 hr sooner. This could be because of a faster
diffusion front. The effect of thermal cycling can be better captured if creeping and fatigue are considered
in the refractory layer. For the case of high temperature, spalling occurs at 743 hr. In the low temperature
case, spalling occurs much later. However, due to its proximity to the critical viscosity temperature, such
low temperature is avoided to prevent any solid slag build up on the wall of the refractory that could
eventually lead to clogging of the gasifier.

2.3  Gasification Island
The gasification island model is developed for the two-tier sensor placement method. It consists of the
sour water gas shift reactor (SWGSR) combined with the Selexol unit. In the IGCC plant, the water gas
shift reaction is performed using two reactors operating at different temperatures. This allows for more
residence time for the equilibrium reactions and to reduce the amount of SO; in the reactor outlet. The
outlet of the first reactor is fed to the second reactor, after which it is sent through a series of heat
exchangers until finally being sent to the Selexol unit.

In order to set-up the gasification island model, the SWGSR model and the Selexol model were first
modified before they were integrated. The SWGSR model was enhanced to consider two trains consisting
of two reactors in series with an intermediate cooler. The control system of the Selexol model was
modified to ensure it was stable in the operating region of interest. Variables to be recorded were
carefully selected so as to completely capture the fault progression through the simulation, while at the
same time, reducing the memory load of the program to prevent slowing of the simulation.

The SWGSR was modeled in MATLAB while the Selexol model was developed in Aspen Plus
Dynamics. The SWGSR was not modeled using Aspen because, the in-house library reactor models in
Aspen do not allow for simulating faults such as reduction in catalyst surface area, drop in catalyst
porosity or catalyst activity etc. Plant level simulations on the other hand, are fairly easy to simulate using
a process modeling software such as Aspen Plus or Aspen Dynamics. This brings forth the challenge of
running two models in two different platforms, making them communicate and solve in a coupled
manner.

Sensor placement in a two-tier setting can help identify potential sensors that can detect faults at different
levels. In this case, sensor placement using fault data from fault simulation in the gasification island may
show sensors in the SWGSR that are sensitive to faults at both levels, viz. the SWGSR as well as the
Selexol plant or vice versa. This study can help reduce the total number of sensors required to detect the
faults if the sensor placement was done separately at both tiers.

2.3.1 Model Development
The first step was to develop the two-stage SWGS reactor in MATLAB which give the same output as its
APD counterpart in the IGCC plant wide model. The initial reactor model was designed to run at different
operating conditions as the APD SWGS reactors and thus had to be modified. In order to accommodate
the large flow rate, the reactors were designed as a two-train system. The rate of reaction equation for the
shift reaction used in the SWGSR model shown earlier is different from the APD case and is derived by
data reconciliation. The COS hydrolysis reaction rate expression was changed to the expression used by
APD to match the conversion of H,S and COS. The first stage is designed to match the outlet composition
of the water gas components in Aspen Plus Dynamics. The second stage of the reactor was developed
independently using the outlet composition from the first stage and the inlet temperature from the APD
model. The reactor was sized in order to achieve equilibrium at about 90% of the length and the valve



coefficients were set so as to match the flowrates. Both stages were run independently until they achieved
steady state.

Once steady state was achieved in each of the stages, the code for the two stages was compiled into a one
m-file and the SWGS reactor system was solved as a single unit. The system representation can be seen in
Figure 52 below.
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Figure 52. Schematic representation of the Sour Water Gas Shift Reactor system developed in
MATLAB.

Once this system achieved steady state, work started on integrating the MATLAB model with Aspen Plus
Dynamics. There is not much data in the literature about such integration between the MATLAB and
APD to solve such a coupled system. The Matlab and APD files are integrated using SIMULINK. Using a
Aspen Modeler Block in Simulink, the outlet variables from Matlab simulation, viz. Temperature,
Composition and Pressure were sent to the inlet of the Aspen Plus Dynamics model.

In order to ensure the models in both the software are squared, an outlet valve V4 as can be seen from
Figure 52. Due to the coupled pressure-flow dynamics of the entire plant, the boundary conditions for
pressure at the output of the MATLAB model and the pressure at the input of the APD models are not
static, but dynamic and must be synchronized. A valve is added to the entrance stream in the Aspen
simulation such that the valve coefficient and valve opening of the exit valve V4 of the MATLAB model
and the entrance valve for the APD model are kept exactly the same to ensure they have the same flow
rates. The value for the pressure variable, Pexit, in MATLAB is sent from APD, and the pressure before
valve V4 is sent to APD as the inlet pressure to the first valve. A schematic of the exchange of
information across the platforms is shown in Figure 53.
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Figure 53. Exchange of information between the SWGSR in MATLAB and the Selexol model in
APD.

The algorithm for the process flows is: the MATLAB solver solves for a fixed time step. This time span
along with the outlet variables are sent to the APD model via SIMULINK. The APD model then solves,
using a variable step solver, for the same timespan and sends back exit pressure value, P_exit, to
MATLAB and so on. A few profiles are shown below.
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Figure 54. Temperature profile along reactor R2.

The process fluid enters reactor R2 after being cooled in the heat exchanger. Figure 54 shows that the
temperature begins to level out at the end of R2 as the shift reaction approaches equilibrium.
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Figure 55. Profile of CO mole fraction along the length of reactor R2.

As the WGS reaction reaches equilibrium towards the end of R2, mole fraction of CO changes negligibly
towards the end of R2. The spatial profile of CO in R2 is shown in Figure 55.
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Figure 56. Plot of COS mole fraction along R2.

The mole fraction of COS in the entering syngas stream is 1.38 x 10 and reduces to 1.7 x 107 at the end
of R2 as can be seen in Figure 56. It should be noted that even though COS mole fraction at the inlet is
small, it is important to convert it to H.S so that it can be captured in the acid gas removal unit for
satisfying the overall emission requirements of sulfur.

2.3.2  Study of Fault Effects
Before simulating the faults in the gasification island, it is important to implement the control
configuration as would be expected in an actual operating plant. In the WGS reactor system, the syngas
flowrate is maintained for producing the desired amount of power by the integrated gasification combined
cycle (IGCC) plant. In addition, the CO/H-0 ratio at the inlet of the WGS reactor system is maintained by
manipulating the steam flowrate to the reactors. These two controllers have been coded in MATLAB for
manipulating valves V1 and V2. The controllers were then tuned for satisfactory response.



The integrated system is used to simulate some typical faults. As an example, the results due to change in
porosity of the first reactor, R1, will be presented below. This fault is expected to happen in a WGS
reactor system as part of an IGCC plant since tar or soot that are generated in the gasifier but can escape
the scrubber could enter the reactor and clog the pores of the catalyst. As a result of this, the reaction rate
goes down and yield could suffer. For this fault, it is assumed that the unwanted material is captured by
the first reactor alone, and thus only the porosity of R1 is ramped down. This is done at a rate of 25%
decrease in porosity over a period of 12 hours. The response of this fault is shown as follows. It should be
noted that in real-life, such faults can happen over much longer period of time, but here a much faster rate
is considered in order to study the capability of the integrated models.

2.3.2.1 Effect on Reactor R1
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Figure 57. CO at the end of R1 as a result of a ramp change in the porosity.

Figure 57 shows that CO composition at the end of R1 increases as time progresses. As the catalyst pores
get clogged and the porosity decreases, the extent of WGS reaction reduces, and thus the amount of CO
consumed reduces.
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Figure 58. COS at the end of R1 as a result of a ramp change in porosity.



The rate of COS hydrolysis also gets affected due to the fault. The amount of COS converted reduces due
to the reduction in porosity. Therefore, the COS mole fraction at the end of the reactor R1, increases, as
can be seen from Figure 58.
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Figure 59. Temperature at end of R1 as a result of a ramp change in porosity.

The WGS reaction is an exothermic reaction. The reaction does not reach equilibrium in the first reactor.
As the extent of reaction decreases in reactor R1, the temperature at the exit also reduces. This can be
seen in Figure 59.

2.3.2.2 Effect on Reactor R2
Allowances have been provided in the design of the second reactor, R2, to accommodate acceptable
deterioration in the performance of R1. Due to lower extent of WGS reaction in R1, the partial pressure of
CO at the inlet of R2 increases. As a result, higher conversion of CO takes place in R2. The WGS
reaction still approaches equilibrium, but it does so at different conditions as compared to what it had
prior to the fault due to changes in the inlet conditions.
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Figure 60. CO mole fraction at end of R2 as a result of ramp change in porosity.



From Figure 60, it can be seen that the effect of the fault in R1 has very small impact on the overall
conversion at the outlet of R2.
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Figure 61. COS mole fraction at end of R2 as a result of ramp change in porosity.

As seen in Figure 61, COS seems to show stronger response than CO but the overall change in COS
conversion is still negligible.
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Figure 62. Temperature response at the exit of R2 as a result of ramp change in porosity.

Due to the increase in inlet CO composition, more reaction takes place in the R2. Being exothermic, as
more reaction takes place, the temperature at the exit of the reactor, increases as shown in Figure 62.
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Figure 63. CO response at the exit of the Selexol unit as a result of ramp change in porosity.

The CO increase as a result of the ramp change in porosity is also reflected at the end of the Selexol plant.
Figure 63 is a plot that shows CO mole fraction increases due to this fault. However, it takes around 12 —
13 minutes for this effect to be seen. The changes in the mole fractions of other components are very
small to be detected clearly by a measuring device.

3 Model Simplification and Order Reduction

3.1 Scaling Analysis

The detailed 1D model of WGS reactor consists of PDEs, solution of which is computationally intensive.
Therefore reduced order models, which approximate the detailed model with good computational
efficiency, might become critical, particularly when such models are used in online optimization. In this
section, such a reduced order model that is derived using scaling analysis and method of characteristics is
described. Scaling analysis is a systematic way to identify important phenomena in a system for the given
parameters and inlet conditions. This will help in retaining only these phenomena resulting in a simplified
model. In literature, there are works which use scaling to simplify models and to identify the correlation
between process performance and dimensionless groups. For example, Dahl et al.*** used scaling analysis
to get insight into the behavior of fluid aerosol reactor without performing actual simulations.
Kopaygorodsky et al.**®, used scaling analysis to identify key differences between the approximation of
conventional pressure swing adsorption and ultra-rapid pressure swing adsorption. Kaisare et al.**, used
scaling analysis to identify phenomena occurring at varying scales in a reverse flow reactor. Balaji et
al.™®", have used scaling analysis for reverse flow reactor and have shown ways of simplifying the model
equations. Rao et al.**8, have used scaling analysis for pulsed pressure swing adsorber to identify useful
correlations in terms of dimensionless numbers. Rezvanpour et al.’®® studied electro hydrodynamic
atomization process using scaling analysis to simply the model and to find correlation relating efficiency
with single dimensionless number involving parameters of the process. Baldea et al.?®® used scaling
analysis to auto thermal reactors to identify a non-stiff model by separating fast and slow time scales.
Krantz et al.1%162 described this scaling analysis in his book for various transport and reaction process.



This study closely follows the methodology of Krantz et al.’®%12 to derive appropriate dimensionless
model for WGS reactor. The scaling analysis in this study differs from the rest of the literature in the
manner in which the reaction terms are handled. This becomes important because with the present scaling
methodology, approximating the nonlinearity in the reaction kinetics would result in unrealistic scales.
This study also compares the scales obtained from scaling analysis with that of actual scales from
simulation of the corresponding detailed model. This demonstrates that scaling is proper and the resulting
reduced order model is appropriate. Further, in the scaling of the unsteady model, we introduce a hew
scale combining length and time scale which characterizes the velocity dynamics of a variable. This scale
helps in assessing the quasi- steady assumption for some of the variables. The reduced order model
obtained from scaling analysis consists of hyperbolic PDE coupled with ODEs. Hyperbolic PDE models
can be further reduced using a recently developed technique using method of characteristics. Munusamy
et al.1®31%4 used this technique to reduce the hyperbolic PDE model describing fixed bed and plug flow
reactor. In this study, we follow this technique to further reduce the computational load in simulating
WGS reactor.

3.1.1 Scaling of WGS reactor model equations:
Systematic scaling of model equations results in identifying phenomena with different scales. It provides
a way for model simplification through approximation. These scales represent the characteristic values for
the given parameters and operating conditions. Krantz!! has described scaling of model equations in
detail in his book, where scales are obtained by forming dimensionless groups which vary in the order of
1. In this study we follow similar approach to that of Krantz!®, but differ in the manner in which the
characteristic reaction terms are found.

The procedure for scaling involves introducing scale values for each of the variables involved to make
these variables dimensionless. Introduction of these scales and dimensionless variables will result in
dimensionless equations. Scales can be obtained appropriately by making the dimensionless variables to
vary in the order of 1.

Following are the scales introduced for the variables in the model for water gas shift reactor
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In the above definition, variables with subscript 'r' represent reference variables, variables with subscript
’s’ represent scaling variables and the variables with superscript ¢ represent the dimensionless variables.

Reference and scale variables need to be chosen such that the variables vary between 0 and 1. Additional
scales are introduced for nonlinear terms such as derivatives and reaction rate terms.
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The derivative scales introduced above can be approximated using the scaling definition for each
individual variable in the derivative. Similar approximations for the reaction scale by introducing the
scaling definition of each individual variable in the reaction kinetics would result in wrong scaling for the
reaction term. In literature, this scale is either assumed to be the maximum reaction rate or the rate is
found by introducing maximum values for the variables in the reaction rate. Both the approximations for
reaction scale will result in errors while obtaining the reduced order model. Appropriate scaling of
reaction terms will be discussed in section 3.1.1. The approximate derivative scales are given below
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In addition to derivative terms, scales for the other nonlinear terms are approximated as below
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In this approximation we use —— as the scale for the variable —, because this will be the maximum and
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hence will make the variable to vary at most to 1.

Introducing the above scaling definitions into the model equation and dividing the coefficient of one of
the terms results in following dimensionless model equation. For the first four equations, we divide the
coefficient of the derivative terms to form the dimensionless equation. For these equations it is assumed
that variation of the corresponding variables over the length of the reactor is significant. In the equation
for catalyst energy balance, we divide the coefficient of one of the reaction terms to form the
dimensionless equation. This is because we assume that the heat generated from this reaction is the main
source for energy which is convected to gas phase and conducted through the catalyst bed. Scaling
analysis will confirm the validity of this assumption.

Component balance: (where i =1 to 6)
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Catalyst phase energy balance:
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The boundary conditions are made dimensionless as follows
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3.1.2 Calculation of scales and reference factors
The scales and reference factors in the above dimensionless equation can be found by confining the
dimensionless variables to vary between 0 and 1. In particular, the reference factors are found by equating
the boundary conditions to 0. For example, the reference factor for the concentration variable is found as
below

C.-C.
C’= % =0, this implies C;, =C; ;, (116)
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In a similar manner, reference factors for other variables can be found and it will be equal to the boundary
values of the corresponding variables. The scale factors can be found by equating appropriate
dimensionless variable to 1. For example, consider the equation for species balance (Eqgn. (110)), where
there are two dimensionless groups.

yi Czs rl (1 8) r-i,s (1 ‘5)
21 5 d - L —
an 722 ( js u : (117)

i,25 in™i,zs

72'1 =
i,28

Once C, and I, are known, one can find the derivative scale for concentration C; by equating either of

these dimensionless groups to 1. The dimensionless group which gives maximum value for the
corresponding scale can be equated to 1. The resulting scale can be substituted into the other
dimensionless group and if the resulting value is much less than 1 then the term involving this
dimensionless group contributes less to the characteristic derivative scale and hence can be neglected for
the condition considered.

3.1.3  Calculation of reaction rate scale
Calculation of characteristic scale for reaction rate can be tricky for exothermic reactions in a tubular or
fixed bed reactor where reaction rate varies along the length of the reactor. A scale should be a
representative value, which, when it divides the actual value makes it to vary in the order of 1. Also, the
value of the scale should be close to the reaction rates occurring over entire length of the reactor. For
exothermic reactions, the rate varies along the length such that it attains a maximum value at some point
in the reactor. This is because concentration drops along the length of the reactor which reduces the
reaction rate and temperature increases due to release of heat which in turn increases the reaction rate. For
sufficiently high temperature, this maximum can occur at the inlet of the reactor and for others it can



occur at a small distance from inlet of the reactor. Typical reaction rate variation is shown in the Figure
64.
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Figure 64. Typical variation of exothermic reaction rate along the length of the reactor.

In the literature, the characteristic reaction rate is found by substituting the maximum temperature and
maximum concentration in the reaction kinetic term.®%%2 For exothermic reactions, maximum
temperature and maximum concentration are rarely going to occur at the same point in the reactor. So
substitution of these values will give unrealistic maximum reaction rates. This will lead to erroneous
calculation of other scales. In a mass transfer limited reaction, this reaction scale is based upon mass
transfer coefficient.?’

The proper scale for reaction rate which can make the corresponding dimensionless reaction rate order of
1 would be the maximum reaction rate occurring in the reactor. It is difficult to obtain this rate without
performing actual simulations of the given detailed model. So this reaction rate scale can be approximated
to be

e Reaction rate based on inlet condition which is a reasonable approximation for this
maximum rate. In this study, we have used this inlet rate to be the characteristic rate to
obtain the other scales.

o Reaction rate obtained using simulation of simplified model. One can obtain a simplified
model by assuming velocity to be constant, neglecting any mass transfer or heat transfer
resistance, neglecting pressure drop, assuming only 1D variation, etc. This means that we
assume reaction to be the main cause for the variation of concentration and temperature
along the length of the reactor. Kaisare et al.’*® have suggested in their paper the use of
simulation data for obtaining the reaction scale.

3.1.4 Calculation of scales based on inlet reaction rate
Consider the dimensionless species balance equation Eqgn. (110). In this equation, we have two
dimensionless terms as mentioned in the previous paragraph. Let's assume the contribution of the second



dimensionless term to be important for the concentration gradient, so this group is equated to 1, to find
length scale over which the reaction occurs
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This dimensionless group can be inferred as
T (1-¢) _ Generation/ Consumption of speciesdue to reaction 119
? UinCi Transportof speciesby axial convection (119)

This means that the species generated (or consumed) from reaction is made equal to that transported by
axial convection based on inlet velocity. The other dimensionless groups present in this equation indicate
the change in species concentration is due to change in pressure and temperature along the length of the
reactor. The importance of this dimensionless group can be found from its value by inserting the

concentration scale C from total balance equation.

Let’s also assume there is complete conversion in the reactor and take C;; to be equal to C,,. With this
assumption, we can calculate the characteristic length scale as follows
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If the length scale obtained above is greater than the length of the reactor (L), then it indicates that the
reaction is slow and there is no complete conversion. Then one can find the characteristic change in the
concentration by making the length scale to be length of the reactor. Thus,
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From Eqn. (113), we can make T, =T,

cat,s !
catalyst and gas phase can be of order 1. The temperature change in a reactor is directly proportional to
the rate of heat release from the reaction. In order to find the scale for the temperature change, we need to
relate this to the heat of reaction. From Eqn. (113) and (114) we see that this relation is present in one of
the terms in Eqn. (114).

so that the dimensionless temperature difference between
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The above dimensionless term multiplies the temperature difference and this cannot be used to calculate
the temperature scale. Instead, this term can be used to verify the equality of the temperatures between

gas phase and catalyst phase. This is because in order for the term 7,(T 7 — T/ ) to be in the order 1,

higher the value of 7, implies lower the value of (ngt —Tg‘/’), which implies that both the temperatures

are equal and vice versa. Next, the term which multiplies the second derivative of temperatures can be
used. If we assume conduction is not an important phenomenon compared to axial convection of heat then
this term also cannot be used. So in order to find the temperature scale we can combine the energy
balance for gas phase and catalyst phase by using the temperature difference terms in these equations as
follows
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Egn. (123) can be made dimensionless using the scaling definition as follows
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From the above equation, we can find the temperature scale by equating the following dimensionless
group to 1,
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The above dimensionless group implies that the rate of heat generated per unit volume from water gas
shift reaction is equal to rate of heat convected by the gas in axial direction. In the above equation, we
have assumed water gas shift reaction to be an important source of heat and we have selected the
dimensionless group involving this reaction. We can verify this assumption by substituting the resulting
scales into the other terms.

Similarly one can find the pressure scale from the Eqn. (112) by equating following dimensionless group

to 1,
2
z —LM(L—ﬂuszl (126)

6 3
Ps dcat 3

In the above term, since pressure variation is seen over the entire length of the reactor, the appropriate
length scale for finding pressure scales will be the actual length of the reactor. This also assumes that the
Reynolds number is high enough that the contribution of second term in Eqn. (112) is lesser than the first.
For lower Reynolds number we need to make the other dimensionless group to 1 to find the pressure
scale. Further, the velocity scale in Eqn. (126) is represented in terms of temperature and pressure scale as

— G‘C'R(Tin +Ts)
=i s/
(Pin - Ps)
This represents the maximum velocity due to increase in temperature and decrease in pressure. Similarly,
the total concentration scale can be found from either of the dimensionless term which gives the

maximum value for this scale. The variable values present in these groups can be assumed to be the inlet
values as the ratio of these values are maximum at the inlet. For example, consider the first group,

_CTL _GCT._,

7 (127)

. . C . . C,
In the above equation, the ratio ? can be assumed to be the ratio of the inlet values as —~ . Once the
in
necessary scales are found as described above, then one can substitute these values in other dimensionless
groups. If the value of these dimensionless groups is much less than 1, it indicates its contribution is less
in the corresponding equation and hence can be ignored. In the model equation for WGS reactor, based on
the value of the following groups, one can neglect the corresponding phenomena

For neglecting conduction phenomena,



_ K cathzs ~ K catT 1
Ty = ~ << (128)

o AH AH, L

wgs,s R,wgs wgs S R,wgs

For neglecting the heat contribution due to hydrolysis reaction term

_ rhyd SAH R,hyd

g = ———"
AH

wgs s R,wgs

<<1 (129)

Similarly one can decide on the significance of heat transfer between gas and catalyst phase and can make
both the temperatures equal.

3.1.5 Reduced order model of WGS reactor
A reduced order model for WGS reactor can be obtained using scaling analysis by neglecting the terms
with contribute less when compared to others in an equation. This model will be an approximate
representation of the corresponding detailed model for the given parameter and inlet conditions. Table 12
reports the typical parameters and inlet conditions for the reactor.

Table 12. Parameters and inlet conditions for WGS reactor

Parameter Value
Length of the reactor L, (m) 29
Porosity of bed, & 0.38
- W
Heat transfer coefficient, h, ( 5 ] 10°
m°K
. J
Heat of reaction - WGS, AH, — 3.85x10*
. J
Heat of reaction - Hyd, AH . | — 3.1x10*
mol
Density of gas, p, ( j 20.5
N —
Viscosity of gas mixture, s, (T) 0.25x10™
Specific heat of gas, Cp # 35
P 995 2P | ol —K
: kg
Density of catalyst, O o 650

Specific heat of catalyst, Cp,, (kgL—Kj 880



2
- . m
Specific area per unit volume of catalyst a,,— 1.69x10°
m

W
Conductivity of catalyst, K | ——— 35
yorcaays, i [}

Diameter of catalyst, d_,, (m) 0.0035

Inlet condition

mol
Molar flow, (Tj

CO 1128
COS 0.4410
CG, 435
H, 1070
H,O 2240
H,S 22.78
Inlet temperature, T (K) 620
Inlet pressure, P (Pa) 5.86x10°

The stoichiometric relation from reaction can be used to avoid species balance for all the species except
for the key reactant. This is valid when species are transported mainly by convection and not by diffusion
both in the axial and in radial direction. Then the transport of all other species can be exactly described by
the variation of key reactant participating in each reaction. In the WGS reactor model, we consider two
main reactions, water gas shift and hydrolysis reaction taking place in the reactor.

7coCO +7H20H20 = 7COZCOZ+7H2 H,
YcosCOS + 7H20Hzo < 7/c02C02+7stst

Considering CO and COS to be key reactants, we can write the variation of other species using
stoichiometry as follows

7,
Yn, = yhzvin + : (yCO,in - yco) (130)
Vco
Vhys
Yhs = Yhs, T : (yCOS,in - YCos) (131)
cos
Yo, Yco,
yco2 = ycoz‘in + = (yco,in —Yeo )+ = (yCOS,in o ycos) (132)

co Vcos



Vh, Vh,

yhzo = Yhzo,in __O(yCO,in ~Yeo )+ _o(yCOS,in - ycos) (133)

Vco Vcos

The value of various dimensionless groups discussed in the previous section is found based on the
parameters and inlet condition given in Table 12. Based on these values we can decide on approximating
the model equations by neglecting terms which are much less than 1.

Table 13. Values of dimensionless group for the WGS reactor model

Dimensionless group Value
T, = yCOCSZS O 41
' Cco,sl- .
I s(l_ S)ZS
7, =% -1 z,=29andC_,=180.54 <C_,;,
uinCco,s ’ |
hfaczs
Ty =——
= Co e 606.90
T = hfacTcat,s 606 90
) (1_ g)rwgs,sAH R,wgs .
e AH g oo (L— )2
wgs, s R,wgs S
T = :1 = .
g oot T, =185.8
2
7. = LM[l_f)us 1 P, =2.94x10°
PS dcat &
CT
7[7 = T_mcs :1 CS :320-6
KeatT.
. = cat " s -5
8 Foge oA ¢ e 12 9.27x10
rhyd SAHR hyd
Tg=—""——"" B
9 oo 1.8x10
L u,(1—¢&) 2150
Ty = F% 6.2x10°2
S cat
C P
Ty = o 0.1781
_ yCOSCSZS,COS —2
Ty =— 7.1x10

Ceossl

cos,$



:le ~6.88and C,,, =0.963=C

13 u C scos cos,in
in~’cos,s

Based on the values of dimensionless group present in Table 13, we can decide on retaining or neglecting
some of the phenomenon to obtain a reduced order model. The length scale for water gas shift reaction is
equal to length of the reactor and the concentration scale is less than the inlet concentration, this implies
there is no complete conversion in the reactor. On the other hand hydrolysis reaction goes to completion
and this occurs at 23% of the length of the reactor.

The dimensionless group 71 and z1, represent the variation of Cco and Ccos due to the variation of total
concentration which in turn depends on temperature and pressure variation in the reactor. Though 1 is in
the order of 1, 2 is much less than 1, indicating that Ccos variation is mainly due to reaction and this is
also seen from the complete conversion of Ccos well within the reactor. So we can neglect this term from
the species balance of Ccos.

The value of dimensionless groups =3 and zs are much higher than 1 and they both multiply the
dimensionless temperature difference term. As mentioned previously, the value of the dimensionless
group which multiplies dimensionless temperature difference will indicate whether this difference is
significant or can be made equal.

