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Abstract: 

Design and operation of energy producing, near “zero-emission” coal plants has become a national 

imperative.  This report on model-based sensor placement describes a transformative two-tier approach to 

identify the optimum placement, number, and type of sensors for condition monitoring and fault diagnosis 

in fossil energy system operations. The algorithms are tested on a high fidelity model of the integrated 

gasification combined cycle (IGCC) plant. For a condition monitoring network, whether equipment 

should be considered at a unit level or a systems level depends upon the criticality of the process 

equipment, its likeliness to fail, and the level of resolution desired for any specific failure. Because of the 

presence of a high fidelity model at the unit level, a sensor network can be designed to monitor the spatial 

profile of the states and estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour 

water gas shift (WGS) reactor plays an important role. In view of this, condition monitoring of the sour 

WGS reactor is considered at the unit level, while a detailed plant-wide model of gasification island, 

including sour WGS reactor and the Selexol process, is considered for fault diagnosis at the system-level. 

Finally, the developed algorithms unify the two levels and identifies an optimal sensor network that 

maximizes the effectiveness of the overall system-level fault diagnosis and component-level condition 

monitoring. This work could have a major impact on the design and operation of future fossil energy 

plants, particularly at the grassroots level where the sensor network is yet to be identified. In addition, the 

same algorithms developed in this report can be further enhanced to be used in retrofits, where the 

objectives could be upgrade (addition of more sensors) and relocation of existing sensors. 
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1 Introduction 

1.1 Purpose 

The goal of this project is to establish a comprehensive methodology to determine the type, location, and 

number of sensors required for component condition monitoring and fault diagnosis in fossil energy 

systems. Through a transformative two-tier framework, the project seeks to develop a model-based sensor 

placement methodology that addresses: (i) Sensor placement for fault diagnosis based on tractable models 

that are developed from the system level dynamic model, (ii) Identification of precise locations for 

component condition monitoring based on distributed component level models.  

The theoretical and computational efforts undertaken as a part of this project are delivered as a framework 

that can be used in combination with simulations of fossil energy systems. The framework developed in 

this project can be enhanced to include any other simulation system through appropriate use of first-

principles modeling and state estimation techniques. 

1.2 Relevance and Impacts 

It is well known that considerable coal resources exist in the United States. However, coal utilization is 

accompanied by the associated pollution related concerns.  In response to this, design and operation of 

energy producing, near “zero-emission” coal plants has become a national imperative.  This report on 

model-based sensor placement will provide a formal approach to identify the optimum placement, 

number, and type of sensors that will be sufficient for condition monitoring and fault diagnosis in fossil 

energy system operations. This work could have a major impact on the design and operation of future 

fossil energy plants, particularly at the grassroots level where the sensor network is yet to be identified. In 

addition, the same algorithms developed in this report can be further enhanced to be used in retrofits, 

where the objectives could be upgrade (addition of more sensors) and relocation of existing sensors. 

1.3 Task Completion 

Table I shows the list of tasks proposed in this project and the corresponding section in this report where 

the results for the identified tasks are reported. 

 

Table I. Completed tasks and the corresponding sections for the completion of the project 

Task Description Section 

2 

2.1 
Development of the distributed sensor placement algorithm 

using UIF and genetic search 

2.1.1 

 3 

 5 

 6.2 

2.2 

Development of the algorithm for sensor placement for 

system-level fault diagnosis with enhancements to the 

qualitative math model. Tested on SELEXOL plant 

4.1-4.3 

 6.1.1-6.1.4 

2.3 

Identification of the faults in the gasification island and in 

the gasifier, further development of the water gas shift 

reactor model, and model enhancement to incorporate 

simulation models for faults and disturbances in the WGSR 

2.1.2 

2.2 

6.2.2 

 6.3.1 

   

3 
3.1 

Implementation of the condition monitoring sensor 

placement algorithm on the WGS model. System-level 

faults will not be considered here but will be considered 

once the two-tier sensor placement is complete 

6.2.1 

3.2 Further development of plant-wide sensor placement 4.4 



algorithms to include the reliability approach and 

development of Integer Linear Programming 

3.3 
Identification of faults and model enhancement to 

incorporate faults in the combined cycle island 
6.1.5 

   

4 

4.1 
Identification of sensor placement for plant-wide fault 

diagnosis using the plant-wide dynamic simulation model 
6.3.2.1 

4.2 
Validation of the identified sensor placement for condition 

monitoring in WGSR and make necessary enhancements 
6.2.1 

4.3 

Thorough testing of the already identified distributed sensor 

placement for condition monitoring using the nonlinear 

WGSR model. Only the faults in the WGSR will be 

considered. The impact of the system-level faults will be 

evaluated after the integrated two-tier sensor placement is 

completed. 

6.3.2.1 

   

5 
5.1 

Synthesis of the optimal sensor network by considering the 

two-tier design algorithm for plant-level fault diagnosis and 

unit-level condition monitoring and validation of the 

algorithm 

6.3 

5.2 Summary of the project 7 

 

1.4 Approach 

1.4.1 Scientific and Technical Review 

This report includes the development of algorithms that can determine the optimized sensor locations and 

types for robust condition monitoring and fault diagnosis in a fossil energy-derived power generation 

system. With these objectives in mind, in this report, we will develop algorithms for maximizing the 

effectiveness of the sensor network for system-level fault diagnosis and component-level condition 

monitoring. The root cause for productivity losses and shut-downs are called “faults” in this report. The 

algorithms are developed for and tested on a high fidelity model of the integrated gasification combined 

cycle (IGCC) plant. For a condition monitoring network, whether equipment should be considered at a 

unit level or a systems level depends upon the criticality of the process equipment, its likeliness to fail, 

and the level of resolution desired for any specific failure. Because of the presence of a higher fidelity 

model at the unit level, a sensor network can be designed to monitor the spatial profile of the states and 

estimate fault severity levels. In an IGCC plant, besides the gasifier, the sour water gas shift (WGS) 

reactor plays an important role. Yet, it is one of the equipment with the high likelihood to failure because 

of the harsh conditions that it is subjected to. In view of this, we have considered condition monitoring of 

the sour WGS reactor at the unit level, while a detailed plant-wide model of gasification island (including 

sour WGS reactor and the Selexol process) is considered for fault diagnosis at the system-level. Finally, 

the developed algorithms unify the two levels and identify an optimal sensor network that maximizes the 

effectiveness of the overall system-level fault diagnosis and component-level condition monitoring. 

Measurement and model uncertainties are naturally handled in the solution approach while sensor failure 

probabilities and failure occurrence probabilities can be easily included, if required.  

While there is considerable amount of literature on sensor placement, computationally efficient sensor 

placement algorithms that provide a comprehensive solution as envisaged in this report are minimal. 



Through a transformative two-tier sensor placement framework that incorporates already developed 

technology, when available, in combination with novel ideas reported here, we seek to solve this 

comprehensive sensor network problem. The sensor placement problem in its broadest sense has to use 

information regarding - available sensors and their failure rates, available failure information and their 

occurrence rates, component and system models, criticality of the individual components to the process, 

nature of the component models available (lumped, distributed) - to provide recommendations regarding 

the location, type, and number of sensors for an efficient component monitoring and fault diagnosis 

network. This is a challenging problem because while component-level approaches will fail to utilize the 

synergistic system-level interactions, a system-level view will result in computational intractability. This 

has been a major challenge in developing efficient solutions to this problem. The reported solution 

approach follows a “divide-and-conquer” philosophy. The key to the success of this philosophy is in 

using appropriate models and information at the correct level of the problem. This is depicted in Error! 

Not a valid bookmark self-reference.. 

 

1.4.2 2-Tier Sensor Placement 

The sensor placement problem is decoupled into two tiers. Tier I deals with system-level sensor 

placement. A model that is appropriate at this level, that is, a qualitative math model is used.  It should be 

noted that a plant-scale coupled Partial Differential Equations (PDEs) can run into thousands of equations 

and solving them within an optimization loop for sensor placement will likely be computationally 

intractable. The previous works have demonstrated the use of graph models   such as the Signed Directed 

Graph (SDG) model for plant-level diagnosis.1,2,3,4,5,6,7 The objective function for sensor placement is a 

critical component in the resulting sensor placement algorithms. Resolving all the hypothesized faults 

could be one objective.8 An alternate objective is to maximize reliability of the fault diagnosis network 

with maximum possible resolution of failure origins as constraints imposed on the solution. The original 

cost minimization formulation with maximum resolution satisfies the objective efficiently and will be 

used in tier I sensor placement. The maximum resolution that is possible is a complex function of both the 

system characteristics and the model that is used in the sensor placement approach. Our reported approach 

ensures that all the faults that are resolvable are indeed resolved by the sensor placement algorithm and at 

the same time the fault diagnosis network is highly cost effective. Bhushan and Rengaswamy5 showed 

Figure 1. Schematic of the 2-tier sensor placement approach 



how this sensor placement problem could be converted to an Integer Linear Programming (ILP) problem 

using some transformations. This is the solution approach that will be used in this report. Tier I solution 

will identify the optimal cost sensor placements that achieve the maximum resolution possible given the 

system description and the qualitative cause-effect mathematical model of the system in presence of the 

numerical solution (obviously this system model will also include the faults and sensors of the individual 

components that are considered in tier II). Moreover, our contention is that it is more natural to handle 

this problem at a component level with high fidelity math models. This integrates system-level fault 

diagnosis with component level condition monitoring. As a result, tier II sensor placement goal is 

estimation of failure severity at the component-level. The sensors identified at this level help not only in 

estimation of failure severity at the component-level but also in failure resolution when needed. This goal 

is achieved by coupling appropriate state and parameter estimation techniques (can be thought of as an 

unknown input filter (UIF)) with a Genetic Algorithm (GA) optimization approach as shown in Figure 2. 

A filter needs to be used because of the need to estimate severity levels. By augmenting fault magnitudes 

as parameters in the filter, failure severity can be estimated. The main objective of tier II sensor 

placement is the identification of the sensor locations. For this, the distributed model is converted to an 

Ordinary Differential Equation (ODE) model that the state and parameter approaches work with. This is 

achieved by discretizing the distributed model using method of lines. This is a well-known approach for 

converting PDE to ODE. 

Figure 2. Genetic algorithm approach 



Optimized sensor locations are identified using a genetic algorithm (GA) approach as shown in Figure 2. 

The decision variables are discrete (1 if a sensor is placed at a particular distributed location and 0 if not). 

The objective function is usually a squared error between the actual and estimated failure severities. 

Further, the objective function - which reflects how well the actual location and the severity of the fault is 

captured for a particular sensor network - is nonlinear and does not have a closed form analytical 

expression. This makes it difficult to optimize the sensor locations using standard math programming 

based approaches. Evolutionary algorithm approaches have been demonstrated to successfully solve such 

problems in several application areas.8,9,10,11,12 Once these sensor locations are identified, the actual fault 

diagnosis and condition monitoring in real-time can also be achieved using the models and methods used 

in the sensor placement algorithm as shown in Figure 3. Given a list of possible failures, plant-level data 

with the qualitative model is used to obtain the optimal sensor network. Based on the faults, the 

corresponding state and parameter estimator is run to estimate failure severity. Hence the sensor 

placement algorithms seamlessly develop a fault diagnosis and condition monitoring approach for 

eventual verification of the suggested sensor locations.  

As mentioned before, the IGCC plant will be considered for the sensor placement in this report. Although, 

several configurations of IGCC plants are possible, the focus of the current work will be on a plant based 

on case #2 from the baseline DOE study13 that incorporates a GEE-type gasifier with CO2 capture and 

removal. Gasification island and the combination cycle island are considered in this model. The plant 

model includes an entrained, downflow, GEE-type gasifier with a radiant syngas cooler (RSC), a two-

stage sour water gas shift (WGS) conversion process with inter-stage cooling, a physical absorption 

process, and two advanced "F" class combustion turbines partially integrated with an elevated-pressure air 

separation unit (ASU). Typical faults in this plant include the blocking of the radiant syngas cooler 

(RSC), leakage in pipes in the black water service, leakage in the sour syngas pipe before and after sour 

WGS reactors, failure of the ASU MAC (Main Air Compressor), leakage in the Claus Catalytic Reactor, 

mechanical failure of the main BFW (Boiler Feed Water) pump, poisoning of the sour WGS reactor 

catalyst, poisoning of the Claus plant catalyst, fouling of the heat exchangers particularly those in the 

black-water, and sour-water service and the exchangers in the Claus plant, etc. It is guaranteed that all the 

possible faults are identified and considered, but the faults critical for improving the availability of the 

IGCC plant are considered although some remain unresolved. The various types of sensors that will be 

considered in this report include temperature, pressure, flow, level, and composition sensors. Base case 

sensor placements will be generated using such sensors. The reports from the TECO IGCC plant at Polk 

county, Florida provide immense insight into many of the typical problems. Let’s consider examples from 

one such report and how that will be modeled in Aspen Plus Dynamics. In an assessment of the plant 

availability during October, 2000-September, 2001 run of the TECO plant, the following faults were 

mentioned that led to shutdown during this fifth year of operation: 5 forced outages due to syngas and 

blackwater line leaks, plugged RSC outlet line, syngas scrubber outage, icing in the main exchanger in the 

Figure 3. Diagnostic approach for fault diagnosis and condition monitoring 



ASU due to missed steps in the regeneration cycle of the air dryer, deposit of the heat stable salt in the 

MDEA absorber, etc.14 It was mentioned that, “We could have eliminated or mitigated the losses in most 

cases.14 These faults can be simulated in the Aspen Plus Dynamics and the transient results can be used in 

the fault diagnosis algorithm.  For example, the leak in the syngas line can be simulated by adding a pipe 

with a valve to the syngas line and opening the valve slowly through a “Flowsheet Task” in Aspen Plus 

Dynamics. The deposit of a solid in the tray of a distillation column can be simulated by slowly blocking 

the open area of the tray implemented through script in Aspen Plus Dynamics. These changes can be done 

manually or by some predefined function written in script of Aspen Plus Dynamics. The commissioning, 

operational, and project execution experiences of the TECO IGCC power plant at Polk Country, Florida 

are extensively used in this project for identification of the faults at the plant level as well as at the unit 

level. A number of reports detailing the various phases of this plant are available in the public 

domain.14,15,16,17,18,19 The reports of the pilot plant studies and the issues faced in the commercialization of 

the Texaco process are also available.20,21,22,23 Cool Water IGCC plant also had Texaco gasifier, report of 

which is also available.24,25 Project and operational reports of plants using non-GEE-type gasifiers are also 

available.26,27 Operational experiences of these projects will also be utilized whenever applicable. Issues 

and concerns of various commercial gasifiers have been mentioned in a DOE report.28  A thorough review 

of the existing literature has led us to come up with a list of frequent and important faults encountered in 

an IGCC plant especially in sour WGS reactor.  

The main problem in the sour WGS reactor is the catalyst poisoning that includes catalyst activity, 

porosity and surface area reduction. These faults can be simulated by changing the activity, porosity or 

surface area of the catalyst in the sour WGS reactor model, respectively. In this project, a 1-d first 

principles sour WGS reactor model is developed and used. This model considers mass, momentum, and 

energy balances as well as detailed kinetic models of the water gas shift and carbonyl sulfide hydrolysis 

reactions.  

1.4.3 Problem Tractability 

1.4.3.1 Model Simplification and Order Reduction 

Even if the first-principles model is tractable, embedding a first-principles model in an optimization loop 

may be intractable. The component level sensor placement algorithm consists of three primary 

computational modules that form an optimization loop: (i) solution to the first principles model, (ii) 

solution to the filter problem, and (iii) GA-related computations. States in the process model are estimated 

by solving the filter equations. If the process model is nonlinear, the model must be integrated and 

linearized at every time step of the state estimation, which adds to the complexity of the problem. The GA 

optimizes a defined objective function and searches in the vast solution space for the optimal solutions, 

where each attempt of the GA requires performing a state estimation of the process model, thus, making 

the component-level sensor placement significantly computationally intensive and time consuming. In 

order to reduce the computational complexity, an efficient approach is to reduce the complexity of the 

process model, thus, the computations will be reduced for the entire optimization loop. A simple way to 

reduce the complexity of a process model is to linearize the model around the operating point. However, 

in presence of faults, this approach may lead to unacceptable inaccuracies. The approach taken in this 

project for model simplification and order reduction is a combination of scaling analysis, method of 

characteristic and in-situ adaptive tabulation (ISAT). The model simplification is attempted and 

implemented in component-level sensor placement. The method of characteristics and ISAT are 

attempted to show how they can be implemented in the distributed sensor placement approach. The 

implementation of scaling analysis at the component-level sensor placement is found to be sufficient for 

the work envisaged in this project and the implementation of the reduced order models are recommended 

for future efforts in component-level sensor placement. 



1.4.3.2 Network Decomposition 

The use of graph models for plant-level sensor placement promises significant reduction in computations 

compared to the use of plant-scale coupled PDEs. Although the plant-level sensor placement is performed 

by solving an ILP working on signed directed graphs, there are limitations on how large the graph 

networks can be when considering fault resolution. Moreover, as more information is added to the plant-

level sensor placement algorithm, the plant-wide sensor placement will likely be computationally 

complex. A general approach in graph theory for reducing the computational complexity is the use of 

graph partitioning techniques. In graph partitioning techniques, the graph is divided into smaller 

components with components holding specific properties. Due to the nature of graph partitioning 

problem, these problems are generally solved by developing heuristic and approximation algorithms. 

Typically, the graph partitioning problem attempts to group most interacting components together and 

minimize the interaction between the groups. In this project, we have attempted to study the effect of 

different parameters including computation time, fault resolution and sensor network cost on graph 

partitioning algorithms with fault detection and diagnosis as the objective. The result of this study opens 

the door for further progress and can help researchers when developing partitioning algorithms for fault 

detection and diagnosis. 

1.5 Computation Tools 

MATLAB®, a computing environment developed by MathWorks®, is one of the main engineering 

software used in this project for modeling and optimization. Except for the gasifier model developed in 

Aspen Plus®, all of the system- and component-level sensor placement algorithms and the corresponding 

simulations are performed in MATLAB environment. Aspen Plus is chemical process simulation software 

developed by AspenTech that is used in this report for modeling and simulation of gasifier. The Simulink 

interface developed by MathWorks links the Aspen Plus to MATLAB for simulation of integrated 

systems including gasification island and combined cycle. IBM ILOG CPLEX® optimization toolbox for 

MATLAB is used within MATLAB environment for solving integer linear programming problems in 

system-level sensor placement while other optimization problems are solved using MATLAB’s default 

optimization toolbox. The final optimization of component-level sensor placement which involves genetic 

search can be efficiently performed in parallel. The parallel computation is provided by Texas Tech 

University’s High Performance Computing Center (HPCC). HPCC’s computing resource, Hrothgar, has 

86 teraflops in 7680 2.8 GHz cores and 12.3 teraflops in 1024 3.0 GHz cores. However, the regular 

MATLAB parallel computation license on HPCC is limited to use of 12 cores (increased to 20 cores in 

2015) per each computing job. 

1.6 Report Organization 

 

Section 1.0 – Introduction: Discusses the purpose, relevance and impacts of the study. The fundamental 

information and overall approach of the study is briefly described.  