T, = Nia:z, >>1 and 7, = N8 Teas >>1 (134)
Cngg (1_ 8) wgs SAH R,wgs

Since 73 multiplies T, —T, ., if 73 >>1 then it implies that T3 — T, <<1, so that 7r3(T¢ T;’) will be

cat,s g,s° cat

in the order of 1 and hence both the temperatures can be made equal and vice versa. The dimensionless
group 73 implies the ratio of rate of heat transfer from catalyst to rate of heat convected along axial
direction by the flowing gas. Similarly 74 indicates the ratio of rate of heat transfer from catalyst to gas
phase to rate of heat generation from reaction. A large value of this dimensionless group indicates that the
heat generated from reaction is convected by the flowing gas. This in turn verifies the assumption of zs
equal to 1 while finding the temperature scale. From the value of these dimensionless groups in Table 13,
catalyst and gas phase temperatures can be safely assumed to be equal.

The scale of total concentration change C; is found by assuming that temperature is the dominant cause
for this variation by equating =7 to 1. From 711 which is in order 1, we see that C; also depends on pressure
variation. So we cannot neglect any term from the total concentration balance.

The value of dimensionless group zs indicates that its contribution in the energy balance equation is
negligible. The dimensionless group s represents

Keat Ts Heat conducted per unit voulme
g = 5= <1 (135)
AH L= Heat generated per unit voulme

Wgs S R,wgs

This infers transport of heat by conduction through catalyst in axial direction is negligible. Resistance for
conduction R, through catalyst bed can be given by

con
L

Rcon S

‘ Kcat (1 - E)A:

where A is the cross sectional area of the reactor. The resistance for conduction increases with length of
the reactor. So for the length considered, this resistance is higher and hence this contribution is negligible
compared to heat transport by convection along axial direction.

(136)



The dimensionless group e represents the ratio of rate of heat generation per unit volume by hydrolysis
reaction to water gas shift reaction. Small value of this group indicates that this term in the energy balance
equation can be safely neglected. The dimensionless number zg is much less than 1 and it indicates that
Reynolds number is high enough to neglect the contribution of the second term in pressure drop equation.

3.1.6  Reduced order model after scaling
A reduced order model is obtained after removing terms as discussed previously. The simplifications
described require us to re-derive the energy balance by assuming instantaneous transfer of heat from
catalyst to gas phase and neglecting any conduction. The new energy balance is given as

ar__1 (1__5
dz GCp,

e jrwgsAH R,wgs (137)

Reduced order model for the given parameter and inlet condition is given below
Component balance: (CO)
dC., dC 1-¢

=Yoo Mg —— 138
ez oy (138)
Component balance: (COS)
dC. [ l-¢ (139)
dz u

Total balance:

ac _ _C(ld_T _ld_Pj (140)
dz Tdz Pdz
Pressure drop equation:
dP “(1-¢
- :ﬁ”—( > )1.75 (141)
cat
Energy balance:
dT 1 (1-¢
.
g

3.1.7 Comparison of simulation results from reduced order model with that of detailed model
The reduced order model obtained through scaling analysis is tested by comparing the simulation results
with that of detailed model. The percentage change in the average values of the variables between
detailed and reduced order model and the computational time taken are considered as the metrics for
comparison. These metrics represent the closeness of the reduced order model and its computational
efficiency compared to the corresponding detailed model. For example, the average change in the
temperature over the length of the reactor between two models is given by

1 eL 1 L
‘L J-O Tdetailed dz - I -[O Treduced dz
Tavg,error = 1

L
L J-o ToetaiteaZ

x100

(143)




In the above equation, the integral is calculated numerically based on the profile values of the
corresponding variables. Computational load is measured in terms of time taken for simulation using tic-
toc command in MATLAB. Table 14 shows the values for these metrics and the values shows that error
percentage is small enough that one can consider reduced order model is a good approximation for the
given parameters and inlet conditions. On the other hand, the computational load is considerably lower
and it is reduced by about 97.8% of the load required for the detailed model, which can make the use of
this model preferred of several applications.

Table 14. Metric for comparing reduced and detailed model simulation

Variable/Model Metric Value (%0)
Concentration of CO Ceo.avg.error 0.3045
Concentration of COS Ceosavg,error 5.02

Temperature Tovg error 0.0132

Pressure Povg.error 0.1340
Detailed model Computational load, s 74.86
Reduced order model Computational load, s 0.96

In the figure below, we show the profile of two of the variables between these two models. Figure 65-66
show the profile of COS and temperature along the length of the reactor, respectively. From the
temperature profile one can observe there is increase in catalyst temperature very near to the inlet of the
reactor. This is because at a small enough lengths, conduction dominates over convection, hence there is
rise in catalyst temperature and also we see difference between catalyst and gas phase temperature. This
length where conduction is important can be approximately given by,

K..T
g = |[—— 25— =0.23
cond r AH (144)

wgs,s R,wgs
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Figure 65. Concentration profile of COS from detailed and reduced model for WGS reactor.
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Figure 66. Temperature profile from detailed and reduced model for WGS reactor.

3.1.8 Comparison of scales with actual simulation
The scales can be thought of as maximum values which makes the dimensionless variable to take value at
most of 1. These scales can be approximately calculated without performing any simulation, based on the
inlet and parameter values. However if the detailed model is simulated then the exact values of these
scales can be calculated based on the simulation results. In this section, we compare the approximate
scales obtained in the previous section with the exact ones obtained through simulation.

In the steady state model of WGS, maximum gradient of a variable can be calculated by considering the
dimensionless variables taking maximum value of 1 in the corresponding dimensionless equation. For



example, consider dimensionless species balance, Egn. (110). The maximum concentration gradient can
be found from this equation as follows,

~ inzs ﬂ (1_8) (%j ~ (ﬂj _
1~ - +(ul o = ) " y.C,. + . S(1 €) (145)

i,zs i,zs

r.
In Eqgn. (145), we see the maximum gradient depends on two terms Y,C,. and [—'j (1—8). These two
u S

terms can be calculated either approximately as detailed in the previous sections or can be calculated from
values of simulation.

The idea behind calculating scales approximately is to assume one of the terms in Egn. (145) dominates in
contributing to the maximum gradient. This is done by equating one of the corresponding dimensionless
groups to 1. In a similar way one can calculate all other relevant scales by assuming one of the terms
dominates in each of the corresponding dimensionless equation. The obtained scales are then substituted
in the other dimensionless group to see whether they are of order 1 or much less than 1 or much greater
than 1. If the value of the resulting dimensionless group is much less than 1, we can neglect this term
resulting in model simplification, if it is of order 1, then it equally contributes to the gradient and hence
needs to be retained. If the value is much greater than 1, then our assumption of selecting dominating
dimensionless group is wrong and we need to equate this dimensionless group to 1 and test the other
dimensionless groups.

The maximum value of a variable from simulation can be taken as scale for the corresponding variable.
For example, maximum temperature change (Tmax —Tm) can be taken as the scale for temperature T.

Then this scale can be substituted into the dimensionless group to identify which terms are important to

be retained or not important to be neglected. For example consider again Eqgn. (145). In this equation, the

maximum value of y; i.e. Y;, can be substituted and the maximum value of total concentration gradient

can be calculated from total balance equation and substituted, maximum of ratio (—'j from simulation
u

can be substituted in the second term. Then this will give the maximum value of the concentration
gradient. Based on the percentage of contribution of each term, one can decide on retaining or neglecting

the terms.
dC. I
( = jax YiinCos (ujmax( £) (146)

Table 15 shows the scales for WGS reactor calculated from simulation and through scaling analysis and it
is seen that they are close to each other.

Table 15. Exact values and approximate values of the scales

Variable scales  Actual values from simulation ~ Approximate value through scaling analysis

Ceoss 246.33 246.33
Ceoss 0.0963 0.0963
rCO,S 234 2 17



Fooss 0.0053 0.0049

U, 0.2817 0.296
T, 156.26 185.79
P, 2.31x10° 2.94x10°

In Table 16, we show the dimensionless equation of WGS reactor in the limit of dimensionless variables
taking the value of 1. This results in a simple algebraic equation containing the maximum values. In
values under simulation, each value represents the actual value that is obtained through simulation. For

example, in the first equation, 9.024 represents the maximum gradient of C_, 2.79 represents

co’
. . I
maximum value of y,C, and 6.33represents the maximum value of [ﬂj (1—¢). In the values under
u S

scaling analysis, values on the right hand side of the equation (2.54 and 6.23) represent the one that
obtained by substitution of appropriate scales. It is seen that all the values of the equation obtained from
simulation and from scaling analysis are again close to each other. Table 15 and Table 16 confirm that
reduced order model obtained from scaling analysis is based on realistic scales and hence will be a good
approximate model.

Table 16. WGS reactor dimensionless equations are shown as algebraic equations with their
corresponding values from simulation and scaling analysis

Values through scaling

Equation Values through simulation analysis
%) ~yacor(®] 0-2)
dz ), uJs 9.024~2.79+6.33 8.77=254+6.23
(dccosj ~ ycosCzs +( cosj l-¢
dz ), u Js 0.0158~11x10™* +0.0149 0.015=9.95x10* +0.014
Czs ~ _(Ej Tzs (Ej st
T PJs 12.19~11.05+1.52 13.03=11.06+1.97
P zm(l_—g}[.75
* dcat 83

) 0.98x10* ~ 0.92x10* + 1.079x10* =1.015x10* +
u,(1- &) 1150
+T 604.2 634.84

cat

T =~ (1_5)Kcathzs + rWQSVSAH R,wgs (1_8) n

a Cp,Ge Cp,Ge B B
o AHo (- 0) 6.93~35x10°+6.93+  6.423=5.94x10" +6.41+

Cp,Ge 0.013 0.012




3.1.9  Scaling of unsteady WGS model
Scaling can be done for unsteady model using the definitions introduced above. In addition to the scales
for steady state model, we need to introduce one more scale which characterizes the unsteady nature of
the model. We define this scale as 'velocity of dynamics of a variable'. Following is the unsteady model of
WGS reactor,

Component balance:

8C oC 10T, T,oP -
=-GR g——CGR — 4 & lr,. . +r. ) — 147
ot P &z [P oz P? az} (s ) P 147)
Pressure drop equation:
dP pu 150
— = 1.75+ 148
dz d( )[ Rej (9
Gas phase energy balance:
oT 1 oT, h.a
—9= CpG—L+ (T, -T
= pgcpi O g)} (149)
Catalyst phase energy balance:
aT,, 1 82TCa h;a,
L= |:Kcat L f (Tcat _Tg )+ rwgsAH R,wgs +rhydAHR,hyd:| (150)
ot PeatCPeat oz 1-¢

In the dimensionless model Egn. (151) and (152), we have introduced the new scales V

c,s?

V;. and

VTQS which characterize the dynamics of concentration and temperature. Reaction scale for this can be the

maximum of two inlet rates corresponding to two steady states before and after the introduction of
dynamics or can be obtained by simulating the simplified version of the corresponding unsteady model.

Dimensionless species balance:

N\ . T\ ' - (1_ L\
‘C‘Vc,s [8C|) — [aC j g Tzs a_g +g P (apj +M(£j (]_5]_)
u ot 0z TG\ oz PC \oz uC, u

i,zs

Dimensionless combined energy balance:

VTcatspcathcat (1_8) (aTcat )<ﬂ = Kcat (l—g)TZZS ( TcatJ VT Spg (aT ] {aT j

Cngg ot Cp,Ge o’ G | at oz
(152)
(l 5) wgs, s R WgSs @ (l_g)rhyd,sAHR,hyd @
rwgs + rhyd
CpyGeTy, CpyGeT

c,s?

The scales V., V;_ and VTgs can be obtained by equating the dimensionless group multiplying the
unsteady term to 1.



_Ge

CPCs _gop3. v —20.62
-0023; V., =—2=20 (153)

& = PeaiCPea 1 - €) TPy

Based on the values of the scales, dynamics of gas phase temperature is faster compared to catalyst
temperature. But from 7; and x,, it is seen that T, =T, , this means that dynamics of gas phase

temperature is limited by the catalyst temperature dynamics. On comparing the velocity of dynamics of
temperature with that of concentration, one can observe that concentration dynamics is about 25 times
faster. This implies we can safely assume the concentration variation to be quasi steady. We can remodel
the energy balance by considering the both catalyst and gas phase temperature to be equal and its
dynamics is governed by that of catalyst temperature.

oT or (1-
— = 2 (— chg —+ (_ 5ergSAH R,WQSJ (154)
ot (gngpg + (1_ g)pcatcpcat) oz €

From scaling analysis, we see that the dynamics of detailed of model of WGS reactor for the given
parameter and inlet conditions is governed mainly by temperature dynamics. The coupled parabolic and
hyperbolic PDE model becomes only hyperbolic PDE model which can be further simplified using
recently developed model reduction techniques through method of characteristics. The computational load
of simulating this model is about 40 seconds, which is about 75% reduction compared to the
corresponding detailed model. Table 17 shows the summary of relevant properties for comparison
between the detailed and reduced model. Figure 67 shows the dynamic response of outlet temperature for
a step change in inlet temperature from 620 to 640 K.

v =Y _057; v,

c,s

Table 17. Summary of detailed and reduced order model

Properties Detailed model Reduced model
No. of PDEs 8 1
No. of ODEs 1 3
No. of algebraic equations 0 4
Types of problem solved IVP & BVP Only IVP
Steady state simulation time, sec 96 1
Dynamic simulation time, sec 130 40

Further order reduction can be achieved by POD+MOC MOC
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Figure 67. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas
temperature from detailed and reduced order model.

3.2 Method of Characteristics
Model reduction using method of characteristics is a recently developed technique to reduce the model
described by hyperbolic PDE.'%%1%4 This method has been applied to a model consisting of hyperbolic
PDEs like fixed bed reactor and plug flow reactor. Here, we can employ this technique to the hyperbolic
PDE model of WGS reactor obtained from scaling analysis.

Method of characteristics is a method which converts partial differential equations to a set of ordinary
differential equations. This is possible by finding a relation between two independent variables (z,t) and
these results in equations having single independent variable (ODEs). The relation between the two
independent variables is given by the equation of the lines called characteristic lines in (z —t) plane. The
resulting ODEs for the dependent variables are solved along these characteristic lines. The accuracy of the
solution obtained from MOC depends on the density of characteristic lines in the solution surface. 63164

Consider the following equation which is similar to the reduced order model of WGS reactor:

o4, o4,

lim,_, aE:_l/ﬁE*' F1(¢1’¢2) (155)
0 0
% =V, % +F, ((1511 ¢2) (156)

Here ¢, € R™, ¢, € R™ and t,z e R. In the above equation ¢ corresponds to quasi steady variables
such as concentration and pressure in the reduced WGS reactor model and ¢, corresponds to
temperature variable. The variable ¢, is assumed to vary instantaneously and the variable ¢, is assumed

to vary with finite rate. In these equations as « tends to zero, equation for ¢, is assumed to be quasi

steady. The model exhibits characteristic lines with two slopes given by two different time scale behavior
of the variables. One set of characteristic lines is assumed to be with a slope zero as « tends to zero and



the other set of characteristic lines have finite slope given by the value of —. The value of y, in the
¥,
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Figure 68. Schematic figure showing the characteristic lines in (z-t) plane.

The characteristic lines are schematically represented in the Figure 68 where the horizontal line with
slope zero and slanting lines with finite slope represent these characteristic lines. These lines are

represented by ta(z; z°,t°) and tb(z; z°,t°) where (zo,to) represents the starting point of these lines. For
example, the points (zo,to), (zl,to), (zl,tl) etc. as shown in Figure 68 represent these starting points.

Based on the model equations Egn. (155) and (156), using the concept of method of characteristics,
equations for the characteristic lines starting from the point zo,to) are given by,

%(z;zo,to):Iimo,_)ol/jﬁ1 (157)
%(z;z",to):wi2 (158)
Similarly, equations for the dependent variables are given by,
%—?(z,ta(z;zo,to))=':1(+1’¢2) (159)
ez )-F) a0

The above equations represent the steady state model for @ and ¢, which is solved along respective
characteristic lines and the solution of each of these equations requires information of simultaneous
variation of both the variables ¢ and ¢,. Since this information is only partially available, i.e. only ¢,

along ta(z;zo,to) and only ¢,along tb(z;zo,to), some sort of approximation is needed. This is



addressed by an approximation where for the solution of one variable, the available information of the
other variable in another characteristic line is approximated. The approximation involved is schematically
shown in Figure 69. Arrows in the figure shows the direction of approximation.

3 T SO

% _.ﬁzf;/l_’_I:[_l __________ “—

Figure 69. Schematic figure showing the approximation involved in the solution of dependent
variable along characteristic lines.

Thus starting from the information at (zo,to), Eqgn. (159) and (160) are solved to find the value of ¢, at

(zl,to) and ¢, at (z,,t,). This procedure is repeated for all the points in a plane to obtain the solution of

the corresponding hyperbolic PDE model. Figure 70 shows the dynamic response of outlet gas
temperature from detailed and reduced order model from MOC. The computational load is further
reduced to 6 seconds from 40 seconds taken by the model obtained from scaling analysis. Hence the
original computational load of 130 seconds using detailed model is reduced to 6 seconds using reduced
order model through scaling analysis and method of characteristics.
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Figure 70. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas
temperature from detailed and reduced order model.



3.3  In-Situ Adaptive Tabulation
Sensor network design for water-gas shift reactor (WGSR) involves repeated simulation of its model
equations inside extended Kalman filter (EKF). Direct numerical simulation of the current detailed model
in EKF which is called by genetic algorithm during the design of sensor network is computationally
intensive. Use of scaling analysis on the original detailed model of WGSR resulted in a simplified model
with computational reduction by about 60%. To further reduce the computational burden, in situ adaptive
tabulation (ISAT) is currently investigated.

ISAT is a tabulation method developed by Pope®® and is used for the computationally efficient simulation
of nonlinear equations through efficient storage and retrieval of solution data. This has been used for
computational reduction of simulating detailed chemistry in reactive flow calculations (Pope 1997), for
simulation of heterogeneous reaction®®¢’ for computational reduction during online implementation of
nonlinear model predictive control®, for dynamic simulation of large scale flowsheet'®, etc.

ISAT is a storage and retrieval method, where solutions of DAE are stored in the form of a binary tree.
This step is called 'Addition' during which the DAE model is numerically simulated (called as 'Direct
integration (DI)'.) During this step, no computational advantage is realized and is done offline. Once
sufficient data is added to the table or after sufficient time of addition of data to the table, one can retrieve
the solution from the table during which higher computational efficiency can be realized.

The working of ISAT is represented in Figure 71. The left hand side figure shows the normal numerical
integration to find the solution and this direct integration is done as many times as the model is called
during sensor network design. The right hand side figure shows similar direct integration along with
retrieval' of the stored solution from the ISAT table. In this case, the number of times the direct
integration is performed will be less and is dependent on the density of the data in the table. Hence using
ISAT for sensor network design will result in higher computational efficiency.

Numerical Numerical

simulation of simulation of

WGSR model WGSR model
Data addition to
table

Solution data
storage (ISAT)

Solution

V A 4 Retrieval from
the table

Figure 71. Concept of direct integration and ISAT when the model is solved several times.

3.3.1 Algorithm
The ISAT algorithm is explained by the following simple 2-state problem as given below. In this we
consider a 2-state problem with an objective of solving the equations several times for different initial
conditions.
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One way to accomplish the above objective is numerically integrate the Eqn. (161) and (162) for each of
the initial conditions which would be computationally intensive. The other way would be to use storage
and retrieval method such as ISAT, which is explained below. ISAT algorithm typically involves three

main steps:

3.3.1.1 Addition
In this step, solution data is added to the table. In ISAT, this data is called a record which holds
four main pieces of information

Initial condition or input and for the 2-state problem, this corresponds to S, = Vm}
20

Final solution value or output at desired sampling instant At and this is given as

o]
Y

Sensitivity matrix which holds the information about the sensitivity of output with respect
to input. This is given by

O Oy
A= 0y Oy
Oy 08y
Oy Oy

This sensitivity information matrix is used in the linear equation for the calculation of
output for the inputs within the 'region of accuracy’. Due to this region of accuracy,
ISAT requires only finite number of solution data points to be added to cover the whole
of operating region. The nonlinear solution surface can be thought as approximated to be
several 'linear' regions where following linear equation can be used.

Sg.t =St + A(Sq0 — o) =S¢ + AX (163)

where X represents (S,,—S,). In the above equation, S, and s, come from the added
record to the ISAT table, s , is the new query point, which is within the region of

accuracy of S;. Thus one can see that for the points within the region of accuracy of

added points in the table, one can calculate the output using the linear equation without
resorting to computationally intensive nonlinear numerical integration.

Ellipsoid of accuracy (EOA) or region of accuracy: As seen before, EOA is required,
which defines a region around the added point in the table. One way to find this region is
to define an accuracy ¢ for the solution from linear equation compared to actual solution

from direct integration, i.e. £=5S,; — S('Lf . The region should be in such a way that it

q.f
covers all the initial points s,, whose final solution s, when found through linear

equation will at most have error of ¢.



In practice, to avoid complexity*®®, only an estimate of this region is found initially. This
estimate is improved during 'growth' phase where the region is expanded. This initial
estimate is found as follows

Let us define the solution from 'constant approximation' for the solution of query point

Sgyf =S, =S;. The error in solution between this constant approximation and the

linear approximation is bounded to ¢ .

st -sl.<e = Ax<eg (164)

af = Yqf =
Squaring the above equation by multiplying with the transpose, we get
X'ATAx=¢'e = X Mx=E (165)

In Eqgn. (165), M represent EOA. The major and minor axis of the ellipse is given by
singular value of M .
Following figure represents the addition of this record in the solution space

h

¢,

¢

Figure 72. Addition of record in a solution space.

3.3.1.2 Growth
In this step, initial estimate of EOA is grown whenever the following condition is satisfied
X"Mx > Eand (s, —s. ] (s, s, )<E (166)
This condition implies that whenever a new query point is outside EOA but the solution from the
linear equation is within the specified accuracy in comparison with the solution from the actual
numerical integration, then EOA is grown and this results in a modified M . The details of the
growth step involves concepts from linear algebra and can be found in the literature. Following

figure shows the growth of initial EOA to final grown EOA which encompasses the initial EOA
and the query point.



Figure 73. Growth of EOA where grow EOA encompasses the initial EOA and the query point.

3.3.1.3 Retrieval
This is the most important step for the computation reduction, where a linear equation is used for

the retrieval of the solution. So whenever X' MX<E or X' M, iesX < E, retrieval can be
performed.

Once sufficient records are added to the table, for any new query point, the first step is to search for the
closest record. Once the closest record is found and the condition X"Mx<E or X' M X <E is

satisfied, retrieval is performed, otherwise either growth to modify EOA or new record corresponding to
the query point is added to the table. Thus one can see that during initial phase there will be more addition
and growth, which are computationally intensive as actual numerical integration is required. After
sufficient data is added to the ISAT table, one can realize more retrieval leading to computational
efficiency.

3.3.2 Binary tree structure
Binary tree structure is an efficient way to find the closest record which is necessary to determine
addition, growth or retrieval from the ISAT table. During addition of record to the ISAT table, this binary
tree structure is formed. This tree has node from which two braches come out and these branches either
hold another node or record. The first node in the tree is called the root node, which can have child node.
The child node can have further children nodes as one traverses the tree. This tree is schematically
represented in the following Figure 74.
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Figure 74. Binary tree showing nodes and leaves.

Each of the nodes in the binary tree holds information, which will help in deciding whether to take the left
branch or right branch while searching for the closest record.

So1 t S0 j (167)

V:So,1_50,2;a=VT( 5

Considering two records (whose corresponding initial points are Sy, and S, , ) are already present, when

third point s, ; is encountered, one has to decide which among s,, and s, , is close to S, ;. One way is

sequentially check with each of the points in the table, which is time consuming. Another way is to use
the binary tree structure as follows

v’ Sp3 <& = take left branch, otherwise take right branch

Using binary tree structure takes only O(IogZ(N)) operations compared to O(N) operations in a

sequential search, thus improving the search time. Here, N represents the number of data points in the
table. In a search space of this binary tree represented as in Figure 75, a 3 record addition is shown. In

Figure 75, the dotted line represents the cutting plane given by VT¢ = a , where ¢ is the new query point.
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Figure 75. Binary tree shown in search space where represent a new query point . Corresponding
binary tree structure is shown on the right hand side.

3.3.3 ISAT for WGSR model

ISAT algorithm is used in the dynamic simulation of simplified WGSR model obtained after scaling
analysis. On the computational aspect, using ISAT, the computational load during retrieval of output
takes only 0.0027 seconds compared 0.12 seconds for the corresponding direct numerical integration.
This shows the significant benefit of using ISAT. Figure 76 shows the open loop dynamic simulation
result from ISAT with only retrieval compared with direct integration of WGSR model.

780

770+

760

exit

710 !
0 10

20 40

Time, s

30

Figure 76. Dynamic simulation of WGSR model using ISAT with retrieval and direct integration

3.4 Conclusion

(DI).

The simulation of mathematical model of WGS reactor is computationally expensive. In this study we
have shown the use of scaling analysis and method of characteristics for computationally efficient
simulation of WGS reactor model. In the scaling analysis we have used inlet reaction rate as the reaction



scale as opposed to using the rate based on maximum temperature and concentration suggested in the
literature. Comparison of scales with the actual ones obtained from simulation, confirms the scales are
realistic and the resulting reduced order model is reliable. The scaling analysis resulted in an approximate
model involving hyperbolic PDEs which is further approximated using recently developed techniques
involving method of characteristics. The simulation results shows that the obtained reduced order model
is a good approximation for the detailed model with higher computationally efficiency.

Simulation of WGSR model is performed several times during sensor network design inside EKF.
Currently, the computational load involved during the design is intensive. Usage of ISAT proves to be
computationally efficient in such similar scenarios and hence the use of this algorithm is investigated.
Initial results from application of ISAT to WGSR are encouraging and further work is needed to test its
effectiveness inside EKF during sensor network design.

4  System-Level Sensor Placement

4.1 Introduction

Highly integrated and complex processes and advancements in control technologies for controlling
these processes have increased the necessity of cost-effective automated diagnostic systems that can
efficiently detect, identify and diagnose abnormalities and their origins as they propagate in the process.
The diagnostic systems traditionally use underlying mathematical models and the on-line measurement
from sensors specific to the process. As a fault enters a system, it affects the process variables, which
deviate from normal operating conditions. Diagnostic systems compare the response of the process
variables with respect to a reference model in the presence of faults in order to detect fault symptoms and
monitor the performance of the process which depends crucially on the location of the sensors that
capture the behavior of process variables. However, it is not economically viable and practically possible
to measure all the process variables. Therefore, designing a cost-effective sensor network based on
various criteria, e.g. observability, reliability, diagnosability, etc., poses a unique problem for process
engineers. Several techniques have been reported in the literature, such as fault trees, cause-effect
diagraphs, fuzzy logic-based methods, neural network, principal component analysis, qualitative trend
analysis, support vector machines, hidden Markov model-based methods, and multivariate analysis
techniques for sensor placement for fault diagnosis. For a broader discussion on available technigues,
interested readers are referred to the review articles by Kramer and Mah'”°, Bagajewicz!’?, Frank et al.1’?,
Venkatasubramanian et al.!”®and Ould Bouamama et al.*™

Generally, the diagnostic systems are categorized into quantitative model-based, qualitative model-
based and process history based techniques'’®. The model-based techniques are centered around
fundamental first-principal mathematical equations of the process, whereas the process history techniques
rely on the analysis of long-time acquired process data.'” Cause and effect models such as the directed
graph (DG) and signed directed graphs (SDG) are popular qualitative model-based techniques that have
been studied in the context of sensor placement for fault diagnosis (FD) by many researchers. The DG
representation is one where the nodes (representing process variables and root causes) are connected by
arcs. The SDG is a DG where a positive or negative sign is associated with each arc. In both the
representations, the direction of the arcs are from 'cause' nodes to the ‘'effect' nodes.*” Iri et al.}”® were
first to use SDG representation for FD where they used SDG representation to identify the origin of
failure for the available set of measurements. While the various fault observability and resolvability
criteria for graph models used by the researchers are fundamentally analogous, e.g. diagnostic
observability means at least one variable corresponding to the actual fault is estimated correctly’®”’, this
study follows the definition by Raghuraj et al.}’® Fault observability means that at least one of the sensors
in the network can observe the fault, and fault resolution means that the fault can be uniquely identified
from other faults by the sensor network.