Section 2.0 – Process Modeling: Describes the development of process models for sour water gas shift 

reactor and gasifier in complete detail. Simulation studies for model validation and sensitivity studies are 

also provided. 

Section 3.0 – Model Simplification and Order Reduction: Provides a mathematical approach for 

simplifying the sour gas shift process model, as well as well-known techniques for order reduction, 

including the method of characteristics and in-situ adaptive tabulation. 



Section 4.0 – System-Level Sensor Placement: Describes qualitative-analysis of causal models for fault 

detection and introduces an enhancement to previously developed algorithms. Implementation of 

algorithms in presence of numerical simulations is discussed as well. The necessity of graph partitioning 

for fault detection, as well as a method for sensitivity analysis of network systems is described. 

Section 5.0 – Distributed Sensor Placement: Explains the constrained state estimation and the genetic 

algorithm involved in distributed sensor placement. For state estimation, the development and 

formulation of constrained extended Kalman filter for differential and algebraic systems are described, as 

well as the implementation on the sour water gas shift model and its simplified model. The optimization 

problem for sensor placement and the genetic algorithm properties used for finding its solution are also 

discussed. 

Section 6.0 – Interpretation of Results: This section provides case studies for the algorithms developed 

in the previous sections. After validating the results, the algorithms are implemented on the gasification 

island to identify a 2-tier sensor placement approach for fault detection and fault severity estimation. The 

faults that are considered in the gasification island are also explained in this section. 

Section 7 – Summary: Discusses the overall study results and conclusions. 

Section 8 – Recommendations: Discusses the direction for future research and provides explanation of 

the use of 2-tier sensor placement framework for other systems. The publication output from the project is 

also described. 

Section 9 – References 

 

2 Process Modeling 

2.1 Sour Water Gas Shift Reactor 

Fossil fuels are the main sources of non-renewable energy used by humans. Among these fuels, coal is 

found in abundance in U.S., while costing less (on a specific energy basis) than other fossil fuels. The 

major drawback to using coal is the growing concern of the impact of global greenhouse gas emissions 

and the effect of tighter emission regulations on the coal-based power plants. In addition to carbon and 

hydrogen, coal contains significant amounts of impurities, such as sulfur compounds and mercury, as a 

result burnt coal not only produces carbon dioxide (CO2), a major component of greenhouse gas, but also 

other pollutants that are hazardous to the environment. To overcome these problems, coal power plants 

should capture and sequestrate CO2. However, efficiency of traditional coal power plants, such as 

subcritical and supercritical power plants, are largely affected by addition of CO2 capture.29 Therefore, 

advanced technologies such as integrated gasification combined cycle (IGCC) have been developed over 

the years that yield higher efficiencies in comparison to the traditional power plants and offer near-zero 

emission power generation by allowing capture and sequestration of CO2.30,31 In an IGCC plant, the coal 

is converted via a gasification process into syngas that is rich in hydrogen (H2) and carbon monoxide 

(CO). The syngas, treated in a sour water gas shift (WGS) process, produces valuable H2, removable CO2 

by hydrolysis of unwanted CO, and removable hydrogen sulfide (H2S) by hydrolysis of the harmful sulfur 

compounds such as carbonyl sulfide (COS). The syngas is then passed through an acid gas removal 

(AGR) process to remove H2S and CO2 and purified hydrogen is eventually burned in a combustion 

turbine as part of the combined cycle to produce power. The combined cycle constitutes a combustion 

turbine that produces energy by combusting the hydrogen and a steam cycle that first generates steam by 

recovering the heat of combustion from the gas turbine effluent stream and then produces energy by 

expanding the resulting steam in steam turbines. This combined cycle operation is more efficient than its 

rival, traditional pulverized coal plants, which benefit only from power generation from steam turbines. 



However, the cost, availability, and complexity are disadvantages of IGCC technology that must be 

addressed before IGCC can be the prime technology for coal-based power generation. These 

disadvantages can be addresses by utilizing a combination of developments including design and 

optimization of each component of the IGCC plant. 

To satisfy the overall CO2 capture target in an IGCC plant with CO2 capture, a certain extent of CO to 

CO2 conversion must be achieved in the WGS reactors.31 The water gas shift process can be sweet or 

sour.32 The activity of conventional sweet shift catalysts such as iron- or copper-based catalysts reduce in 

presence of sulfur due to sulfur poisoning.33,34 Therefore, in a sweet shift process, the COS present in the 

syngas is first hydrolyzed to H2S and then H2S is captured in an AGR unit before sending the syngas to 

the WGS reactors. Therefore, the plants with sweet shift processes require two reactor systems- a COS 

hydrolysis reactor system and a WGS reactor system. These are called reactor systems as one or more 

reactors with inter-stage coolers may be needed depending on the desired extent of conversion and 

process operating conditions. As the water contained in the syngas is cooled and condensed before 

sending it to the AGR unit, the syngas must be reheated and before sending it to the sweet shift reactors, 

substantial amount of steam must be injected to the syngas in order to drive the reaction equilibrium 

towards the products. In an IGCC process, the syngas from the gasifier passes through a water scrubber.31 

The syngas at the outlet of the scrubber is saturated with water and can be made available at a temperature 

that is suitable for the WGS reactor inlet. Therefore, if the sour syngas from the outlet of the scrubber is 

shifted, a higher overall efficiency can be achieved in comparison to the sweet shift process because of 

the higher temperature of the syngas and lower requirement of additional steam.35,36,37,38 However, a 

sulfur-tolerant catalyst is required because of the presence of COS and H2S in the syngas. The sulfide-

treated Cobalt/Molybdenum (Co/Mo) and Nickel/Molybdenum (Ni/Mo) impregnated alumina catalysts 

are sulfur-tolerant and can catalyze the shift reaction.39,40,41 In addition, typical sour shift catalysts can 

convert COS and other organic sulfur compounds into H2S, which also helps in capturing H2S since it is 

removed easier than COS from the syngas in the AGR unit.42 Actually, sulfur-tolerant catalysts require 

sulfur in the syngas to remain active and can operate in a wide temperature range.43 Moreover, the startup 

procedure for the sour water gas shift catalysts is less complex.44 In addition, the sour shift catalysts are 

less sensitive to operational conditions.44 Because of these advantages, a sour shift process is preferred in 

an IGCC plant with CO2 capture and a separate COS hydrolysis reactor is not needed. 

The water gas shift reaction is a well-studied equilibrium reaction where several models of the sweet shift 

reactor have been developed.43,45,46,47,48,49 Giunta et al.49 have performed an extensive study on a 2-D 

heterogeneous dynamic model, validated with experimental data. In their work, consideration of the 

intraparticle mass transfer limitations by the definition of effectiveness factor, although negligible at 

catalyst diameters below 0.8 mm, returns good results for industrial-sized reactors, which have larger 

catalysts.47 Adams and Barton47 have developed a 1-D heterogeneous dynamic model and validated with 

the work of Choi and Stenger50. Steady-state models of WGS reactor and their validation with the 

experimental data have been reported in the work of Ding and Chan46 and Chen et al.51.  Francesconi et 

al.48 have discussed optimization of the reactor at steady-state condition.  

Most of the efforts in modeling the WGS reactors have focused on the sweet shift process where several 

catalysts at different conditions have been studied.52,53,54,55,56 In comparison to the vast amount of work on 

the sweet shift catalysts, the amount of work on the sour shift catalysts is very little. A few experimental 

works can be found that have investigated the performance of the sour shift catalysts and have performed 

kinetic studies in the presence of a sulfiding agent such as COS or H2S, which are typically present at 

reasonable concentrations in the syngas obtained from a coal-fired gasifier.33,40,57,58,59,60 Additionally, 

computational models developed for sour shift reactors are rare. Bell and Edgar43,45 have developed 1-D 

pseudo-homogeneous model of a reactor that is filled with the Co/Mo based catalyst, which is similar to 

the catalyst used in this work with the exception that the catalyst used in this work is promoted with 

cesium.61 Although they verified their steady-state and dynamic model with experimental results, their 

lab-scale reactor model cannot be scaled up to an industrial reactor due to their assumptions that are 



exclusive to lab-scale models and under-predict the results for industrial-scale reactors. In their work, they 

have ignored the momentum balance while modeling their reactor; therefore, information on the pressure 

drop across the reactor is not included. Pseudo-homogeneous models are sufficient only when intra-

particle heat and mass transfer limitations are negligible, which is not the case for an industrial-scale 

reactor.62 Since a typical industrial-scale sour shift reactor is filled with larger catalyst particles and 

operates at higher pressures compared to catalyst particle size and operating pressure in experimental 

studies, their model cannot be used for studying the performance of the reactor under industrial 

conditions. Here, all these issues are addressed and a model that is applicable to both lab- and industrial-

scale reactors is developed. 

In almost all the papers, both experimental and computational, COS hydrolysis reaction concurrent with 

the WGS reaction have not been studied. It must be noted that a significant conversion of COS in the shift 

reactor(s) is desired so that the resulting H2S can be captured in the acid gas removal unit for satisfying 

the overall specifications on sulfur emission.31 COS hydrolysis reaction would be expected to occur on 

the sour shift catalysts since the typical sour shift catalysts use Co/Mo supported on alumina and alumina 

has been reported to catalyze the COS hydrolysis reaction.63,64,65 With this motivation, we have developed 

a dynamic model of a sour shift reactor by considering both WGS and COS hydrolysis reactions and have 

used this model for the typical feed conditions of an IGCC plant.  For validating the model, experimental 

data are required for reactors where the feed contains COS in addition to the typical species present in the 

syngas. Unfortunately, the only experimental data that we could find in the existing literature for such 

feed conditions contain high measurement errors that necessitate reconciliation of the reported data.61,66 

Therefore, an algorithm is developed for data reconciliation and estimation of the kinetic parameters. The 

developed model is then used to study the effect of the length and diameter of the reactor, the steam-to-

CO ratio, and the inlet temperature of the syngas on the key operating variables. In addition, dynamic 

responses are studied by simulating the change in the inlet temperature and catalyst activity that might 

occur due to poisoning of the catalyst or due to change in the catalyst microstructure during the course of 

reactor operation. 

2.1.1 Process Description 

The two key reactions that take place in the catalytic sour WGS reactor are the water gas shift reaction, 

 

 𝐶𝑂 + 𝐻2𝑂 ↔ 𝐻2 + 𝐶𝑂2 (1) 

and COS hydrolysis reaction, 

 𝐶𝑂𝑆 + 𝐻2𝑂 ↔ 𝐻2𝑆 + 𝐶𝑂2 (2) 

Both reactions are exothermic and feasible over wide range of temperatures. The standard heat of 

reactions are 41.1 kJ/mol and 30.2 kJ/mol for WGS reaction and COS hydrolysis, respectively.67 For both 

reactions, low temperatures are preferred thermodynamically as the equilibrium will be pushed toward the 

products whereas high temperatures are preferred due to the reaction kinetics. Thus, there is a trade-off 

between thermodynamics and reaction kinetics for these reactions. Hence conventionally, this process is 

carried out in 2-stages and involves high- and low-temperature reactors with inter-stage cooling. 

The catalyst modeled is a Cs promoted Co/Mo impregnated alumina that is commercially available as 

"Aldridge".68 Overstreet66 and Berispek61 have studied this catalyst extensively for different weight 

percents of cobalt and molybdenum oxides and tabulated the results for each catalyst. In this report, 

published experimental data for catalyst "Q" in the work of Berispek61 are reconciled by solving an 

optimization problem and the intrinsic kinetic parameters of the WGS reaction are estimated by 

performing regression analysis using the reconciled data. 

In the next section, modeling of the 1-D heterogeneous sour WGS reactor is explained in detail. The 

modeling is followed by a section that describes the data reconciliation procedure proposed for extracting 



the kinetic parameters essential to the model. In the last section, a commercial size reactor that operates 

within typical sour WGS process conditions is simulated and the effects of different parameters on the 

performance of the reactor are presented. 

2.1.2 Model Development 

The mathematical model of the plug-flow reactor is developed by deriving the conservation laws for 

mass, energy and momentum. For this, radial variations of transport variables are neglected and the 

gradients are only considered in axial direction. In this section H2, CO, CO2, H2S, H2O and COS are 

considered to be present in the system. Although in industries other gasses such as N2, Ar and O2 may be 

present, the model equations can be extended easily to include these components, as they are present in 

very small quantities and do not react. In general, the model can be applied to any sour gas shift reactor 

with any catalyst, but, since kinetic parameters for sour gas shift reactor catalyst are rarely available, the 

model is used to extract the kinetic parameters from available experimental data for the “Aldridge” 

catalyst through a data reconciliation procedure.68 A previous study of COS hydrolysis over alumina-

based catalysts showed that the reaction follows an Eley-Rideal mechanism.69 Hence, kinetic parameters 

for the COS hydrolysis are obtained from the work of Svoronos et al.69, whereas the rate parameters for 

the WGS reaction are obtained through data reconciliation considering a pseudo-first order reaction.61 

2.1.2.1 Physical Properties 

The syngas heat capacity is calculated assuming ideal mixture, as shown in Eqn. (3).67 

 

𝐶𝑝 = ∑𝑦𝑖𝐶𝑝,𝑖

𝑁

𝑖=1

 (3) 

The viscosity of the syngas, 𝜇, is estimated from Eqn. (4) as:47 

 

𝜇 = ∑
𝑦𝑖𝜇𝑖

∑ √𝑀𝑗 𝑀𝑖⁄𝑁
𝑗=1

𝑁

𝑖=1

 (4) 

where 𝑀 is molecular weight of species denoted by indices 𝑖 and 𝑗.  

Assuming interactions between all pairs in the syngas, thermal conductivity of the mixture can be 

approximated by using the molar average thermal conductivity, Eqn. (5). 

 

𝜆 = ∑𝑦𝑖𝜆𝑖

𝑁

𝑖=1

 (5) 

 

The effective diffusivity, 𝐷𝑒, is related to binary diffusivity, 𝐷𝑖𝑗, through Eqn. (6):47 

 𝐷𝑒𝑓𝑓,𝑖𝑗 = 𝐷𝑖𝑗 (
𝜀

𝜏
) (6) 

It is difficult to find accurate tortuosity values for the catalyst; however, since the tortuosity of water gas 

shift catalysts are in the range of 2-9, a tortuosity value of 5 is chosen.47 The porosity of the catalyst, 𝜀, is 

assumed to be 0.38.48 The binary diffusivity,𝐷𝑖𝑗, is the binary diffusivity of species i into species j. An 

approximate equation for diffusion of species i into a mixture is given as:47 



𝐷𝑖,𝑚 =
1 − 𝑦𝑖

∑ (
𝑦𝑗

𝐷𝑒𝑓𝑓,𝑖𝑗
)𝑗≠𝑖

 

An analysis of the diffusivity of reactants, CO and H2O, into the mixture in an industrial scale reactor 

showed that the diffusivity of H2O into the mixture is the lowest and thus considered as the rate limiting 

for the WGS reaction. The binary diffusivities are calculated using Eqn. (7a)-(7b).47,73 

 𝐷𝑖𝑗 = (𝐴𝑇𝐵 𝑃⁄ )[ln(𝐶/𝑇)]−2𝐷exp (−𝐸 𝑇⁄ − 𝐹/𝑇2) (7a) 

 𝐷𝑖𝑗 = 𝐵/𝑃 (7b) 

Note that useful information for calculating the heat capacity, viscosity, thermal conductivity and binary 

diffusivity can be found in the work of Adams and Barton67. 

2.1.2.2 Model Equations for Catalyst Pellets 

The 1-D heterogeneous model has been developed using the effectiveness factor to account for 

intraparticle mass transfer limitations. For a first-order reaction, the overall effectiveness factor relates the 

actual reaction rate, 𝑟, to the reaction rate evaluated at the bulk concentration using various system 

parameters, such as reaction rate constant, 𝑘, and mass transfer coefficient, 𝑘𝑐.60 

 −𝑟𝐴 = 𝛺𝑘𝐶𝐴,𝑏𝑢𝑙𝑘 (8) 

where the overall effectiveness factor is defined as: 

 𝛺 =
𝜂

1 + 𝜂𝑘 𝑘𝑐𝑎𝑐⁄
 (9) 

The effectiveness factor is a function of Thiele modulus, 𝜙, and for a spherical catalyst it is calculated as: 

 
𝜂 =  

3

𝜙2
(𝜙 coth𝜙 − 1) (10) 

and Thiele modulus is given as: 

 

𝜙 =
𝑑𝑐𝑎𝑡

2
√

𝑘

𝐷𝑒
 (11) 

The mass transfer coefficient can be calculated from Thoenes-Kramers correlation:71 

 
𝑘𝑐 =

1 − 𝜀

𝜀

𝐷𝑖,𝑚

𝑑𝑐𝑎𝑡
𝑅𝑒1 2⁄ 𝑆𝑐1 3⁄  (12) 

where the diffusion of H2O into the mixture is considered for 𝐷𝑖,𝑚 since it is rate limiting. Schmidt 

number, 𝑆𝑐, and Reynolds number, 𝑅𝑒, are calculated from: 

 𝑆𝑐 =
𝜇

𝜌𝐷𝑒
 (13) 

 
𝑅𝑒 =

𝜌𝑢𝑑𝑐𝑎𝑡

𝜇(1 − 𝜀)
 (14) 

The surface area per unit volume of the pellet, 𝑎𝑐, is estimated by Eqn. (15) and assuming ideal gas 

behavior, the linear gas velocity, 𝑢, is given by Eqn. (16):19-20 

 𝑎𝑐 = 6(1 − 𝜀) 𝑑𝑐𝑎𝑡⁄  (15) 

 
𝑢 =  

𝐺𝑅𝑇

𝑃
 (16) 



2.1.2.3 Species Balance 

Conservation equations are derived for all gas phase species: 

 𝜕𝐶𝑖

𝜕𝑡
= −

1

𝐴𝑐𝜀

𝜕𝐹𝑖

𝜕𝑧
+ (∑𝑟𝑖)

1 − 𝜀

𝜀
 (17) 

The above equation is rewritten assuming ideal gas behavior for the syngas mixture:19 

 𝜕𝐶𝑖

𝜕𝑡
= −𝐺𝑅

𝑇𝑔𝑎𝑠

𝑃

𝜕𝐶𝑖

𝜕𝑧
− 𝐶𝑖𝐺𝑅 [

1

𝑃

𝜕𝑇𝑔𝑎𝑠

𝜕𝑧
−

𝑇𝑔𝑎𝑠

𝑃2

𝜕𝑃

𝜕𝑧
] + (𝑟𝑊𝐺𝑆,𝑖 + 𝑟𝐻𝑦𝑑,𝑖)

1 − 𝜀

𝜀
 (18) 

where 𝐶𝑖 is the molar concentration of species 𝑖, 𝑧 is the axial position, 𝑇 is the gas phase temperature, 𝑃 

is pressure, 𝑅 is the universal gas constant, and 𝐺 is the molar flux, calculated using Eqn. (19) and the 

total inlet molar flow rate, 𝐹0, entering the reactor with diameter 𝑑𝑟𝑐𝑡 as below:19 

 
𝐺 =

4𝐹0

𝜋𝑑𝑟𝑐𝑡
2 𝜀

 (19) 

The boundary condition at the inlet to the reactor (𝑎𝑡 𝑧 = 0) can be expressed as 𝐶𝑖  = 𝐶𝑖,𝑖𝑛, 𝑇𝑔𝑎𝑠  = 𝑇𝑖𝑛, 

and 𝑃 = 𝑃𝑖𝑛, where 𝐶𝑖,𝑖𝑛, 𝑇𝑖𝑛 and 𝑃𝑖𝑛 are the concentration, temperature and pressure of the gas at the 

inlet to the reactor. 

 

2.1.2.4 Momentum Balance 

A simplified momentum conservation equation is considered assuming pseudo-steady state. This 

approach only requires a model for calculating the pressure drop along the reactor. The Ergun equation is 

used for calculating the axial pressure profile in a packed bed, rewritten as:72  

 𝑑𝑃

𝑑𝑧
=

𝜌𝑢2

𝑑𝑐𝑎𝑡
(
1 − 𝜀

𝜀3
) (1.75 +

150

𝑅𝑒
) (20) 

where 𝜌 is the density of the fluid. 

2.1.2.5 Gas phase energy balance 

The temperature variation across the reactor can be obtained by deriving the gas phase energy balance: 

 𝜕𝑇𝑔𝑎𝑠

𝜕𝑡
=

1

𝜌𝑔𝑎𝑠𝐶𝑝
[−𝐶𝑝𝐺

𝜕𝑇𝑔

𝜕𝑧
+

ℎ𝑓𝑎𝑐

𝜀
(𝑇𝑐𝑎𝑡 − 𝑇𝑔𝑎𝑠)] (21) 

where the heat transfer coefficient, ℎ𝑓, can be estimated using:45 

 

ℎ𝑓 = 1.37 (
0.357

𝜀
) (𝐶𝑝𝐺𝑀)(

𝜇

𝑑𝑐𝑎𝑡𝐺𝑀
)
0.359

(
𝜆𝑀

𝐶𝑝𝜇
)

2
3⁄

 (22) 

The boundary condition can be expressed as 𝑇𝑔𝑎𝑠 (𝑎𝑡 𝑧 = 0) = 𝑇𝑖𝑛, where 𝑇𝑖𝑛 is the temperature of the 

gas at the inlet to the reactor.  

2.1.2.6 Catalyst phase energy balance 

Assuming that the temperature only varies in the z direction and neglecting radial temperature profile, the 

adiabatic energy balance for the catalyst phase is: 

 𝜕𝑇𝑐𝑎𝑡

𝜕𝑡
=

1

𝜌𝑐𝑎𝑡𝐶𝑝,𝑐𝑎𝑡
[𝐾𝑐𝑎𝑡

𝜕2𝑇𝑐𝑎𝑡

𝜕𝑧2
−

ℎ𝑓𝑎𝑐

1 − 𝜀
(𝑇𝑐𝑎𝑡 − 𝑇𝑔𝑎𝑠) + 𝑟𝑊𝐺𝑆∆𝐻𝑅,𝑊𝐺𝑆

+ 𝑟𝐻𝑦𝑑∆𝐻𝑅,ℎ𝑦𝑑] 

(23) 



For the catalyst phase temperature, following boundary conditions are considered: 𝜕𝑇𝑐𝑎𝑡 𝜕𝑧⁄  (𝑧 = 𝐿) = 0 

and 𝑇𝑐𝑎𝑡(𝑧 = 0) = 𝑇𝑔𝑎𝑠. Thermal conductivity of the catalyst is assumed to be the same as pure alumina, 

35 W/m-K. Additionally, this equation requires the calculation of the heats of reaction using the enthalpy 

defined as: 

 
𝐻𝑖 = ∆𝐻298

𝑓
+ ∫ 𝐶𝑝,𝑖(𝑇)𝑑𝑇

𝑇

298

  (24) 

2.1.2.7 The standard heat of formation of CO, CO2, COS, H2O and H2S are -110.5, -393.5, -142, -

241.9, and -20.63 kJ/mol, respectively.67Reaction kinetics 

Although the WGS reaction has been studied over sulfur-tolerant catalysts, such as Co/Mo catalyst, 

kinetics of the COS hydrolysis on the sour Shift catalyst are rarely reported. Thus, the parameters of COS 

hydrolysis are derived from the open literature for alumina-based catalyst.69 However, the parameters for 

the WGS reaction are obtained by analyzing the available experimental data. However, since the presence 

of measurement error is common in the data collected in experimental studies, a data reconciliation 

procedure is developed to obtain consistent data. 

The rate equation for COS hydrolysis considering Eley-Rideal mechanism is expressed as:41 

 
−𝑟ℎ𝑦𝑑 = 𝑘𝐻𝑦𝑑  

𝑃𝐶𝑂𝑆

1 + 𝐾𝑒𝑞,ℎ𝑦𝑑𝑃𝐻2𝑂
 (25) 

where the partial pressures are in 𝑘𝑃𝑎 and the rate and equilibrium constants are given as:69 

 

𝑘ℎ𝑦𝑑 = 4223.32𝑒𝑥𝑝(
−25270 [

𝐽
𝑚𝑜𝑙

]

𝑅𝑇𝑐𝑎𝑡
) (26) 

 
𝐾𝑒𝑞,ℎ𝑦𝑑 = 𝑒𝑥𝑝 (

10010[𝐾]

𝑇𝑐𝑎𝑡
− 15.89) (27) 

 Considering a pseudo-first order equilibrium reaction, the rate equation for the WGS reaction can be 

expressed as: 

 
−𝑟𝑊𝐺𝑆 = 𝛺𝑘𝑊𝐺𝑆𝑃 (𝑥𝐶𝑂 −

𝑥𝐶𝑂2 𝑥𝐻2

𝐾𝑒𝑞,𝑊𝐺𝑆 𝑥𝐻2𝑂
) (28) 

where 𝑃 is the pressure in 𝑎𝑡𝑚 and the rate constant, 𝑘𝑊𝐺𝑆, follows the Arrhenius equation and the 

equilibrium constant, 𝐾𝑒𝑞,𝑊𝐺𝑆, is given by Moe74: 

 
𝑘𝑊𝐺𝑆 = 𝑘0𝑒𝑥𝑝 (

−𝐸𝑎

𝑅𝑇
) (29) 

 

 
𝐾𝑒𝑞,𝑊𝐺𝑆 = 𝑒𝑥𝑝 (

4577.8[𝐾]

𝑇𝑐𝑎𝑡
− 4.33) (30) 

2.1.2.8 Pressure scale-up 

The reaction kinetics derived from experimental data obtained at lower pressure are not applicable to 

industrial-sized reactors since they result in over-prediction of the reaction rates by orders of magnitude. 

Therefore, a pressure scale-up factor is used to address such over-predictions at high pressures. The 

reaction rate at higher pressures is related to the rate at atmospheric pressure as:47 

 𝑟′𝑊𝐺𝑆 = 𝑃𝑠𝑐𝑎𝑙𝑒 𝑟𝑊𝐺𝑆 (31) 

where 𝑃𝑠𝑐𝑎𝑙𝑒 is the pressure scale factor which is expressed as:19 



 
𝑃𝑠𝑐𝑎𝑙𝑒  = 𝑃

(0.5−
𝑃

500
)
 (32) 

where 𝑃 is the pressure in 𝑎𝑡𝑚. Basically, Eqn. (32) implies that the reaction rate above atmospheric 

pressure is in the range of 1-5 times the reaction at atmospheric pressure and the equation is reported to be 

valid up to 55 𝑎𝑡𝑚.47  So, the rate equation for the WGS reaction in Eqn. (28) is rewritten for high 

pressures as: 

 
−𝑟′𝑊𝐺𝑆 = 𝛺𝑘𝑊𝐺𝑆𝑃𝑆𝑐𝑎𝑙𝑒 (𝑥𝐶𝑂 −

𝑥𝐶𝑂2 𝑥𝐻2

𝐾𝑒𝑞,𝑊𝐺𝑆 𝑥𝐻2𝑂
) (33) 

 

2.1.2.9 Catalyst deactivation 

The catalyst loses its activity over time mainly due to poisoning, fouling, and thermal and mechanical 

degradation. However, here, the catalyst is assumed to deactivate only due to thermal degradation 

(sintering). The catalyst activity is defined in terms of reaction rates for both WGS reaction and COS 

hydrolysis as:21 

 
𝑎(𝑡) =

𝑟(𝑡)

𝑟(0)
 (34) 

The catalyst deactivation equation is given by:21 

 𝑑𝑎

𝑑𝑡
= 𝑘𝑑(𝑎 − 𝑎∞)𝑚 (35) 

where 𝑚, the order of sintering, is reported to be either 1 or 2; 𝑎∞ is limiting activity at infinite time; and 

𝑘𝑑 is the sintering rate constant. In the work of Giunta et al.49, the catalyst activity is given at some point 

in time which gives a good estimate for the 𝑎∞ in this work.49,76 Also here, 𝑚 is assumed to be 2 and 𝑘𝑑 is 

found by integrating Eqn. (35) for expected life time of Co/Mo catalyst, 5 years, until the catalyst reaches 

99% of its limiting activity.49,76,77 

2.1.3 Solution Approach 

The system consists of a set of partial differential equations (PDEs) representing the state of the system. 

The PDEs in the modeling equations are converted to ODEs using the method of lines, where the spatial 

derivatives are discretized using a backwards difference method. However for solving the equations, the 

rate parameters for the water gas shift reaction need to be obtained from the available experimental data.61 

The experimental data were generated from an isothermal reactor under steady-state conditions.61 

Therefore, the energy balance equations are eliminated to achieve an isothermal reactor and the time 

derivatives are set to zero. The resulting set of nonlinear equations is solved using a trust-region-dogleg 

algorithm by 'fsolve' function in MATLAB. Later, a dynamic adiabatic reactor is simulated by scaling up 

the reactor and using the obtained parameters. In the data reconciliation simulations, 100 grid points are 

assumed for discretization of a 10 centimeter reactor. Increasing the number of grid points to 200, resulted 

in less than 0.01% deviation in estimating the rate constant but increased the simulation time. Since the 

reactor model is used multiple times in data reconciliation and gross error detection, to reduce the 

simulation burden, 100 grid points are considered for the simulations. Equations are solved for the 26 

meter long industrial reactor considering 300 grid points since increasing the grid points to 900 resulted 

only in less than 0.1% improvement in error and substantially longer processor time to solve the 

equations. 

2.1.4 Data Reconciliation 

The experimental data from Berispek61 are used to obtain the kinetic parameters of the WGS reaction. The 

experimental work has a dry-feed with a given composition passing through a water saturator, which is 

maintained at 60°C. Before entering the reactor, flowrate of the wet-feed is measured. The effluent of the 

catalytic reactor passes through a gas sampling valve where the gas sample is collected and is analyzed by 



a gas chromatograph.  The outlet compositions from the sour shift reactor are reported for various reactor 

temperatures and wet-feed flowrates. The reactor operates at close to atmospheric pressure (715 mm Hg 

at the inlet) and the temperature is varied from 200 to 400°C in increments of 25°C. In this laboratory 

reactor (with a length of 10 cm and a diameter of 3/16 inches), the temperature is maintained constant 

along the reactor resulting in an isothermal condition and the reactor is filled with the “Aldridge”68 

catalyst. Even though several catalysts are investigated in the work of Berispek61, Catalyst Q has been 

considered here. Various properties of Catalyst Q, shown in Table 1, are used for obtaining the kinetic 

parameters. 

Table 1. Properties of Catalyst Q61 

Property   Value 

Mesh range 
 

20/60 

Surface area 
 

279 m2/g 

Density 
 

0.65 g/cm3 

Porosity 
 

0.38 

Tortuosity† 
 

5 

Weight of the catalyst  
 

5.24 g 

Weight of the inert solids   1.2 g 

†Tortuosity is assumed for the catalyst 

 

In general, experimental data obtained from instruments such as temperature sensors, flow meters, and 

gas chromatographs are prone to measurement errors; however, mathematical techniques can be helpful in 

correcting the errors in order to get estimates close to the actual values. In the Berispek’s61 experimental 

work, COS and H2S are found in very small quantities, less than two percent, and high measurement 

errors can be observed in the reported compositions. For instance, even though the feed to the reactor 

contains COS, the results of gas chromatography show no sulfur compounds at the outlet of the reactor 

for a particular catalyst while the results are considerably different for another catalyst.61 The discrepancy 

in the outlet mole fractions of COS and H2S reported for different catalysts justifies our expectation that 

these measurements are associated with high errors and require careful consideration as the sulfur 

balances are violated. Therefore in our work, a data reconciliation technique is used to minimize the 

measurement errors.  

In the experimental data, the dry feed composition before the saturator, wet stream flowrate at the inlet of 

reactor, and the gas composition at the outlet of the reactor have been reported.61 These data are 

inadequate for calculating the mole fraction of the gas at the inlet of the reactor as the extent of saturation 

in the saturator before entering the reactor is unknown. It should be noted that as the flowrate of the dry 

gas feed is changed, it is expected that the extent of saturation can also vary. In addition, discrepancy in 

the experimental data has been observed as reported before. Hence, the data on outlet mole fractions are 

reconciled by a sequential process as described below. To perform the data reconciliation, the water 

saturator used in the experiments is assumed as a stream of steam with unknown flowrate, which is well 

mixed with the dry feed of known composition and unknown flowrate before entering the reactor. 

Figure 4 shows the method used to obtain the reconciled data and the corresponding parameters. In this 

approach, data corresponding to different operating conditions are individually reconciled, resulting in 

reconciled data and consolidated reaction rate constants at specific flow rates and temperatures. Then, the 

estimated reaction rate constants are used to calculate the activation energy and frequency factor of the 

WGS reaction. An alternative approach is to include all the data in a single formulation and directly 



estimate the activation energy and frequency factor. However, due to the presence of gross errors, this 

approach results in undesired estimation errors.78,79,80 A gross error detection approach based on the work 

of Narasimhan et al.79,80 is performed and gross errors are detected in the reported mole fractions of COS 

and H2S. To do this, a null hypothesis is assumed and the objective functions for all individual 

experiments are calculated based on the sequential data reconciliation shown in Figure 4 and the objective 

functions are summed up. Then, separate data reconciliations are performed assuming a single gross error 

hypothesized. The test statistic is obtained as the maximum difference in objective function values 

between the null hypothesis and the gross error model of each variable. This approach is done in series 

until the test statistic is less than the test criteria, which is equal to chi-square value with the correct 

degrees of freedom at 5% level of significance.79,80 This approach resulted in the identification of COS 

and H2S sensors as having gross errors. 

 

Figure 4. Diagram of the data reconciliation procedure 

The decision variables for the objective function for this problem are: dry gas flow rate; Fdry; steam flow 

rate; Fstm; and the rate constant for the water gas shift reaction, kWGS. The WGS reactor model is 

simulated to generate the outlet mole fractions by using the guesses for the decision variables. The 

optimizer minimizes the sum of the squared error between the model output and the experimental data as 

shown in Eqn. (36) until it finds the optimal values of the decision variables. The objective function 

involves two terms: the first term reduces the error between the outlet mole fractions from the model 

(𝑦𝑚𝑜𝑑𝑒𝑙) (reconciled values) and the experiments(𝑦𝑒𝑥𝑝), while the second term reduces the error in the 

overall inlet flow rate. Since no information on the standard deviations for the gas chromatography 

measuerments is provided in the work of Berispek61, standard deviation values used in the objective 

function are taken from the literature and are listed in Table 2. Note that COS and H2S are omitted from 

the objective function due to the gross errors that exist in these measured values. The outlet mole fractions 

and a consolidated rate constant are estimated by using the proposed optimization formulation. It is worth 

mentioning that, as can be seen in Figure 4, the data reconciliation is performed using a sequential 

approach. As a result, the model equations are embedded in the objective function and do not participate 

as constraints in the formulation. Therefore, an unconstrained optimization problem is solved individually 

for all flows at each temperature, which results in separate rate constants at each temperature. However, 

since the problem is non-convex, multiple simulations with different initial conditions are performed and 

the best solutions are retained. The optimization problem is solved in MATLAB using the 'fmin' function. 

Table 2. Standard deviation of different variables81,82 

Species Standard deviation 

  

 H2 1% 



CO 1% 

CO2 1.4% 

H2S 0.07% 

H2O† 1% 

COS† 0.07% 

Flowrate 3% 

†Standard deviation for H2O and COS are assumed 

 

 
min

 𝐹𝑑, 𝐹𝑠, 𝑘𝑊𝐺𝑆,

 ∑ [
𝑦𝑚𝑜𝑑𝑒𝑙,𝑗 − 𝑦𝑒𝑥𝑝,𝑗

𝜎𝑗
]

2

+ [
𝐹𝑑𝑟𝑦 + 𝐹𝑠𝑡𝑚 − 𝐹𝑒𝑥𝑝

𝜎𝐹𝐹𝑒𝑥𝑝
]

2

 
𝑗 = 𝐻2,𝐶𝑂,
𝐶𝑂2,𝐻2𝑂

                     
(36) 

Table 3 shows the inlet and outlet mole fractions and the feed flow to the reactor (𝐹𝑑𝑟𝑦 + 𝐹𝑠𝑡𝑚) for both 

the experimental and reconciled outputs at a particular temperature and flowrate. Reconciled mole 

fractions of H2, CO2, CO and H2O are in reasonable agreement with the experimental data.   

Table 3. Comparison of the reconciled and original mole fractions61 

Species Original Data  Reconciled Data 

   

 H2 0.5467 0.5406 

CO 0.2286 0.2289 

CO2 0.1314 0.1371 

H2S 0.0062 0.0113 

H2O 0.0852 0.0818 

COS 0.0019 0.0003 

Flowrate[cm3/min] 92.6  92.5 

 



Figure 5 is an Arrhenius plot for the obtained WGS reaction rate constant. Following values are obtained 

for the parameters, 𝐸𝑎 is 56,332 J/mol and 𝑘0 is 810,125 mol/m3-atm-s. These rate parameters are used in 

Eqn. (29) for simulating the industrial scale reactor as described in the next section. 

 

Figure 5. Arrhenius plot for the water gas shift reaction 

 

2.1.5 Results and Discussions 

A typical industrial sour gas shift process operates adiabatically and typically under high pressure. 

Considering an overall target of 90% carbon capture in an IGCC plant, a 2-stage WGS reactor system 

with high- and low-temperature reactors arranged in series with interstage coolers is required.31 However, 

only the first stage is simulated here where the reactor is used to study the effect of different parameters 

on the reactor operation and the carbon capture goals are not considered explicitly as a 2-stage would then 

be required. The syngas in this simulation is composed of H2, CO, CO2, H2S, H2O and COS with mole 

fractions of 0.21929, 0.23021, 0.08880, 0.00465, 0.45696 and 9×10-5, respectively.83 The reactor is filled 

with "Aldridge"68 catalyst, catalyst Q, 2.2 mm in diameter and with porosity of 0.38; and the reactor is 

assumed to have no heat loss to the surrounding to satisfy the adiabatic condition.61 With given 

composition and pressure for an IGCC case study, the reactor volume and the inlet temperature are 

adjusted to size a reactor with 10% overdesign and assuming length to diameter (L/D) of about 5.5.83 

Table 4 shows the sizing and operating conditions of the reactor. 