The problem of sensor placement (SP) was first tackled by Lambert!” using a fault tree representation
based on failure probabilities. Chang et al.*®® adopted the concept of observability and resolution and
proposed a sensor placement method to minimize the number of sensors while ensuring the observability
and highest resolution. Raghuraj et al.1’® incorporated the concept of fault observability and resolution
into DG representation of the process and proposed an approach to identify the optimal location of the
sensors. Bhushan and Rengaswamy8! extended the work of Raghuraj et al.1” to SDG analysis for FD and
continued the work by taking into account additional quantitative information such as fault occurrence
probabilities, sensor failure probabilities and sensor costs.!82 Bhushan and Rengaswamy*® presented their
framework by formulating the problem as a mixed integer linear programming (MILP) formulation by
using the bipartite matrix for various fault diagnostics and reliability criteria. Bagajewicz et al.’®
formulated the problem as an MILP formulation for simultaneous process monitoring and fault detection
and resolution. Recent efforts in cause-effect modellings are centered around incorporating useful
concepts or adding more information that improve the FD by DG and SDG models. Kolluri and
Bhushan®® improved the FD capability by introducing the sensor network audit while minimizing
unreliability of fault detection and ensuring fault observability and resolution. Bhushan et al.2%, Yang et
al.®” and Gao et al.*® incorporated robustness, false alarm rates and qualitative trend analysis into SDG,
respectively. Recently, Chen and Chang'®® enhanced the SDG algorithm by considering the sequence in
which the faults propagates throughout the process. In their work, the problem is posed as a binary integer
linear programming (BILP) formulation with sensor pairs as additional decision variables.

In almost all of the works using cause-effect models, the sensor network design is obtained by
considering the qualitative simulation of the process; numerical solutions are used to verify the sensor
network. However, the problem of spurious solutions, which refers to the solutions that are not realizable
physically, inherent in qualitative models might reduce the efficacy of the sensor placements, particularly
for complex processes. On the other hand, optimization solutions involving large-scale first-principles
models for sensor placement might still be intractable. As a result, a compromise might be to directly
utilize the numerical solution of the process models in the traditional sensor placement algorithms. We
believe that this approach while keeping the sensor placement algorithms still tractable will also enhance
the specificity of these algorithms. In this work, the SDG algorithm is enhanced by taking advantage of
available numerical data and the relationship among the variables. We adapt the DG and SDG philosophy
under the assumption that a numerical solution is available and propose magnitude ratio (MR) — ratio of
the changes in a pair of process variables in response to a fault — to improve sensor placements for FD.
The sensor placement problem is posed as a BILP formulation by using the bipartite matrix while
ensuring observability and maximum possible resolution. Moreover, we generalize this idea of magnitude
ratio to the realistic case of multiple process variables and multiple faults. We also study the fault
evolution sequence (FES) — sequence in which a pair of sensor variables deviate from their nominal
values in response to a fault - for improvements in the sensor placements for FD.

4.2 Sensor Placement Approach

To facilitate the use of MR and FES information in a SP algorithm, a set of artificial sensors, which
correspond to pair-wise sensors from the original list of sensors are defined. In MR algorithm, artificial
sensors represent the magnitude ratio of the corresponding pairs; and in FES algorithm, artificial sensors
represent the sequence in which the corresponding pairs respond to the faults as the faults propagate in the
system. We believe these enhancements not only improve the capability of the SP algorithms, but they
can be viewed as independent components of a more general and complex SP problem that is decomposed
into simple, yet efficient components.

Theoretically, the SP problem can be thought of as an optimization problem that requires
minimization of the cost of the sensor network while satisfying the underlying mathematical equations
and constrained to some fault diagnosis performance metrics. However, the major drawbacks to this
theoretical view are: (i) solving such minimization problems for large complex systems is



computationally expensive, (ii) the underlying mathematical equations must be embedded within the
optimizer and might require solution to a mixed-integer non-linear programming problem, (iii) it is in
general non-obvious and difficult to define fault diagnosis performance metrics, and (iv) finally, simple
engineering interpretation of the results might be difficult. We believe that one way to resolve these
drawbacks is to decompose the underlying mathematical model into smaller and simpler interacting
building blocks of information such as DG, SDG, FES and MR. By doing this, the resultant optimization
problem can be solved easily as the underlying complex mathematical equations are removed from the
optimizer. The complexity of optimization problem can be reduced to solving an integer linear
programming problem. Further, the sensor placement results can be easily interpreted. Moreover, further
improvements can be achieved by adding more information components to the model description. One
such example could be qualitative trends or “signatures” that faults leave in the measured variables.

Another interpretation of this approach is that the sensor placement problem is simplified and
efficiently solved through the use of appropriate features. The DG and SDG develop qualitative features,
whereas FES is a purely temporal feature. Clearly, none of these are quantitative features. The MR is
probably the simplest quantitative feature that one could include in the sensor placement algorithm; this
has not been attempted before. We will show that the inclusion of this feature can help in both better
resolvability and also in deriving more cost-effective sensor placements with the same level of
performance.

4.3 SDG and FES Algorithms in the Presence of Numerical Simulations

In a process system, a change in one variable can cause one or more variables to change significantly.
These cause-effect (CE) relations among the variables are very useful for diagnosing faults in the system.
The optimum number and locations of sensors for diagnosis of a process can be identified through an
algorithmic approach when process simulation is available. Such an approach is detailed next. First, the
total number of faults (M) that one is interested in diagnosing is chosen. Then under the assumption of
occurrence of one fault at a time, fault simulations are performed. Next, the candidate sensor locations (N)
are chosen. Fault sets - which are a set of all the sensors that respond to the occurrence of a fault - are
generated. Due to large differences in the magnitude and direction of change of the process variables in
response to the occurrence of a fault, it is important to use a threshold value for each process variable
while developing the fault sets. A variable should be included in a fault set whenever that process variable
deviates beyond the threshold limit. The extent of deviation in a particular process variable depends on its
actual operating value, type, operating condition, noise and disturbances. For simplicity, we have
considered the threshold limit on the process variables as +2¢ variation of the sensor that measures the
variable where o is the standard deviation, e.g. 2 °F for temperature sensors.'® If the variable changes
from its nominal value beyond the +2c of the sensor that measures the variable, the variable is assumed to
be changed from its nominal value.

All the faults are introduced at the same operating condition. No disturbance is introduced into the system
during fault simulations. In DG, if a variable changes beyond its operating limit, a "1" is assigned,
otherwise "0" is assigned, i.e. Roc € {0,1}. This operation returns a row vector for each fault with the
dimension of 1xN and performing this operation for M faults will return matrix AP® with the dimension of
MxN. In SDG, "1" is assigned if the variable changes beyond the upper limit and "-1" if it changes
beyond the lower limit. If the variable stays within its limits, "0" is assigned. Note that the deviations are
based on the incipient response of the process, thus, if a variable response changes during the course of
the fault evolution, e.g. "1" then after some time "-1", only the initial response is considered, i.e. "1".
Therefore, Rspe € {-1,0,1}. Considering all the faults, the matrix ASP® of dimension M xN is obtained. The
constraint matrix is constructed by augmenting the observability (4°?%) and resolution matrices (A7),

res

b
A= [AO S]. For observability, since only observing the fault is required and not the direction, A°?S =

APG_ For resolution, symmetric difference sets of the form Af* = A77% U A7P% — A7 n A7PC for each



pair of faults results in matrix A7 with the dimension MC,xN 182183191 However, it is possible that some
of the faults may produce deviation in the same direction for the same set of variables. In that case, the
corresponding rows in the observability matrix are the same. If g rows are same in the observability
matrix, the resolution matrix will have 9C, number of rows with zero elements. Therefore, those faults
cannot be resolved.

A binary integer programming problem for sensor placement is formulated for minimizing the sensor cost
subjected to fault observability and resolution considering all the process variables as decision variables.
A binary decision variable is assigned to each process variable; if the decision variable takes a value of
"1" then a sensor is placed to measure that variable and a "0" value implies that the variable is not
measured. The constraint matrix, A, in the optimization problem represents the coefficient matrix
obtained by DG and SDG. Since for observability and resolution at least one sensor must be picked by the
optimizer, the b vector represents the constant vector of unity with (M + M) rows.

min ) wix; (168)
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The sign of the variables’ response to a fault and the sequence in which the variables respond to a fault
can be utilized to enhance the fault resolution. The FES algorithm, proposed by Chen and Chang®, takes
into account the sequence in which fault propagates through the process. This is the first work where this
approach was proposed. In their work, sensors are paired together and assumed as a pseudo-sensor to
obtain the sequence information. Since the work of Chen and Chang'®is based on qualitative analysis
without numerical simulations and the current work assumes that numerical solutions are available, an
algorithmic approach for FES had to be developed. This is described below.

After a set of M faults are modeled individually, the sequence in which sensors capture the changes in the
process variables for each fault is determined by the time elapsed from a reference time, which is set
before any variable goes beyond the threshold limit. As soon as a variable goes beyond the threshold
limit, it is added to the sequence. To pair the sensors, NC, combinations are considered as the available
pairs and a base sequence is assumed for each pair as {S;,S;} where j > i and S represents the
corresponding sensor. The pairs used in this study are of the form of P;; , where P;; is the pseudo-sensor

assigned to the sequence of sensors S; and S;. This will result in the generation of w pseudo-sensors

as pairs. If the sequence of any pair (P;;) is in the same sequence as the base pairs, "1" is assigned to that
pair variable, if the pair is in the opposite sequence of the base pairs, "-1" is assigned and for all others "0"
is assigned to the pair variables. However, it would not be possible in practice to determine the sequence



of pairs of variables if the time elapsed between the responses is short. Thus, a threshold time is defined
to determine if responses can be arranged in the sequence. If the difference in response time of the pair is
greater than the time threshold then it will take the values as described, otherwise, "0" is assigned to
distinguish them from pairs that can be practically assumed in sequence. Therefore, P € {-1,0,1}. This
operation will return a matrix with dimension M x NC,. Figure 77 shows the flowchart of FES algorithm
in presence of numerical solution. In this flowchart, G is the measurement value, t is the time elapsed
from a reference time until the sensor magnitude (measured value) goes beyond the threshold limit, 7; and
T; are the operational threshold limit, and T is the time threshold.
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Figure 77. Flowchart of FES algorithm in presence of numerical solution

4.4 Sensor Placement Using Magnitude Ratio
Qualitative reasoning, in general, predominantly focuses on the behavior of single process variables and
neglects relationship among process variables.’®? Other than the information available from single
variables, partial information such as absolute value ranges, relative orders of magnitudes and
approximate numerical values can be utilized.’® Qualitative reasoning disregards such available
information and practices reasoning at a very abstract level. Thus, the focus is on the signs exclusively
and practical use of numerical values is excluded. Explicit use of numerical information in conjunction
with qualitative reasoning makes such reasoning more applicable for engineering systems. Such reasoning
has been reported in the work of Mavrovouniotis and Stephanopolous'®?, and Raiman*® for FD. In their



work, the order of magnitude reasoning is discussed through the definition of three relations among
guantities: A is negligible in relation to B, A has the same sign and is close to B, and A has the same sign
and order of magnitude as B. Although this approach uses quantitative information of the variables, it
cannot relate numbers to order of magnitude relations; and order of magnitude reasoning contains no
extra information when full numerical solutions are available.'®? Therefore, a somehow similar reasoning
is proposed that take advantage of the available numerical data. The magnitude ratio can be thought as
reasoning by A>>B or A=B=1, where, A and B represent the ratio of normalized magnitude of the
sensors. To better understand this idea, consider the example in Table 18. SDG algorithm cannot
distinguish between F,; and F,, but, we can examine the ratio of the sensors and see if we can distinguish
between these faults. Figure 78 shows the ratio of S;to S, for each fault. Note that the magnitude of each
sensor is normalized by its steady state value. The magnitude ratio for fault F; is much higher than that of
F,'s. This indicates that the sensor S; is much more affected than S, or vice versa, for F; compared to F,.
Therefore, this way we can distinguish between faults F; and F,.

Table 18. SDG example
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Figure 78. Magnitude ratio for example in Table 18



Generally, the extent that a variable is affected by a fault gives an insight into the propagation of the fault
through the process. Although both quantitative and qualitative analysis shows that changes in variables
can be utilized, as in DG and SDG, some variables are affected more by a fault while others are less
affected. While this information is neglected in DG, SDG and FES, magnitude ratio can uncover such
information from the relationship between pairs of variables. The magnitude ratio of a pair of sensors, S;
and S;, is written as:

r; = gi/Gi,SS (169)
i/ Gjss

where G; and G; are the magnitude of the sensors S; and S; and are normalized by their steady-state values
Siss and S; ss, respectively. Note that both S; and S; must at least go beyond their threshold limit to be
considered for further analysis. The magnitude ratio, r;;, is initially at "1". After a fault is introduced to
the system, R;; changes from its steady state ("1"), and can change in either direction. Recall that the pair
P;; is assigned to the sensors S; and S, here, if r;; > 1, P;; is assigned "1", if r;; < 1, P;; is assigned "-1"
and P;; is assigned "0" if otherwise. For this, a threshold is required to satisfy the inequalities. Therefore,
the threshold value is tuned for maximum fault resolvability by a sensitivity analysis of the upper
threshold value. Note that the lower threshold is calculated as the inverse of the upper threshold. If a
variable is at "0" initially - like the error in a controller - P;; is assigned "0". Eventually, P € {-1,0,1} and
after simulation of M faults, the operation will return a matrix with dimension M x NC,, same as in the

FES algorithm. Figure 79 shows the flowchart of MR algorithm. In this flowchart, Ty is the MR
threshold value.
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Figure 79. Flowchart of MR algorithm

4.5  Constraint matrix for FES and MR

Similar to the resolvability problem of SDG, MC, pseudo-faults with corresponding symmetric
differences of fault sets is constructed using the information provided by the P matrix. This results in an
MC,x NC, matrix that contains the fault resolution by FES or MR. The constraint matrix for SDG, before
removing any zero rows, have (M +MC,) x N dimension with first M rows representing the observability
and the following MC, rows representing the fault resolution. To add the resolution by FES or MR, the
constraint matrix is augmented by “C, columns which consist of two blocks. An M x NC, block of zeros is
generated for observability, since FES and MR do not contribute to fault observability. In addition, an
MC,x NC, block is generated by performing symmetric difference set on FES matrix (resulting in AFES
matrix) or MR matrix (resulting in AMR matrix). The new augmented constraint matrix is treated as in
SDG where rows that are the same and the rows that contain only zeros should be removed. Note that in
order to solve the optimization problem, these rows must be removed from the constraint matrix A and the
constant vector b.

After construction of the new augmented constraint matrix, the optimization problem has N+ NC,
decision variables, including the sensors and pseudo-sensors. However, to ensure consistency between the
sensors and corresponding pseudo-sensors, the following constraint should be added to the optimization
problem (augmented constraint matrix) for each pseudo sensor:*8°



A-x)+(1—x)+x;=1
(1-x;)+x=1 (170)
(1—xl~j)+xj >1

where x;; is the pseudo-sensor corresponding to the sensors x; and x; in the decision variables. Eqn. (170)
implies that per each pair of sensors, three linear inequality constraints must be added to the optimization
problem constraints; therefore, the constraint matrix and the constant vector must augment with the
consistency matrix, A°°"S, with the dimension of (3x"C;)x(N+"C;) and a vector of unity with the
dimension of (3xNCy)x1, respectively.

4.6  Formulation Summary

4.6.1 Optimization Problem
The optimization problem in Eqn. (168) is summarized as:

N
minz WiX; (171)
J
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AxT = b
x; binary
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where A* = AFES for FES algorithm and A* = AMR for MR algorithm. Note that a joint FES and MR
algorithm can be obtained by A* = AFES&MR = AFES y gMR,

4.6.2  Solution Approach

The sensor network design is posed as a BILP and can be solved by a number of commercially
available optimization software. In this work, the optimization problem is formulated in MATLAB and
the solution is obtained by the CPLEX optimization toolbox integrated in MATLAB.

4.7  Network Decomposition
As mentioned before, using the qualitative approach in presence of numerical solution reduces the
complexity of optimization problem into solving an integer linear programming problem. However,
complexity still exists with respect to the processing of the signed directed graph, especially as the size of



the system increases. One of the main issues is the memory limitations of computers for storage and
computations. A computing machine is not only limited by the amount of information it can store for a
particular problem, for a simple example, the augmented FES-MR matrix or constraint matrix, it is also
limited by the amount of memory available for computations, resulting in slower computations due to low
availability of memory. Therefore, diagraph-based causal models are vulnerable to such complexities
though the problem is defined as a linear optimization problem.

Generally, in graph theory, a system can be depicted by a set of vertices and edges that connect the
vertices. Vertices can represent the system variables or any aspect of a system, for example sources and
clients in a wireless network or variables in diagraph-based fault detection, while the edges represent the
relationship between the vertices. Mathematical efforts in graph theory have been made to reduce the
computational complexities by reducing the problem into smaller components, through “graph
partitioning” techniques. In graph partitioning, one tries to decompose the graph into smaller sub-systems
with specific properties. However, very little work exists in graph partitioning that considers fault
detection as an objective. Almost all of the works in the area of graph partitioning focus solely on
minimizing the number of edges between the sub-systems. However, it is not intuitive for one to think
that the same reasoning holds while considering fault detection. Although, it is intuitive that the solution
to the decomposed graph can be sub-optimal compared to the solution to the original graph, this
compromise might be acceptable due to the complexity reduction achieved by decomposition.

The graph partitioning problem is classified as a NP-hard (hon-deterministic polynomial-time hard)
problem. In computational complexity theory, NP-hard problems are a class of problems, whose solutions
cannot be found in polynomial time and hence are generally obtained by heuristic algorithms. Developing
graph partitioning algorithms that fits the fault detection context might be complex. However, an initial
understanding of the impact of graph partitioning on different aspects of fault detection such as the trade-
offs between the fault detection, optimality and computation speed can be developed through sensitivity
analysis.

Since different systems have different properties with different possible decompositions, thus, the study
includes a Monte Carlo simulation of a pool of random systems with similar properties and different
decomposition. The random systems are constructed by a bottom-up design. In this approach, initially
random sub-systems are generated; and the overall system is obtained by cross-connecting the sub-
systems. Certain constraints on the overall system, such as total connectivity, are handled at the sub-
system level which ensures the constraint satisfaction at overall level.

For simplicity, each random system represents a directed graph (DG). More complex systems can be
achieved if the edges not only represent the direction but are also associated with real or integer
guantities. Directed graph is the most widely used causal model, a popular technique in model-based
analysis for fault detection. For simplicity, in this work, fault detection is performed by only considering
the directed graph (DG) algorithm. In DG formulation for a process where vertices represent the variables
and edges represent the relation between the variables, one tries to find a network of sensors with
minimum cost that satisfies the fault detection constraints. Sensor placement is formulated as a binary
integer linear programming problem constrained by the required fault detection and resolution. A
thorough study of DG algorithm can be found in previous sections. It is worth mentioning that a major
part of the DG analysis is to find the initial response table (IRT). The initial response table is a matrix of
binary values that represents from each vertex what other vertices can be reached directly or indirectly.
Using the IRT and the optimization constraints, fault detection and resolution matrices can be obtained.
Therefore, IRT is critical to fault detection and must be consistent with the system of interest. While
generating a random system, the IRT is obtained using the DG matrix that represents the system.



This section is organized as follows: In subsection 1, the method for generating the random systems is
thoroughly explained. In subsection 2, fault detection in the presence of system decomposition is
explained.

47.1 Method

4.7.1.1  Assumptions
As mentioned before, random system generation is performed in a bottom-up process where, first, sub-
systems are generated and the overall system is obtained by cross-connecting the sub-systems. Generating
random systems for fault detection requires some basic assumptions that must be met by the random
systems.

1. Faults in the system are presented by independent nodes. Fault nodes are the only nodes that have
no inward edge.

2. All the nodes must be connected to at least one other node.

3. There is no self-connection in the system.
A mathematical representation of a directed graph is through the use of a node adjacency matrix. Rows
and columns of node adjacency matrix represent the vertices and each (i,j)" entry is assigned “1°” if there
is a directed edge; and “0” otherwise. Figure 80 shows an example of the node adjacency matrix for the
corresponding DG.
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Figure 80. Representation of adjacency matrix

Generating random systems requires some parameters to be provided in advance. These parameters
include:
a. Number of sub-systems (Ns):
A scalar that represent the total number of sub-systems.
b. Number of nodes (Nn):
A 1x N vector where each array in the vector represents the number of nodes in each sub-system.
c. Number of edges (Ne):
A 1x N vector where each array in the vector represents the number of edges in each sub-system.
d. Number of cross-connection edges (Nce):
A 1x Ns(Ns-1)/2 vector of values where each array represents the number of edges between each
pair of sub-systems.
e. Number of faults (Ns):
A 1x N vector where each array in the vector represents the number of faults in each sub-system.
f. Number of fault edges (Ns):
A 1x N; vector where each array in the vector represents the total number of output edges of the
faults in each sub-system.
It should be mentioned that all the parameters must be positive integers and must follow the mentioned
assumptions, for example, N> N;, otherwise, there will be at least a fault node without any edges.



4.7.1.2 Algorithm
In order to explain the algorithm, first, a logical reachability matrix must be defined. Each (i,j)"" entry in
the adjacency matrix shows the number of ways possible to go from i node to the j" node with distance
of one. Considering the squared matrix of adjacency matrix, each (i,j)™ entry in the squared adjacency
matrix shows the number of ways possible to go from i node to the j"" node with distance of two; and so
on for higher powers of the adjacency matrix. The reachability matrix is defined as the sum of all powers
of the adjacency matrix up to N, power. Each array in this special matrix shows the total number of ways
to go from i" to j*" node with any distance. Since we are only interested if there is any connection between
two nodes by any distance, the reachability matrix is transformed into a logical form where the non-zero
arrays in the reachability matrix are assigned “1”. It should be noted that self-connections, if any, must be
converted to zero for further analysis.
The algorithm follows these steps for each sub-system:

1. Initialize the adjacency matrix

2. Randomly pick Ne arrays in adjacency matrix and assign “1” (Self-connections excluded)

3. Check if constraints are satisfied

a. All nodes are connected: Sum of each row of logical reachability matrix is equal to Nn-1

b. All nodes have at least one input edge: Sum of each column of adjacency matrix is
greater or equal to one

4. Randomly connect the faults

a. For each fault, the number of output edges are determined randomly

b. For each output edge of each fault, a node without input from the same fault is randomly
determined

Steps 2 and 3 are repeated until a system that satisfies the constraints is achieved. After performing the
algorithm for each sub-system, sub-systems are randomly cross-connected as per Nc. without overlapping
edges. For each cross-connection, one node in each corresponding sub-systems are randomly chosen and
the direction of the edge is chosen as random.
The main drawback of this algorithm is that finding appropriate sub-systems that satisfy the constraints
gets harder for larger number of nodes and lower number of edges. Therefore, a second algorithm is
introduced when a system is not found within a reasonable number of iterations. The algorithm is as
follows:

1. Randomly choose two nodes from the pool of available nodes and connect them. Mark the node

at the end of the directed edge as current node and place it in the pool of visited nodes

2. Define probability parameter 3 for each sub-system:

a. With chance of 8, connect the current node to a randomly chosen node from the pool of
available nodes. Mark the chosen node as current node and place it in the pool of visited
nodes

b. Otherwise, randomly choose a node from the pool of visited nodes and connect it to a
randomly chosen node from the pool of available nodes and place the second node in the
pool of visited nodes

It should be noted that step 2 is performed until Ne number of connections are made. Other than the fact
that the second algorithm is faster, another advantage of it lies in the choice of value for parameter .
Higher values of P result in systems analogous to recycle process systems while lower values result in
systems analogous to spanning tree systems.

4.7.1.3 Initial Response Table calculation
After generating the random sub-systems with fault nodes and cross-connecting the sub-systems, the
overall system is achieved. The total DG matrix that includes the fault nodes for the overall system can be
obtained by augmenting the fault DG (FDG) matrices with augmented system DG matrices. As shown
below, the total DG matrix contains four blocks. The zero blocks are due to the assumption that faults
have no input edges. The FDG block is made by augmenting the fault adjacency matrices of all sub-



systems. Similarly, DG block is made by augmenting the adjacency matrix of all sub-systems® DG. After
calculating the logical reachability matrix of the total DG matrix, the FDG block of the logical
reachability matrix will represent the IRT.
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4.7.2  Fault detection for decomposed system

While performing fault detection for each sub-system, one can either ignore that there are faults outside
the sub-system (in other sub-systems) and assume they cannot affect the sub-system through the inward
cross-connection, or, we can find a simple way to mitigate the effects and bring these faults into
consideration. Clearly, the former will cause some information loss due to the naive approximation, while
the latter add more information to the system and may improve fault detection. The latter can be realized
by simply assuming that all the inward cross-connections as a pseudo-fault inside the sub-system. This
way all the inward cross-connections are assumed to be coming from a single node marked as a pseudo-
fault. While one may argue that each inward cross-connection can act as a single pseudo-fault and add
more information to the system, the drawback to this assumption is that large number of pseudo-faults can
further complicate the fault detection and may compromise the speed for very little additional
information. Therefore, the approach taken in this work is based on assuming all the inward cross-
connections from other sub-systems as coming from a single pseudo-fault. The pseudo-fault is then added
to the system as a node and considered in fault detection. Figure 81 shows an example of how the pseudo-
fault is considered in a sub-system. In this example, red nodes indicate the faults while black nodes
indicate the graph nodes. The effect of faults F1 and F2 in sub-system 1 are passed to sub-system 2
through the dashed edges, which represent the cross-connection between the sub-systems. The cross-
connections in Figure 81 are then replaced by a pseudo-fault (yellow node) and the pseudo-fault is
connected to the same nodes, marked as SP1 and SP2 in sub-system 2.

Sub-system 1

Sub-system 2
Pseudo-fault

Figure 81. Pseudo-fault representation for two sub-systems.

The main issues that arise in the pseudo-fault approach are the existence of multiple solutions in fault
detection and the information loss due to decomposition. As an example, consider performing fault
detection for sub-system 2, where we want to resolve between fault F3 and the pseudo-fault. The multiple
solutions which are available for fault resolution are S1, SP1 and SP2 nodes. Assume the cost of placing
sensors on all the nodes are the same, thus, placing a sensor on each of the nodes can be the solution to
our sensor placement problem. However, due to information loss by decomposition, each solution can
have different impact on the fault detection of overall system. If S1 is picked as the solution and
implemented on the overall system, fault pairs (F3,F1) and (F3,F2) can be resolved. If SP1 is picked as
the solution and implemented on the overall system, although fault pair (F3,F1) can be resolved, fault pair
(F3,F2) cannot be resolved. Similarly, if SP2 is picked as the solution and implemented on the overall
system, although fault pair (F3,F2) can be resolved, fault pair (F3,F1) cannot be resolved. Therefore,



since no extra information is available about the overall system, multiple solutions with different overall
fault resolution may exist. One way to overcome this issue is to pick the nodes affected by the faults but
not the pseudo fault, for example, S1 in Figure 81. This ensures total resolution from the faults out of the
sub-system.

In the original fault detection method, fault resolution is based on the set difference of the nodes affected
by the fault that are being resolved. If A is a set of nodes affected by fault f; and B is set of nodes affected
by f, then, set difference S is defined as: S = A U B — A N B. In the new approach, when resolving
between a fault (as set A) and the pseudo-fault (as set B), symmetric difference is replaced by Spew = A — A
N B. This ensures that the fault is resolved from all the other faults outside the sub-system. However,
there may be cases when resolving between a fault and the pseudo-fault where Snew = @ and S # @. In this
case, S contains at least a solution and can be used over Spew.

5 Distributed Sensor Placement

5.1 State Estimation Development

5.1.1 Introduction

Differential-algebraic equation (DAE) systems often arise in modeling of physical and mechanical
systems, such as robotics, chemical processes, electrical circuits and so on. DAE systems which are also
called descriptor systems, can be viewed as ordinary differential equations (ODES) that are constrained by
the algebraic equations. In general, both the differential and algebraic equations can be linear or
nonlinear. Although the dynamic behavior is modeled by ODEs, the presence of algebraic constraints
results in some complications while solving the DAE systems. State estimation of linear and nonlinear
ODEs have been studied thoroughly in literature and several techniques are present for state estimation
including but not limited to Kalman filter (KF), extended Kalman filter (EKF) Unscented Kalman filter
(UKF), Ensemble Kalman filter(EnKF), particle filters and etc.’®” The Kalman filter is an estimator of
linear stochastic ODEs where the term “stochastic” represents the presence of process and measurement
noises. Kalman filter is optimal when the noise is assumed as Gaussian white noise. Although the Kalman
filter is optimal for linear systems, an extension of KF is sub-optimal when applied to non-linear
systems.'®® The idea of extended Kalman filter (EKF) is based on local linearization of the non-linear
equations and application of the linear Kalman filter framework. At first glance, it seems that by
converting the DAE to an implicit ODE, state estimation can be performed using the KF or EKF
framework as it is done for implicit ODE systems. However, unlike ODE systems, there is a necessity for
generation of consistent initial guesses that respect the algebraic constraints. Further, DAEs are
characterized by the index of the system, which is the number of differentiations that are required to
convert a DAE system into fully implicit ODEs. As a result, state estimation techniques for ODEs cannot
be directly extended to DAE systems.®°

The index of a DAE represents the difficulty in the numerical treatment of such systems. DAES of index-
zero and one are considered to be the easiest for numerical treatment compared to higher index systems.
The systems considered in this work are all assumed to be index-1 DAEs.2%° A literature search indicates
extensive work on applying KF to linear DAEs, see®2% though there is very little work on
implementation of EKF on non-linear DAEs. %7207

For applying EKF to DAE systems, Becerra et al.? proposed a modified EKF for DAE systems. In their
approach, the DAE is converted to implicit ODE and the non-linear equations are linearized locally, then,
the Kalman filter is performed at each sampling time while the error covariance matrix is updated for
differential states. A disadvantage of this approach is that the effect of prior algebraic state estimates and
measurements from algebraic states are ignored and updated algebraic state estimates are obtained by
solving the algebraic equations after updated differential state estimates are computed.'®” Further,
measurements of the algebraic states cannot be directly included in this framework. To address these
disadvantages, in our previous work, an approach was proposed that takes into consideration the effect of
prior algebraic states and accommodates the measurements from the algebraic states in the framework.%



One of the difficulties in state estimation of DAEs is that derivative of white noise may show up in state
estimates. However, derivative of white noise is not well-defined.?®® For linear systems, researchers have
proposed different approaches to address this problem. For instance, Campbell?®® suggested the use of
band limited noise filter and in turn compromised the optimality of the Kalman filter. Schon et al.?'°
explained the transformation of the DAE into a state space form and the conditions under which the
derivative of white noise in algebraic equations can be avoided in state-space form. Darouach et al.?%
avoided the presence of white noise derivative by decomposing the filtering problem into two
subproblems: (i) computing the estimates and error covariance of differential states, and (ii) using them in
computation of estimates and error covariance of algebraic states.

In almost all of the works that consider the EKF for non-linear DAES, the algebraic equations are noise-
free and the process noise is considered only in the differential equations. The reason is that when
differentiating the algebraic equations to convert the DAE to an implicit ODE, white noise will be
differentiated, if present in the algebraic equations. Therefore, algebraic equations must be certain for
differentiation to be meaningful. However, in practice, algebraic equations are not always exact and they
might themselves be uncertain equations. This is particularly true when simplifying correlations are used
in the modeling framework. Moreover, when extra information such as exact state equality constraints are
available for the system, current EKF formulations cannot handle such information. Thus, EKF must be
modified to include such constraints. In this work, we address these issues by proposing a modification to
the EKF to handle constrained DAEs of index-1 with uncertainties in both differential and algebraic
equations.

In the proposed work, the error covariance matrix is written as a 4-block matrix with separate square
blocks for differential and algebraic variables, respectively. Since the DAE is of index-1, the algebraic
equations are written in terms of the differential variables and the error covariance in the corresponding
covariance matrix are updated by linear or non-linear transformation of the error covariance of the
differential equations. This avoids the differentiation of algebraic equations and makes the filter practical.
The following sections are organized as follows. First, the currently available state estimation techniques
for DAEs in the absence of uncertainties in algebraic variables are reviewed. Then, the EKF formulation
is modified to account for exact equality constraints. We also discuss how this avoids the differentiation
of algebraic equations. Finally, the performance of the proposed work on two examples, a simple example
system and the system of interest, water gas shift reactor are described.

5.1.2  State estimation of DAE systems

5.1.2.1 Problem formulation
Consider the following stochastic nonlinear discrete-time DAE system with discrete measurements
sampled at intervals of At

(k+1) At

v = x| FO,20) de + o
t

9(Xk41,Zk41) =0
Vk+1 = hM(Xp41, Zke1) + Visr
w~N(0,Q) v~N(O,R)

(172)

where X1 € R™! and zw1 € RP*! are the differential and algebraic states at interval (k+1), respectively;
and Q € R™™ and R € R™? are known covariance matrices.

5.1.2.2 Propagation
Let Xy, and Zybe the updated differential and algebraic states estimates at time t = kAt using the
information available up to and including k'™ measurement sample, respectively. The predicted states,
Xis1jk and Zp,q, are obtained by integrating the DAE system in Eqn. (172). Let Py be the error



covariance matrix of updated estimates, the predicted error covariance, Pw.1x, iS obtained by first
linearizing the nonlinear system in Eqn. (172) around the updated differential and algebraic states (X«
and Zy ;) and second, differentiating the algebraic equations in Eqn. (172) to convert the DAE into a
continuous implicit ODE. Therefore, augmenting the resulting system as:
x — A B X1 _ aug .,.aug 173
[z] - [—D-ch —D-ch] [z] = AT (173)

where superscript ‘aug’ represents the augmented form (i.e. x**9 = [QZC]) and the Jacobian matrix around
the Xy, is evaluated as

of df
14 B1_l|ox oz
/—[C D]_é é (174)

dx 0z |l Zk|k

The transition matrix, calculated as @ = exp(JAt), is used to obtain the predicted error covariance by
Pryijie = OPie®” + TQpsa IT (175)

where

r=[_ Dl_l N (176)

5.1.2.3 Correction
In the update step of EKF, the augmented states are updated as

saug — paug ~aug
Xrilk+1 = Xrarpe T Kier1 (}’k+1 —h (Xk+1|k)) a77)

Only the differential part of the estimated augmented states are retained and the algebraic part is obtained
by solving

g(’?k+1|k+1'ZAk+1|k+1) =0 (178)

The updated covariance matrix is obtained by
Pk+1|k+1 =- Kk+1Hk+1)Pk+1|k (179)

where in the update step, H:1 is the linearized measurement model evaluated at J?,f_fflk and K1 is the

Kalman gain matrix calculated by

-1
Ki+1 = PesrjeHiers (Hes1 Pis1jcHie1 + Rier)

_ -1 (180)
= (P& +CTR7IC) CTRT



Note that these equations are written for augmented system except for Eqn. (178) where the algebraic part
is only calculated.

5.1.3 Equality constrained state estimation of uncertain nonlinear DAES

In practice, not all the algebraic equations that describe the behavior of a physical system are exact and
additional information about the dynamic system may be available. If the algebraic equations are not
exact, uncertainties must be considered in these equations to more closely represent the real behavior.
Therefore, one could model uncertainties in the algebraic equations also as Gaussian random variables
with known statistical properties. Moreover, if additional information about the system represents an
equality constraint, which the system variables must satisfy, then this information must be incorporated
into the estimation framework. To the best of our knowledge no work exists for estimation of such
systems in the literature. In this section, we propose enhancements to the EKF approach for DAE systems
to address this class of problems. We believe this class of systems is quite common in all engineering
disciplines and particularly in chemical engineering, where the DAE models are likely to be uncertain in
addition to the presence of exact equality constraints arising out of flow balances and summation of mole
fractions.

Most efforts in constrained Kalman filtering involves linear systems with optimal filtering while non-
linearities in the system result in sub-optimal and complicated filtering.*® Therefore, approximation is
inevitable in filtering non-linear systems while they remain sub-optimal. Although there is no extensive
investigation on constrained Kalman filtering of non-linear models due to their sub-optimal nature and
complications, we make the assumptions that handling constraints in Kalman filtering of non-linear
models can be done similar to their linear counterparts due to their linear approximations. There are
several ways in which equality constraints can be incorporated into the linear Kalman filter. An attractive
approach is to substitute the constraints into the model equations. This approach has an advantage of
reducing the constrained problem to a simpler unconstrained problem with lower computational load of
the Kalman filter. However, a major disadvantage is that this method will sacrifice the physical meaning
of the variables, especially in systems expressing the detailed phenomena taking place in a process. Study
on constrained filtering has shown that projecting the unconstrained estimates of the Kalman filter on the
constraint surface accommodates ease of implementation, low computational cost and flexibility
compared to other approaches for both linear and non-linear systems.%

5.1.3.1 Problem formulation
The system of interest in this section is as shown in Eqn. (181).

(k+1) At
Xjey1 = Xp + f F(x(6),z() dt + Gwyyq
k At
IXks1:Zkes1) + Virr =0 (181)

Vi+1 = M(Xg41) Zir1) + Visr
w~N(0,Q) v~N(O,R) y~N(O,W)

subject to:Ex,fo =b

where in addition to the assumptions for system described in Egn. (172), G € R™™ is a known matrix
with rank(G) =1 <m, E € R"*™" is the equality constraint with rank(E) = | which can be split into E =
[Ey E,] where Ex € R™™ satisfies ExG = Om and E; = Oin, b € R™ is a vector of equality constraint
values and W € R™" is a known covariance matrix. The estimation algorithm described previously is not a
valid framework for the defined system. The main issue is that the white noise is not differentiable;
therefore, the system cannot be converted into an implicit ODE as shown in Egn. (173).



Remark 2.1: Assume rank(E) = m+n, then for all k > 1 the system is fully constrained and the updated
states are calculated as xx+1 = E™*b.

Proof: If rank(E) = m+n, then E is square and invertible. Therefore, the constraint equation has unique
answer as X1 = Eb.

5.1.3.2 Propagation
Let Xy and Zy), be updated differential and algebraic state estimates, respectively, at k" time instant and
Py, be the error covariance of the states. States are propagated by solving the DAE from k™ time instant to
k+1" time instant to get Zis1jk and Zyyq . In what follows, the superscripts ‘c’ and ‘st’ represent the
corrected and standard form, respectively. In order to propagate the covariance matrix, the DAE system is
linearized around the Xy, and Zy, as

X =Ax+ Bz (182)
Cx+Dz=0 (183)

where the coefficient matrix of linearized form is simply the Jacobian evaluated at the operating point,
Xk Zk k> Similar to Eqn. (173). Solving Eqn. (183) in terms of z and rewriting the Eqn. (182) results

z=-D"1Cx (184)
%=(A—BDC)x (185)

Based on differential and algebraic variables, the error covariance matrix can be split into

Pefie  Pitapk
Pk+1|k = PZX PZZ (186)
k+1|k k+1|k
The error covariance of differential states is calculated as
P = dPird” + GQGT (187)
where @ is the transition matrix of differential states and is obtained as
b= e(A-BDT'C)At (188)
The error covariance of algebraic states is propagated as
P = (DT 0P (07O + D7'wD Y (189)

Since the algebraic states are linear transformation of the differential states, the error covariance between
differential and algebraic states is propagated as a linear transformation of the error covariance of
differential states as

Pt = P @10)" (190)



Pt = DTHOPE (191)

5.1.3.3 Correction
The updated augmented state estimates are obtained by solving the following minimization problem

min T
aaug,c _ aaug -1 ( caug,c asaug
gaC (xk+1|k+1 xk+1|k) Pry1ji (xk+1|k+1 xk+1|k)

xk+1|k+1 (192)
~aug,c

+ (yk+1 - C)?,fﬁffliﬂ)TR_l ()’k+1 - ka+1|k+1)

subject to the state constraints

E® Tjess =D (193)

~aug,c

where £\ 7i¢ ., is the augmented updated state estimates (i.e. £, 7 [ erilk+t

Ririlkr1 = ]) that satisfies the

Zk+1|k+1
state constraints.

Remark 2.2: In the absence of any constraints, the optimization problem is similar to the problem
investigated in the work of Vachhani et al.?** and the solution to the optimization problem for all k > 1 is
given by standard KF.

Proof: The proof is described in the work of VVachhani et al.?*

The optimization problem is solved using the standard Lagrange multiplier technique, where the
Lagrangian is defined as

~aug,c _ (~aug,.c ~aug -1 [ saug,.c ~aug
L(xk+1|k+1'A)_(xk+1|k+1 xk+1|k) Prs1jk (xk+1|k+1 xk+1|k)

T (194)
asaug,c — ~aug,c ~aug,c
+ (J’k+1 - ka+?|k+1) R™ (yk+1 - ka+§]|k+1) + AT( k+f|k+1 - b)
The necessary conditions for £y, ., minimizing Eqn. (194) are
oL -1 [ ~aug,c ~aug — ~aug,c
Py 2Pit1ik (xk+1|k+1 xk+1|k) —2H"R™ (Yk+1 - ka+1|k+1) +ETA=0  (195)
Fht1lk+1
oL ~aug,c

a1 EX ijk+1 — b=20 (196)

Solving Eqn. (195) for £,/ .., after some manipulations yields
Rertlir1 = ’?ﬁnk + (Perape ' + H'RT'H) TR (yk+1 ka+1|k) as7)

5 (Pk+1|k‘1 +HTR-1H) 'ET2

Following the definition of Kalman gain matrix, Ki.1, in Egn. (180) and matrix inversion lemma?? we
have



[Pesape ™ + HTR7H] ™
= [Pesape "t + HTR‘lH]_l[I +H'R™ HPyy1p — H'R™ HPjey 1 x|
= [Py ™ + HTRTH] " [[Prga™ + HTR™ )Py = HTR™ HPye 1y

. . (198)
= Pesijk = [Pese -+ HTR™'H] "HTR™'HPyyqpi
= Pry1jk — Ko 1 HPreyq e
= Pry1jk+1
Substituting Egn. (198) into Eqn. (197) and using the state update in Eqn. (177) we have
1
Rertikrr = Zertpers ~ 5 Pieraier BT (199)
Substituting Eqgn. (199) into Eqgn. (196) and solving for Lagrangian multiplier, 4, we get
_1 ~
2= 2(EPerjeniE™) (EZgedsr — D) (200)

Substituting the value of Lagrangian multiplier from Eqn.(200), the states are updated in the presence of
equality constraints as

Bertiker = FR D +0° (201)
where
T 1
F = (I = Perayess E"(EPiraensET) ) (202)
’ -1
b =Pk+1|k+1ET(EPk+1|k+1ET) b (203)

where Pjyqk+1 1S the KF covariance matrix calculated similar to Eqn. (179). Using the state propagation
matrix, for covariance matrix update we have

c
P+t
— T
= FPriqi+1F

= (1 = Pesaer BT (EPes e ET) E) Pesaiiors (1 = Pesniions BT (EPesnis ET)'E)

= Pevrs = Prsaiirs [Prrriri ET(EPanir ET) E| (204)
~PesrpertET(EPes1jiesrET) EPestjices
Pt BT (EPes e ET) " EPsapins [Perapins ET(BPesrsnET) E]

-1
= Pk+1|k+1 - Pk+1|k+1ET(EPk+1|k+1ET) EPk+1|k+1
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-1
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-1
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-1
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T
Remark 2.3: Assume that equality constraint, E, in Egn. (181) can be split into E = [gx] where E, €
zZ

R™™ is left eigenvector(s) of & that satisfies ExG = Oim, Exfx = Omx1 and E; = Own Where fy is the
differential equations of the DAE system represented by Eqgn. (181). Also assume that for a given k = 1,

saug,c — 4 _ aug,c _ ~aug c _
Exk+1|k+1 = b and EPii1ik+1 = Oixman- Then, for all k > 2, Xier 1)+ = Xk 1]i+1 and Piiqjksr =
Pk+1|k+1-

Proof: By multiplying the differential equations in DAE system of Eqgn. (181) by E we get
(k+1) At

Ex,ﬁ‘f =E,.x, + j Exfx(x(t),z(t)) dt + E,Gwyy1 + E;Zp4q
k At (205)
=b + 0;x1 + 051 + 01

=b
Since Ey is the left eigenvector(s) of @, then we can write Ex® = AEx where /s are the eigenvalues of the
corresponding eigenvectors. Multiplying Eqgn. (186) by E then yields
_ T
Explffuk + EszZillk]
ExPeiae + EzPiik
B (ExpPgicd” + ExGQG™) + E,(D™'C)Piy i
B Py (D710 + (E,(D1C)PE x (D71C)T + E,M) (206)
_ T
(AExPI?rICc¢T + lem) + lem]
len + (len + len)
= le(m+n)

EPyiqik =

Lemma 2.1: let v be a left eigenvector of the square matrix U with a corresponding eigenvalue A. Then,
velat = gty
Proof: To prove this, we can write UAt = UAt — AIAt + AIAt, therefore
UAt — 1, pUAL-AIAL+AIAL
— ve(U—AI)At+AIAt
— ye(U-ADAt ,2At

ve

U — AI)2At? (207)
=v(1+(U—M)At+%+---)er

v(U — AI)2At?
= <v1 +v(U — ADAt +%+ --->er
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Therefore, in Eqn. (206) E is already the left eigenvector(s) of (A-BD*C). Multiplying Eqn. (201) and
(204) by E yields

Ex39¢ = FEFz*9 . + Eb’'

k+1|k+1 Xr+1k+1
-1 .
=F (1 — Pk+1|k+1ET(EPk+1|k+1ET) E) xl?:ul]|k+1
EP ET(EP ET) b (208)
+ EPri1ik+1 ( k+1|k+1 )
= (E = E)y k41 T b
=b

EPI€+1|k+1 = EFPk+1|k+1

-1
= E (I = PesrjirrET(EPesrjiriE™) " E) Pesjien
=(E — E)Pk+1|k+1

= 01><(m+n)

(209)

Giving Eqn. (208)-(209), from Eqn. (205)-(206) we have x,‘jﬁfiiﬂ = J?,fi‘flkﬂand Piiapier1 = Prstjicrt-
Therefore, if the assumptions hold, the correction step in Egn. (201) and (204) has to be performed only

once at k = 1 and for all k > 2 the corrected states given by Eqn. (177) already satisfies E£ ], = b.*"

5.2  Distributed Sensor Placement Problem Formulation
5.2.1 Introduction

In the past decades, process monitoring for safety and optimal operation has been a vast area for
researchers to develop techniques for control, optimization, fault detection, condition monitoring and etc.
With growing scale and complexity of the processes, mathematical models cannot be solely used and
information from sensors as an alternate source of information is necessary. The problem of sensor
placement is defined as finding optimal locations throughout the process for maximum possible
information to be acquired. Most important constraints involved are the feasibility of placing sensors and
cost and redundancy of the sensors. For example, in a fixed-bed reactor, it is not feasible to directly
measure the temperature of the catalyst. Sensor redundancy includes placing multiple sensors at the same
location to handle the probability of the sensor failure. Also, clustering sensors in an area may result in
significantly less information compared to if they were distributed. Therefore, optimizing sensor
placement is important for maximizing the profit from the process and reducing the risk of health and
environmental issues.

Sensor placement has been studied for different tasks such as parameter estimation?!422! state
estimation??2% and fault detection?** that deals with distributed parameter systems (DPS). Distributed
parameter systems represent the dynamical systems governed by partial differential equations (PDE). A
common idea in sensor placement is the idea of choosing sensors that optimize some performance criteria.
Many contributions in literature can be found that consider the steady-state behavior of the systems?®,
including the sensor placement by qualitative analysis?*¢-2%, Although many efforts on sensor placement
belong to linear DPS, various optimality criteria are either developed or adapted from linear systems to
account for nonlinear systems. A common metric used in sensor placement involves the use of empirical



Sensor placement has been applied in different tasks such as parameter estimation 214221 state
estimation??2-23 and fault detection?** that deals with distributed parameter systems (DPS). Distributed
parameters systems represent the dynamical systems governed by partial differential equations (PDE). A
most common technigue in sensor placement is by optimizing performance criteria. Many contributions in
literature can be found that consider the steady-state behavior of the systems?®®, including the sensor
placement by qualitative analysis®**2%, Although many efforts on sensor placement belong to linear DPS,
various optimality criteria either developed or reinstated from linear systems to account for nonlinear
systems. A common metric used in sensor placement involves the use of empirical observability
Grammian proposed by Muller and Weber?®. This includes evaluation of different aspects of the
observability matrix such as smallest eigenvalue, determinant, trace of the inverse, condition number,
spectral norm and smallest singular value???23323%-245_Different criteria in sensor placement has been also
proposed based on the geometric approach??2% measurement cost?*224’, sensor failure?*3249, max-min
optimization?°, posterior Cramer-Rao lower bound* and so on.

Despite the information from common observability matrix, efforts in state estimation have been made in
defining metrics for sensor placement that considers trace, determinant, variance and norm of the error
covariance matrix of the Kalman filter?28-231.244.245251-284 * Colantuoni and Padmanabhant?®, Kumar and
Seinfeld®! and Omatu et al.??” consider minimization of the trace of the error covariance as the metric in
their sensor placement work and proposed an iterative optimization procedure for sensor placement for a
tubular reactor. Harris et al.??® performed the sensor placement for a tubular reactor while minimizing the
trace and determinant of the error covariance matrix. Alvarez et al.?** approached the problem by
developing a variable measurement structure for the tubular reactor with minimum variance as the
optimality index. Morari and O'Dowd?? considered optimality criteria as minimization of the error caused
by the unobservable subspace and Morari and Stephanopoulos?* extended the criteria to also include the
minimization of the estimation error.

In most of the works mentioned above, sensor placement is performed for steady state condition. In the
cases where dynamical systems are considered, sensor placement is performed by linearizing the
nonlinear equations around the steady-state point. This reduces the complexity of the nonlinear equations
to linear form and the sensor placement can be performed as if the system is linear. This is due to the
reason that solving the nonlinear equations in the sensor placement frameworks is cumbersome. However,
this is not always applicable for two reasons. First, since the previous works on sensor placement always
consider the system is represented by PDE, it is not always possible to have the system as fully implicit
PDE (or ordinary differential equations, ODE). For example, as the system in this work is represented by
differential and algebraic equations (DAE), it is not possible to differentiate the equations to get ODE
since the white Gaussian noise in algebraic equations cannot be differentiated. Second, in terms of fault
detection, if a fault occurs in the process it will significantly move the system from steady-state condition
and will result in the system reaching a new steady-state condition. Therefore, the linearized system or the
assumption of the dynamics around the initial steady-state condition is no longer valid. These drawbacks
of the classical sensor placement approaches necessitate the use of nonlinear models in the sensor
placement framework.

The most important drawback of using nonlinear models in sensor placement is the computational burden
and tractability of the calculations caused by nonlinear models in state estimation. A recent work in use of
nonlinear model in extended Kalman filter (EKF) is reported in the work of Olanrewaju and Al-Arfaj?? in
which the sensor placement problem is not extensively addressed. One way to address the tractability of
use of detailed nonlinear models is to use simplified or reduced models. However, it is not clear how
much this will affect the computational burden and how close will the sensor placement results are to that
of detailed models. To our best knowledge, no one has investigated the suitability of the simplified
models in sensor placement.



In this work, a sensor placement framework is developed that makes use of EKF for state estimation. For
simplicity, the optimality index is chosen as the accuracy of the state estimates by minimizing the error
between the true solution and the state estimates. The infinite dimensional model of the reactor is
discretized along the reactor axis by finite element method and the discrete points on the reactor are the
locations where sensors can be placed. The sensor placement is performed by genetic algorithm (GA)
where the genes are assumed to be measurement models and each measurement model represents a vector
of binary decision variables in which if a sensor is placed, the decision variable will take a value of "1"
and a value of "0" otherwise. The GA evolves while minimizing the objective function and the optimal
measurement model as the result of the optimization is obtained. The optimal measurement model is then
the optimal sensor placement when projected on the discretized locations.