Table 4. Simulation condition83 

Condition 
 

Value 

Length 
 

29 m 

Diameter 
 

5.2 m 

Flow 
 

  4.9 kmol/s 

Inlet Temperature 
 

620 K 



Inlet Pressure   54.437 atm 

 

Figure 6 shows the CO mole fraction profile along the reactor with length increased to 40 meters. As the 

water gas shift reaction is equilibrium-limited, conversion will not change after reaching the equilibrium. 

This implies that for all operating conditions, a minimum length of the reactor is required to reach 

equilibrium. As in Figure 6, equilibrium is reached within almost the first 29 m of the reactor.  Figures 7a 

and 7b show the COS mole fraction and gas temperature, respectively, as a function of the length of the 

reactor. In Figure 7a, it appears that only 9 m of the reactor is required for COS hydrolysis to reach 

completion. Since COS hydrolysis is faster compared to WGS reaction, as in the sweet WGS reactor, the 

design would only require the first 29 meters of the reactor because no conversion is achieved after this 

point. When considering the design parameters for the sour WGS reactor, the required dimensions should 

be decided by considering the desired extent of WGS reaction. Although a longer reactor will have higher 

overall conversion, several other factors such as equipment cost and allowable pressure drop should be 

considered for deciding the final dimensions of the reactors. Note that in the subsequent studies the 

reactor length is fixed at 29 m.  

 

Figure 6. CO mole fraction profile along the reactor when length is increased to 40 m 



Figure 7. (a)COS mole fraction (b) Gas temperature profile along the reactor when length is 

increased to 40 m 

Figure 8 shows the axial profile of CO mole fraction as the reactor diameter is changed. For a given 

length, an increase in the diameter of the reactor increases the conversion of CO if equilibrium is not 

reached. It should be noted that an almost complete COS conversion is achieved for all diameters shown 

in Figure 8. Figure 9 shows the corresponding pressure profile. It is observed that as the diameter is 

decreased beyond certain value, the pressure drop increases substantially.  



 

Figure 8. CO mole fraction profile for different reactor diameters 

Figure 9. Pressure profile for different reactor diameters 

Figure 10 shows the relation between the L/D ratio and pressure drop at constant reactor volume. This 

result indicates that as L/D increases, the pressure drop keeps increasing. It should be noted that a lower 

pressure drop is desired in the WGS reactor system so that higher partial pressure of CO2 can be achieved 

in the AGR unit. This is particularly important for achieving higher efficiency of the physical solvent-

based CO2 capture process in the IGCC plant.31 



Figure 10. Pressure drop vs. L/D ratio of the reactor 

Figures 11-12 show the conversion of CO and COS along the reactor for different inlet gas temperatures. 

As seen in Figure 11, the conversion at the outlet remains fairly constant, however, the conversion along 

the reactor reduces as the inlet temperature decreases. Even though the conversion of CO is slightly 

affected by the change in the inlet temperature, the COS conversion is not affected at higher inlet 

temperatures as seen in Figure 12. Figure 11 shows that the CO conversion decreases as the inlet 

temperature changes from 620 K. This happens due to the interplay between the thermodynamics and 

reaction kinetics as mentioned before. However, one can argue that reducing the temperature will not 

significantly reduce the conversion; and recovered heat from reducing the inlet temperature would 

increase the efficiency of the steam cycle. This is later studied when considering the effect of catalyst 

deactivation on the performance of the reactor. 



Figure 11. CO conversion profiles for different inlet gas temperatures 

 

Figure 12. COS conversion profiles for different inlet gas temperatures 

Figure 12 shows that high conversion is achieved at temperatures around the inlet operating temperature 

of 620 K and the COS conversion is not sensitive to the inlet temperature as the studied inlet temperatures 

are high enough to bring the COS hydrolysis reaction to completion. Although the magnified view in 

Figure 11 shows that an increase in the temperature results in a slightly lower conversion of CO, the 

reactor initially shows inverse response to step increase in inlet temperature as shown in Figure 13. Figure 

13 is generated by introducing a step increase in the inlet temperature from 620 to 640 K. When the inlet 



temperature rises, it takes some time for the temperature in the rest of the reactor to increase. So, initially 

the CO conversion increases due to higher reaction rate, but decreases later as the reaction temperature 

rises pushing the equilibrium to the left.  

 

Figure 13. CO conversion transient for a step change in inlet temperature from 620 to 640 K 

Figure 14 shows the dynamic response of gas temperature at the outlet of the reactor for the mentioned 

step increase in the inlet temperature. When the inlet temperature increases, more CO is consumed in the 

area near the inlet of the reactor, thus, the CO conversion increases initially as seen in Figure 13. This 

causes the CO concentration to reduce in the rest of the reactor, which at the same time reduces the 

reaction rate. Since reaction rate is decreased, less heat is generated by the exothermic reactions, thus, the 

temperature decreases initially. However, as the catalyst temperature slowly increases due to the higher 

heat input from the front end, the temperature increases. The COS conversion remains unchanged as the 

reactor temperature remains high enough to bring the reaction to completion in the early region of the 

reactor.  



 

Figure 14. Temperature transient at the outlet of the reactor for a step change in inlet temperature 

from 620 to 640 K 

In IGCC plants, additional steam is added to the syngas feed to achieve the desired conversion of CO. 

However, the required steam is extracted from the steam turbine.31 Therefore, the production of electricity 

from the steam turbines gets reduced. It is therefore important to design the H2O/CO ratio at the inlet of 

the WGS reactors appropriately by considering an optimal CO conversion in the WGS reactor system. 

Figure 15 show this relation between CO conversion and H2O/CO ratio. In Figure 15, increasing the 

molar ratio of steam to CO at constant dry flow rate (2,661 mol/s) increases the CO conversion until it 

reaches a maximum at a steam-to- CO ratio of about 4. However, increasing the ratio requires higher flow 

rate of steam, consequently, higher flow rate at the inlet to the reactor. Increasing the flow at the same 

residence time and superficial velocity requires higher reactor volume. This can be seen in Figure 16a and 

Figure 16b where the reactor diameter and the flow are non-dimensionalized with respect to the values in 

Table 4. Thus, higher conversion must be weighed with respect to the capital cost of the reactor and the 

amount of steam taken from the steam cycle. Since the partial pressure of steam is in the denominator of 

Eqn. (25), it seems that increasing the steam content will reduce the COS hydrolysis rate. However, the 

COS conversion is not greatly affected by the amount of steam present in the syngas. This is because the 

system's temperature is high enough to bring the COS hydrolysis to completion.  



 

Figure 15. CO conversion profile for different steam/CO molar ratio 

 

Figure 16. Required (a) Diameter (b) Flow at different steam/CO molar ratios 

The catalyst deactivation due to sintering can lower the conversion in a sour WGS reactor. Figure 17 

show the effect of catalyst deactivation on CO conversion for different inlet temperatures over the catalyst 

lifetime of 60 months (5 years).77 From an optimization perspective, it can be argued that a lower inlet 

temperature would result in fairly acceptable conversion as can be seen in Figure 11 since lowering the 

temperature from 620 to 580 K will only decrease the conversion by approximately 1%. In return, the 

excess heat can be recovered to increase the efficiency of the steam cycle and the power generation. 



However, Figure 17 shows that at lower inlet temperatures, catalyst deactivation has substantial effect on 

the conversion of CO during the lifetime of the catalyst. Figure 17 shows that the CO conversion reduces 

drastically over time at lower temperatures. However, COS conversion remains at completion for the 

range of inlet temperature studied. Figure 18 shows the COS conversion along the reactor at different 

inlet temperatures after the period of 5 years. As seen in Figure 18, since the length and temperature are 

high enough for the range of temperature studied, the COS conversion remains at completion even in the 

presence of the catalyst deactivation. Although, as can be seen in Figure 18, the COS conversion along 

the reactor is drastically reduced at lower temperatures, this effect is compensated by the length of the 

reactor. Therefore, there is a trade-off between the efficiency of steam cycle and the extent of the 

reactions over catalyst lifetime. However, from the design perspective, the effect of catalyst deactivation 

can be compensated by overdesigning the reactor. 

Figure 17. Effect of catalyst deactivation over time on CO conversion 



 

Figure 18. COS conversion along the reactor after the catalyst lifetime of 5 years 

 

2.1.6 Conclusions 

A 1-D dynamic model of a sour water gas shift reactor has been developed. The available experimental 

data for a sour WGS reactor have been reconciled to obtain consistent data. The proposed data 

reconciliation procedure uses the reactor model to reconcile the data while simultaneously extracting the 

rate constant. A minimization problem is solved for each run of the experimental work and the 

corresponding rate constant is obtained. The Arrhenius plot yields the pre-exponential factor and 

activation energy for the WGS reaction.  

 A simulation study under typical conditions of a sour WGS reactor as part of an IGCC plant is 

performed. The effects of different parameters on the performance of the reactor are investigated and 

results are presented. This study shows that the reactor should be designed with due consideration of the 

desired CO conversion as the WGS reaction is found to reach equilibrium further down the reactor.  The 

study shows that the L/D ratio of the reactors should be appropriately designed by considering the 

pressure drop across the reactors as the efficiency of the AGR unit downstream of the WGS reactor is 

affected by the outlet pressure from the shift reactor system. For the range of inlet temperatures studied, 

i.e., 580-660 K, the COS conversion is found to be not affected by the feed temperature. In addition, even 

though an increase in the temperature results in slightly lower CO conversion, the reactor shows inverse 

response to a step increase in the syngas inlet temperature. At constant flow, as the steam-to-CO ratio 

increases, the CO conversion reaches a maximum at steam-to-CO ratio of about 4 while the COS 

conversion remains at its highest value for the range of steam-to-CO studied. It is observed that the CO 

and COS conversions are not significantly affected by the catalyst deactivation if the inlet temperature is 

sufficiently high.  

 



2.2 Gasification Process 

The gasifier is considered to be the heart of the IGCC power plant. Coal is converted to syngas, mainly 

CO and hydrogen, which is cooled in the radiant syngas cooler (RSC) and sent to the shift reactors before 

being processed in the acid gas removal section of the plant. 

An entrained flow gasifier is considered in this section. The coal is crushed and mixed with water to form 

slurry. The coal slurry, along with oxygen or oxygen enriched air is fed into the gasifier.  Entrained flow 

gasifiers typically operate at very high temperatures to achieve high carbon conversions84. Due to the high 

temperatures, the ash associated with the coal melts and gets deposited onto the gasifier wall to form a 

flowing layer of molten slag. The layer of slag can penetrate into the refractory wall and can cause 

degradation of the refractory at an accelerated rate85,86. Refractory degradation is one of the leading issues 

that impact economic viability of the entrained-flow gasifiers87.This causes change in the thermo-physical 

properties of the refractory material eventually leading to spalling which could result in irreversible 

damage to the equipment. Therefore, refractory degradation due to penetration of slag into the refractory 

and spalling of the refractory wall are considered to be the primary faults in the gasifier. 

Another fault of interest is the rapid increase in the thickness of the slag layer on the refractory wall of the 

gasifier. The viscosity of slag is a strong function of temperature and at lower temperatures; the slag layer 

could rapidly increase thereby choking the exit of the gasifier exit. This could reduce the volume 

available in the bulk of the gasifier and under extreme circumstances, lead to a sudden increase in the 

pressure within the gasifier.  

A gasifier model with slag flow has been developed, which captures the physics of the gasifier unit, along 

with the processes of slag formation and detachment from the char particle, transport and deposition on 

the gasifier wall and the formation of a slag layer on the gasifier wall. This model is then used in a 

degradation model in order to obtain data on the degradation of the refractory. The time scales for the 

gasifier mechanisms are very different from the degradation processes, and thus these models are solved 

separately.  

2.2.1 Modeling 

A number of papers have investigated the flow of slag on the gasifier wall88,89,90,91,92. All these papers have 

considered that a fraction of the char particles hits the flowing slag layer on the wall of the gasifier. A 

fraction of these char particles stick to the wall and continue to react. As a result, the ash contained in 

these char particles melts contributing to the slag layer. Since it is assumed that the ash remains attached 

to the reacting char particles in the bulk of the gasifier, a shrinking core model is considered to describe 

the kinetics89,91,93,94. In the shrinking core model, the ash contained in the char particles is assumed to form 

a solid shell around the unreacted carbon core. The overall size of the char particle remains unchanged 

while its density decreases as the core shrinks.  

However, due to the very high operating temperature of the entrained-flow gasifiers, it is expected that the 

ash gets molten in such environments as suggested by a number of researchers95,96,97. There are several 

papers that have reported that for combustion systems, liquid slag does exist as droplets in the 

bulk98,99,10,101. Depending upon the composition of the ash content in coal, the melting points of ash can 

vary greatly. Ash from the Illinois #6, Pittsburgh #8, and PRB coals for most of the seams is expected to 

have a melting temperature lower than 1350°C102. The exit temperature from the entrained flow gasifiers 

is typically 1350-1600°C. The temperature immediately after the devolatilization section in which the 

combustion reactions take place, often exceed the outlet temperatures by a few hundred degrees. 

Therefore, for a major section of the gasifier, the temperature would exceed the melting point of the ash in 

an entrained flow gasifier.  

Since slag is highly non-wetting on the surface of carbon103,104 when the ash melts, it is likely that it will 

agglomerate into one or several slag droplets rather than spread over the surface of the char particle. 

Several papers105,106,107 in the literature have shown, using SEM, the existence of liquid slag droplets on 

the char surface but there is hardly any work that has modeled this phenomenon.  



If the slag exists in the form of droplets on the char surface rather than as a solid shell around the 

unreacted char particle, then the widely-used shrinking core model (SCM) does not seem physically 

correct. Rather, a shrinking particle model (SPM) would be more physically realistic representation. 

Unlike the shrinking-core model that assumes the diameter of the char particle to be constant108, the 

shrinking-particle model considers the char particle to shrink while the slag droplet(s) would build up on 

the particle’s surface. Eventually the slag droplets may detach from the char surface moving into the 

gasifier bulk.  More included mineral matter gets exposed on the surface leading to the formation of new 

droplets. This suggested mechanism is shown in Figure 19.  

 

Figure 19. Slag formation and detachment. 

Very few papers in the area of modeling look into the process of slag detachment. The dominant 

mechanism for the addition of ash to the slag flow layer on the refractory is assumed to be due to the 

impaction of char particles. However, deposition of slag due to char impaction may not be the only 

mechanism by which slag gets added to the flowing slag layer on the wall. A fraction of these slag 

droplets that separate into the bulk of the gasifier can also get deposited on the wall in addition to the char 

particles. 

The deposition rate of char particles and slag droplets depends on their size, density, and the bulk flow 

conditions109,110,111,112. The size distribution of the slag droplets in the bulk of the gasifier is difficult to 

estimate as the mechanisms for detachment of the slag droplets are complicated and depend on several 

variables such as solids temperature, coal type, ash composition, ash quantity, coal particle size, rate of 

heating of char particle, feed nozzle design, profile of transport variables, probability of attrition, and so 

on. Experimental studies using drop tube furnaces show that the size distribution of the slag droplets also 

strongly depends on the mechanism by which they get detached from the char particles113. Condensation 

of volatile components of the ash content is expected to result in the formation of sub-micron slag 

droplets114. Char particles from certain coal types can readily break up due to the rapid volumetric 

increase of carbon and volatile materials within the coal particle. This mechanism can lead to the 

formation of slag droplets of the order of a few microns99. Shedding can also be a dominant mechanism 



when the temperature of the solids is much higher than the melting point of the ash. The size of the 

liberated slag droplets also depends on the conversion rate of the char particles. In the limiting case, 

complete coalescence can take place where all the ash content within a coal particle coalesces to form a 

single slag droplet99,109,113,115. This case is similar to the dominant assumption of no ash separation in the 

existing literature. During rapid reaction, the char surface recedes rapidly and the molten ash minerals do 

not have sufficient residence time on the surface to coalesce. Under these circumstances, the minerals 

inside the char matrix, also known as the included minerals, would detach from the coal particle without 

coalescing107,109. Between the two limiting cases, slag droplets can separate after they partially coalesce109. 

Therefore, a particle size distribution (PSD) of detached slag droplets would be expected in the bulk. The 

deposition of char particles, as well as slag droplets, has not been considered in the open literature to the 

best of the authors’ knowledge and there is rarely any information on the contribution of slag deposition 

to the net slag deposit on the wall and how this deposition flux is affected by the size of the slag droplets.  

The existing literature shows that slag layer models have been developed and implemented in gasifiers 

and combustors88,89,91,92,116-124. However, slag deposition flux to the wall is difficult to model and a number 

of assumptions are often made. Deposition flux is typically assumed to be constant88,125 or set to a fraction 

of the total solid flow rate entering the gasifier120. Another common assumption is to consider a fixed 

profile for slag deposition along the wall123 during steady state and dynamic simulations. Obviously, these 

assumptions are somewhat arbitrary and difficult to justify especially during transient operation of the 

gasifier.  A number of authors have developed CFD models91,118,119 that track particle trajectories to 

calculate the net amount of slag deposition on the wall. However, it is computationally intractable to 

extend these rigorous models to perform dynamic simulations on a commercial-scale gasifier.  

As noted before, since the slag layer thickness is an important variable, the objective of this study is to 

obtain a better estimate of the slag layer thickness as the operating conditions are changed. Therefore, the 

dynamic effect of a number of key variables such as coal flow rate and O2/coal ratio on the slag layer is 

evaluated. In addition, when the coal switching takes place, there can be a significant impact on the slag 

layer depending on the type of the coal, unless the operating conditions are changed appropriately. 

Therefore, a study has been conducted to observe the effect of coal switching. These simulations will help 

to determine the conditions under which the flowing slag layer thickness will increase rapidly.    

From the previous discussion, a shrinking-particle model seems more physically correct for the region 

where the gasifier bulk temperature well exceeds the ash melting temperature. However, in the early 

region of the gasifier, where the bulk temperature remains lower than the ash melting temperature, a 

shrinking-core model seems more appropriate. Therefore, in this work, we have developed a novel first 

principles, one-dimensional, non-isothermal, pressure-driven dynamic model for a downward-firing, 

entrained-flow, slurry-fed, oxygen-blown (GEE-Texaco type) gasifier using a hybrid shrinking-core-

shrinking-particle reaction model. A novel sub-model for slag formation on the char surface and 

detachment into the bulk is included in the present work. Slag deposition and slag layer models have been 

developed and integrated into the novel gasifier model where slag deposition due to char impaction and 

slag droplet impaction have been considered. It is desired that the models should be reasonably accurate 

yet computationally tractable so that the dynamic model can be used for estimation and control studies. 

First the model development is described followed by a number of studies conducted using the model.   

2.2.1.1 Background and description 

The shrinking-core model used in this work has been previously presented by Kasule93,126 et al. and is 

used for the early region of the gasifier where the bulk temperature is below the ash melting temperature. 

Details of that model can be found in the work of Kasule et al. It should be noted that in entrained-flow 

gasifiers, burners are designed to promote swirling motion at the top of the gasifier that results in quick 

evaporation of water and the subsequent devolatilization step followed by combustion of the liberated 

volatile matter leading to a significant temperature peak. The high carbon residue formed after this 

process is called char. From that region to the exit of the gasifier, the solids temperature remains well 



above the melting point of ash. Therefore the shrinking particle model is applied to that region. Figure 20 

shows the regions where shrinking core and shrinking particle models are applied.  

 

Figure 20. Hybrid shrinking core shrinking particle (HSCSP) model. 