5.2.2 Summary of WGS Model simplification

The detailed reactor model represents complex equations that must be solved. A simplified model of the
reactor has been developed in section 3.1. Model simplification retains the most important phenomena
occurring in the reactor by means of scaling analysis. In the scaling analysis, dimensionless groups are
formed using the parameters and inlet condition values. The decision on retaining or discarding the
phenomenon in the reactor is made by analyzing the values of the dimensionless groups where the
phenomenon with least values can be discarded from model equations. Through this analysis, it is
observed that the model can be represented by only a single differential equation which combines the
energy balance for gas and catalyst phases while the rest of the equations are algebraic. The temporal
differential mass balance equation can be reduced to algebraic equation where it is sufficient to solve the
algebraic equation only for one species and the rest of the species can be calculated on side from the
result of other equations. The simplified model is expressed by following equations:

Mass balance:

dCy.o 1dT 1dP 1—¢
20 _ - 210
dz YHy0C (T dz P dz) T Teo (210)
Energy balance:
aT, £ aT, 1—¢
g g
= —GCp——=+1,0AH 211
at ngP + (1 - S)pcatCP,cat < F 0z reo . € ) ( )
Momentum balance:
dP pu? /1-—¢ 150
i 175 —) 212
dz d.g ( € ) ( * Re (212)

5.2.3 EKEF for simplified model
In a mathematical view of the simplified model, part of the differential equations are decoupled from the
original system and assumed to be algebraic through the analysis shown in previous sections. Although
the corresponding states represent the states of the original system, they have no effect on the internal
states of the simplified model and can be treated as exogenous states with corresponding exogenous
equations. In view of DAEs, these exogenous equations can be either part of the DAE system as algebraic
equations or be used outside the DAE model and computed independently. A simple drawback of
assuming the exogenous equations as part of the DAE is that since exogenous equations do not impose a
constraint on the system, though they have to be solved at each integration step in the propagation step of



the filter. Therefore, this poses a burden on the DAE solvers and hence complicating the computations.
Another drawback is that in the propagation step of the filter, the updated states at the next time step are
only required while the path that these states take to the final states can be neglected. For these reasons,
the decoupled algebraic equations are treated as independent exogenous equations. The overall simplified
system is presented by

(k+1) At

pap T =m [ (0, 20) de + g
k At

9 (X1, Zks1) = Viewn
Ska1 = UXigyr + Ik + T (213)
Vierr = hM(Xrs1) Zerr Ska1) + Viera
w~N(0,Q,) v~N(,R) y~NOW) T'~N(0,0Q)
subject to: Exkug =b

where sj, ¢ IS the vector of exogenous states and U and J are the coefficient matrices of the linearized

exogenous equations around the state updates, x,, and sy, respectively. Here, x,{}+1| « IS the augmented

Xk+1
Zk+

aug

], and x,,7 is the augmented internal and exogenous states, x,,7 =

internal states, xk+1|k [ k+1 —

[x’s‘“]. Also, here, the exogenous states do not depend on their initial states, therefore, ] = 0. Note that
k

wy k Is assumed uncorrelated with v, y and T'; and since the exogenous equations are decoupled from the
differential equations, G matrix that correlates the noise in mole fractions is omitted, however, a white
noise term, T;,4, IS assumed in the exogenous equations. Although omitting G may have effect on the
guality of the state estimates, it is not easy mathematically to account for the correlated noise in the mole
fractions when considering the simplified model.

The modification made to the original system requires modifications of the filter equations as well. The
new filter formulation follows the same process as for DAEs while adding the presence of the exogenous
states. In the propagation step, the DAE model can be solved again by the DAE solvers from instant k to
k + 1, while the exogenous states are computed using the updated internal states to obtain the updated
exogenous states. The updated error covariance matrix is calculated by splitting the matrix for internal
and the exogenous states as

(214)

A A
Paug _ [Pk+1|k Pk+1|k“
k+1|k —

Pefae Ptk

where P,fffli is the error covariance matrix of the simplified DAE and is derived using general derivation

explained in section 5.1. This results in equations similar to equations derived in Section 5.1.3 with the
exception that the simplified model has now modified process noise covariance (w ~ N (0, Q,). The other
blocks in Pk+1|k can be calculated by

Py +1|k = +1|k K UT (215)
Pk+1|k =U Pk+1|k (216)

PiSape = U PEiie UT +9 (217)



Eqgn. (215)-(217) can be proved simply by taking similar approach as for filtering of the DAE systems.
Therefore, for the sake of brevity we have omitted the mathematical proofs. In the correction step of the
filter, the corrected states can be calculated similar to the Eqgn. (201)-(204).

Although considering noise in exogenous equations may results in better quality estimates since the
original states are not noise free, it raises the need for the presence of constraint in the formulation.
However, another approach would then be to remove the noise from the exogenous equations. Since the
exogenous equations automatically satisfy the constraint, therefore, the constraint in Eqn. (213) can be
removed and the correction step reduces to use of standard EKF correction step. It is not clear to what
extent this can affect the quality of state estimates and the SP results. Removing the noise term from
exogenous equations may or may not be compensated by tuning the error covariance matrix Q, in the
filtering.

5.2.4 Genetic algorithm

In the GA, the genes represent the binary measurement models that can be used by EKF for state
estimation. The fixed population of GA evolves by the elitist selection strategy where a portion of the
population is considered as the elite genes and carries over to the next generation. The rest of the
population are obtained based on the tournament selection where fitness values of 2 randomly chosen
genes are compared against each other and the gene with highest fitness is considered as the winner. This
selection is repeated until two winner genes are selected for crossover and mutation- the GA operators for
obtaining the two children from parent genes. Since in our work the number of measurements (sensors)
are fixed for a particular study, the crossover and mutation on the winner genes are repeated until at least
one of the children has the same number of fixed measurements. The tournament selection results in
obtaining two children per each run, therefore, this process must be repeated until a new population is
generated. The objective of the GA is to minimize the error between actual data and the state estimates
and the objective function is given by

kr nr

~ 2
. Xactual,(i,j) — xestimated,(i,j))
Yy
( Xactual,(i,j) (218)

i=2j=1
subjectto:  EKF of WGSR for kr time instants and nr variables

It should be noted that the summation in Eqn. (218) is over all the estimated values for all time instants
while the initial state estimates are discarded and summation start from i = 2. This assumption will be
justified later when we study the effect of initial error covariance of the states.

6 Interpretation of Results

6.1 System-Level Sensor Placement

In this section, four illustrative case studies are used to demonstrate the performance of FES and MR
algorithms. A set of predefined faults are simulated in each case while assuming no disturbances exist in
the system. Table 19 shows the sensors’ cost assumed in all three cases which are normalized by the cost
of flow sensor.* In all three cases, MR algorithm is performed for three different levels of MR threshold
value as low, medium and high with values 1.1, 1.5 and 2, respectively. Results are compared for FES
and MR algorithms individually and jointly. Detail tabulated results for the SDG, FES and MR algorithms
are provided in the supporting documents. Also, sensitivity analysis of the MR threshold value is
performed for each case study and the results are included in the supporting document.



Table 19. Type and cost of each sensor used in all case studies®

Sensor type Cost
Temperature sensor 0.1
Pressure sensor 0.5
Flow sensor 1
Level sensor 1
Concentration sensor 10

6.1.1 CSTR Case Study

The CSTR system used in the work of Bhushan and Rengaswamy®®! is considered in this work for
application of FES and MR algorithms. For more details of the process, interested readers are referred to
their work.'8 Figure 82 shows the schematic of the CSTR system. Table 20 and Table 21 show lists of
measured variables and simulated faults in the CSTR system. Faults are simulated one by one and
measured variables are stored for later implementation of FES and MR algorithms. As seen in Table 21,
all faults except U and Cq4 can change in both directions with "+" representing increase and "-" decrease in
the fault. The heat transfer coefficient, U, and the catalyst activity, Cq can only decrease due to nature of
the fault. Therefore, these faults are unidirectional and can only change in "-" direction.
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Figure 82. Schematic of the CSTR system?8?

Table 20. List of measured variables in CSTR system

Sensor  Measured - Sensor Measured .
; Description ; Description
no. variable no. variable
s1 Ca CSTR Outlet S5 VL Level controller valve

concentration opening



2 T, Coolant outlet 6 VT Temperature controller valve

temperature opening
s3 F CSTR outlet flow rate s7 VP Pressure cont_r oller valve
opening
s4 Fc Coolant flow rate

Table 21. List of simulated faults and the corresponding affected sensors in CSTR system

Fault Description Affected sensors
1 Cai* ) s1,52,54,56,57
Inlet concentration
2 Cai s1,52,54,56,57
T s4,s6,s7
Inlet temperature
4 Ti s4,56,57
5 F* s1,s3,54,55,56,57
Inlet flow rate
6 F s1,s3,54,55,56,57
7 Tei 54,56,57
Coolant outlet temperature
8 Teir s2,54,56,57
9 U Heat transfer coefficient s4,56
10 Cq Catalyst deactivation s1,52,54,56,57

Table 22. Results of applying different algorithms to CSTR system

Sensor network

Algorithm(s) MR threshold level Selected sensors cost Irresolvable fault sets
SDG s1,52,56,57 10.7 [3.7]
FES $2,56,57 0.7 [3,7]
Low s1,52,56,57 10.7 [3.7]
MR Medium $2,56,57 0.7 [1

High $2,56,57 0.7 [3,7]



Low $2,56,57 0.7 [3,7]
FES & MR Medium $2,56,57 0.7 [
High s2,56,s7 0.7 [3,7]

Both FES and MR algorithms are run individually and in combination. Although both algorithms are
associated with SDG, for illustration, SDG is also performed individually and results are shown in Table
22. FES algorithm has less number of variables measured compared to SDG, thus, decreasing the capital
cost of the network. However, there is still a fault set that cannot be resolved by FES. At low MR
threshold level, MR algorithm shows no improvement over the associated SDG algorithm and the results
are the same as if the SDG is performed individually. The combination of both MR and FES algorithms
take advantage of the FES as it has lower sensor network cost. At medium MR threshold level, MR
algorithm chooses the same sensors as FES but it can resolve all the faults, thus, the algorithm shows
improvement in terms of fault resolvability compared to FES algorithm. The combination of both
algorithms takes advantage of the MR algorithm as it can resolve all the faults. At high MR threshold
level, although MR algorithm again chooses the same sensors as FES, it cannot resolve all the faults. The
combination of both algorithms uses the same sensors as if the MR or FES performed individually since
the sensor network cost and number of irresolvable faults is the same for both algorithms. Table 21 and
23 show the affected variables and variables that can be used for fault resolution, respectively. The fault
resolution of MR algorithm shown in Table 23 is shown only for medium MR threshold level (value of
1.5). In Table 23 and the upcoming tables for fault resolution, each single sensor (i.e. s1) represent the
sensor that can individually resolve the corresponding pair of faults and each sensor pair (i.e. P12 which
represents pair s1 and s2) represent pairs of sensors that can resolve the corresponding pair of faults.

Table 23. Fault resolution by SDG, FES and MR in CSTR system

Fault Resolution sensors Fault Resolution sensors
Single Pair Single Pair
FES MR FES MR
s1,52,5 [3,10 s1,52,54, P14, Pus, P14, Pis,
[1,2] 45657 ] $6.57 P17, P17, P24,
” ' P24, Pog, P27 Pae, P27
P12, P16, P17,
[13]  SLs2  PouPas Py I
Pas, Paz, P $9,S 15, P16, P17
P12, P16, P17
s1,82,s o e Sh §1,53,54, P13, P14,
A asesr  Frefeefer 48] "6 Pis Pao Pus
P12, P13, P14,
s2,83,s P15, P16, P17,
[1,5] 4,596 Poa Poc Por [4,7] s4,56,57 P47, Pz
Pag, Pa7, Ps7
P12, P13, P14,
s1,s2,s P15, P16, P17, P24, P2,
[1,6] 3,85,87 P24, P26, P27, [4.8] $2 P47, Pz
Pag, P47, Ps7
P12, P16, P17,
[1,7] sl1,s2 Ps7,Ps7  [4,9] $4,56,57

P24, P2, P27,
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6.1.2 Five-Tank Case Study

The five-tank system from Bhushan and Rengaswamy*®! is considered as the next case study in this work.

Figure 83 shows the schematic of the process. Lists of measured variables and simulated faults are shown
in Table 24 and Table 25, respectively.
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Figure 83. Schematic of the five-tank case-study*®!

Table 24. List of measured variables in five-tank case-study

Se:;or Measured variable Description Se:c')sor Measured variable  Description
sl L1 Level in Tank 1 s7 F7 Stream 7
s2 L2 Level in Tank 2 s8 F8 Stream 8
s3 L3 Level in Tank 3 s9 F9 Stream 9
s4 L4 Level in Tank 4 s10 F10 Stream 10
s5 L5 Level in Tank 5 s11 F11 Stream 11
s6 F6 Stream 6 s12 F12 Stream 12

Table 25. List of simulated faults and the corresponding affected sensors in five-tank case-study

Fault Description Affected sensors




1 g s1,s2,53,54,55,56,57,58,59,510,511,512
) Inlet flow

2 Qi s1,s2,53,54,85,56,57,58,59,510,511,512

3 V6 s1,52,s3,s4,s5,56,57,58,59,510,511,512

4 V7 s1,s2,53,54,55,56,57,58,59,510,511,512

5 V8 s2,58

6 V9 Valve closed s2,53,54,55,58,59,510,511,512

7 V10 52,53,54,55,58,59,510,511,512

8 Vil s2,53,54,85,58,59,510,511,512

9 V12 s2,55,58,512

10 LT1 s1,52,s3,s4,s5,56,57,58,59,510,511,512

11 LT2 s2,s8

12 LT3 Leakage in tank s3,54,55,59,510,s11,512

13 LT4 s3,54,55,59,510,511,512

14 LTS5 s5,512

The solution to the optimization problem is shown in Table 26 that compares the different algorithms.
Although faults gi- and LT1 are not resolvable by SDG, both FES and MR can resolve these faults. At low
and medium MR threshold level, the cost of the sensor network is the same as FES as well as SDG.
Interestingly, at low MR threshold level, the combination of both algorithms picks a subset of the selected
sensors by both algorithms and resolves all the faults at lower sensor network cost. At medium MR
threshold level, the sensor network cost is similar to the sensor network cost of the FES algorithm, thus,
the combination of the algorithms will have the same result as if the algorithms are performed
individually. Interestingly, the selected sensors are not a combination of sensors selected through
individual algorithms since there are multiple solutions to the optimization problem when algorithms are
combined. At high MR threshold value, the sensor network cost is reduced compared to other algorithms,
thus, the combination of the algorithms will have the same sensor network cost as the MR algorithm.
Table 25 and Table 27 show the affected variables for each fault and the fault resolution using all
algorithms individually. The fault resolution of MR algorithm shown in Table 27 is shown only for low
MR threshold level (value of 1.1). For compactness, only key rows of the fault resolution are shown and
pairs that are combination of sensors in SDG results are not shown.

Table 26. Results of applying different algorithms to five-tank case-study

Algorithm(s) MR tlhreshold Selected sensors ~ Sensor network cost Irresolvable fault
evel sets
SDG s2,54,85,510 4 [2,10]
FES s2,54,59,512 4 [1
Low s2,510,511,512 4 [
MR Medium s2,510,511,512 4 []
High $2,55,510 3 []



Low s2,511,512 3 [1
FES & MR Medium s2,58,510,512 4 [1
High 52,585,510 3 [1

Table 27. Fault resolution by SDG, FES and MR in five-tank case-study

Fault Resolution sensors Fault Resolution sensors
Singles Pairs Singles Pairs
FES MR FES MR
s1,s3,54,s5, P, P
[1,4] s2,57,58 Ps.o [4,10] $6,59,510,5 Pag ”F; 28
11,512 "8
s1,s3,54,s5,
[L6] oo Pas  [411] $6,5759,51
e 0,511,512
s1,54,56,57
[17] 85101 Py PraPss  [6.8] 2308108 Pas Psa
1 11,512
s1,56,57,58 P29, P34, s3,54,s5,59,
[1,8] $10511 Pas P23, P34 [6,9] 10,511 P2,12, Pg 12 Ps. 12
s1,53,54,s5 s1,52,53,54, Pss, Psg,
[2,4] ,$6,59,510, P.g [6,10] 6,57,510,s Ps12 Psg Ps,12, Py,
311,312 11 Pg,lz, P9,12
s1,52,53,54
[2,6] ,s6,57,s10, Ps,12, Ps g Psg [6,12] SZS,Si%,SSl:lL,]S-B, Ps,12 Ps.9, Po,12
s11 !
s1,52,53,55
[2,7] ,s6,57,59,5 Ps 10 Pag [6,13] $2,83,54,8, Ps.12 P9 10 Pss, Ps.2,
12 s11 Pg.12
s1,52,53,54
oA Ps 10,Ps 11, Ps,10, Ps,11, $2,83,54,58,
[2,8] ,$5,56,57,5 P11 Pro1s [6,14] 59,510,511
9,512
s1,52,53,54 EZ’M' Ps,9, Pg,10,
[29] ,s5,6,57,s Ps. 10 Ps,12 [7,8] s4 P8,10, Ps.11,
9,510,511 811, P10,11
P1011
P34, P3,10,
[2,12 s1,52,56,57 Pa.10, P59, s3,54,59,51
1 S8 Ps.11, Po,10, [7.] 0,511,512 P2s
Po,12, P11,12
P3,12, P3s,
[2,13 s1,52,56,57 P34, P311, P39, P31, [7,10] 55%5527’55%2?_’ p 54'8' 24'10’
] ,38,510 P4’9, ngll PS,Q, PS,ll, ] ] ] ] 8,10 4,11, 8,101
2 Ps 11 P10,11
Ps,12, Pg 12
s1,53,54,56 $2,53,55,58,
[3.6] 78510, Ps.12 [712] 9’512 P40



[3.7]

[3.8]

[3.9]

[3,14

[4.6]

[4.7]

[4.8]

s11
s1,s3,s5,s6
,57,58,59,s
12
s1,s3,54,s5
,56,57,58,s
9,512
s1,s3,54,s5
,56,57,58,s
9,510,511
s1,52,53,54
,56,57,58,s
9,510,511

s1,52,55,56
,57,89,512

s1,52,54,56
,57,510,51
1

s1,52,56,57
,510,511

P24,P2,11

P1o,11

P2,10

Ps, 10

P34,Pa9

P10,11

P34, Psg

[8.9]

[8,10]

8,12]

[9,10]

[10,12

[10,13

[12,13

s3,54,59,51
0,511,512

s1,s2,53,54,
$5,56,57,59,
512

s2,53,54,55,
$8,59,512

s1,s2,53,54,
s5,$6,57,59,
510,511

s1,52,s6,s7,
s8

s1,s2,56,57,
s8,510

s10

Ps 10,
Ps 11,
P1o,11

P10,11

Ps 12

P34, P31,
Pag, Po11

P34, P31,
Pag, Po11

P25

Ps 10, Ps 11,
P10,11

P10,11

Ps 12

P35 Psg,
P3,10, P31,
P3.12, Pag,
P49, Pa,10,
Ps11,Paa2,
Ps.10, Ps.12,

P1o,11,
P1o,12

P34, P312,

Pas, Pay,
P41, P12,

Pi1,12

P34 Pss,

P39, P31,

Ps12 P1112

6.1.3 Tennessee Eastman Case Study
Tennessee Eastman (TE) process, first introduced by Downs and Vogel'** has been widely used as a
benchmark problem for process control, optimization, diagnosis and etc. Figure 84 shows the schematic
of the TE process. An MPC controlled TE developed by Ricker and Lee'® is considered in this work. A
detailed description of the process with detailed qualitative SDG analysis of the process has been
presented by Bhushan and Rengaswamy*® and Maurya et al.**” A total of 33 faults considered by Maurya
et al.? are simulated in the process and the 40 variables are stored together for further analysis. Table 28
and Table 29 show lists of variables and faults considered in this work, respectively.
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Figure 84. TE process flowsheet!%

Table 28. List of measured variables in TE process®®’

Sensor Mea_sured Description Sensor Mea_sured Description
no. variable no. variable
sl F7 Stream 7 s21 VD6 D in stream 6
s2 F1 Stream 1 522 VE6 E in stream 6
s3 F2 Stream 2 s23 =3 F in stream 6
s4 F3 Stream 3 s24 Va9 A in stream 9
s5 F4 Stream 4 s25 YB,9 B in stream 9
S6 F8 Stream 8 526 Yc.9 Cinstream 9
s7 F9 Stream 9 s27 Vb9 D in stream 9
s8 F10 Stream 10 528 YE9 E in stream 9
s9 F11 Stream 11 529 = F in stream 9
s10 Ter Reactor temperature s30 YG.9 G in stream 9
s11 Tes Separator temperature s31 YH.9 H in stream 9
512 Pr Reactor pressure s32 XG,11 G in stream 11
s13 VLr Reactor liquid holdup s33 XH,11 H in stream 11
s14 Ps Separator pressure s34 Par A in reactor
s15 VLs Separator liquid holdup s35 Pcr C in reactor



s16 VLp Product liquid holdup s36 Por D in reactor

s17 F6 Stream 6 s37 Per E in reactor

s18 VA6 A in stream 6 s38 VLre Error signal VL,
s19 YB.6 B in stream 6 s39 VLse Error signal VLs
s20 Yc6 C in stream 6 s40 VLpe Error signal VL,

Table 29. List of simulated faults in TE process®’

Fault no. Description Fault no. Description

1,9 F1*, F1 17,26 VL™, VL™
2,10 F2* F2 18,27 VLrvppias 5 VLIvp pias
3,11 F3* F3 19,28 VLSm,pias ", VLSm pias
4,12 F4*, F4 20,29 VLsy*, VLsp*™*
513 F8*, F8 21,30 VLSvppias , VLSvp pias
6,14 F9*, F9 22,31 VLpmpias > VLPm,pias
7,15 T T 23,32 VLpn®®*, VLpm**

8 Cq 24,33 VLpve pias*, VLPvP bias
16,25 Ver,bias+, VLI bias

Table 30 shows the comparison of SDG, FES and MR for TE process. FES is preferred over SDG
algorithm as it has lower sensor network cost and number of irresolvable fault sets. At low MR threshold
level, MR resolves same number of faults with lower sensor network cost compared to FES. As can be
seen in Table 30, FES and MR have the same sensors except that "'s12" -pressure sensor- is not present in
the network for MR algorithm. Therefore, the combination of both algorithms takes advantage of the MR
algorithm. At medium MR threshold level, MR only shows slight improvement over SDG algorithm in
terms of the sensor network cost, thus, the combination of both FES and MR takes advantage of the FES.
At high MR threshold level, MR shows no improvement over SDG algorithm and the combination of
both FES and MR takes advantage of the FES algorithm. For compactness, presenting large matrix of
affected variables and faults resolution are avoided. Table 31 only presents fault resolution for the fault
sets that are resolvable by FES and MR algorithms but not SDG.

Table 30. Results of applying different algorithms to TE process

MR value Sensor

Algorithm(s) level Selected sensors network cost Irresolvable fault sets

[16,26],[16,27],[17,18],

[17,25],[18,25],[19,29],

SDG s2,53,57,58,59,510,511,515,516 7.2 [20.28].[22.32].[23.31],
[26,27]

FES $2,57,88,59,11,512,515,516 6.6 [16,26],[17,25],[19,29],

[20,28],[22,32],[23,31]



Low $2,57,58,59,511,515,516 6.1 Same as FES

MR Medium s2,53,57,58,89,511,515,516 7.1 Same as SDG
High s2,83,57,58,89,510,511,515,516 7.2 Same as SDG

Low $2,57,58,59,511,515,516 6.1 Same as FES

FES & MR Medium $2,57,88,59,511,512,515,516 6.6 Same as FES
High $2,57,58,59,511,512,515,516 6.6 Same as FES

Table 31. Fault resolution by SDG, FES and MR in TE process

Fault Resolution sensors Fault Resolution sensors
Singles Pairs Singles Pairs
FES MR FES MR
Ps.13, Pg,1s,
P13, Pg 15, Ps.13, P16,
[16,27] Ps 16,Ps.40 Po6, P11,13,  [18,25] Ps 16,Ps.40 P13, Po,16,
P11,16, P14.16, P11,13,P15.16
P15.17, P16.17
Ps 13, P16,
Ps.13, Ps.16, Pg,13, Po,15,
[17,18] Ps.16,Ps.40 Pg3, Pogs,  [26,27] Ps.16,Ps.40 Po.16, P11,13,
P11,13, P15,16 P11,16, P14,16,

P15,17, P16.17

6.1.4 SELEXOL Process Case Study

As a unit in integrated gasification combined cycle (IGCC), the acid gas removal unit is used for
removing H.S and CO; contents of the syngas using SELEXOL solvent. The pressure-driven dynamic
model SELEXOL process that is used in our work is developed in the work of Bhattacharyya et al.1%,
where Figure 85 shows the configuration of the SELEXOL process used in their study. The entire model
has 24597 variables. However, considering all the variables makes the FES and MR algorithms
intractable. Therefore, only variables that respond to DG (or SDG) algorithms are taken to account since
the rest of the variables will not have any effect in FES and MR. After removing such variables, 542
variables are left for performing the algorithms. In order to save space, showing the lists of all measured
variables and variables that respond to each fault are avoided and only the key variables are shown in
Table 32. Table 33 shows the list of faults considered in the SELEXOL process.
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Figure 85. Schematic of the SELEXOL process'®

Table 34 shows the comparison of different algorithms for SELEXOL process. Although all faults are
resolvable by all algorithms, there is a slight improvement in sensor network cost by applying FES and
MR compared to SDG. All algorithms suggest that for resolving all faults, flow and concentration sensors
are mainly required. FES algorithm uses a temperature sensor less than SDG although only sensor sl is
the same in both algorithms. Therefore, the sensor network cost is reduced. At low and medium MR
threshold level, less temperature sensors are selected and the sensor network cost is reduced compared to
FES and the combination of FES and MR takes advantage of the results of MR. At high MR threshold
level there is no improvement from SDG and the combination of FES and MR takes advantage of results
of FES.

Table 32. List of measured variables in SELEXOL process

Sensor

no Measured variable Description
——
s BLOCKS.("SELST").Stage(7).Mc("N2") 2 composition 's’t‘rzppgfy of SELEXOL
" " (LI NH; composition in 10" tray of
s2 BLOCKS.("SELST").Stage(10).Mc("NH3") SELEXOL stripper
3 BLOCKS("LENPUR").T Pure SELEXOL from SELEXOL stripper
temperature

s4 BLOCKS("CO2ABS").Stage(10).T 10" tray of CO, absorber temperature



s5

S6
s7
S8

s9
s10

s11

s12

s13

s14
s15
s16

s17

s18

s19

s20

s21

522

$23
s24
s25

STREAMS("LPCO2-2").T

STREAMS("CO2FMMP2").F
STREAMS("MKUPSEL1").F
BLOCKS("SELST").Stage(10).Mc("H2S")

BLOCKS("H2SCONC").Stage(6).T
BLOCKS("SELST").Stage(6).T

STREAMS("CO2FMMP3").F
BLOCKS("CO2ABS").Stage(5).Mc("H2S")
STREAMS("2MPHPMIX").F

BLOCKS("H2SCONC").Stage(4).Mc("COS")
BLOCKS("CO2ABS").Stage(7).T

STREAMS("2LPMPMXR").F

BLOCKS("SELST").Stage(8).Mc("DIMET-
02!!)