A PSD is considered for the detached slag droplets. A model is developed to calculate the deposition flux 

for both char particles and slag droplets, both of which contribute to the slag flow along the wall that 

eventually leaves the gasifier from the bottom. A schematic of the proposed model is shown in Figure 21.  



 

Figure 21. Schematic of the formation mechanism of slag droplets and their deposition on the wall 

along with char particles and the subsequent formation of a slag layer on the gasifier wall. 

The following assumptions have been made in developing the gasifier model with slag flow:  

1. Char particles and slag droplets are spherical.  

2. Radial distribution of char particles and slag droplets is uniform. 

3. The constituents of the coal particle are assumed to be uniformly distributed. Slag separation 

occurs uniformly for all char particles. 

4. No particle-particle interaction; system is assumed to be sparse.  

5. Excluded minerals, or minerals not associated with the char particles, are not considered in this 

study. 

6. The char particle and detached slag droplet velocity are assumed to be equal and solved for using a 

single momentum balance equation. For entrained flow gasifiers, it is found that the volume 

fraction of solids is very small, less than one percent94. Furthermore, the solid particle sizes 

considered are < 100 microns in diameter and for such systems, the differences in gas and solid 

velocities are found to be very small127. The detached slag droplets are smaller than the char 

particles and therefore would tend to flow at the gas velocity. The solid phase velocity calculated 

on the basis of the char particle and slag droplets can be expected to be even closer to the gas 

velocity and therefore the error in calculating the solid velocity using a single momentum balance 

equation is assumed to be small. 

7. The capture efficiency for char and slag droplets at the wall is assumed to be unity when the solids 

temperature exceeds the melting point of ash. The assumption for the char particles has been made 



based on the observation of the results from the present model that when the char particles impact 

the wall, they already contain substantial amounts of slag. Therefore, it is likely that the impacting 

slag droplets will be fully captured.  

8. Slag layer properties including thermal conductivity, specific heat, and density are assumed to be 

constant.  

9. Due to the small thickness of the slag layer, a linear temperature profile is assumed in the slag 

layer.  

10. The slag layer viscosity is assumed to be constant along the slag layer thickness.  

11. The momentum equation for the slag layer is solved analytically and used in the model.  

Both the solid and gas phases are modeled as continuous phases. A particle model is developed to account 

for the slag droplets that are attached to the char particles and for the detached slag droplets that exist in 

the bulk and is integrated with the continuous phase model. Both, the continuous and the particle models 

are solved integrated and solved simultaneously. A schematic of the integration is shown in Figure 22.  

 

 

Figure 22. Continuum phase domain for solid and gas integrated with the particle phase domain. 

A few notations need to be described before presenting the model. The gas phase volume fraction is 

denoted as ε. The volume fraction of the detached slag droplets is represented by 𝜀𝑠𝑑. The volume fraction 

of the attached slag droplets is denoted by 𝜀𝑠𝑎. A particle size distribution is considered, where the 

detached slag droplets are divided into four size bins depending on the diameters of the slag droplets: 1-

10, 10-20, 20-30 and greater than 30 μm. The volume fractions of these bins in the bulk are denoted 

by 𝜀𝑑,1, 𝜀𝑑,2, 𝜀𝑑,3, and 𝜀𝑑,4, respectively. Figure 23 shows the schematic representation of the notations 

used in this work. 



 

Figure 23. Schematic representation of the notations for denoting solids fractions in the continuum 

model. 

  

The overall mass balance of the solid phase is modeled by Eqn. (106) . Solids are lost to the gas phase due 

to the heterogeneous reactions and due to the deposition of char particles and slag droplets onto the wall. 

These loss mechanisms are represented by the second and third terms on the right hand side of Eqn. (37), 

respectively. 

 𝜕(𝜌𝑠,𝑎𝑣𝑔(1 − 𝜀))

𝜕𝑡
=  −

𝜕(𝜌𝑠,𝑎𝑣𝑔(1 − 𝜀)𝑈𝑠)

𝜕𝑥
− (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1 − 𝜀𝑠𝑑  )Г𝑠−𝑔 − 

4 𝑚𝑑𝑒𝑝

𝐷𝑖
 

(37) 

Here, 𝜌𝑠,𝑎𝑣𝑔 is the average density of the solid phase comprising of the char particles and slag droplets, 𝑈𝑠 

is the solid phase velocity, Г𝑠−𝑔 is the sum of all heterogeneous reaction rates, 𝑚𝑑𝑒𝑝 is the net deposition 

flux to the wall considering deposition of both char particles and slag droplets and 𝐷𝑖 is the internal 

diameter of the gasifier. The term (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1 − 𝜀𝑠𝑑  ) represents the volume fraction occupied by 

the char particles.   

Eqn. (38) shows the gas phase mass conservation equations. 

 𝜕(𝜌𝑔𝜀)

𝜕𝑡
=  −

𝜕(𝜌𝑔𝜀𝑈𝑔)

𝜕𝑥
+ (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1 − 𝜀𝑠𝑑  )Г𝑠−𝑔 − 𝑚𝑟𝑔 + 𝑚𝑚𝑔 

(38) 

𝜌𝑔 are the average gas density,  𝑈𝑔 are the gas velocity, the recirculation effect in the gas phase is 

captured by the terms 𝑚𝑟𝑔, which is the mass of gas that leaves the control volume (CV) because of 

recirculation, and 𝑚𝑚𝑔, which is the mass of gas that gets added to a CV due to recirculation. These terms 

are calculated by the following equations: 

  𝑚𝑟𝑔 = 𝑚̇𝑟𝑒𝑐𝑖𝑟/𝐴𝑅𝐿2 (39) 

  𝑚𝑚𝑔 = 𝑚̇𝑟𝑒𝑐𝑖𝑟/𝐴𝑅𝐿1 (40) 



 𝑚̇𝑟𝑒𝑐𝑖𝑟 =  𝛼 𝑚̇𝑖𝑛 (41) 

 

where A is the cross section area, L2 is the length of the zone from where the recirculating gas is removed 

and L1 is the length of the zone where the gas is added into the bulk gas stream, 𝛼 is the recirculation ratio 

and 𝑚̇𝑖𝑛 is the inlet gas stream. A schematic of the recirculation model is shown in Figure 24.  

 

Figure 24. Schematic of the recirculation model. 

Eqn. (42) and (43) show the species conservation equations for the solid and gas phases, respectively.  

𝜕 ((1 − 𝜀)(1 − 𝜀𝑠𝑎)(1 − 𝜀𝑠𝑑)𝜌𝑐ℎ𝑋𝑠,𝑗)

𝜕𝑡

=  − 
𝜕 ((1 − 𝜀)(1 − 𝜀𝑠𝑎)(1 − 𝜀𝑠𝑑)𝜌𝑐ℎ𝑈𝑠𝑋𝑠,𝑗)

𝜕𝑥
+ (1 − 𝜀)(1 − 𝜀𝑠𝑎)(1 − 𝜀𝑠𝑑)𝑟𝑠,𝑗 

(42) 

 𝜕(𝜀𝜌𝑔𝑦𝑔,𝑖)

𝜕𝑡
=  − 

𝜕(𝜀𝜌𝑔𝑈𝑔𝑦𝑔,𝑖)

𝜕𝑥
+ 𝜀 𝑟𝑔,𝑖 − 𝑚𝑟𝑔𝑦𝑔,𝑖 + 𝑚𝑚𝑔𝑦𝑔,𝑖,𝑎𝑣𝑔 

(43) 

The volume fraction corresponding to the char particle volume, shown in Figure 23 is used in Eqn. (42) 

for each of the terms. The last two terms in Eqn. (43) correspond to the recirculation of gas species out of 

and into the control volume similar to the overall gas balance equation. 𝑦𝑔,𝑖 is the mass fraction of the 

species i.  𝑦𝑔 𝑖,𝑎𝑣𝑔 denotes the average mass fraction of species i in the circulating flow. Details of the 

recirculation model can be found in the work of Kasule et al93. 

The gas phase density is calculated by assuming ideal gas law in the form given by Eqn. (44).  

 
𝜌𝑔 = 

𝑃

𝑅𝑇𝑔
.

1

∑ (
𝑦𝑖

𝑀𝑊𝑖
⁄ )𝑁

𝑖=1

 
(44) 

In Eqn. (44), N is the total number of gaseous species and yi and MWi are the mass fraction and molar 

weight of the i93 gaseous species.  



As the char undergoes reactions, slag associated with the matrix becomes free and forms slag droplets that 

are attached to the surface of the char particle. The ash is assumed to be homogeneously distributed in the 

coal particle. Based on the mass fraction of the ash and carbon, the amount of ash that gets exposed on the 

surface per mass of carbon reacting can be calculated. The mass conservation equation for the attached 

slag droplets is given by Eqn. (45). 

 
𝜌𝑠𝑙

𝜕((1 − 𝜀)(1 − 𝜀𝑠𝑑  )𝜀𝑠𝑎)

𝜕𝑡

=  −𝜌𝑠𝑙

𝜕((1 − 𝜀)(1 − 𝜀𝑠𝑑  )𝜀𝑠𝑎𝑈𝑠)

𝜕𝑥
+ (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1

− 𝜀𝑠𝑑  )Г𝑠−𝑔𝜔𝑎𝑠ℎ − ∑ 𝑝𝑠𝑙,𝑛𝑀𝑐𝑑,𝑛

4

𝑛=1

 

(45) 

Here, 𝜌𝑠𝑙 is the slag density, 𝜔𝑎𝑠ℎ is the ratio of ash to carbon mass fraction, 𝑝𝑠𝑙,𝑛 is the number of slag 

droplets detached per unit volume per unit time from the char surface corresponding to the size bin n and 

𝑀𝑐𝑑,𝑛 is the mass of the slag droplet of critical diameter corresponding to the size bin n. The second term 

on the right side of Eqn. (45) represents the rate of formation of the slag droplets due to the heterogeneous 

reactions. The final term represents the sum of the rates of detachment of slag droplets into their 

respective size bins.  

Detached slag droplets belong to one of the four size bins. The mass conservation equation for the slag 

droplets in each of the bins is given by Eqn. (46). 

 

𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑𝜀𝑑,𝑛)

𝜕𝑡
=  −𝜌𝑠𝑙

𝜕 ((1 − 𝜀)𝜀𝑠𝑑𝜀𝑑,𝑛𝑈𝑠)

𝜕𝑥
+ 𝑝𝑠𝑙,𝑛𝑀𝑐𝑑,𝑛 − 

4 𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛

𝐷𝑖
 

(46) 

𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛 is the deposition flux of the slag droplets in bin size n. Eqn. (46) is written for three of the four 

bins. In addition, a summation equation shown in Eqn. (47) is written.  

 

∑ 𝜀𝑑,𝑛 = 1

4

𝑛=1

 

(47) 

The overall detached slag mass conservation equation is shown in Eqn. (48).  

 

𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑)

𝜕𝑡
=  −𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑𝑈𝑠)

𝜕𝑥
+ ∑ 𝑝𝑠𝑙,𝑛𝑀𝑐𝑑,𝑛

4

𝑛=1

− 
4∑ 𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛

4
𝑛=1

𝐷𝑖
 

(48) 

The continuum model tracks the mass of slag droplets in the bulk based on 𝑝𝑠𝑙,𝑛 and msl,dep,n.  

2.2.1.2 Particle model 

For calculating the term 𝑝𝑠𝑙,𝑛 used in the continuum model, a particle model is required. This model 

tracks the growth of the slag droplets on the char particle and helps to identify the locations of detachment 

and the detachment rate into each of the bin sizes. A particle size distribution is used as an input to the 

model and is assumed to be constant throughout the length of the gasifier.  In the present framework, it is 

also assumed that the ash content of all the char particles in a control volume is constant and the growth 

and detachment phenomena of slag droplets from a char particle are similar for all char particles in the 

same control volume. 

The number of slag droplets that belong to bin size n that could detach from the char surface is termed 

as 𝑤𝑑𝑒𝑡,𝑛,𝑖. After the slag droplets detach, the residual mass left behind gets added to the slag generated in 

the next control volume. This mass of remaining slag is denoted by 𝑀𝑠𝑟,𝑛,𝑖. 𝑀𝑠𝑟,𝑛,𝑖 and 𝑤𝑑𝑒𝑡,𝑛,𝑖 are 

calculated using Eqn. (49)-(50).  



 
𝑤𝑑𝑒𝑡,𝑛,𝑖 = ⌊

𝜔𝑎𝑠ℎ,𝑖Г𝑠−𝑔,𝑖𝑉𝑐ℎ,𝑖𝜏𝑝,𝑖 + 𝑀𝑠𝑟,𝑛,𝑖−1

𝑀𝑐𝑑,𝑛
⌋ 

(49) 

 𝑤𝑑𝑒𝑡,𝑛,𝑖𝑉𝑐𝑑,𝑛𝜌𝑠𝑙,𝑖 + 𝑀𝑠𝑟,𝑛,𝑖 = 𝜔𝑎𝑠ℎГ𝑠−𝑔,𝑖𝑉𝑐ℎ,𝑖𝜏𝑝,𝑖 + 𝑀𝑠𝑟,𝑛,𝑖−1 (50) 

Here, 𝜔𝑎𝑠ℎ,𝑖  is the ratio of ash to carbon mass fraction, Г𝑠−𝑔,𝑖 is the sum of all heterogeneous reactions on 

the carbon of the char particle, 𝑉𝑐ℎ,𝑖 is the char particle volume, 𝑉𝑐𝑑,𝑛 is the detachment volume of the slag 

in size bin n and 𝑀𝑐𝑑,𝑛 is its corresponding mass. 

The total slag mass that could possibly separate from the char surface per unit volume of the reactor for 

each of the size bins is denoted by 𝑀𝑠𝑙,𝑝𝑜𝑠𝑠,𝑛,𝑖 and is calculated using Eqn. (51). Based on the PSD, the 

total mass of slag that does finally separate into each of the bin sizes in a CV is calculated using Eqn. 

(52).  

 𝑀𝑠𝑙,𝑝𝑜𝑠𝑠,𝑛,𝑖 = 𝑤𝑑𝑒𝑡,𝑛,𝑖𝑁𝑐ℎ,𝑖𝑀𝑐𝑑,𝑛 (51) 

 𝑀𝑠𝑙,𝑠𝑒𝑝,𝑛 = 𝑀𝑠𝑙,𝑝𝑜𝑠𝑠,𝑛,𝑖 𝑓𝑟𝑛 (52) 

Here, 𝑓𝑟𝑛 is the input to the model and is the fraction of mass present in bin size n over the total slag mass 

in the bulk. The sum of 𝑓𝑟𝑛 for all bin sizes is unity. 𝑁𝑐ℎ,𝑖 is the number of char particles per unit volume 

in the CV and is calculated using Eqn. (46), which is obtained directly from the definition of the volume 

fractions. 

 𝑁𝑐ℎ,𝑖𝑉𝑐ℎ,𝑖 = (1 − 𝜀𝑖)(1 − 𝜀𝑠𝑎,𝑖 )(1 − 𝜀𝑠𝑑,𝑖 ) (53) 

Finally, the slag detachment rate into each of the bins is calculated using Eqn. (54)-(55).  

 𝑝𝑠𝑙,𝑛,𝑖𝑀𝑐𝑑,𝑛𝜏𝑝,𝑖 = 𝑀𝑠𝑙,𝑠𝑒𝑝,𝑛 (54) 

 
𝜏𝑝,𝑖 = 

∆𝑥

𝑈𝑠,𝑖
 

(55) 

where, 𝜏𝑝,𝑖 is the residence time of the particles in a CV. Eq. (53)-(54) are the key equations for 

connecting the continuum and particle models.  Eqn. (49)-(52) and Eqn. (54) are written for each of the 

bin sizes. Additional equations are written for the shrinking char particles as shown in Eqn. (56)-(57).  

 𝑀𝑐ℎ,𝑖 = 𝑉𝑐ℎ,𝑖  𝜌𝑐ℎ (56) 

 𝑀𝑐ℎ,𝑖 = 𝑀𝑐ℎ,𝑖−1 − Г𝑠−𝑔,𝑖𝑉𝑐ℎ,𝑖 𝜏𝑝,𝑖 (1 + 𝜔𝑎𝑠ℎ) (57) 

A figure showing the important equations and exchange of information between the continuum model and 

the particle model is shown in Figure 25. The continuum and particle model equations are solved 

simultaneously.  

 



 

Figure 25. Transfer of information between the particle model and continuum model. 

2.2.1.3 Momentum balance equation 

It is assumed that the velocities of the slag droplets, both attached and detached, are the same as the char 

particle since the system is found to be dilute in terms of solid concentration and the difference in gas and 

solid velocities are found to be inconsiderate. This assumption has been made mainly for simplicity and 

ensures the computational expense remains tractable for a dynamic model. But certainly, the model can 

be easily enhanced by relaxing this assumption. Under this assumption, momentum balances are required 

only for the gas phase and the overall solid phase and these balances are shown in Eqn. (58) and (59), 

respectively. 

 𝑑(𝜀𝜌𝑔𝑈𝑔
2)

𝑑𝑥
=  −𝜀

𝑑𝑃𝑡

𝑑𝑥
+  𝜀𝜌𝑔𝑔 − (1 − 𝜀)𝑓𝑠 

(58) 

 

 𝑑((1 − 𝜀)𝜌𝑠,𝑎𝑣𝑔𝑈𝑠
2)

𝑑𝑥
=  −(1 − 𝜀)

𝑑𝑃𝑡

𝑑𝑥
+ (1 − 𝜀)𝜌𝑠,𝑎𝑣𝑔𝑔 + (1 − 𝜀)𝑓𝑠 

(59) 

 where, 𝑓𝑠 is the drag force per unit volume of particles, 𝑈𝑠 and 𝑈𝑔are the solid and gas phase velocities 

respectively, 𝑃𝑡 is the total pressure in the system.  The drag force is calculated using the equation from 

Arastroopour and Gidaspow128 as; 



 
𝑓𝑠 = 

3𝐶𝐷𝜌𝑔(1 − 𝜀)−2.65(𝑈𝑔 − 𝑈𝑠)|𝑈𝑔 − 𝑈𝑠|

4𝑑𝑎𝑣𝑔
 

(60) 

where the CD is the drag coefficient taken from Rowe and Henwood129. This is given as 

 
𝐶𝐷 = {

24

𝑅𝑒
[1 + 0.15𝑅𝑒0.687] ; 𝑅𝑒 < 1000

0.44;                               𝑅𝑒 ≥ 1000
 

(61) 

The Reynolds number is given as  

 
𝑅𝑒 = (1 − 𝜀)𝜌𝑔𝑑𝑎𝑣𝑔

|𝑈𝑔 − 𝑈𝑠|

𝜇𝑔
 

(62) 

where, 𝜇𝑔, is the viscosity of the gas phase and 𝑑𝑎𝑣𝑔 is the weighted average diameter of the slag droplets 

and char particles, calculated on the basis of their respective volume fractions.  

 

2.2.1.4 Energy balance equation 

The energy balance equations for the gas and solid phases are shown in Eqn. (63) and (64).  The 

temperature of the slag droplets and the char particle are assumed to be equal. This is done mainly for 

simplicity and keeping the computational expense tractable for a dynamic model. The model can be easily 

enhanced by relaxing this assumption. 

𝜕(𝜀𝜌𝑔𝐶𝑝,𝑔𝑇𝑔)

𝜕𝑡
+ 

𝜕(𝑈𝑔𝜀𝜌𝑔𝐶𝑝,𝑔𝑇𝑔)

𝜕𝑥

=  
𝜋𝐷𝑖

𝐴𝑅
{ℎ𝑤−𝑔[𝑇𝑤 − 𝑇𝑔]}

− (1 − 𝜀)
6

𝑑𝑐ℎ𝑎𝑟
{𝑒𝑔𝐹𝑔−𝑠𝜎[𝑇𝑔

4 − 𝑇𝑠
4] + ℎ𝑔−𝑠[𝑇𝑔 − 𝑇𝑠]}

+ ∑ 𝜀(−∆𝐻𝑟𝑥𝑛,𝑗)𝑟𝑗  − 𝑚𝑟𝑔ℎ𝑟𝑔 + 𝑚𝑚𝑔ℎ𝑚𝑔

𝑔𝑎𝑠−𝑝ℎ𝑎𝑠𝑒
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑗

 

(63) 

𝜕 ((1 − 𝜀)𝜌𝑠,𝑎𝑣𝑔𝐶𝑝,𝑎𝑣𝑔𝑇𝑠)

𝜕𝑡
+

𝜕(𝑈𝑠(1 − 𝜀)𝜌𝑠,𝑎𝑣𝑔𝐶𝑝,𝑎𝑣𝑔𝑇𝑠)

𝜕𝑥

=
𝜋𝐷𝑖

𝐴𝑅
𝐹𝑤−𝑠[𝑇𝑤

4 − 𝑇𝑠
4] + (1 − 𝜀)

6

𝑑𝑐ℎ𝑎𝑟
(𝑒𝑔𝐹𝑔−𝑠𝜎[𝑇𝑔

4 − 𝑇𝑠
4] + ℎ𝑔−𝑠[𝑇𝑔 − 𝑇𝑠])

+ ∑ (1 − 𝜀)(−∆𝐻𝑟𝑥𝑛,𝑘)𝑟𝑘

𝑠𝑜𝑙𝑖𝑑−𝑝ℎ𝑎𝑠𝑒
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑘

 

(64) 

where 𝐹𝑔−𝑠 and 𝐹𝑤−𝑠 are the view factors between gas-solid and wall- solid,  respectively. In the gas 

phase energy balance equation, 𝑚𝑟𝑔ℎ𝑟𝑔 is the enthalpy leaving and 𝑚𝑚𝑔ℎ𝑚𝑔is the enthalpy entering the 

control volume due to recirculation. ∆𝐻𝑟𝑥𝑛,𝑗 and ∆𝐻𝑟𝑥𝑛,𝑘 are the heat of reaction for the homogeneous 

and heterogeneous reactions, respectively. The heat of reactions and kinetic parameters have been taken 

from the literature cited in Kasule et al93. The authors could not find the heat of fusion for the ash in 

Illinois #6 coal, however, based on the limited literature, it seems that the heat of fusion for ash in 

coal130,131 is usually very small in comparison to the heat of reaction of the heterogeneous reactions. 

Therefore, the heat of fusion is not explicitly considered in this model. Furthermore, ash transformation 

reactions are not considered separately, but are assumed to take place spontaneously along with the char 



conversion reactions. Due to this assumption, the latent heat of fusion for ash can be readily included in 

the energy balance equations by modifying the heat of reaction for the heterogeneous reactions. In the 

solid phase energy balance equation, 𝐶𝑝,𝑎𝑣𝑔is the average specific heat calculated using the weighted 

average of the void fractions of char, slag droplets attached and slag droplets in the bulk. Eqn. (65)-(66) 

show how ℎ𝑟𝑔 and ℎ𝑚𝑔 are calculated. 

 

ℎ𝑟𝑔 = ∑𝑦𝑖 ∫ 𝐶𝑝,𝑖𝑑𝑇
𝑇

298

𝑁

𝑖=

 

(65) 

 

 
ℎ𝑚𝑔 =

1

𝑚
∑ ℎ𝑟𝑔,𝑘

𝑟

𝑘=1

 
(66) 

where N is the number of components in the gas phase, r is the number of control volumes in the 

recirculation zone and m is the number of control volumes in the mixing zone. 

Eqn. (67)-(69) are used for the calculation of the average density and specific heat that is used in the 

momentum and energy balance equation for the solid phase. 

 𝜌𝑠,𝑎𝑣𝑔 = 𝜀𝑠𝑑𝜌𝑠𝑙 + (1 − 𝜀𝑠𝑑)𝜀𝑠𝑎𝜌𝑠𝑙 + (1 − 𝜀𝑠𝑑)(1 − 𝜀𝑠𝑎)𝜌𝑐ℎ (67) 

 𝑑𝑎𝑣𝑔 = 𝜀𝑠𝑑𝑑𝑐𝑟 + (1 − 𝜀𝑠𝑑)𝜀𝑠𝑎𝑑𝑠𝑎 + (1 − 𝜀𝑠𝑑)(1 − 𝜀𝑠𝑎)𝑑𝑐ℎ (68) 

 𝜌𝑠,𝑎𝑣𝑔𝐶𝑝,𝑎𝑣𝑔 = 𝜀𝑠𝑑𝜌𝑠𝑙𝐶𝑝,𝑠𝑙𝑎𝑔 + (1 − 𝜀𝑠𝑑)𝜀𝑠𝑎𝜌𝑠𝑙𝐶𝑝,𝑠𝑙𝑎𝑔 + (1 − 𝜀𝑠𝑑)(1 − 𝜀𝑠𝑎)𝜌𝑐ℎ𝐶𝑝,𝑐ℎ (69) 

2.2.1.5 Reaction rates 

The gasifier can be divided into several reaction zones based on the dominant reactions/processes that 

occur in the solids. These reactions/ processes include drying, devolatilization, combustion, and 

gasification. The first three of these processes tend to occur much earlier in the gasifier, and result in a 

dramatic increase in the solid temperature. Gasification reactions are slower and continue till the end of 

the gasifier. In both shrinking core and shrinking particle models, all reactions are considered at all 

locations.  

Water vapor evaporation, devolatilization and the homogeneous reactions are modeled in the same 

manner as shown in Kasule et al93. Water evaporation is modeled similar to the work of Rao et al.132 A 

point to note is that the water in the slurry and the moisture content is considered together in calculation 

of the evaporation rate. For devolatilization, the products and kinetic parameters for the reaction / 

processes given by Syamlal and Bisset133 are used in the model.  

The overall reaction rate for the shrinking core model is given by: 

 
𝐾𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =

1

1
𝑘𝑑𝑖𝑓𝑓

+
1

𝑘𝑎𝑠ℎ
(1 −

1
𝑌) +

1
𝑘𝑠𝑌

2

 
(70) 

where Y is the ratio of the diameters of unreacted core and the char particle, and 𝑘𝑑𝑖𝑓𝑓, 𝑘𝑎𝑠ℎ and 𝑘𝑠 are the 

gas film diffusion coefficient, ash diffusion coefficient and surface reaction coefficient respectively.  

In contrast to the shrinking-core model, the shrinking particle model considers no resistance due to ash. 

The overall rate constant for a shrinking particle model is given by: 

 
𝐾𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =

1

1
𝑘𝑑𝑖𝑓𝑓

+
1
𝑘𝑠

 
(71) 



It can be noted that all rate constants are in the units of g.cm-2.atm-1s-1. The expressions for the 

coefficients are taken from the work of Wen and Chaung134. Typically, a conversion factor of 6/dchar is 

used to give the overall reaction rate constant in terms of volumetric units. For the present model, the 

surface reaction rate constant term cannot be evaluated at a shrinking particle size since the reaction rate 

would tend to infinity as the diameter of the char particle shrinks to zero. The surface reaction rate 

constant is instead converted to volumetric units by evaluating the factor 6/dchar at the fixed char particle 

size. The particle size used by Wen and Chaung134 had considered while developing these kinetics was 

350µm.  

2.2.1.6  Slag transport and deposition 

While most of the slag droplets that are detached into the bulk remain in the gas phase, some of the 

droplets and char particles in the vicinity of the wall can impact the molten slag layer and get captured as 

shown in Figure 26. The deposition flux of the impacting particles and droplets is a key input required for 

the slag layer sub-model. The deposition flux depends on the number density of the particles and droplets 

as well as the deposition velocity.  

 

Figure 26. Schematic showing the slag droplet deposition on the gasifier wall. 

  

Since the present model is a 1-D model of the slagging gasifier, an analytical expression is required in 

order to calculate the velocity of the char particles and slag droplets. Experimental and computational 

works are available in the open literature where the transport and deposition of solid particles or liquid 

droplets suspended in a flowing fluid are studied. The results are usually presented in the form of a 

dimensionless velocity as a function of dimensionless relaxation time graph110,111,112,121,122 as seen in 

Figure 27. The relaxation time is a function of flow conditions as well as particle density and size and is 

calculated using Eqn. (72).  

 
𝜏+ =

𝜌𝑝𝑑𝑝
2𝑢∗

2

18𝜌𝑔𝜗2
 

(72) 

In Eqn. (72), 𝜌𝑝 is the particle density, 𝑑𝑝 is the particle diameter, 𝑢∗ is the fluid friction velocity, 𝜌𝑔 is 

the gas phase velocity and 𝜗 is the kinematic viscosity. The deposition velocity is calculated using Eqn. 

(73).  



 𝑉𝑑𝑒𝑝 = 𝑉𝑑𝑒𝑝+𝑢∗ (73) 

 

Figure 27. General plot showing the relation between the Vdep + and τ+ redrawn from Guha114. 

As seen in Figure 27, the dominant deposition mechanism(s) and deposition velocity can vary greatly 

depending on the value of 𝜏+. Particles that are a few microns in size fall in the regime where the 

deposition is mainly due to turbulent diffusion. In this case, the deposition velocity is small. Larger 

particles with higher relaxation time deposit due to eddy diffusion impaction. In this regime, the 

deposition velocity increases rapidly with increase in particle size. Deposition velocity levels out as the 

relaxation time increases further. In this third regime, particle inertia is the dominant deposition 

mechanism.  

A few authors111,121,122have used correlations between the dimensionless relaxation time and 

dimensionless velocity to calculate the deposition rate in combustors and gasifiers. In the present study, 

the correlations proposed by Wood110 are used to calculate the deposition velocity of the char particles 

and the slag droplets of different sizes.  

For particles depositing due to turbulent diffusion and eddy diffusion impaction, 𝑉𝑑𝑒𝑝+ is given by Eqn. 

(74). 

 
𝑉𝑑𝑒𝑝+ =

3√3

29𝜋
(
𝐷𝑝

𝜗
)
2/3

+  4.5×10−4 𝜏+
2 

(74) 

 where, 𝐷𝑝 is the particle diffusivity and is given by;  

 
𝐷𝑝 =

𝑘𝑇

3𝜋𝜇𝑑𝑝
 

(75) 

In Eqn. (75), k is the Boltzmann’s constant, T is the absolute temperature and 𝜇 is the gas phase viscosity. 

The dimensionless deposition velocity for particles that deposit due to particle inertia can be calculated 

log10 (τ+) 



using Eqn. (76).  The dimensionless deposition velocity is assumed to be constant and independent of 

particle size110. 

 𝑉𝑑𝑒𝑝+ = 0.175 (76) 

 The fluid friction velocity and friction factor can be calculated using Eqn. (77)-(78) for the current range 

of fluid Reynolds number and are taken from Haaland135. 

 
𝑢∗ = (

𝑓

2
)
.5

𝑢̅ 
(77) 

 
1

√𝑓
= −1.8𝑙𝑜𝑔10 [(

𝜀∗
𝐷⁄

3.7
)

1.11

+
6.9

𝑅𝑒
] 

(78) 

In the present work, it is assumed that the molten slag layer has a smooth surface and the term associated 

with surface roughness in Eqn. (78) i.e. (
𝜀∗

𝐷⁄ ) is set to zero. 

Using Eqn. (74)-(78), the deposition velocity of the slag droplets in different bin sizes and the char 

particles can be calculated. For the current flow conditions, it is found that the slag droplets of the size 1-

10 microns deposit due to turbulent diffusion and eddy diffusion impaction with values for 𝜏+ less than 

15. The slag droplets in the larger bin sizes have  𝜏+ values ranging from 50 to 400, depending upon 

location in the gasifier and size droplet sizes. Droplets in these size bins fall in the particle inertia 

dominant regime. The char particles enter the gasifier at a size of 100 microns which correspond to 𝜏+ as 

high as 1000. As the char particles react, they shrink in size and can exit the gasifier with  𝜏+ values lower 

than 50. As a result the char particles also fall in the particle inertia dominant regime and therefore have 

the same deposition velocity as the larger slag droplets as shown in Eqn. (76).  

The deposition flux terms used in Eqn. (37), (46) and (48) are calculated using Eqn. (79)-(81).  

 
𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛 =

(1 − 𝜀)𝜀𝑠𝑑𝜀𝑑,𝑛𝜌𝑠𝑙𝑉𝑑𝑒𝑝,𝑛

2
 

(79) 

 
𝑚𝑐ℎ,𝑑𝑒𝑝 =

(1 − 𝜀)(1 − 𝜀𝑠𝑎)(1 − 𝜀𝑠𝑑)𝜌𝑐ℎ𝑎𝑟𝑉𝑑𝑒𝑝.𝑐ℎ𝑎𝑟

2
 

(80) 

 

𝑚𝑑𝑒𝑝 = 𝑚𝑐ℎ,𝑑𝑒𝑝 + ∑ 𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛

4

𝑛=1

 

(81) 

Here, 𝑉𝑑𝑒𝑝,𝑛 is the slag deposition velocity for different bin sizes and 𝑉𝑑𝑒𝑝,𝑐ℎ𝑎𝑟 is the char particle 

deposition velocity. The slag deposition velocity is calculated using the Sauter mean diameter of the size 

range of the bins.  

2.2.1.7 Slag flow model 

It is important to ensure that the wall temperature in a refractory-lined entrained flow gasifier be high 

enough to avoid the formation of a solid slag layer. Slag solidification can lead to a rapid reduction in the 

available volume for reactions in the gasifier and can eventually clog the equipment.  The maximum 

viscosity for slagging gasifiers is considered to be 250 Poise to avoid build-up of the slag layer101. To 

simulate the dynamics of the slag layer on the wall, a liquid slag layer sub-model is incorporated into the 

gasifier model described previously. A linear temperature profile across the slag thickness, i.e., in the 

radial direction is assumed. An analytical expression for the momentum balance is used and the mass and 

energy balance equations are solved using continuum equations. Several heat transfer mechanisms have 

been considered in the energy balance equation of the slag layer including convective heat transfer 

between the gas and the slag layer, conductive heat transfer between the refractory wall and the slag layer 

and the radiative heat interaction between various sections of the inside wall of the gasifier, and the solid 



particles in the gasifier bulk, with the slag layer. Such an involved heat balance equation for the slag layer 

has not been considered previously in the literature to the best of the author’s knowledge.  A schematic of 

the slag model is shown in Figure 28.  

 

Figure 28. Schematic of the mass, momentum and energy interactions in the slag layer. 

The mass balance equation is shown in Eqn. (82)88.  

 
𝜌𝑠𝑙𝜋𝐷𝑖∆𝑥

𝑑𝑤𝑖

𝑑𝑡
= 𝑚𝑖𝑛,𝑖 + 𝑚𝑒𝑥,𝑖−1 − 𝑚𝑒𝑥,𝑖 

(82) 

𝑚𝑖𝑛,𝑖 is the mass deposition rate onto the control volume, 𝑚𝑒𝑥,𝑖 is the mass flow rate of slag flowing out 

of  the control volume and 𝑚𝑒𝑥,𝑖−1 is the mass flow rate of slag flowing into the control volume and wi is 

the slag layer thickness. 𝑚𝑒𝑥,𝑖 is calculated using Eqn. (83)136. 

 
𝑚𝑒𝑥,𝑖 =

1

3

𝜋𝐷𝑖𝜌𝑠𝑙
2𝑔𝑤𝑖

3

𝜂𝑠𝑙,𝑖
 

(83) 

𝜂𝑠𝑙,𝑖 is the viscosity of the slag in the slag flow layer and g is acceleration due to gravity.  

The expression for viscosity is calculated by the BCURA S 85 correlation137 using Eqn. (84)-(85). 

 
𝑙𝑜𝑔10𝜂𝑠𝑙 = 4.468𝑠2 +

12650

𝑇𝑠𝑙
− 7.44 

(84) 

 
s = 2

2 2 3

SiO

SiO +Fe O +CaO+MgO
 

(85) 

where, s is known as the silica ratio.  

A slag layer heat balance equation is derived and shown in Eqn. (86).  

𝜌𝑠𝑙𝑤𝐶𝑝,𝑠𝑙,𝑖𝜋𝐷𝑖∆𝑥
𝑑𝑇𝑠𝑙,𝑖

𝑑𝑡
=  𝑞𝑖𝑛,𝑖 − 𝑞𝑜𝑢𝑡,𝑖 + 𝑚𝑖𝑛,𝑖𝐶𝑝,𝑠𝑙,𝑖 (𝑇𝑠,𝑖 − 𝑇𝑠𝑙,𝑖) + 𝑚𝑒𝑥,𝑖−1𝐶𝑝,𝑠𝑙,𝑖(𝑇𝑠𝑙,𝑖−1 − 𝑇𝑠𝑙,𝑖) 

(86) 



where 𝐶𝑝,𝑠𝑙,𝑖 is the specific heat, 𝑞𝑖𝑛,𝑖 is the sum of the energies flowing into the slag layer from the bulk 

side of the gasifier, 𝑞𝑜𝑢𝑡,𝑖 is the heat conducted to the refractory, 𝑇𝑠𝑙,𝑖 and 𝑇𝑠𝑙,𝑖−1 are the temperatures of 

the slag layer in the current and previous control volume, respectively, and 𝑇𝑠,𝑖 is the temperature of the 

incoming slag droplet, which is assumed to be equal to the solid phase temperature. 𝑞𝑖𝑛,𝑖 is calculated 

using Eqn. (87)-(92). The heat transfer mechanisms considered in this work are similar to Kasule et al.93.  