BLOCKS("CO2ABS").Stage(4).Mc("H2S")

BLOCKS("SELST").Stage(11).Mc("NH3")

BLOCKS("H2SSTRBT").HotOutVol(1).Mc("
H2s")

STREAMS("SEL2PMP").T
BLOCKS("SELST").Stage(8).Mc("H2S")

BLOCKS("SELST").Stage(9).Mc("NH3")
BLOCKS("SELMXTK").T
STREAMS("2MPHPMX1").F

1% stage compression of LP CO;
temperature
CO, stream top of flash vessel at MP flow
rate
Make-up SELEXOL stream flow rate
HS composition in 10" tray of
SELEXOL stripper
6™ tray of H,S concentrator temperature

6" tray of SELEXOL stripper temperature
CO; stream from LP flash vessel to 1
stage compressor flow rate
H.S composition in 5™ tray of CO-
absorber
CO, stream from HP flash vessel to mix
with MP stream flow rate
COS composition in 4" tray of H,S
concentrator
7" tray of CO, absorber temperature
CO; stream from MP flash vessel to mix
with LP stream flow rate
SELEXOL composition in 8" tray of
SELEXOL stripper
H.S composition in 4" tray of CO.
absorber
NHs composition in 11" tray of
SELEXOL stripper
H,S composition in bottom stream of H,S
absorber fed to concentrator
Temperature of circulating SELEXOL
stream from tank
H.S composition in 8" tray of SELEXOL
stripper
NHs composition in 9" tray of SELEXOL
stripper
SELEXOL mixing tank temperature

CO; stream from HP flash vessel to mix
with MP stream flow rate

Table 33. List of simulated faults in SELEXOL process

Fault no. Fault symbol Description
1 F1 Reduction in area of 13" tray of CO, absorber by 15%
2 F2 Reduction in area of bottom (15" ) tray of CO, absorber by 15%
3 F3 Reduction in area of 23" tray of H,S absorber by 15%
4 F4 Reduction in area of bottom (26" ) tray of H,S absorber by 15%
5 F5 Reduction in area of 4" tray of H,S concentrator by 15%



6 F6 Reduction in area of bottom (6" ) tray of H,S concentrator by 15%

7 F7 Reduction in overall heat transfer coefficient of Lean/Rich H.E. by 15%
8 F8 1% leakage in the H; recovery compressor suction line

9 F9 1% vapor leakage in H recovery flash drum

10 F10 1% vapor leakage in CO- high pressure flash drum

11 F11 1% vapor leakage in CO, low pressure flash drum

12 F12 1% vapor leakage in CO, medium pressure flash drum

13 F13 Reduction in area of 8" tray of SELEXOL stripper by 15%

14 F14 Reduction in area of bottom (11%) tray of SELEXOL stripper by 15%

Table 34. Results of applying different algorithms to SELEXOL process

Sensor

Algorithm(s) MR value level Selected sensors network cost Irresolvable fault sets

SDG s1,s2,53,54,55,56,57 22.3 []
FES s1,57,88,59,10,511 22.2 [1
Low s1,57,s12,513 22 []

MR Medium 57,58,514,515,516 22.1 [1
High s1,s6,57,510,515,516,517 22.3 []

Low s7,511,518,519 22 [1

FES & MR Medium §7,58,511,520,521 22.1 [
High 57,510,522,523,524,525 22.2 [1

6.1.5 Combined Cycle Case Study

The combined cycle island consists of a series of heat exchangers and the gas turbines (GT) and steam
turbines (ST) as shown in Figure 86. Clean synthesis gas, exiting the SELEXOL unit is heated and mixed
with Nz, which is used as a diluent. After going through an expander, it is sent to the combustor of the
GT. Two advanced “F” class combustion turbines partially integrated with an elevated-pressure air
separation unit (ASU) are modeled in Aspen Plus Dynamics. The hot flue gas exhaust from the GT is
used to generate high pressure, intermediate pressure and low pressure steam in the heat recovery steam
generator (HRSG). The flue gas is finally vented to the atmosphere. The steam generated using the HRSG
is used to produce power in the ST.
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Figure 86. Schematic of the combined cycle power plant.

6.1.5.1 Model development
The combined cycle model is taken from the work of Bhattacharyya et al.! and has been modified to be
able to incorporate faults. The gas turbine (GT) converts the chemical energy in the supplied hydrogen-
rich syngas fuel into shaft work which turns a generator and produces electricity.

The GT is simulated using turbine models available in the Aspen Plus library on the basis of the
specifications of a GEE 7FB turbine. N2 is used as a diluent and is manipulated by a design specification
so that the lower heating value (LHV) of the syngas fuel is reduced to 4.55 MJ Nm? to keep the NOx
concentrations in the ppmv range in the exhaust. The combustion air is compressed in an axial flow
compressor which raises the ambient air to a pressure of 1.65 MPa. When the flow of combustion air is
manipulated, the GT combustor temperature is maintained at 1377 °C with a specified heat loss equal to
1.5% of the lower heating value (LHV) of the syngas. The GT firing temperature is maintained at 1327
°C by a design specification which manipulates the air flow rate to the combustor outlet gas before it
reaches the first expansion stage. The air flow rates to the second and third expansion stages are
maintained at predetermined values. The isentropic efficiencies of the GT are manipulated such that the
exhaust temperature is maintained at 566 °C. The isentropic efficiencies of all the three stages are
assumed to be equal. The flue gas goes to the heat recovery steam generator (HRSG) where steam is
generated at three pressure levels. The flue gas is used to superheat the HP steam generated both in the
HRSG evaporator and in the radiant syngas cooler before it finally exits the system at 132 °C, well above
the cold end corrosion temperature.

The steam cycle generates steam from the flue gas and other process streams at three pressure levels. The
minimum temperature approach is considered to be 10 °C in this study. HP steam, generated at 12.4 MPa
and 538 °C, is mainly used for generating power in the HP steam turbine (ST). IP steam is used for
generating power, as well as in the reboilers. LP steam generated in the HRSG is mainly used for heating
process streams and in the reboilers. Condensate at the outlet of the surface condenser and from the LP
steam circuit and flash steam from the HP blow down drum are sent to the deaerator. The BFW at the
outlet of the deaerator is pumped at various pressure levels for generating HP, IP, and LP steam. The HP
stream is heated and sent to the RSC and HRSG. It is then superheated and sent to the HP turbine. IP
BFW passes through the economizer and evaporator to generate IP steam which is sent to the IP turbine.
The LP split of the BFW is used to generate LP and IP steam. The exit temperature of the flue gas above
the cold end corrosion temperature is maintained by manipulating the flow of the BFW that goes to the
LP steam evaporator. IP steam

The faults simulated in the combined cycle island include leakage at several locations, fouling within a
few heat exchangers and an increased loss of heat through the combustor. Since the turbines itself are
highly advanced and consist of several sensors that detect and report any deviation from operation
immediately, faults in these units have not been simulated. The leakage faults are mainly considered for
the heat exchangers where high pressure differences exist between the shell and tube sides. Fouling is a
concern within the heat exchangers as well. These faults are modeled similar to the methods mentioned



earlier for the SELEXOL unit. The GT combustor has insulation to prevent heat loss to the environment.
However, the insulation might get damaged in the course of operation and this can be modeled by
increasing the heat loss in the GT combustor block.

6.1.5.2 Fault Simulation
The combined cycle section was segregated from the plant wide model developed in the works of
Bhattacharyya et al®. The faults to be simulated in the combined cycle unit were identified. With the
exception of Fault 5, all faults are simulated with a ramp function of 1 hour duration initiated after half an
hour of simulation. The faults that were selected and implemented are as follows:

1. Leakage from the high pressure steam flash vessel

Steam at very high temperature and pressure is produced in a steam generator block using the heat from
hot flue gas. The steam produced is then sent to the high pressure steam turbine. A leakage in the high
pressure steam generator can cause mixing of the steam with the flue gas which could build up in the
steam cycle.

Pressure Steam T

Steam-Water mixture

Liquid water \l’

Figure 87. Schematic of the high pressure steam generation vessel.

2. Leakage within a HE between syngas and steam streams

This heat exchanger is used to heat in the hydrogen rich syngas from the Selexol plant before being sent
to the combustor. The steam stream is at higher pressure and a rupture in the tube could result in steam
entering the gas cycle. This could negatively impact the combustion process and the power generated in
the gas turbines.
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Hot Syngas
Syngas stream yng
stream to
From Selexol
Combustor and
Plant .
Gas turbines

BFW inlet High

Figure 88. Schematic of the heat exchanger between the syngas stream and the high pressure steam.

3. Leakage within a Condenser between Steam and water streams

Usually a composition sensor placed at the one of the streams exiting the HE would be able to detect any
leakage taking place within the HE. However, if the heat transfer involves two streams of the same
material, this becomes difficult. In this unit, we have considered a leakage of cooling water into the
condensing steam.
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Figure 89. Schematic of the condenser where steam/condensate is cooled by cooling water.

4. Fouling simulated as loss of area within HE

A fouling fault is simulated in the heat exchanger used to cool the flue gas from the combustor using
steam. The combustor flue gas could have particulate matter entrained from the N, stream that could
deposit on the walls of the HE. This fault is simulated by decreasing the surface area of the HE.

Steam to Steam
turbine

Flue gas inlet Flue gas outlet

Steam inlet

Figure 90. Schematic of the heat exchanger (part of HRSG) where the combusted syngas is
used to superheat the steam.

5. Increase in heat loss from the combustor
The combustor operates at high temperatures and has insulation to limit the heat loss to the environment.
However, the insulation might get damaged or may suddenly fall off in course of operation. This fault is

modeled by introducing a step change in the heat loss from the GT combustor block after half an hour of
simulation time.
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Figure 91. Schematic of the gas turbine combustor.



6. Leakage within a HE between combusted syngas and steam stream.(IPEVAP1)

A leakage in an IP steam generator HE is simulated where heat from flue gas at almost atmospheric
pressure is used to generate steam. This fault is to see if a sensor can be found to differentiate faults in
heat exchangers operating at different pressures.

Steam outle?

Flue gas Flue gas
inlet outlet

Intermediate
Pressure Steam

Figure 92. Heat exchanger cooling combusted syngas with intermediate pressure steam.

7. Fouling simulated as loss of area within HE

In this fault, the same HE as Fault 2 has been used to simulate a fouling fault. In the SELEXOL process,
there can be some foaming or formation of undesirable chemicals on the trays of the absorbers. These
materials could be carried by the syngas and could deposit on the heat exchanger surfaces thereby
reducing the surface area for heat exchange.

The faults were initially simulated while recording minimum number of variables. The following
guidelines were used in order to select these variables:

1. Instead of the molar flow, the volumetric flow rate is recorded. This is because, in the industry,
typically the volumetric flow rates are measured.

2. Across a HE the composition is not expected to change. Therefore, only pressure, flow rate and
temperature are recorded.

3. Pressure and temperatures after splitter/mixers are not recorded.

4. Only pressures after valves or other pressure-drop devices are recorded.

5. The composition of only the gas stream exiting the flash vessel is recorded. The pressure and
temperature of the vessel is recorded. Note that the exiting streams will have the same pressure and
temperatures as the vessel.

6. Levels in flash vessels were recorded.

7. Power outputs from turbines were recorded.

These criteria however would result in the omission of variables that could help in the detection of faults
involving a leak of dissimilar materials. For example, as a result of Fault 2, the composition of the syngas
stream would change. Under the previous context, these changes would go undetected as the stream does
not undergo any chemical change in the section until the combustor. Each unit in the combined cycle
section is checked for all possible faults that can occur, and accordingly the final set of variables to be
recorded are obtained.

6.1.5.3 Study of Fault Effects
For the sake of brevity of this report, we will show the responses of only a few select variables due to a
few select faults. In Fault 2, water leaks into the syngas stream. Hot water is used to heat the syngas
stream from the SELEXOL unit before it is sent to the combustor of the gas turbines. Intuitively, one



might think that the temperature and flow rate of the syngas exiting the heat exchanger would increase
due to the leakage. Interestingly enough, this is not the case.
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Figure 93. Volumetric flow rate of the leaking steam stream into the syngas stream due to Fault 2.

Fault 2 is initiated after half an hour simulation time. The leakage is initiated and ramped for one hour and
then held steady at the final value. The mole flow rate of water is about 9% of that of the syngas stream
exiting the heat exchanger. The flow of water can be seen from Figure 93 above.
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Figure 94. Temperature change of the Syngas stream at the outlet of the Heat exchanger due to

Fault 2.

Due to Fault 2, the pressure of the water drops in pressure significantly leading to its evaporation. Due to
the latent heat of evaporation, the syngas temperature decreases. This can be seen from Figure 94.
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Figure 95. Flow rate change of the syngas stream exiting the heat exchanger due to Fault 2.

The effect of this is not confined to temperature itself. The volumetric flow rate is a function of
temperature and the temperature of the outlet stream has decreased. In addition, vaporization of water
creates backpressure decreasing the flow rate of clean syngas. Therefore, the overall volumetric flow rate
of the exit syngas stream has decreased as compared to before as can be seen in Figure 95.

Furthermore, fouling faults in the heat exchangers are also simulated. This is simulated at two locations;
the first one (Fault 4) was in the superheater of the HP steam, and the second one (Fault 7) was on the HE
that heats the syngas before the GT combustor. Fault 4 is simulated by reducing the area of the HE by
10% over a time period of 1 hour. Figure 96 and 97 show two sample responses as a result of this fault.
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Figure 96. Temperature change of the flue gas at the outlet of the superheater due to Fault 4.



Due to the reduced area, the outlet temperature of the flue gas increases as shown in Figure 96. Due to the
increase in temperature, the volumetric flow rate is also expected to increase. This can be seen in Figure
97 below.
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Figure 97. Change in Flow rate of Combusted Syngas stream due to Fault 4.
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Figure 98. Change in Temperature of the outlet Syngas stream due to Fault 7.

In contrast, the temperature change due to Fault 7 as shown in Figure 98 does not respond in the same
manner as it did in Fault 4 even though the reduction in the area is similar in both the cases.

Multi-severity faults



The previously shown faults in the combined cycle power plant are simulated at three severity levels. The
data for the 21 faults were compiled and sent to TTU for sensor placement studies. The severity of the
faults and their levels are shown in Table 35 below.

Table 35. Faults at different severity level simulated in the combined cycle model

Fault # Fault Type Duration Severity
1 Ramp 1 hour 0.5%, 1%, 2% leak valve opening
2 Ramp 1 hour 0.1%, 0.2%, 0.4% leak valve opening
3 Ramp 1 hour 5%, 10%, 20% leak valve opening
4 Ramp 1 hour 80%, 90%, 95% area available
5 Step - 90%, 95%, 98% of original heat loss
6 Ramp 1 hour 0.05%, 0.2%, 0.5% of leak valve opening
7 Step - 85%, 90%, 95% of area available

The fault severities have been chosen such that the levels are in a high, medium and low level. The effect
of the high severity level should be captured by the algorithm easily. The low level faults may not have a
strong effect on the system to be resolved by the algorithm. The faults would help determine the level of
severity that the sensor placement can detect and the minimum number of sensors required to detect them.

There are 736 number of variables chosen carefully for further processing. Table 36 shows the weight and
threshold value for each type of variables:

Table 36. Weight and threshold of each variable in the sensor placement algorithms

Variable type Weight Threshold
Temperature 0.1 1F
Level 1 1inch
Flow 1 3%
Power 0.1 3%
Concentration(mole fraction) 10 0.01
Pressure 0.5 2 psi

Table 37 and Table 38 show the results of the different algorithm for fault resolution of combined cycle.
Table 38 shows that the MR algorithm can resolve faults [8,9] in the medium ratios of range 1.3 - 1.8.
However, the sensor network cost is sensitive to the MR threshold value in this range.

Table 37. SDG and FES algorithms results



Sensor network Irresolvable

Algorithm(s) Selected sensors cost fault sets
SDG 1,13,14,21,34,37,112,130,154,179,188,221,285 5.8 [8,9] [14,15]
FES 10,13,14,42,49,456,469,171,221,242,251,285 4.8 [8,9] [14,15]

Table 38. MR algorithm results

Algorithm MR threshold value Irresolvable fault sets
11-12 [8,9] [14,15]
MR 1.3-1.8 [14,15]
19-3 [8,9] [14,15]

Figure 99 shows the number of irresolvable faults and the corresponding sensor network cost for different
MR threshold values.
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Figure 99. Number of irresolvable faults (left) and the corresponding sensor network cost (right) at
different MR threshold values



6.1.6  System Decomposition

Here, we study the effect of different system and decomposition parameters on the fault detection and
computation speed. The results in this section are based on a Monte Carlo simulation analysis where a
pool of systems are considered and the presented results are either the probability of occurring (fault
detection results) or the mean average over the pool of systems (computation speed results). The
sensitivity analysis of system parameters includes the effect of number of nodes, sub-systems, and cross-
connections on the computation speed, fault resolution capability and sensor network cost. For
computation speed, the average computation time for fault detection of overall system (To) is compared
with the average sum of computation times of sub-systems (Tp). For comparison, the average percent
reduction in computation time by decomposition (Tg) is also presented (Tr = (1-To/To) %100). For fault
resolution capability, the solutions obtained from sub-systems are augmented to form the decomposition
solution. The decomposition solution is implemented in the overall system to check the resolution, which
is how many of the faults cannot be resolved using the decomposition solution. The optimal resolution is
always achieved by considering the overall system and counting the number of unresolvable faults. For
comparison, the percentage of the systems in the pool where their decomposition have resolution greater
than that of optimal resolution is presented (Pg). For sensor network cost, the cost of sensor networks for
all sub-systems are summed up and compared with the sensor network cost of the overall system. For
comparison, percentage of the systems in the pool that have sensor network cost different than the cost of
sensor network of their overall system is presented (Pc). It should be noted that cost of placing sensor on
all nodes are assumed equal with the value of 1.

Table 39 shows the sensitivity analysis of number of sub-systems. In this analysis, total number of nodes,
edges, fault nodes, fault edges and cross-connections are fixed for the overall systems at 3600, 1.2 x
3600, 60, 60 and 60, respectively. In all of the subsequent studies, the number of edges is chosen to be
20% more than the number of nodes in order to have feedback/recycle edges similar to process systems;
and the number of fault edges is chosen equal to the number of faults in order to ensure each fault has
single outward edge. Also, the values for number of nodes, edges, fault, fault edges and cross-connections
in all subsequent tables represent the parameters of each sub-system in an overall system. The random
systems in each pool are generated with a specified number of sub-systems. In Table 39, for each system
in each pool, number of sub-systems is fixed and the mentioned fixed parameters are divided equally
among the sub-systems. For example in Table 39, pool 1 has systems where each system is consists of 2
sub-systems where each sub-system has 1800, 2160, 30, 30 and 30 number of nodes, edges, faults, fault
edges and cross-connections, respectively. Only for pool 6, the number of cross-connections cannot be
divided equally among the sub-systems, therefore, number of cross-connection between each sub-system
is chosen randomly for each sub-system with summation equal to 60. It should be noted that it is assumed
that each pair of sub-systems has at least 1 cross-connection. In order to be consistent, the maximum
number of cross-connections is then 16 for pool 6.



Table 39. Sensitivity analysis of number of sub-systems

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6
Sub-Systems 2 3 4 5 6 10
Nodes 1800 1200 900 720 600 360
Edges 2160 1440 1080 864 720 432
Faults 30 20 15 12 10 6
Fault Edges 30 20 15 12 10 6
Cross-Connections 30 20 10 6 4 1-16
To(s) 1.6587 1.6587 1.6587 1.6587 1.6587 1.6587
To (S) 0.4372 0.2404 0.1818 0.1439 0.1186 0.0819
Tr 74% 86% 89% 91% 93% 95%
Pe 0% 0% <1% 2% 2% 3%
Pc 44% 59% 3% 85% 90% 100%

In Table 39, the computation time of the overall system, To, is averaged over all 6 pools as all the overall
systems have similar properties. As the number of sub-systems increase, the reduction in computation
time is increasing, meaning that it takes much less time to perform fault detection for all the sub-systems
than performing on the overall system. This can be seen as the average of sum of sub-systems’
computation time, Tp, is reducing due to fault detection of smaller systems. One of major reasons behind
the computation time reduction is the amount of time required to perform fault resolution (symmetric
difference) in a system. For the overall system, the number of computations required for fault resolution is
equal to the number of non-repetitive fault pairs in the overall system, which is 60x59/2 = 1770. If the
system is decomposed to 10 sub-systems, the total number of computations required for fault resolution is
10x6x5/2 = 150. This means that the total number of computations, which is directly related to the
computation time, has been reduced by approximately 92%. As the number of sub-systems increase, the
probability of systems with more faults being unresolved is slightly increasing due to the reason that the
probability of presence of nodes that can resolve those faults in the corresponding sub-system gets lower
as the number of sub-systems increase. Moreover, as the number of sub-systems increase, resolving the
faults in sub-systems requires more number of sensors to be placed due to the reason that sensors which
could resolve multiple faults are not available for use in different sub-systems. Therefore, there is high
probability that decomposition results in higher sensor network cost. In summary, choosing the
appropriate number of sub-systems for decomposition is a tradeoff between computation speed, fault
resolution and sensor network cost. Increasing the number of sub-systems reduces the computation time
significantly while it may result in lower fault resolution and different sensor network cost.

Table 40 shows the sensitivity analysis of number of nodes and fault nodes. The number of sub-systems is
fixed at 4 in this study. In pools 1-3 in Table 40, the number of nodes increases from 10 to 1000 while the
number of faults are fixed at 4. Although the computation time for both overall and decomposed systems
increases by increasing the number of nodes, the amount of reduction in computation time is actually



increasing, meaning that decomposition efficiently reduces the computation time as the size of the system
increases. Moreover, while the number of faults is fixed, as the number of nodes increase, there are more
sensors available for fault resolution; therefore, the probability of systems with more unresolved faults
due to decomposition is reducing. Similarly, the probability of systems with different sensor network cost
increases as the number of nodes increase due to more availability of sensors for fault resolution.
However, the sensor network cost maybe greater or less than the overall system depending on the fault
resolution. For example, fault resolution maybe achieved by using more sensors while if some faults
cannot be resolved in the sub-systems, less number of sensors will be involved in the fault resolution,
thus, resulting in less sensor network cost. In pool 4-6, the number of nodes is fixed at 1000 while the
number of faults increases from 40 to 80. Pools 4 and 5 show that at higher number of faults compared to
pool 3, computation time reductions are significant, however, the impact of increasing the number of fault
nodes on both overall and decomposed systems’ computation time is significantly larger than the effect of
increasing the number of nodes. This effect can also be explained by the number of computations as in the
study of number of sub-systems. The probability of systems with higher number of unresolved faults
increases at higher number of faults. However, compared to pool 3, we can see that this probability has
remained approximately the same for larger number of faults. An explanation is that since the number of
faults is large, many faults are even unresolved in the overall system and system decomposition has little
effect on fault resolution. For the same reason, the probability of systems with different sensor network
cost for pools 4 and 5 is lower compared to the pool 3. For pool 6, the number of faults is too high that
exceeds the computation memory of the computer, while it is still possible to perform the fault detection
on the decomposed system. Therefore, no comparison can be made for pool 6. This interesting result
justifies the need for system decomposition for fault detection of large systems and large number of
faults.

Table 40. Sensitivity analysis of number of nodes and fault nodes

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6
Sub-Systems 4 4 4 4 4 4
Nodes 10 100 1000 1000 1000 1000
Edges 12 120 1200 1200 1200 1200
Faults 4 4 4 40 50 80
Fault Edges 4 4 4 40 50 80
Cross-Connections 4 4 4 4 4 4
To(s) 0.0257 0.0349 0.1251 14.3853 26.4105 rrcl)e%grfy
To(s) 0.0158 0.0182 0.0288 1.3469 2.6569 4.8287
Tr 37% 48% 77% 91% 90%
Pr 9% 3% <1% 1% 1%

Pc 100% 98% 97% 66% 63%




Table 41 shows the sensitivity analysis of number of cross-connections while other parameters remain
fixed. Although in a decomposed system an edge can either be inside a sub-system or between a pair of
sub-systems, the following sensitivity analysis shows the effect of number of cross-connections, for
example in a highly interconnected system, on computation time and fault detection when the system is
decomposed. As seen in Table 41, the number of cross-connections has very little effect on the
computation time reduction, although still the decomposition has resulted in significant time reduction of
approximately 90%. The probability of systems with higher number of unresolved faults in the
decomposed system is at a minimum when there are only one cross-connections between the sub-systems.
As can be predicted, the less the interaction between the sub-systems, the more the probability of
achieving optimal resolution with system decomposition. At higher number of cross-connections,
although not highly probable, it is possible that the decomposition results in some faults being unresolved.
Moreover, as the number of cross connections increase, the probability of system decomposition resulting
in sensor network cost higher than the optimal cost gets higher. This is due to the reason that the when a
system is more interconnected, it is possible that a single sensor can resolve multiple faults. Therefore,
decomposing systems with more connections can result in sensor network with higher cost for achieving
the optimal resolution.

Table 41. Sensitivity analysis of number of cross-connections

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6
Sub-Systems 4 4 4 4 4 4
Nodes 1000 1000 1000 1000 1000 1000
Edges 1200 1200 1200 1200 1200 1200
Faults 40 40 40 40 40 40
Fault Edges 40 40 40 40 40 40
Cross-Connections 1 5 10 20 40 80
To(s) 10.28 15.81 16.15 16.93 16.95 16.47
To(s) 1.26 144 1.50 1.55 1.3317 1.59
Tr 88% 91% 91% 91% 92% 90%
Pe 0% 2% 3% 3% 2% 2%
Pc 70% 70% 84% 93% 99% 100%

6.1.7 Conclusion
The case studies, clearly brings out the value of every piece of information that is used in sensor
placement. Further, because of this, it is also easy to interpret and explain the results to the operator. If a
pseudo-sensor corresponding to a MR pair helps in resolution then a corresponding explanation such as,
for example, “Temp T-101 has increased by a large amount, whereas concentration C-502 shows only



moderate increase indicative of F15” fault can be provided. Further, it is possible to use these results
directly in the development of a diagnostic approach for each of these case studies. Finally, the
optimization algorithms are solved, even at a flow-sheet level, in a very short time. It will be extremely
difficult to solve problems at this scale if one were to take recourse to a full-scale optimization problem
that incorporates the nonlinear dynamic first-principles model within the optimizer. A more
computationally efficient approach might be to add the detailed first principles model as the next level of
information to address only the faults that are left unresolvable after MR and FES information have been
used in identifying the sensor placements. Elegant computational approaches to realize this will be one
avenue for future work.

The system decomposition for fault detection is promoted by a series of sensitivity analysis that promises
computation time reduction while it is highly probable that the optimal resolution using the decomposed
system is achieved. However, it is likely that the decomposed system will result in higher sensor network
cost compared to the optimal cost. The optimal resolution and sensor network cost can be obtained by the
fault detection of the original system before decomposition.

The system decomposition promises significant computation time reduction as the number of sub-systems
and the system size, which includes number of nodes and fault nodes, increases. The larger the system,
the more appealing the system decomposition is. It is more likely for system decomposition to achieve the
optimal resolution as the size of the system increases; and when system decomposition has lower number
of sub-systems and lower number of cross-connections. It is highly probable that system decomposition
has higher sensor network cost while the probability is lower for larger systems, when the system is
decomposed to lower number of sub-systems, and when sub-systems’ interaction through cross-
connections are lower.