 𝑞𝑖𝑛,𝑖 = 𝜋𝐷𝑖𝛥𝑥. [𝑞𝑐𝑜𝑛𝑣,𝑠𝑙−𝑔 + 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑝 + 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑏 + 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑡𝑜𝑝 + 𝑞𝑟𝑎𝑑,𝑠𝑙𝑖−𝑠𝑙𝑎𝑙𝑙𝑝≠𝑙
] (87) 

 𝑞𝑐𝑜𝑛𝑣,𝑠𝑙−𝑔 = ℎ𝑠𝑙−𝑔(𝑇𝑜 − 𝑇𝑔) (88) 

 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑝 = 𝐹𝑠𝑙−𝑝𝜎𝑠𝑙−𝑝(𝑇𝑜
4 − 𝑇𝑠

4) (89) 

 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑏 = 𝐹𝑠𝑙−𝑏𝜎𝑠𝑙−𝑏(𝑇𝑜
4 − 𝑇𝑜(𝑒𝑛𝑑)4) (90) 

 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑡𝑜𝑝 = 𝐹𝑠𝑙−𝑡𝑜𝑝𝜎𝑠𝑙−𝑡𝑜𝑝(𝑇𝑜
4 − 𝑇𝑤(0)4) (91) 

 
𝑞𝑟𝑎𝑑,𝑠𝑙𝑖−𝑠𝑙𝑎𝑙𝑙,𝑎≠𝑙

= ∑𝑒𝑠𝑙𝐹𝑠𝑙𝑖−𝑠𝑙𝑎(𝑇𝑜𝑖
4 − 𝑇𝑜𝑎

4 )

 

𝑎

 
(92) 

Here, 𝑞𝑐𝑜𝑛𝑣,𝑠𝑙−𝑔 is the transfer due to convection from the gas phase in the bulk, 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑝is the radiation 

heat transfer between the particles to the slag layer, 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑏 and 𝑞𝑟𝑎𝑑,𝑠𝑙−𝑡𝑜𝑝 are the radiation heat 

transfer between the slag layer and the top and bottom wall of the slagging gasifier respectively and 

𝑞𝑟𝑎𝑑,𝑠𝑙𝑖−𝑠𝑙𝑎𝑙𝑙,𝑎≠𝑙
is the radiation heat transfer between different control volumes of the slag layer. F 

represents the view factor for the corresponding radiation heat flux terms. The equations for the friction 

factors are shown in Eqn. (72)-(75) and were obtained from Siegel and Howell138. 

 
𝐹𝑠𝑙−𝑝 = [((𝑧𝑠𝑙−𝑝 𝐷𝑖⁄ )

2
+ 0.5) √(𝑧𝑠𝑙−𝑝 𝐷𝑖⁄ )

2
+ 1⁄ ] − (𝑧𝑠𝑙−𝑝 𝐷𝑖⁄ ) 

(93) 

 𝐹𝑠𝑙−𝑏 = [((𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ )2 + 0.5) √(𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ )2 + 1⁄ ] − (𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ ) (94) 

 
𝐹𝑠𝑙−𝑡𝑜𝑝 = [((𝑧𝑠𝑙−𝑡𝑜𝑝 𝐷𝑖⁄ )

2
+ 0.5) √(𝑧𝑠𝑙−𝑡𝑜𝑝 𝐷𝑖⁄ )

2
+ 1⁄ ] − (𝑧𝑠𝑙−𝑡𝑜𝑝 𝐷𝑖⁄ ) 

(95) 

 𝐹𝑠𝑙𝑖−𝑠𝑙𝑎𝑙𝑙,𝑎≠𝑙
= 1 − [1 − [(2(𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ )3 + 3(𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ )) (2(𝑧𝑠𝑙−𝑏 𝐷𝑖⁄ )2 + 1)⁄ ]

1.5
] 𝑑𝑧 (96) 

z is the distance between the surfaces. To in Eqn. (87)-(92) is the temperature at the hot face of the slag 

layer and is given by Eqn. (97)87. 

 𝑇𝑜 = 2𝑇𝑠𝑙 − 𝑇𝑤 (97) 

𝑞𝑜𝑢𝑡,𝑖 is obtained using Eqn. (98). 

 𝑞𝑜𝑢𝑡,𝑖 = 2𝜋𝛥𝑥. (𝑇𝑜 − 𝑇𝑤)𝜆𝑠𝑙 (98) 

2.2.2 Computational Approach  

The slagging gasifier model, the slag transport and deposition model, and the model for the slag layer are 

integrated and solved using Aspen Custom Modeler® (ACM)139. In this formulation, 𝑤𝑑𝑒𝑡,𝑛,𝑖 is an integer 

variable making it difficult to solve the problem in software like ACM. In order to obtain a solution, an 

offline calculation is first done to obtain initial values of 𝑤𝑑𝑒𝑡,𝑛,𝑖 for the solver. This approach worked for 

obtaining steady state solutions, however, for a dynamic simulation, this approach is not feasible. The 

error in results is assessed by assuming that the detachment process is continuous rather than discrete for 

a number of cases. The error was found to be acceptable for slag droplets with detachment diameters of 1-

10 microns. Therefore, the resulting error in calculation of the deposition flux is expected to be small 



since only a fraction of the detached droplets are deposited. The assumption of continuous detachment of 

slag droplets can also be extended to larger slag droplets if the deposition velocities of these droplets and 

char particles are the same. This is because the total amount of slag deposited is calculated by summing 

up the slag deposition due to impaction of both char particles and slag droplets. As mentioned previously, 

as both large slag droplets and char particles belong to the particle inertia dominated regime, their 

deposition velocities are expected to be similar.   

Due to the assumption of continuous detachment, Eqn. (45) is replaced by Eqn. (99).  

 𝜀𝑠𝑎 = 0 (99) 

The slag mass does not remain on the surface and continually detaches into the slag size bins in the bulk 

according to the particle model. The slag volume fraction in each bin is calculated using Eqn. (100). The 

total detached slag fraction can be calculated by summing up Eqn. (100) for all size bins and is given as 

Eqn. (101). Therefore, Eqn. (46) and (48) are replaced by Eqn. (100) and (101). 

𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑𝜀𝑑𝑛)

𝜕𝑡

=  −𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑𝜀𝑑𝑛𝑈𝑠)

𝜕𝑥
+  (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1 − 𝜀𝑠𝑑  )Г𝑠−𝑔𝜔𝑎𝑠ℎ𝑓𝑟𝑛 

− 
4 ∗ 𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛

𝐷𝑖
 

(100) 

 

𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑)

𝜕𝑡

=  −𝜌𝑠𝑙

𝜕((1 − 𝜀)𝜀𝑠𝑑𝑈𝑠)

𝜕𝑥
+ (1 − 𝜀)(1 − 𝜀𝑠𝑎  )(1 − 𝜀𝑠𝑑  )Г𝑠−𝑔𝜔𝑎𝑠ℎ

− 
4 ∗ ∑ 𝑚𝑠𝑙,𝑑𝑒𝑝,𝑛

4
𝑛=1

𝐷𝑖
 

(101) 

It should be noted that by using larger number of bins or a detailed particle size distribution and more 

accurate calculation of deposition velocities, especially in the particle inertia regime, a more accurate 

value for the slag thickness can be obtained. However considering both accuracy and computational 

tractability for a dynamic simulation, the authors believe that the current approach is reasonable.  

The dimensions of the gasifier used in the present model are taken from the literature for the TECO 

gasifier140. The dimensions along with the operating conditions are shown in Table 5. The base coal type 

used in the steady state and dynamic simulation of the slagging gasifier model is Illinois #6. A dynamic 

run where the coal type is changed from Illinois #6 to Pittsburgh #8 is also simulated. The proximate and 

ultimate analyses for both the coal types are shown in Table 6. 

 

Table 5. Model parameters and input conditions 

Parameters/Conditions Value 

Gasifier parameters  

Length (m) 6.62 

Internal diameter (m) 1.79 

Operating conditions  



Coal slurry flow rate (kg/hr) 

Particle diameter (μm) 

220,438 

100 

Water to coal ratio 0.4115 

O2 to coal ratio 

Inlet Temperature (°C) 

Inlet Pressure (bar) 

0.8347 

29.85 

28.33 

Recirculation ratio 1.5 

 

 

Table 6. Proximate and Ultimate analysis of Illinois #6 and Pittsburgh #8 coal [As-Received (wt %)] 

Analyses Illinois #6 Pittsburgh #8 

Proximate analysis    

Fixed Carbon 44.19 52.38 

Ash  9.99 9.17 

Volatile matter 

Moisture 

34.70 

11.12 

35.82 

2.63 

   

Ultimate analysis (DAF)   

C 63.75 73.15 

H 4.50 4.97 

O 6.88 6.22 

N 1.25 1.46 

S 2.51 2.36 

   

Silica ratio 0.5266 0.6105 

 

The control structure for the dynamic runs is shown in Figure 29.  



 

Figure 29. Control structure implemented to simulate dynamic runs for the slagging gasifier. 

To avoid an oxygen-rich environment in the gasifier when the coal flow needs to be increased, first the 

coal flow is increased and then oxygen flow is increased. While decreasing the coal flow, first oxygen 

flow is increased. An O2/coal ratio controller is used to generate the setpoint for the oxygen flow 

controller. The gasifier pressure is controlled by a valve in the exit line. It should be noted that for an 

IGCC plant, the gasifier pressure is controlled depending on the control strategy that is used. For a gas-

turbine-lead-gasifier-follow strategy, the gasifier pressure is controlled by manipulating the slurry 

flowrate to the gasifier. For the gasifier-lead-gas-turbine-follow strategy the gasifier pressure is controlled 

by manipulating the syngas flow to the gas turbine. The current control system setup mimics the later 

strategy, but the pressure controller is placed right at the gasifier outlet as the balance of the plant is not 

considered in this study.  

2.2.3 Results and Discussions 

The results from the HSCSP model are summarized below. These include the validation of the data as 

compared to the TECO power plant140, comparison with the traditional shrinking-core model, profiles of 

key variables and a sensitivity analysis on the detachment diameter.  

2.2.3.1 Model Validation  

In this section, the results were obtained assuming complete coalescence of slag droplets, which should 

closely resemble the results from the shrinking-core model assuming no slag detachment. This is 

compared first with the industrial data of TECO power plant140. The gasifier configuration of the TECO 

power plant and the operating conditions are shown in Table 7.  

 

 

Table 7. Validation data from TECO power plant140 

Conditions TECO  

Gasifier configuration141  



Internal diameter (cm) 179 

Length (cm) 662 

  

Operating conditions  

Coal feed rate (kg/s) 40 

Coal particle size (µm) 100 

Oxygen/coal ratio 0.82806 

Water/coal ratio 0.4108 

Pressure (atm) 26 

  

 

The data from the TECO power plant are available for the clean syngas that is downstream of the radiant 

syngas cooler (RSC). In the RSC, steam is produced by utilizing the energy in the gasifier exit stream. It 

has been reported that certain gas-phase reactions, such as the water-gas shift reaction, continue to take 

place in the initial section of the RSC93. Therefore, for comparing the results with the TECO Power plant, 

a simple model of the RSC was developed in Aspen Plus.  

The RSC is modeled using a plug flow reactor. This model is implemented in a similar manner as done in 

the work of Kasule93. A constant cooler temperature of 609 K was assumed.  

 

Figure 30. Comparisons of the mole fractions of CO2, CO, H2 and ¬¬H2O (on dry basis) at the exit 

of the RSC with TECO data. 

Figure 30 shows that the results from the HSCSP model shows a good qualitative agreement with the 

TECO data.  

2.2.3.2 Shrinking core vs HSCSP model 

The results from this work are compared with the shrinking-core model developed by Kasule et al.93 For a 

fair comparison, feed composition, flow rates, pressures, and O2/Coal ratio are set to be the same in both 

the models.  
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Figure 31. Comparison of the reaction rates between the shrinking particle model and hybrid 

shrinking core-shrinking particle model. 

Figure 31 shows the heterogeneous reaction rates for both the models after combustion of char takes 

place, i.e., in the region where the SPM is applied. In the SCM, the overall reaction rate is limited by the 

resistance due to the ash layer which is zero for the SPM model. Furthermore, the diffusion resistance of a 

shrinking particle would be lower than that calculated in the SCM.  However, the volume of the particle 

keeps decreasing in the SPM. Overall, there is hardly any difference in the heterogeneous reaction rate as 

shown in Figure 31.  

 

Figure 32. Comparison of carbon conversion of carbon between the gasifier model and the complete 

coalescence model. 

Figure 32 compares carbon conversion obtained in this work to that obtained using the SCM. In both the 

cases, a significant amount of carbon gets converted very early in the reactor followed by slower 

conversion, which is mainly due to the gasification reactions.  
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Figure 33. Comparison of solids temperature profiles between the shrinking core and HSCSP 

model. 

Figure 33 compares the temperature of the char particle using the SCM with the HSCSP model developed 

in this work. As mentioned earlier, in the initial region of the gasifier up to the point when the bulk 

temperature exceeds the ash melting temperature the HSCSP model considers shrinking core assumption 

and therefore, the solid and gas temperatures closely match that from the SCM in this region. Therefore in 

Figure 33, the solids temperature profile beyond this initial region is compared. The solids temperature 

from the HSCSP model is found to be little higher towards the beginning of this section. However, 

towards the end, both models reach similar conversion and the exit temperatures are the same. The gas 

temperature also follows the same trend (not shown here).  

Comparing the mole fractions at the exit of the gasifier for the SCM and HSCSP models in Table 8, we 

see that there is very little difference between the two models.  

 

Table 8. Comparison between outlet mole fractions of SCM and HSCSP models 

Component SCM HSCSPM 

CO2 0.22396 0.22531 

CO 0.47236 0.47052 

H2 0.01848 0.01842 

H2O 0.20823 0.20883 

 

2.2.3.3 Complete coalescence scenario 

In this scenario, it is assumed that the slag droplets are not detached from the char particles. Figure 34 

shows that even though the char conversion is high, the char particle still exits at some finite size that 

exits the gasifier. The slag droplet attached to the char particle grows rapidly initially when the 

conversion is high. It begins to level off towards the end due to the decrease in conversion rate.  
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Figure 34. Variation of diameter of char particles, attached slag droplets, and average density of 

the char-slag system along the gasifier. 

Figure 34 shows the profiles for the diameters and densities in the zone where the SPM is applied, i.e., 

after the bulk temperature increases beyond the ash melting temperature. Figure 34 also shows that the 

average density calculated using Eqn. (67) keeps increasing along the gasifier as char content continues to 

decrease while slag content keeps increasing, which is because the slag droplets have higher density than 

the char particles. In contrast, in the SCM, the density keeps decreasing as mass disappears while the 

volume of the char particle remains constant.  

2.2.3.4 Model Validation – Slag Deposition and Flow 

Data for the slag layer of a commercial scale slagging gasifier are scarce in the open literature as it is 

extremely difficult, if not impossible, to obtain using current measurement technology. Therefore, for 

model validation one option is to consider the computational models published in this area. While some 

CFD models88,91,92 have been developed for upward-firing, membrane-cooled slagging gasifiers, very little 

information exists on slag layer thickness or deposition rate for refractory-walled downward-firing 

gasifiers. Table 9 shows validation of the present slagging gasifier model under steady state conditions. 

Two variables, deposition % and slag layer thickness, are compared with the results available in two 

references88,142 that have developed CFD models. However, as noted before, these CFD models consider 

char deposition as the only mechanism for slag deposition.  

Bockelie et al.91 have simulated a CFD model of a downward-firing commercial scale gasifier fed with 

Illinois #6 coal using similar operating conditions as the current work. The fraction of solid mass flow 

entering the gasifier that subsequently gets deposited is reported in their work. As Bockelie et 

al.91considered only char deposition, a complete coalescence case (i.e., no slag detachment) is considered 

for our model so that the results from our model can be compared with the work of Bockelie et al.91.  As 

seen in Table 9, the fraction of the total solid mass entering the gasifier that gets deposited is comparable 

for both the models. In the current model, 2% of the total solid mass entering the gasifier gets deposited 

onto the walls of the gasifier. It should be noted that the dimensions of the gasifier in our work are 

somewhat different than the work of Bockelie et al.91, where the L/D ratio was considered to be 2.  

Monaghan and Ghoniem142 developed a dynamic, reduced order model for a commercial scale gasifier. 

Using a silica ratio similar to their work, the current model shows that the slag layer thickness is expected 
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to be much lower as seen in Table 9. One reason for this difference between our results and the work of 

Monaghan and Ghoniem142 is due to the difference in the estimated slag layer temperature. The average 

refractory wall temperature in the current model is about 120oC higher than the work of Monaghan and 

Ghoniem142 leading to a decrease in the slag layer thickness. This could be due to difference in the 

operating conditions and the energy conservation model. The energy conservation model used in this 

work is similar to the comprehensive model developed by Kasule et al.93, which considers additional 

radiative heat transfer mechanisms in between the wall segments.  When the refractory wall temperature 

in the present model was reduced to similar values in the work of Monaghan and Ghoniem142, it was 

found that the slag layer thickness increased from 3.1 to 4.5 mm. Another reason for the difference in slag 

layer thickness is because Monaghan and Ghoniem142 assumed that 10% of total solid mass entering the 

gasifier is deposited on the wall while the current model makes no such assumption. 

 

Table 9. Comparison of the results from this work with the existing literature91,142 

Source Inlet coal 

flowrate (kg/h) 

Gasifier 

diameter (m) 

Gasifier 

length (m) 

Deposition 

% 

Slag layer 

thickness (mm) 

Bockelie et al.91 125,000 - -  2.7 - 

Monaghan & 

Ghoniem142 

113,586 2.74 8.31 10 6-7 

Present model 156,251 1.79 6.62 2.02 3.11  

 

2.2.3.5 Steady State Simulation Results 

Effect of PSD. Combustion or gasification conditions are often simulated using drop-tube furnaces. The 

ash resulting from these tests is segregated on the basis of its size and mass. A wide variation in PSD is 

observed depending on the coal type, coal particle size, gas flow rates, temperatures and other operating 

conditions in experimental wor107,143-149. The mechanisms for the formation of droplets of different sizes 

differ and depending upon the conditions, some mechanisms may be dominant. Some tests show the 

presence of ash particles in the millimeter range which can form due to melting of larger excluded ash 

particles. In the present study, a PSD of slag droplets that form only due to the liberation of included slag 

droplets has been considered150. The gas-solid system in the gasifier is assumed to be dilute and therefore 

the formation of large slag droplets due to the collision of two or more char particles is not considered. In 

the present model, slag droplets of the largest size can form when most or all of the ash initially present in 

the char particle separates as a single slag droplet. Smaller slag droplets of sizes between 1-10 microns 

can form due to liberation or shedding of included ash while partial coalescing of the included ash before 

separation would result in slag droplets with sizes between the two size ranges.  

Based on the slag droplet sizes that can be expected from detachment of included ash, the PSD is divided 

into four bin sizes. It is difficult to obtain a good estimate of the fraction of the slag droplets in each size 

bin along the gasifier. Since there is significant uncertainty in the estimated fraction of slag droplets in 

each bin, it was necessary to perform sensitivity studies by changing these fractions.  Three different 

cases shown in Table 10 were evaluated.  In Table 10, the variables fr1, fr2, fr3 and fr4 denote the mass 

fraction of the total slag in the 1-10 microns, 10-20 microns, 20-30 microns, and 30+ microns size bins, 

respectively. Obviously, for the complete coalescence case, denoted by case CC, all these fractions are 

zero.   

 



Table 10. Simulated particle size distributions 

PSD case fr1 fr2 fr3 fr4 

SD35-10 0.35 0.30 0.25 0.10 

SD60-10 0.60 0.20 0.10 0.10 

SD5-50 0.05 0.15 0.30 0.50 

CC 0 0 0 0 

 

Case SD35-10 is used as a base case for the model. The cases SD60-10 and SD5-50 are considered as 

limiting cases where the majority of the slag mass is considered to be in the small and large size bins, 

respectively.  

Figure 35 shows the char and slag droplet deposition fluxes separately as well as the slag layer thickness 

profile along the gasifier for the base case PSD. It should be noted that for char particles impacting the 

gasifier wall, the char flux only represents the ash being added to the slag layer and the carbon continues 

to burn at the same rate as in the bulk of the gasifier.  

 

Figure 35. Deposition flux and slag layer thickness profile for base case PSD. 