An appropriate graph partitioning algorithm for fault detection must compromise between the
computation speed for fault resolution and sensor network cost. Minimizing the number of cross-
connections promises higher chance of achieving optimal resolution while the number of sub-systems is a
tradeoff between computation speed, fault resolution and sensor network cost. Maximizing the number of
nodes in each sub-system ensures highest computation time reduction, which can be done by equally
dividing the nodes in the sub-systems as possible. Also, the less the number of fault nodes in each sub-
system, the less the number of computations can be, which again means equal number of fault nodes in
each sub-system can be an appropriate choice.

6.2 Distributed Sensor Placement

6.2.1 State Estimation Validation
In this section, the performance of the proposed state estimation technique is demonstrated on two
examples. The first example is a nonlinear system that is akin to a batch reactor and the second example is
the water gas shift reactor (WGSR), where a catalytic reaction is performed in a plug-flow reactor. The
performance of the filter is demonstrated by comparison of root mean square error (RMSE) of the data
and the estimated states calculated as

N2
RMSE = \/Z§=1(xi,k - xic,k) (219)
S

Where xix is the actual value that is specific to the simulation study and X{, is the constrained state
estimates. In order to calculate the RMSE of the measurement data, X7, in Eqn. (219) is replaced by the

measured value yix. Another metric that is used in the following analysis is the normalized sum of squared
errors (SSE) of all state estimates over the total time instance and is calculated as
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where T is the number of time instances, X is the number of variables and xi(t) and &;(t) are i*" actual and
estimated states at t time instance, respectively. It should be noted that in the following studies, SSE
values are calculated by averaging over 100-run Monte Carlo simulations.

6.2.1.1 Example 1: Non-linear synthetic system
Our synthetic example is comprised of two differential equations and an algebraic equation. The system

under study is given as

8.69x10742(0.6 — x;) — zx1073 (x; - —)
(221)
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g(x) =2z°3 + 0.5x3z — 10?2 =y (222)

where G = [ 0.5 —OOéS] and true initial state of x, =[0.431 0.569 3.546]7. The sampling time is
chosen as At = 5 s and the state estimator is initialized with

0= [2.5x10—5 ]
2.5x107°
W =25x1073
2.5x107°> 0 0 ]
R = 0 2.5x107° 0
0 0 2.5%10~3 (223)
107% 0 0
Phb=f0 107 0 ]
0 0 107%
Xo0 = [0.555 0.456 2.822]"
The constraint given for this system is
=1 1 0], b=1 (224)

Note that the initial estimate does not satisfy the constraint. From the constraint, it can be seen that E, =
[1 1], E; =01, ExG = 01x and Exfx = 01x1. The Jacobian matrix is calculated analytically as
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Multiplying Ex by (A-BDC) yields
E.(A—BD™1()

VA
—8.69zx107% — zx1073 + zx1073 —Ex10‘3
[1 1] z
zx1073 —8.69zx107% +EX10_3
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(226)

From Eqn. (224), it is known that x; + x» = 1 after the first iteration of the filter, therefore, E,BD~1C = 0.
From Eqn. (226), Ex is a left eigenvector of @. Figure 100-102 show the actual, measured and estimated
values of each variables for 100 time instances. Initially, states do not satisfy the constraint, however,
after the first iteration of the filter, estimated states satisfy the constraints for all time instances.
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Figure 100. Actual, measured and estimated values of differential variable X;.
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Figure 101. Actual, measured and estimated values of differential variable X,.
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Figure 102. Actual, measured and estimated values of algebraic variable z

Table 42 shows the RMSE and SSE values of measured and estimated variables. In Table 42, RMSE and
SSE are compared for filter I, with certain algebraic equation assumption as described before, and filter |1,
the proposed filter. It should be noted that the propagation step in filter 1 is modified to include the state
constraints as shown in Eqgn. (192). As seen in Table 42, RMSE of differential variables x; and x. using
filter 11 are slightly reduced over using filter I although both filters result in better estimates compared to
the measurements. The RMSE of the algebraic variable z for filter | is greater than that of the
measurement due to underestimation of noise in its corresponding equation. This suggests that measuring
the algebraic variable would result in more accurate values than using filter 1. However, the reduced
RMSE of the algebraic variable for filter 1l compared to the RMSE of the measurement justifies the
correct assumption of uncertain algebraic equation. Also, the SSE value of filter Il indicates significant
improvement over filter I, which means the estimates are closer to the actual values. These improvements
show that the proposed filter can mitigate the effect of uncertain algebraic equations and result in better
estimates.



Table 42. Comparison of RMSE and SSE values for measured and estimated values

RMSE SSE
X1 X2 z
Measurement (data) 0.0050 0.0050 0.0501
Filter | 0.0029 0.0029 0.0684 0.0479
Filter 11 0.0027 0.0027 0.0417 0.0215

6.2.1.2 Example 2: Water gas shift reactor

State estimation of reactors has been the focus of many researchers for control and fault diagnosis. The
next example is the system of interest, water gas shift reactor (WGSR), in which carbon monoxide (CO)
reacts with steam (H20O) to produce hydrogen (H.) and carbon dioxide (COy), through the water gas shift
reaction. A non-linear DAE model of the sour water gas shift reactor (SWGSR) has been developed in
section 2.1 where in addition to the water gas shift reaction, carbonyl sulfide (COS) reacts with H2O (i.e.,
COS hydrolysis), and CO, and hydrogen sulfide (H2S) are produced. For simplicity, here, the sulfur
content of the feed is assumed negligible and only the water gas shift reaction is considered. In addition to
the reactor model, feed and product stream flowrates are controlled by valves (V1, V2 and V3) as shown
in Figure 103. The corresponding equation for calculation of flows through the valves is Fy; =
(%),/pviAPVi, where dy,, Sy, My, py, and APy, are flow coefficient, valve opening, average

2

molecular weight, average density and pressure drop across the valve, respectively. Syngas and steam are
passed through valves Vi and V5, respectively, and it is assumed that these streams are well mixed in an
ideal mixer before entering the reactor. The presence of the valve adds an additional algebraic equation to
the system model as described by Eqn. (227)-(231). Table 43 shows the summary of the equations used to
represent the system with parameters shown in Table 44. Some of the parameters in our previous work are
changed for simplicity and reduced computations. For example, the reactor size and correspondingly the
number of grid points in discretization are reduced. These parameters are shown in Table 44.
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Figure 103. Schematic of the WGSR system

Table 43. Summary of equations for Water gas shift reactor
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Table 44. Summary of the parameters of the WGSR model used in this work

Parameter Value
Length 1m
Diameter 0.5m
Number of grids (Ngrid) 25
Openin
Valve V1 (syngas) bening 50%
Flow Coefficient 6 x10-5
Opening 50%
Valve V; (steam)
Flow Coefficient 2 x107°
Opening 50%
Valve V3 (products)
Flow Coefficient 10~*
Inlet temperature 580 K
Feed pressure (steam and syngas) 5626121 Pa
Outlet pressure 4.5x10° Pa
Catalyst diameter 0.1 mm

The state vector consists of 176 states including mole fractions of CO, H»O, CO,, and Hy, temperature and
pressure at each grid-point and pressure at the inlet of the reactor (Pi,). The constraint for this system is
imposed as the summation of mole fractions at each grid-point is equal to one. Since the actual mole
fraction values must sum up to one for consistency, in simulating the actual mole fraction values, the
process noise is introduced in the mole fractions in such a way that the summation of the process noises at
each grid-point and time instance are equal to zero. To do this, random process noises generated for each



mole fractions at a particular grid-point are corrected by subtracting the mean average of the process
noises from each. Therefore, G in system of Eqn. (181) is written such the diagonal elements are +% and

the elements corresponding to mole fractions of the other components at the same grid-point are — %. The

process covariance, Q, of each equation type is assumed the same and chosen as 10 and 2.5x10° for
mole fraction and temperature equations, respectively. The covariance matrix of algebraic equations
(pressure) is also fixed at 4x10*. The measurement covariance, R, is also assumed in the same manner
with 6.4x10%, 2.5x10° and 4x10° for mole fraction, temperature and pressure measurements,
respectively. It should be mentioned that temperature and pressure variables are normalized using 580 K
and 55 atm, respectively. The sampling time is chosen as At =5 s and the state estimation is performed
for 100 time instances. The error covariance is Po = 10® li7gx176. The correction step for constraint is
applied only once in the beginning. Note that since a large portion of the reactant is consumed in the first
half of the reactor, it is more desirable to accurately estimate the states in this zone. Therefore, a random
grid-point in the first half of the reactor is chosen to show the performance of the proposed filter. Figure
104 and Figure 105a show the actual, measured and estimated states at 9" grid-point using Filter 1l with
all the states measured. The corresponding RMSE are shown in the figure captions where RMSE gat. and
RMSE.: represent RMSE in measured and estimated values, respectively. Clearly, estimated values have
smaller errors compared to the measurements, thus, the proposed filter performs reasonably. It should be
mentioned that for better visualization, Figure 104 and Figure 105 are shrunk for the first 30 time
instances although the calculations of RMSE and SSE values are based on 100 time instances. In order to
avoid comparing the RMSE of large number of variables for filter | and filter Il in this example, the
superiority of the proposed filter, filter 11, is shown by comparing SSE values and also RMSE values at 9™
grid-point for the algebraic variable P. The SSE values are 10.312 and 6.819 for filter I and filter II,
respectively. Comparing the SSE values, the proposed filter results in estimated values significantly
closer to the actual values as the squared error is reduced approximately by 33%. Moreover, higher
RMSE. for filter | than RMSEaa Shows that the filter fails to outperform the measurements and produce
unreliable estimates while filter 11 results in estimates with lower errors than of measurements. The state
estimation results are presented in Figure 105a and Figure 105b for filter Il and filter |, respectively. From
Figure 105, it can be seen how accurately filter 1l tracks the changes in algebraic state compared to filter
I. As mentioned before, this is due to the fact that filter 1l correctly accounts for the presence of noise in
the algebraic state. Consequently, this is reflected in the quality of the state estimates.
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P (RMSEgata = 1.998 x 103, RMSEs:= 0.894 x 107 using Filter 1) (b) P (RMSEes= 5.312 x 10
using Filter 1).



6.2.1.3 Discussion

In the previous section, our proposed filter which accurately estimates the states, especially the algebraic
states, was used to estimate the states in the WGSR example. In the WGSR example, however, all the
states are measured for the purpose of filtering. Practically, it is neither possible nor economical to
measure all the states in the WGSR. In operating plants, as the budget and integrity of the equipment
items limit the number and type of sensors that can be used for monitoring the process, state estimation
becomes a challenge. Increasing the number of sensors results in more accurate estimates of the variables.
On the other hand, reducing the number of sensors requires identifying the most important variables that,
if measured, accurate state estimates would be obtained. However, following questions arise. What should
be the type and location of the sensors? How much does each measurement type and location contribute
to the accuracy of the state estimates especially when using a rigorous filter for state estimation? To
answer these questions, we begin by evaluating the case where only a few measurements are available.
First, it is assumed that measurements are mutually exclusive and only available at fixed locations for
similar states (i.e. only mole fractions of CO, yco, or, only gas temperature, T, at fixed locations). The
fixed grid-points are assumed to be 1%, 5%, 9" 13" 17" and 21 grid-points. For satisfying product
specification, product concentration, temperature and pressure are usually monitored at the reactor outlet.
Therefore, in subsequent studies it is assumed that all the states except the catalyst temperature, Tca, are
always measured at the outlet of the reactor (25" grid-point). Table 45 shows the SSE values for the
corresponding available measurements with T = 100. As seen in Table 45, the lowest estimation error is
achieved if the measurements of CO mole fraction (yco) are available. In contrast, if measurements of
only pressure (P) are available, estimation error is comparatively higher than others in Table 45.
Therefore, it can be concluded that the type of the variable that is being measured contributes to the
accuracy of the estimation, and if identified, it can result in better estimation accuracy.

Table 45. Sum of squared errors value when fixed points measure the same type of states

Measured state type

SSE value
31.889 35.522 34.626 35.500 36.077 37.790

Next, we investigate how informative are each of the fixed measurement locations when only yco is
measured. Therefore, six independent cases are considered, where in each case it is assumed that one of
the measurement locations is unavailable and information from only 5 other measurement locations are
used for state estimation. Table 46 shows the SSE values for each of these state estimations with T = 100.
Table 46 shows that the 13", 17" and 21% grid-points have the highest impact on the accuracy of the
estimates with approximately minimum 3% increase in the overall squared estimation error in absence of
measurements from each of these grid-points individually. Moreover, even with one less measurement of
Yco, measurement of yco results in better estimation accuracy in comparison to the cases where
temperature or pressure are measured. Next we investigate if measurements from other variables at
different locations combined with measurements of yco can actually improve the accuracy of the
estimates while the total number of locations are still six. For this study, yco measurements from the 13"
and 17" and 21% grid-points, which have highest impact on the accuracy, are combined with a
measurements of temperature and yy,o. Table 47 shows SSE values when combinations of variables are
measured at different locations. Since the number of combinations of the type and locations is large, only
a few combinations are considered and shown in Table 47. Interestingly, combinations 2, 8 and 11 show
improvement over when only yco is measured. Moreover, in practice, if a measurement of yco can be
replaced by a temperature measurement that is significantly cheaper, a considerable reduction in cost can
be achieved. This means that not only the type of the measured variable contributes to the accuracy of the



state estimates, the location where each of these variables are measured also contributes to the accuracy of
the estimated values. However, if one were to consider all of the grid-points on the WGSR as candidate
locations and pick the location and type of the variables with fixed total number of variables, a large
number of combination need to be evaluated. This motivates further research on the development of
systematic ways to answer the question: what are the best types and locations of sensors on WGSR in
order to generate the most accurate estimates with limited budget?

Table 46. Sum of squared errors with one missing measurement

Removed measurement location

None 1t 5th gth 13t 17t 21
SSE value

31.889 32.119 32171 32.439 32.982 33.315 33.572

Table 47. SSE values with measurement combination

Iteration Locations SSE value
1 T4[21] yco,[13] yu,ol5] 32.160
2 Tg[5] YC02[9] YH20[5] 31.685
3 T4[13] yco,[5] yu,ol21] 32.087
4 T4l  ¥co,[13] yu,0l21] 31.966
5 T4[5] yco,[13] Yh,o[17] 31.906
6 Tg[9] YC02[17] }’Hzo[l] 32.035
7 T,[5.13] yco,[17] 31.964
8 T4[13] ¥co,[5.9] 31.493
9 Ty[21] yco,[1,17] 32.003
10 T,[17] yco,[5.21] 32.325
11 T4[5] Yco,[1,21] 31.432
12 Ty[17] ¥co,[9.21] 31.931

6.2.2 Optimal Distributed Sensor Placement

In this work, it is assumed that gas temperature, species mole fractions and pressure are available for
measurements at each grid points and the measured values for all type of measurements are available at
the same time. However, it may be difficult to make pressure and concentration measurements in practice
and availability of all measured values at the same time may not be practically feasible. But, this work can
be considered with the assumptions that the most easiest and rapid measurements are from temperature
and perform the sensor placement for the case that only temperature measurements can be made. Also, the
EKF can be tailored for the case when there are delayed measurements and so on.



6.2.2.1 Steady-state solution

Table 48 shows the parameters considered in the WGSR reactor. The system of equations are consist of
176 equations which are solved in MATLAB using 'fsolve' function; and the steady-state solution for the
parameters shown in Table 48 is obtained.

Table 48. Water gas shift reactor model parameters

Parameter Value Parameter Value
Inlet steam and gas pressure (Pa) 5,626,121  |n|et steam and gas temperature (K) 580
. Opening (%) 50
Diameter (mm 0.1 Syngas Valve
(mm) ¥ coefficient 6 x 10°
. Opening (%) 50
3
Density (g/cm?) 0.65 Steam Valve coefficient 2 x 10°
Thermal Syngas mole I—(|:200 82(15
Catalyst conductivity 35 fractions CO2 013
(W/im-K) H2 0.30
Porosity 0.38 Reactor Length (m) 1
tortuosity 5 Reactor diameter (m) 0.5
Specific :le)at (J/Kg- 880 Number of grid points 25

6.2.2.2 Actual data

The actual data used in the GA's objective function is obtained by simulating the WGSR over a certain
period of operation time and the actual data is stored at each sampling time. Noise simulation in the actual
data is performed in two steps: (i) Noise with known variance in differential state are added after the
states are integrated from k to k+1 using DAE solver (ii) after integration and obtaining noisy differential
states, noise in algebraic states are introduced by solving algebraic equations with presence of algebraic
noise with known variance. Random noises with known variance are added to the initial states and the
initial noisy data along with the stored data at each time instant are considered as the actual data. In our
work, process time is assumed as 200 seconds with a sampling time of 5 seconds. Therefore, a total of 41
set of data are obtained for use in GA. The measured values are obtained by adding the random noise with
known variance to the corresponding actual values.

6.2.2.3 Sensor placement results
Based on the model descriptions explained in the previous sections, five different models are formulated
and the performances of these models in the sensor placement framework are compared. The result of
these comparisons will be an appropriate model that can be used for study of the effect of different
parameters on the sensor placement results. The understudy models are as follows: (1) Model I: In this
model, both state and error propagations are performed using the detailed model shown in Eqgn. (181) (2)
Model I1: In this model, state propagation is performed by integrating the simplified model, but, the error
propagation is performed by firstly computing the numerical Jacobian matrix around the current state
estimates using the detailed model (3) Model I1I: This model has both state and error propagations
performed using the simplified model. In this model, the covariance of the noise in the simplified model
is assumed equal to the covariance of the noise in the detailed model (i.e. 10° for both T4 and H.O mole
fractions) and the exogenous equations are assumed to be noise free (I, = 0), consequently, no state
constraints) (4) Model 1V: This model is similar to Model 111 except that here the error covariance matrix



is tuned to account for the lost information due to the model simplification, i.e. absence of assuming
correlated noise in mole fractions. (5) Model V: In this model, as shown in Eqgn. (213), it is assumed that
the exogenous algebraic states are not noise free (I',.; # 0) and a corresponding error covariance matrix
is added in the error propagation step as in Egn. (217) to account for the noise in CO2, CO, H, mole
fractions and T Since it is theoretically difficult to account for the correlated noise while the equations
are decoupled, therefore, the error covariance matrices are tuned to account for such information loss.
Table 49 shows the parameters used in each model for state estimation.

Table 49. Process noise variance values for different models

Noise Term Model
| Il 11 \Y \Y;
y:1073 y:1073
w -3 -3
T,:10 T,:10
y:1073 y:1073 y:1073 y:1073 y:1073
v Ty:1073 Ty:1073 T;:1073 T,:1073 T,:1073
P:5x1073 P:5x1073 P:5x1073 P:5x1073 P:5x1073
y P:1073 pP:1073 P:1073 pP:1073 P:1073
° Vi,0:1073  yy 0:2.5%1073  yy :3.7x107*
2 T,:1073 T,;:9%x107* T,:8x107*
Yco: 10_33
r ycoz: 10~
yy,:1073
Topp:1073

Sensor placement is studied for a fixed number of sensors (50 number of sensors) by running GA for each
model separately. Figure 106 shows normalized fitness values for each model as the GA searches for the
optimal sensor placement. It should be noted that the fitness values are normalized by the fitness value
that is obtained if all available states are measured. In Figure 106, Model | has the highest fitness as the
sensor placements are obtained using the detail model that has no information loss. Model Il shows
interesting results in terms of fitness value compared to Model 111 and Model IV as the only difference is
that Model Il uses Jacobian matrix computed from the detailed model,. This shows that more accurate
Jacobian matrix for error propagation can compromise for loss of information due to use of less accurate
model for state propagation. Model V provides highest fitness although it is fully based on the simplified
model. This shows the importance of considering presence of noise in algebraic states while considering a
DAE system.
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Figure 106. Normalized fitness evolution for each model

The most important factor in considering the simplified model in sensor placement is to achieve reduction
in computation complexity of the model that can be studied by comparing the computation time for each
model. Although the fitness values of each model in Figure 106 shows the performance of each model for
state estimation, the final sensor placement results of each model must be checked against the detailed
model, therefore, the reduction in computation time and sensor location of each final results will be
compared. Table 50 shows the detailed analysis of the final solution of each model. In Table 50, Model |
is the benchmark as it represent the full use of detailed model and other models are compared against
Model | . The sensor placement from Model I is considered as the optimal solution of the SP and the SP
results of other models will be compared against this solution. The first 6 columns of Table 50 show the
number of sensors picked after 4500 number of generation of the GA optimization for each type of
variable out of 25 available locations on the reactor, however, values in the parenthesis represent number
of sensors that have similar location as the sensors picked in Model I. As can be seen in Table 50, none of
the models pick any pressure sensors as system pressure is very high that slight variation in the system
pressure due to process noise has very little effect on the accuracy of the state estimates compared with
the effect of other variables. The optimal solution, Model |, has only a temperature sensor picked to get
most accurate estimates; also, it shows that it is possible to achieve 84% of accuracy compared to the case
where all states are measured. This is only achieved if the sensors are placed at optimal locations.
However, the average time to achieve the optimal solution is relatively high when compared to the
simplified models as the average time can be reduced up to approximately one-sixth of the original time
when considering Model V. Number of temperature sensors picked by simplified models are relatively
high compared to Model 1, this is because that gas temperature is the only differential variable in the



simplified models and accurately estimating the only differential variable can affect the state estimates.
Model Il shows significant reduction in computation time while maintaining high fitness (0.83) when the
obtained solution is evaluated in a detailed model compared to Model 1. Although Model 111 and 1V show
significant computation time reduction, neglecting the process noise has resulted in significant
information loss, therefore, lower fitness in both GA and when evaluated in detail model. Among all
simplified models, Model V shows the lowest computation time and superiority over computation time
reduction. Moreover, Model V results in reasonably good estimates when compared to Model 1. This is
due to fact that Model V accounts for process noise in algebraic variables, thus, resulting in better
estimates compared to other models. Therefore, we can claim that Model V not only results in reasonably
good estimates, it reduces the computation time significantly.

Table 50. Sensor placement results and computation time for each model

Number of sensors (Number of sensors Average CPU time per

Model similar to Model I) Fitness generation (s)
co HO co W T, P U N
| 17 6 17 9 1 0 084 0.84 24.33
| 16(16) 6(5 17(17) 6(6) 5(1) 0() 0.81 0.83 8.27
i 19(15) 2(@©) 14(12) 6(3) 9( o0(@© 057 o0.77 5.14
IV. 20(15 2(©0) 15(12) 8(4) 5() 0() 063 0.78 4.89
\Y 19(17) 0(@) 18(16) 7(7) 6(0) O0() 0.79 0281 441

6.2.2.4 Study of Number of Sensors

Practically, it is more desirable to reduce the number of sensors while achieving reasonable state
estimates. Therefore, sensor placements are investigated for different number of sensors and the results
are tabulated. In Table 51, the sensor placement results of Model V is compared against the detailed
model to study the effect of number of sensors on the performance of Model V and amount of information
loss due to reducing the number of sensors. Increasing the number of sensors, the difference in
normalized fitness values of Model V and | seem to be reducing. However, this difference in accuracy can
be compensated by the computation burden reduction that is gained by simplified model. For all number
of sensors, Model V seems to rely more on the measurements of temperature, Tq, rather than the
measurements from H,O. In contrast, as the number of sensors increases, the detailed model requires
more number of H,O sensors, whereas the numbers of temperature sensors remain fairly the same. These
results are interesting in the sense that the simplified model picks more temperature sensors than the
detailed model while maintaining good performance. Choosing simplified model over detailed model not
only reduces the computation time for SP, in view of the sensor network cost, one would achieve less
expensive sensor network by using more temperature sensors that are orders of magnitude cheaper than
the concentration sensors.



Table 51. Sensor placement results comparison of Model I and Model V for different number of

Sensors

Number Normalized fitness Sensor placement{ 1_V10_del ! }
of sensors ModelV (similar to ModelI)
Model | Model V CcO H20 CO: H: Ty P

10 0.60 0.55 6 ?6) 0 (()0) 0 (()0) 0 (()0) 4 %0) 0 (()0)

20 0.69 0.64 101(:;0) 0 %0) 4 %1) 1 %1) 5 %0) 0 (()0)

30 0.74 0.72 15184) 0 %0) 9 ?6) 2 ?1) 4 %1) 0 (()0)

40 0.79 0.77 161(514) 0 ?0) 141(512) 5 E(35) 5 %1) 0 (()0)

50 0.84 0.81 191(717) 0 E(30) 181(716) 7 S(37) 6 %0) 0 (()0)

6.2.2.5 Study of Effect of Process Noise Covariance

Choosing appropriate process noise covariance matrices is important for the accuracy of the state
estimates; however, it is not clear how sensor placement is affected and how much of information is lost
when process noise covariance is not chosen properly. Table 52 shows the sensor placement comparison
for Model I and V for different process noise covariance. In Table 52, Model V-c has the same parameters
as Model V in Table 50. Underestimating and overestimating the process noise covariance, as in Model V-
a and V-e, significantly reduces the performance of the obtained solution. This can be seen as the
normalized fitness of the solution of these models in detail modeled have lowest normalized fitness
compared to the other models. Also, SP results of these models show obvious deviation from the SP
results of detailed model to such a great extent that pushes the SP algorithm to pick more of temperature

Sensors.

Table 52. Effect of process noise covariance on the sensor placement results

Process noise Normalized  Number of sensors (Number of sensors similar to
Model - .
covariance fitness Model 1)
CO H.O CO: Ho Ty P
I Q=10° 0.84 17 6 17 9 1 0
Q2o =10
V-a Qrg =10% 0.66 16 (10) 5(0) 6 (5) 5@1) 18(1) 0(0)

Qalg = 10_8



QHzo = (3.7X10'4)2

V-b Qrg = (8 x 1072 0.74 17(13) 0(0) 10 7(3) 16(1) 0(0)

Qag =103
QHzo = (3.7X10'4)2

V-c Qrg = (8 x 102 0.81 19(17) 0() 18(16) 7(7) 6(0) 0 (0)
Qag =107
Q2o =10°

V-d Qry =10° 0.80 17(16) 1(0) 18(16) 9(6) 5(0) 0 (0)
Qag =107
Q2o =10*

V-e Qry =10* 0.70 9(9) 512) 1009 9(B) 150 2(0)
Qag = 10*

6.2.2.6  Study of Effect of initial error covariance

In this part, we examine the effect of initial error covariance of Model V on the SP results and compare it
with the SP results of Model I as shown in Table 53. It should be noted that the initial error covariance is
known through actual data preparation. In all models, Model V-a though ¢, no H,O sensors are picked
whereas more number of temperature (Tg) sensors are picked when comparing with the detailed model.
Model-Va assumes higher initial error covariance. However, for other sensors except for pressure sensor,
numbers of the sensors as well as the number of sensors similar to the detailed model are relatively high.
In all three models, the normalized fitness of the solution remains reasonably high and confirms their
reliability for not only state estimation, but also for SP. It is worth mentioning once again that in
calculating the fitness of these models, the first set of state estimates are ignored and the corresponding
fitness and its normalizing fitness are calculated without considering the quality of the initial estimates. It
can be seen from Table 53 that the choice of initial error covariance has a slight effect on the SP results.

Table 53. Effect of initial error covariance on the sensor placement results

Initial error . 1i-eq Number of sensors (Number of sensors similar to Model

Model covariance fi )
. itness
matrix

co H.0 CO; Ha T, P

| Py =10 0.84 17 6 17 9 1 0
V-a Po = 10" 0.80 18(17) 0() 17(16) 7(6) 8@ 0(0
V-b Py =10 0.81 19(17) 0() 18(16) 7(7) 6() 0(0
V-c Po =108 0.81 19(17) 0 17(16) 7(06) 7(1) 0(0

6.2.3 Conclusion

Previous EKF frameworks for DAE systems published in the literatures assume that algebraic equations
are exact. However, in practice, algebraic equations could be describing a physical state and derived using
modeling assumptions which introduces uncertainties in these process equations. Therefore, stochastic
algebraic equations cannot be handled in the previous EKF formulations due to differentiation of white
noise, which is not well-defined. Moreover, extra information about the process may be present in the



form of implicit equality constraints, such as mole balance in a reactor, which cannot be handled by
previous EKF frameworks. A modification to the EKF approach that addresses these difficulties by
avoiding the differentiation of the algebraic equations is proposed. The error covariance of algebraic
variables are propagated as linear and non-linear combinations of error covariance of differential
variables. The performance of the proposed filter is demonstrated through two examples. In the simple
example, it is shown that estimates are improved over the measurements as RMSE of estimated states are
considerably reduced in comparison to the RMSE of the measured data. In the WGSR example, the filter
also shows considerably higher estimation accuracy of the states over the measurements when all states
are measured. In both examples, the proposed filter shows superiority over the previous filtering
framework by returning estimates with lower RMSE and closer to the actual values. Application of the
proposed filter to the WGSR revealed that the type and location of the sensors used on the WGSR have
important role in the accuracy of the state estimates.

In this section, a framework for sensor placement of water gas shift reactor is described. The proposed
framework combines the state estimation technique with an evolutionary algorithm to obtain the optimal
sensor locations (and types) that return most accurate estimates of the process states for a fixed number of
sensors. The state estimation technique used in this work was developed for models that are described by
the differential and algebraic equations (DAE). The already developed extended Kalman filter (EKF) for
DAE is suitable for implementation on the reactor. A 1-D detailed model of the reactor is discretized
along the reactor axis to convert partial differential equations to ordinary differential equations (ODE).
This results in solving the complex mathematical equation of the reactor model at each discretization
point while the discretization points are available locations for measurement for EKF. However, the
number of discretization points and number of equations that must be solved at each point result in high
computation time and gives rise to a need for simpler models. A common way to reduce the
computational complexity of detailed models is to linearize the model around the operating point.
However, since a main future application of this work is to come up with sensor placements for fault
detection and identification, linearized models are ruled out due to severe drift of these model from
normal operating condition as a consequence of process faults; and also linearized form of highly non-
linear models carry much less information of the process and causes difficulties in tracking the crucial
process variables. A simplified model through scaling analysis developed in previous sections that seem
promising in effective reduction of complexity of the system while maintaining reasonable accuracy is
used. The EKF for DAE is briefly re-derived for the simplified reactor model. As a result, different state
estimation formulation of the system can be derived. A genetic algorithm (GA) is used to generate
measurement models for use in the state estimations which represent the sensor placements. The GA
searches over possible measurement models to obtain an optimal sensor placement that result in most
accurate state estimates. The GA is performed for different EKF formulations and the results are
compared. A significant reduction in computation time is observed by using the simplified model.
However, the accuracy of each model seems not only affecting the quality of state estimates, but, different
sensor placements are obtained by these model. Model V seems superior to the other model as it has
lowest computation time, relatively high state estimate accuracy and closest SP results to the detailed
model.

As a brief summary, the goal in this section was to develop a novel framework for sensor placement and
address issues of using comprehensive models that gives rise to computational complexities. Our analysis
has shown that using an appropriate simplified model can be an advantage in terms of reducing
computational complexity while achieving reasonable sensor placements that can result in the
performance that is comparable to the detailed model. This analysis has shown that using simplified
models in both the state and error propagation can further reduce the computational load; and when
appropriately tuned, it can replace the complex detailed model as the study of process noise covariance
suggests. Study of the initial error covariance has shown insignificant change of the placement and
performance of the solution.



However, a future application of the proposed framework is to obtain optimal sensor placements that can
help in detection and identification of the faults in a system. Take catalyst deactivation in a reactor due to
thermal cycling, ash decomposition and etc. as an example. One is interested in locating such abnormality
in a lengthy reactor by optimally placing sensors on the reactor that not only identifies that somewhere
catalyst is being/has deactivated, but, also interested in locating such abnormality and prepare for
preventive/corrective action. From an economical viewpoint, since reactors’ catalyst are usually removed
and replaced by fresh catalyst after certain time, locating the area with deactivated catalyst reduces the
catalyst replacement cost. From a process viewpoint, an optimal sensor placement can help in better
monitoring of the process and assess the estimation of faults that can degrade the process or drive the
system to hazardous conditions. Therefore, our future work will focus on designing a sensor network that
can help in estimating possible faults that can harm the process operation and/or production.

6.3  2-tier Sensor Placement for Gasification Island

6.3.1 Fault Simulation
Faults are simulated in the combined system of the sour water gas shift reactor (SWGSR) and Selexol.
These faults selected are those which occur in a short period of time. This includes the undesired
accumulation of fly ash onto the catalyst of SWGSR that can reduce the porosity of the catalyst, or
change its surface area (SA). Undesired materials can also poison the catalyst resulting in reduction in the
catalyst activity.

6.3.1.1 Single Faults
The faults that have been simulated are as follows:

10% reduction in the surface area of catalyst in the first reactor of the SGSR within 22 minutes
10% reduction in the porosity of catalyst in the first reactor of the SGSR within 22 minutes
5% reduction in the surface area in each of the reactors of the SGSR within 22 minutes

5% reduction in the porosity of each of the reactors of the SGSR within 22 minutes

10% reduction in the catalyst activity in the first reactor of the SGSR within 49 minutes.

5% reduction in the catalyst activity in each of the reactors of the SGSR within 49 minutes.

IZEEN N -

Due to the size of the simulation and the number of variables being recorded, ASPEN Plus Dynamics
runs out of memory if several variables are recorded. Variable selection was done such that the number of
variables recorded would be reduced. Following are the responses at a particular location, viz. end of the
SWGSR. The responses of the CO and COS mole fractions, and the temperature at the outlet of the
SWGSR are shown below. The legends for the plots are as follows:

Representation Fault #

Fault 1
Fault 2
Fault 3
_____ Fault 4
————— Fault 5
————— Fault 6
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Figure 108. Change in COS mole fraction at the exit of the SWGSR due to faults.
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Figure 109. Change in outlet temperature of the SWGSR due to faults.

In the figures presented above, the response to Fault 2 is found to be the highest. The decrease in porosity
by 10% in the first reactor results in reduced extent of reaction for the shift reaction as well as the COS
hydrolysis reaction. The fault is implemented at 5 minutes and is ramped for a period of 22 minutes.
When the fault stabilizes, the profile can be seen to drop and finally settle at a lower value. For Fault 2,
this temperature could be a candidate variable in identifying and resolving the fault due to the amplitude
of its initial response. Faults 5 and 6 are implemented for a period of 49 minutes. The CO and COS
profiles for these faults differ slightly, however, the temperature profile appears to follow the similar
trajectory initially.

The responses of a few variables are shown above. It should be noted that the variables that respond best
will be selected by the sensor placement algorithm and the variables presented in the report are in order to
show the extent and effect of the fault on a few key variables.

6.3.1.2 Multiple Severity Faults
Faults in the integrated system consisting of the sour water gas shift reactor (SWGSR) and the acid gas
removal unit or SELEXOL unit were simulated. The objective of simulating multiple severities of each
fault is to understand until what level of severity can the fault be observed and resolved. This would add a
new dimension to the problem of sensor placement to see how the location, number and type of sensors
would change given this information.

In the SELEXOL side of the integrated model, faults at 4 locations in the acid gas removal plant have
been simulated. Once again, 3 fault levels were chosen at these locations. These locations and their fault
severities are shown below in Table 54.



Table 54. Faults simulated on the SELEXOL side of the integrated model

Fault Description
Fi3 Reduction in the area of the bottom (15™")tray of the CO, absorber x 3
Fas Reduction in the area of the bottom(26™) tray of the H,S absorber x 3
Fr-9 Reduction in the area of the bottom(5™) tray of the H,S concentrator x 3
F10-12 Reduction in the area of the bottom (6" tray of the SELEXOL stripper x 3
Fi31s5 Leakage fault at start of heat exchanger H2SSTRBT x 3

Fi6-18 Leakage fault at end of heat exchanger H2SSTRBT x 3

Fig21 Fouling fault simulated in heat exchanger H2SSTRBT x 3

F22-24 Fouling fault simulated in heat exchanger PRCRE x 3

Faults were simulated previously in the SELEXOL model as part of the system level fault simulation and
sensor placement studies. However, an approach was taken to improve the criteria for the selection of the
location at which faults were to be simulated. The explanation for choosing this is shown below.

CO, Absorber fault: simulated by reducing the 15" tray area as syngas enters from bottom.

H,S absorber fault: simulated by reducing the 26" tray area. This tray is in the vicinity of stream
coning from SWGSR, stream rich with H,S coming from SELST and gas turbine outlet
containing CO; and Hz. Reasons could be Sulfur deposition or ash/soot carried along SWGSR.

H,S concentrator fault: simulated by reducing the 5" tray area. N, stream enters at this tray.
Could have particulate matter entrained in it.

SELEXOL stripper fault: simulated by reducing the 6™ tray area. This is the feed tray for stream
coming from H.S concentrator. Either elemental sulfur or N particulate matter entering could get
deposited here.

The heat exchanger H2SSTRBT is an important heat exchanger that heats the stream coming
from the bottom of the H2S absorber and sends it to the H2S concentrator using the lean solvent
stream.

The heat exchanger PRCRE is a heat exchanger that is used to cool the solvent stream to the
CO2 absorber.

A more detailed approach to simulate a fault at different locations within the same equipment is made
while simulating Fault Fiz.1s and Fis.1s. Both faults are simulated in the HE H2SSTRBT, however the
configurations are different. Fault Fi3.15 is sSimulated in the following manners shown in Figure 110.
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Fault F16.18 is simulated as shown in Figure 111.
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Figure 111. HE configuration 2: leak simulated as mixing of outlet high pressure stream into inlet
low pressure stream.

The purpose of simulating the leak fault in two separate ways is to assess whether the sensor network
could give information of the location of the leakage within the heat exchanger. In fault Fy3.15, the leak has
taken place closer to the entrance of the tubes while in fault Fi.15 it is simulated as if the leak has taken
place towards the end of the tubes. This would bring a key information into the sensor placement study if
it can detect the location within a single equipment while considering plant wide faults. Fault Fx-4 is to
see whether a sensor network can be found that can distinguish between a leakage fault and a fouling fault
within the same equipment.



On the SWGSR side of the integrated model a total of 17 faults were simulated i.e. 3 instances of 6 faults
(except for fault Fs1-32 due to stability problems). These are shown below in Table 55.

Table 55. Faults simulated on the SWGSR side of the integrated model

Fault # Description Fault type Duration Severity
F2s.27 Porosity reduction (1% reactor) Ramp 25min 2%, 5%, 10%
F2s-30 Porosity reduction (both reactors) Ramp 25min 2%, 5%, 10%
Fsi1-32 Activity reduction (1% reactor) Ramp 25min 2%, 5%
Fs3-35 Activity reduction (both reactors) Ramp 25min 2%, 5%, 10%
F36-3s Surface area reduction (1% reactor) Ramp 25min 2%, 5%, 10%
Fse.1  Surface area reduction (both reactors) Ramp 25min 2%, 5%, 10%

6.3.2 Results

6.3.2.1 System-Level: Gasification Island

The system-level sensor placement algorithms are implemented on the gasification island and the results
are presented in Table 56. From the case studies in previous sections we have learnt that the optimal
results are obtained from the combination algorithm (FES & MR). Here, since the magnitude of the faults
considered in the gasification island is low (maximum 10% change as a fault), therefore, we can predict
that low level MR threshold should be chosen. This can be verified by the results in Table 56. The FES &
MR algorithm with low MR threshold level has the lowest number of unresolvable faults and sensor
network cost. The results of SDG and FES individual algorithm are shown for the sake of comparison. In
order to save space, the sensors and unresolved faults of different algorithms are avoided and results are
only shown for FES & MR with low MR threshold level in Table 57. Note that almost all of the sensors
picked for resolution are temperature sensors except for a concentration sensor on the first stage sour
WGS reactor. Since the temperature sensors are the least expensive sensors in this study, system-level
fault resolution has been achieved with a significantly cost effective sensor network. Out of 703 pair of
fault sets, only 25, which are shown in Table 57, cannot be resolved. This implies that more than 96% of
the faults considered in the system can be resolved by a cost effective network of sensors.

Table 56. System-level sensor placement results of gasification island

MR

Algorithm(s) threshold Number of sensors Sensor Number of unresolvable fault sets
level network cost
SDG 112 21.8 26
FES 13 30.9 25
Low 11 11.7 25
MR Medium 11 21.7 26

High 12 21.8 26



Low 11 10.9 25
FES & MR Medium 13 30.9 25
High 13 30.9 25

Table 57. List of sensors and unresolved fault sets for FES & MR algorithm with low MR threshold
level

Unresolvable fault sets (where [F;,F;] is shown as

Sensors Ii.il)
STREAMS("2IPSTMDR").T [4,5] [4,6] [5,6] [7.8] [7.9] [7,21] [7,22] [7,23]
STREAMS("2RGCOOL5").T [7,24] [8,9] [8,21] [8,22] [8,23] [8,24] [9,21]

STREAMS("TO-AGR").T [9,22] [9,23] [9,24] [19,20] [21,22] [21,23]
STREAMS("PR2H2SCT").T [21,24] [22,23] [22,24] [23,24]

STREAMS("H2SCTBT1").T
STREAMS("LENSL1").T
STREAMS("PRCRPMD2").T
BLOCKS("CO2ABS").Stage(9).T
yco 19 R1
Tg 16 R1

6.3.2.2 Component-Level: First-Stage Sour Water Gas Shift Reactor

The distributed sensor placement is performed on the first stage sour WGS reactor. The actual data for the
optimization problem is obtained by simulating the faults in the integrated system for each fault
individually. The noise in the data is assumed as additive noise, where white Gaussian noise with known
mean and variance is added to each state. The model in the state estimation is chosen as the simplified
model where noise in the differential, algebraic and exogenous algebraic states are tuned due to the use of
simplified model as explained in previous sections. The faults considered in the component-level are Fos,
Fz6 and F»7 for catalyst activity reduction; and Fs1 and Fs; for catalyst porosity reduction. Each fault is
assumed as a state and is augmented with other states in the system. Since the faults are modeled as a
reduction in the catalyst activity, each fault state is assumed to be associated with a process noise, which
is also tuned for in the EKF. Table 58 shows the reactor and EKF parameters. Figure 112 shows the
progress of the GA for different faults. As seen in Figure 112, with only 30 sensors optimally placed on
the reactor, more than 60% accuracy of measuring all the states (201 sensors on CO, H,0, CO,, H,, COS
and H.S mole fractions, temperature and pressure states) has been achieved. Table 59 shows the optimal
solution, sensor type and location, for each fault. The numbers in Table 59 show the grid-point number
out of 25 total available grid-points of the corresponding sensor type at which measurement must be
made. The grid-point numbers represent the location of the sensors on the reactor and the variable names
represent the sensor type in Table 59. Using the optimal sensor placements, each corresponding fault state
is estimated and plotted in Figure 113. Figure 113 shows that the fault severities are estimated with
reasonable accuracy.
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Table 58. Reactor and state estimation parameters
Parameter Value
Reactor parameters
Length 7m
Diameter 3m
Inlet temperature 4875 K
Inlet pressure 6093 kPa
Inlet Composition
CO mole fraction 0.25711
H20 mole fraction 0.37753
CO2 mole fraction 0.11025
H2 mole fraction 0.24960
COS mole fraction 0.00014
H2S mole fraction 0.00534
EKF parameters
Number of grids 25
Sampling time 545
Mole fraction process noise covariance
CO, Hzo, COz, H> 10®
COS, H:S 25x 101
Mole fraction measurement noise covariance
CO, Hzo, COz, H> 10®
COS, H:S 1012
Temperature process noise covariance 2.5x 107



Temperature measurement noise covariance 10
Pressure process noise covariance 10

Pressure measurement noise covariance
Fault state process noise covariance

Initial error covariance

COS, H2S
Other states

2.5 %107
2.5x%x10°

10—12
10°

Table 59. Optimal location and type of sensors for different faults

Sensor Sensor Location
Type
Fos Fos For Fs1 F3»
Ty 21,22,24 17,21 15,17 10,21 13,14,24
P
Pin
co 13,16,21, 11,14,21, 13,20,21,22,2 ;gg;g;g 19,20,21,
22,23,24,25 22,23,24,25 3,24,25 ’24’ 25’ ' 22,23,24,25
19,20,21,22,
COS 25 23,24,25 22,23,24,25 22,24,25 23.24.25
H.O 13 14 13 12
2,7,8,9, f16lgi?3 5,14,15,17, 3,5,14,17, 3,13,14,
CO, 10,11,12,14, 15,16,22, 19,20,21, 18,22,23, 16,21,23,24,
15,23,24,25 23 24,25 22,23,24,25 24,25 25
10,11,12, 14,15,17, 14,15,16, 13,14,15,16,
Ho 14,15,16 12,13,15,16 19,21 17,18 17

H>S
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6.3.2.3 Conclusion
The system-level sensor placement resulted in a set of sensors that help in fault resolution with a great
extent although some fault sets remain unresolved. For each fault in the component-level of sour WGS
reactor, type and location of set of sensors with fixed quantities are obtained by solving the optimization
problem where each set can be used to estimate the severity of the corresponding fault with reasonable
accuracy.



A few sensors obtained by system-level sensor placement are placed on the sour WGS reactor. These
sensors along with all the sensors obtained by distributed sensor placement are combined to make up the
total sensors for the component monitoring and fault severity estimation. For each fault, 30 sensors are
chosen to be placed on the reactor. While some sensor type and locations are similar for each fault, there
are 66 unique sensors when the sensor sets are combined. These 66 sensors are combined with the two
sensors placed on the reactor in system-level sensor placement. Also, since usually the states at the outlet
of the reactor are measured for control and product specification purposes, 8 more sensors are placed at
the reactor outlet to measure the mole fractions, temperature and pressure. This results in a set of 72
unique sensors. Therefore, in the integrated sensor placement which is the combination of the sensors
obtained in the system- and component-level sensor placement, a network of 72 sensors is used for state
monitoring and fault severity estimation.

Figure 114 shows the fault severity estimation for each fault using the final sensor network. Table 60
compares the normalized fitness values using the optimal sensor placements and the final integrated
sensor network. Although more number of sensors can help in improved estimation of the states, the
improvement in quality of the fault severity estimation is not significant. The slight improvement can
hardly be seen by comparing Figure 114 with Figure 113. This is due to the reason that the improvement
in the normalized fitness values represents slight improvement in the estimation quality of each state
rather than significant improvement in the fault state.

Figure 115-119 shows the actual, measured and estimated states at the outlet of the reactor for mole
fractions, temperature and pressure in presence of different faults using the final sensor network. Figure
115-119 shows that using the final network, the filter can estimate the states with good accuracy. States at
different locations can be estimated using the final sensor network, thus, the reactor can be monitored
efficiently using the sensor network.
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Table 60. Comparison of normalized fitness values for GA solution and final sensor network

Fault GA solution normalized fitness Final sensor network normalized fitness
Fos 0.6168 0.7561
Fas 0.6391 0.7716
Fo7 0.6491 0.7751
Fa1 0.6261 0.7800

Fs2 0.6282 0.7749
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7 Summary

A 2-tier sensor placement framework has been developed for condition monitoring and fault diagnosis in
fossil energy systems. The framework consists of system- and component-level sensor placement
approaches. The system-level sensor placement is based on a model-based qualitative analysis combined
with the numerical solution. The system-level sensor placement is enhanced by introducing the magnitude
ratio and fault evolution sequence algorithms. The network of the sensors obtained in the system-level
help in observation and identification of the faults in the system with an optimum cost. The distributed
sensor-placement is based on solving an optimization problem that minimizes the errors in estimated
states of an extended Kalman filter and result in optimal location and type of the sensors. The
optimization problem is solved using a genetic algorithm approach. The resulting sensors not only help in
better estimation of the states, but the fault severities can also be estimated using the filter.

Each of the system- and component-level algorithms are mathematically derived and implemented on
different case studies. The integrated algorithm is then implemented on the gasification island of the
IGCC plant. The sensors required for fault detection and identification in gasification island are obtained
by the system-level sensor placement; and the sensors required for monitoring and fault severity
estimation of the gasification island are obtained by distributed sensor placement. The sensors obtained in
system-level that are also present in the component level are then combined with sensors obtained in the
component-level for monitoring and state estimation.

A novel dynamic model for a downward firing, slurry fed, oxygen blown, entrained flow, GEE-Texaco
type gasifier has been developed in this report. Models for slag formation, detachment and deposition
onto the walls of the gasifier have been developed and integrated into the gasifier model to provide a
better estimate of the slag flow layer. A new hybrid shrinking core shrinking particle characterization is
used, to represent the homogeneous reactions and slag detachment processes in a physically more
accurate way. The dynamic simulation of the slagging gasifier model is able to capture the effect of the
changing operation conditions on important variables in the gasifier including the slag layer thickness.
The slag flow layer thickness is an important variable in the gasifier and a sudden increase in the layer
could result in the choking of the gasifier. The slag layer is also known to interact with the refractory
layer, resulting in accelerated degradation of the refractory wall. If the gasifier operating temperature is
low, the slag layer could solidify and increase in thickness. Operating the gasifier at higher temperature
on the other hand, could prevent slag solidification and increase the conversion of the coal, but would
negatively affect the refractory by increasing the degradation rate. The current model is able to capture
the effect of this trade-off quantitatively and provide a realistic picture of the gasifier operation.

Slag penetrates into the refractory and results in swelling of the refractory brick. If the slag is able to
penetrate deep into the refractory brick, spalling can take place, which could accelerate the refractory
degradation process and trigger a shutdown of the gasifier. A refractory model is also developed that
captures the effect of refractory degradation due to compressive spalling as a result of slag penetration.
The model is able to identify the location where the gasifier wall is most susceptible to slag penetration
and predict the time for the first spall to take place at that location.

8 Recommendations and research output

The sensor placement developed in this report can easily be used for different processes. This requires
availability of the mathematical model of the process and an appropriate state estimation algorithm.
When the process model is available, fault simulations and system-level sensor placement can be
performed. A major drawback would be the implementation of system-level sensor placement on very
large processes. For large processes, future research on network decomposition can help in reducing the
complexity of the problem and make the system-level sensor placement easier to be implemented.
Through the use of process model and a state estimation technique, the component-level sensor placement



is performed. The main drawback of the component-level sensor placement is the complexity of detailed
process models that increases the computations in state estimation and, thus, the optimization problem. In
this work, we have shown that this issue can be tackled through the use of simplified models. Future
research work in this area could be on the exploration of order reduction methods for process models.
This has been initiated in this project through the method of characteristics and ISAT for implementation
on the sour WGS reactor. One of the efficient uses of sensor placement framework is monitoring and fault
detection of the gasification process. An important step in implementing the sensor placement algorithm
on the gasification process and on the gasifier is the development of a valid mathematical model.

The slagging gasifier model and the refractory degradation model can be used to simulate changes in
operating conditions of the gasifier and observe the effect of the fault severity and the condition of the
refractory. The coupling between the models is one way, where certain variables of interest for a case
scenario from the gasifier model are recorded and used in the refractory degradation model. The time
constants in both the models are very different. While the dynamics of the gasifier manifests in seconds or
minutes, the slag penetration and refractory degradation mechanisms take place over the period of months
or years. Running both models together, for a simulation time of months, is impractical for the purposes
of sensor placement using the approach similar to the sour water gas shift reactor. Therefore, in order to
attempt sensor placement studies in the model, the gasifier model needs to be simplified and integrated
with the refractory degradation model.

One method in order to reduce the simulation time for the gasifier model would be to consider a
linearized model of the gasifier around the operating conditions of interest and integrate it with the
refractory degradation model. The output variables in the linear model could be selected as the location at
which sensors can be placed on the wall of the gasifier. Candidate locations for sensor placement will not
only be limited to various locations in the axial direction, but should also include the depth into the
refractory at which the sensor needs to be embedded to detect a fault. To consider the entire length of the
gasifier as potential sensor location sites may result in a large number of outputs in the linear model.
Therefore, it may be beneficial to identify, through other studies, locations that may respond well to
change in operating conditions and narrow the range of output variables.

In the present report, the mechanism of compressive spalling due to slag penetration is selected as the
only method for refractory degradation. Several other mechanisms are known to exist that may cause, or
accelerate the process of degradation in the refractory. Tensile spalling is said to occur when chrome
(Cr®") from the high chrome refractory migrates out of the refractory matrix. This leads to the formation
of cracks in the refractory brick and a decrease in the strength of the refractory, eventually leading to
spalling. Refractory degradation can take place in the absence of slag as well through mechanisms such as
creep, thermal fatigue and thermal shock. These mechanisms are known to take place at high temperature
and high stress conditions. Creep is the slow deformation of a material at elevated conditions which result
in the loss of material strength, eventually weakening the material. Thermal fatigue is said to occur due to
the cyclic variation in temperature. The properties of the material begin to deteriorate over the course of
several cycles and this change is irreversible. The level of degradation due to thermal fatigue depends on
the number of cycles, the temperature, its magnitude of the fluctuation of temperature and the frequency.
When there is a rapid change in temperature, the sudden increase in the temperature gradient in the
refractory brick could lead to a large build-up of stress. This could cause damage due to thermal shock.
The formation of cracks, and in extreme cases, spalls are known to occur due to rapid changes in
operational conditions. The presence of slag could accelerate these degradation mechanisms and result in
faster refractory degradation.

The current refractory degradation model can be expanded to account for other degradation mechanisms.
Another recommendation would be to consider the compound effect of these mechanisms so as to capture
how the interdependency of these mechanisms could accelerate or control the total time to failure. This
could be done, for example, by calculating effect of each of the mechanisms on the total stress, and
keeping track of when the stress exceeds the maximum allowable stress. Such a model will be able to



better reflect the level of degradation in the refractory when two or more of the degradation processes
occur simultaneously. Furthermore, it is likely that some degradation mechanisms may be dominant in
certain sections of the gasifier, while others not. This framework for refractory degradation using stress
modeling would be helpful to identify the key degradation mechanisms in various sections of the gasifier,
and thus help in the selection of the appropriate type of sensors for fault detection.
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