Figure 35 shows that the slag layer thickness rapidly increases in the initial section of the gasifier and that 

slag addition due to the impact of char particles is the dominant mode of slag addition in this section. This 

is because the deposition velocity in the initial section is high and also because very little ash has 

separated as slag droplets from the char particles into the bulk of the gasifier. As a result, the amount of 

ash content in the impacting char particles is high. As the char particles react, increasing amounts of slag 

droplets are separated into the bulk and slag deposition becomes the dominant mode of slag addition to 

the layer. Towards the end of the gasifier, char impact adds little to the growth of the slag layer. In total, 

about 82% contribution to the slag layer comes from slag droplet impact and the rest from char impact. 

As stated previously, no slag is assumed to deposit onto the wall in the shrinking core section of the 

model.  

Figure 36 shows the slag droplet deposition flux and the slag layer thickness for Case SD5-50 (PSD with 

higher mass fraction of larger particles) and for Case SD60-10 (PSD with higher mass fraction of smaller 
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particles). The char deposition flux, not shown here, was found to be identical for the PSD cases. Even 

though the number density of the smaller slag droplets is higher, the deposition velocity and mass of the 

smaller slag droplets are lower in comparison to the larger slag droplets. Initially the slag layer thickness 

profile is similar since ash deposition due to char impaction is dominant. The profile begins to differ as 

the ash deposition begins to dominate. However the slag layer thickness does not differ appreciably. 

 

Figure 36. Slag droplet deposition flux and slag layer thickness for cases SD-5-50 and SD 60-10. 

Figure 37 shows the slag layer thickness profile for the Case CC in comparison to the base case. The 

difference in slag layer thickness is small. 

 

Figure 37. Comparison of the slag layer thickness for Case CC and base case. 

From Figure 35-37, it was found that the PSD did not have a significant effect on the slag layer thickness 

for the range of slag droplet sizes that were considered in this study. However, since it is has been shown 

that the ash can separate from char particles as slag droplets and these droplets could vary in sizes, the 

inclusion of a PSD for the detached slag droplets would be a more physically realistic representation of 
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the system. To the best of the author’s knowledge, the present formulation has not been done previously 

and this work could be useful to evaluate the deposition flux and slag layer thickness for the various cases 

at other operating conditions. For the subsequent runs, the base case PSD is used. 

Effect of change in input conditions. Disturbances in the O2 or coal flow rate can result in the slag layer 

temperature dropping below its critical viscosity, leading to thickening of the slag layer. The effect of 

change in O2/coal ratio on the slag layer thickness can be seen in Figure 38.  

 

Figure 38. Effect of change in O2/coal ratio on slag layer thickness at gasifier exit. 

Changes in the O2/coal ratio affect the gasifier bulk temperature and thus the slag layer temperature 

resulting in a change in its viscosity. With a change in the ratio from 0.79 to 0.85, it is seen that the slag 

layer thickness decreases by approximately 35%.   

The effect of change in the O2/coal ratio on the maximum and minimum slag temperatures and carbon 

conversion is shown in Figure 39. The maximum temperature occurs near the gasifier inlet while the 

minimum temperature occurs at the exit. 
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Figure 39. Variation of the maximum and minimum slag layer temperature due to change in 

O2/Coal feed ratio. 

For Illinois #6 the fluid temperature was found to be 1600 K in a reducing environment135. If the O2/coal 

ratio is decreased below 0.79, the slag may cease to flow because of the lower temperature and higher 

slag viscosity. Even though it is observed in Figure 38 and Figure 39 that a higher O2/coal ratio results in 

higher carbon conversion and lower slag layer thickness, the resulting high temperature has strong 

detrimental effect on the refractory life.  Thus the O2/coal ratio should be optimally controlled by 

evaluating these tradeoffs. 

2.2.3.6 Effect of change in ash composition 

 The composition and amount of ash can vary widely between coal types as well as for the same coal from 

different seams. Since the viscosity at a given temperature strongly depends on the ash composition, ash 

composition needs to be carefully considered during gasifier operation. In Table 11, the silica ratio of 

Illinois #6 coal from different authors is presented. A silica ratio of 0.527 is used as a base case and is 

calculated for “Lab No. Christian c-10142” taken from a report of Illinois #6 coal150. 

Table 11. Silica ratios calculated for Illinois #6 coal taken from literature 

Source Silica ratio 

Present model 0.527 

McCollor et al.151 0.627 

Nowok152 0.690 

Cho et al.153 0.700 

 

The coal composition in this study is kept constant in order to assess the effect of changing only the silica 

ratio. The effect of silica ratio on slag layer thickness and exit viscosity can be seen in Figure 40 for the 

base case operating conditions shown in Table 5.  
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Figure 40. Effect of silica ratio on exit viscosity and slag layer thickness. 

It can be seen that there is a strong variation in slag layer thickness and viscosity due to a change in the 

silica ratio. Under the present operating conditions, the exit slag temperature is found to be about 1417⁰C. 

Figure 40 shows that even though all operations in the given range are feasible, the slag layer thickness 

can be more than double depending on the silica ratio.  

2.2.3.7 Dynamic Simulation Results 

Change in coal slurry flowrate: To study the effect of change in the gasifier throughput on slag layer 

thickness, the coal slurry flow rate was ramped up by 10% for a duration of 10 minutes. The oxygen rich 

air flow rate also is ramped by the ratio controller to maintain the desired O2/coal ratio. The change in the 

flow rates is shown in Figure 41. The slag layer thickness is found to increase by about 6%. This increase 

happens due to two reasons. First, the overall mass flux of char particles and slag droplets to the wall 

increases. Second, there is also a small change in the slag layer viscosity due to a decrease in the 

temperature of the slag layer at the exit of the gasifier. The transient temperature profiles of the 

temperature of the slag layer and the wall at the end of the gasifier are shown in Figure 42.  While the slag 

layer temperature is responsive to the O2/coal ratio entering the gasifier, the wall temperature has a much 

slower dynamic response. The final temperature is lower, but by a small amount.  
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Figure 41. Effect of ramp change in coal slurry flow rate on slag layer thickness at final CV. 

 

Figure 42. Effect of ramp change in coal slurry flow rate on slag layer temperature at final CV. 

 

2.2.3.8 Coal feed switch 

 In this study, the coal feed to the gasifier is changed from Illinois #6 to Pittsburgh #8 over a period of 1 

hour. The coal switch is initiated after 30 seconds of operation, and is achieved by ramping the 

normalized ultimate and proximate analysis parameters. These parameters for the two coals have been 

reported in Table 6. The O2/coal ratio and the coal/water ratio is left unchanged to observe the effect of 

only the change in the coal type. It should be noted that usually during a coal switch, the O2/coal ratio and 

coal/water ratio are normally adjusted and if these ratios are adjusted, the results would vary. The silica 

ratio is also ramped accordingly. For Pittsburgh #8 coal, the silica ratio is calculated on the basis of ash 

composition available in a report from the U.S. DOE’s National Energy Technology Laboratory102.   

Figure 43 shows the change in the mole fraction and carbon conversion due to switching the coal. The 

carbon conversion decreases from about 99% to 93%.  
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Figure 43. Change in outlet gas composition and carbon conversion during coal switch from Illinois 

#6 to Pittsburgh #8 coal. 

Figure 44 shows the trend of char and slag droplet deposition fluxes as well as the slag layer thickness 

profile before and after the coal switch from Illinois #6 to Pittsburgh #8. The drop in conversion means 

that less ash is being separated from the char particle and this ash is depositing on the slag layer with the 

deposition velocity of the char particles. A decrease in the slag droplet deposition flux is due to a decrease 

in the number density of slag droplets in all the bins and the decrease in ash content of Pittsburgh #8 coal 

as can be seen from Table 6.  

 

Figure 44. Deposition flux before and after change of coal from Illinois #6 to Pittsburgh #8. 

Although the net deposition flux decreases by 5% after the coal switch, the slag layer thickness increases 

tremendously. Figure 45 shows the slag temperature profile and the viscosity profile along the gasifier 

before and after the change has been implemented. For Pittsburgh #8 coal ash, the fluid temperature is 
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found to be around 1600K in a reducing environment102. It can be seen that the slag temperature 

approaches this temperature at the end of the coal switch. Due to the large decrease in slag layer 

temperature, and the change in the ash composition as the coals are switched, the viscosity increases 

significantly.  

 

Figure 45. Slag layer temperature and viscosity profile before and after the coal switch. 

Manipulating the O2/coal ratio can alleviate the issue of high slag layer thickness as observed before. The 

O2/coal ratio can be changed to control the gasifier exit temperature or to control carbon conversion, if it 

can be estimated. Kasule et al.126 have implemented the later control strategy. Their work shows that the 

O2/coal ratio for the Pittsburgh #8 coal for same carbon conversion as the Illinois #6 coal is about 0.9. For 

this O2/coal ratio, the slag temperature at the exit of the gasifier is found to be around 1703 K, which is 

slightly higher than that for the Illinois #6 coal. The slag layer thickness for these conditions reduces to 

0.25mm.  

 

Figure 46. Transient response of slag layer and wall temperature and slag thickness at gasifier exit.   
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An interesting difference between the temperature time scales of the slag layer and the wall is observed in 

Figure 46 using the base case O2/coal ratio. Even though the final wall and slag layer temperatures are 

similar, the dynamics of the slag temperature is faster.  As mentioned earlier, the deposition flux of slag to 

the wall remains almost the same. Therefore, the increase in slag layer thickness is mainly due to the 

decrease in slag viscosity. Therefore, the slag layer thickness dynamics have a similar time constant as the 

slag temperature dynamics.  

 

2.2.4 Fault Simulation 

Refractory degradation is one of the key issues highlighted in the operation of gasifiers in the literature. 

Replacement of refractory bricks is done every 3 months to 2 years. The replacement is expensive and 

also results in the downtime of the entire power plant. Due to the harsh operating condition inside a 

slagging gasifier, direct, in-situ measurements of either the transport variables or refractory degradation 

are not possible with current state-of-the-art technology. Non-destructive tests to assess the life of the 

refractory layer online do not provide reliable answers due to the interference of the slag layer.  

Several mechanisms have been identified that contribute to the degradation of the refractory layer. Ash is 

one of the components of coal that melts within the gasifier and is known to deposit on the refractory 

layers as slag. The slag can directly interact with the refractory layer through corrosion and erosion of the 

brick. Another way through which the slag results in degradation of the refractory is through a process 

known as compressive spalling. Slag penetrates into the brick thereby changing the mechanical properties 

of the section that is penetrated. The slag penetrated section also has a different thermal expansion 

coefficient which results in a strain being developed. The penetrated region begins to buckle after a 

certain depth and can ultimately spall.  

Refractory degradation can also take place in the absence of slag through mechanisms such as creep and 

thermal fatigue. These are generally slow processes, taking place over periods of months, however they 

could become dominant in high temperature operation. They lead to formation of micro-cracks that can 

change material properties such as the Young’s modulus, maximum tensile stress, etc. resulting in the 

weakening of the material. Thermal shock is an example of a fast mechanism where sudden change in 

temperature could result in immense build-up of stresses near the hot face surface. This is analogous to 

quenching of a material, which results in the formation of cracks and defects on or near the surface.  

For the project, slag penetration and spalling as a result of compressive spalling have been identified as 

the main methods of degradation of the refractory layer and are modeled and simulated as faults. A slag 

penetration model is first developed to identify the location that is most susceptible the degradation 

mechanism. A refractory degradation model is developed for this location using the compressive spalling 

mechanism to calculate the time and depth at which the first spall is expected to occur. The time scale for 

the refractory degradation is in months or years, while the gasifier reactions dynamics take place in 

seconds. Due to this difference in time scales, the two models are not integrated. The gasifier model is 

simulated and the results from the simulation are used in the refractory degradation model.  

2.2.4.1 Model  

The gasifier refractory is made up of several layers. The innermost layer is the high chrome layer. 

Refractory containing up to 95% chrome is used. The purpose of the layer is to withstand high thermal 

shocks and attrition. Following this layer, there is the castable alumina layer. This layer is thicker than the 

chrome refractory layer. The third layer consists of silica bricks. The purpose of this layer is that of 

insulation. The final layer is the metal layer of the gasifier unit.  

In order to simulate the process of slag penetration into the refractory, a dynamic model would be 

required. As the slag penetrates deeper into the refractory, the rate of penetration will change due to the 

decreasing temperature and/or change in gasifier operating conditions. In order to identify the location in 



the gasifier where refractory degradation due to slag penetration would occur the fastest, a 2D model for 

the concentration profile and heat transfer in the refractory was developed. The gasifier refractory layers 

are modeled as composite cylinders and the heat balance equation is written for all layers. The 

concentration equation is solved only for the first layer, viz. the high chrome layer as this layer is the most 

susceptible to spalling due to slag penetration because it is directly in contact with the slag.  

The inner hot wall temperature profile is taken from the gasifier model results shown earlier at a base case 

steady state condition. The refractory layer thickness is kept the same as the gasifier model. It is assumed 

that the slag penetration and refractory degradation model do not have a significant effect on the gasifier 

model, and thus the exchange of information is only from the gasifier model to the refractory degradation 

model.  

The heat balance equation is given as Eqn. (102). 

 
𝜌𝑐ℎ𝐶𝑝,𝑐ℎ

𝑑𝑇𝑐ℎ

𝑑𝑡
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𝑑

𝑑𝑟
(𝑟

𝑑𝑇𝑐ℎ

𝑑𝑟
) +

𝑑2𝑇𝑐ℎ

𝑑𝑧2
] 

(102) 

Here, 𝜌𝑐ℎ is the density of the chrome layer, Cp,ch is the specific heat, kch is the thermal conductivity and 

Tch is the temperature in the chrome layer. Equations similar to Eqn. (102) are written for the remaining 

three layers as well.  

The concentration equation is given in Eqn. (103). 

 𝑑𝐶𝑠𝑙𝑎𝑔

𝑑𝑡
= 𝐷𝑒𝑓𝑓 [

1

𝑟

𝑑

𝑑𝑟
(𝑟

𝑑𝐶𝑠𝑙𝑎𝑔

𝑑𝑟
) +

𝑑2𝐶𝑠𝑙𝑎𝑔

𝑑𝑧2
] 

(103) 

Here, Cslag is the concentration of slag in the refractory and Deff is the diffusivity of slag in the high 

chrome layer. Diffusion is a function of the temperature84, and for this case, an average penetration front 

temperature is selected at which the concentration of slag in the refractory brick pores is 30%.  

A time evolution video was made for slag penetration into the high chrome wall along the gasifier length 

that shows the slag concentration at different locations. This was presented in the AIChE as part of the 

presentation. Snapshots of the video at different times are shown below in Figure 47.  

 

Figure 47. Slag penetration into the high chrome refractory at different time instances. 



 

The dimensions of the wall chosen for this study are 660 cm length and 12 cm thickness of the high 

chrome layer. The 2D model has cylindrical coordinates. In the first 10% of the gasifier length, no slag is 

assumed to be on the wall of the refractory. At 5 hours, the slag penetration into the refractory appears to 

be uniform. At 500 hours, it can be seen that the slag penetration at a distance of about 66 cm from the 

gasifier inlet is highest. This is because, the wall temperature is very high at this location and diffusion 

variable is a function of temperature. After significant penetration into the refractory however, the slag 

penetration rate in the radial direction decreases as the temperature reduces. Some diffusion in the axial 

direction is seen after this point.  

The location where slag penetration takes place the fastest is selected for the refractory degradation 

simulation. The wall temperature at this location is found to be 1800 Kelvin. The steady state temperature 

profile is shown in Figure 48.  

 

Figure 48. Steady state temperature profile along the refractory across the four layers. 

 

2.2.4.2 Compressive Spalling model 

The model equations for refractory degradation due to spalling have been taken from the work of 

Williford87. Compressive spalling occurs due to slag penetration and exchange of Fe ions in the slag with 

the chromium ions in the refractory. Slag diffuses in the pores in the first layer and the exchange of ions 

renders the diffused material to have different properties. Due to this, there is a thermal expansion 

mismatch that eventually leads to spalling.  

The slag penetration depth is calculated using the concentration equation at the location where the slag 

concentration is 30%. The minimum distance required for spalling is given in Eqn. (104).  

 
ℎ𝑚𝑖𝑛 = 

Г 𝜑2(1 − 𝛾𝑝) 

𝐸 ∆𝜀𝑡𝑜𝑡𝑎𝑙
2

 
(104) 



where, Г is the toughness,  𝜑 is a dimensionless parameter, 𝛾𝑝 is the Poisson’s ratio, E is the Young’s 

modulus of the penetrated region and ∆𝜀𝑡𝑜𝑡𝑎𝑙 is the total differential strain caused by differential growth 

and differential thermal expansion of the penetration in comparison to the refractory. ∆𝜀𝑡𝑜𝑡𝑎𝑙 is given as: 

 ∆𝜀𝑡𝑜𝑡𝑎𝑙 = ∆𝜀𝑔 + ∆𝜀𝑡ℎ (105) 

where, ∆𝜀𝑔 = 
∆𝑉𝐶𝑟

3𝑉𝐶𝑟
 and ∆𝜀𝑡ℎ = ∆𝛼∆𝑇 in which ∆𝛼 is the difference in thermal expansion coefficients 

between the slag and refractory and ∆𝑇  is the temperature gradient between the refractory inner wall and 

the slag penetration front.  

When the slag penetration depth exceeds the minimum depth at which spalling can occur, a spall is 

assumed to take place. In order to test the refractory degradation model, four cases were simulated. The 

first was a base case where the gasifier is operated at a design inlet flow rate of 60,000 gm/sec of coal 

slurry. The second case is when thermal cycling is done in the gasifier. For maintenance purposes, the 

gasifier feed is oscillated in a sinusoidal manner. This could also be done in response to the variation in 

demand of power during day and night. To simulate a cycle, the coal slurry is varied within 10% of its 

base case value with a time period of 1 hour as can be seen in Figure 49. 

 

Figure 49. Coal slurry set point variation in the gasifier model. 

 

The temperature variation at the same position is recorded for the two cases. The temperature profile for 

the oscillating case of coal feed is fit to a sinusoidal curve. The temporal temperature profiles are then 

used as an input to the degradation model. Two other case studies were also simulated where a high and 

low fixed temperature values were assumed as the hot face temperature.. The high temperature value of 

1850 K and low temperature value of 1775 K are used in these cases. The temperature profiles for the 

four cases used in the refractory degradation model are shown in Figure 50.  



 

Figure 50. Wall temperature at the grid point selected for simulating degradation. 

 

From Figure 50, it can be seen that although in the second case the inlet flow rate of the coal slurry is 

fluctuated by 10%, the wall temperature at the selected grid does not vary more than 15°C on average. 

The refractory degradation model is simulated for all four cases and the results are plotted in Figure 51.  

 

Figure 51. Time for first spall for the four cases. 

 



From Figure 51, it can be seen that the time for the first spall to occur when the base case wall 

temperature is 1800 K is around 1471 hr. For the thermal cycling case, the curve seems to closely flow 

that of the base case but the first spall occurs around 100 hr sooner. This could be because of a faster 

diffusion front. The effect of thermal cycling can be better captured if creeping and fatigue are considered 

in the refractory layer. For the case of high temperature, spalling occurs at 743 hr. In the low temperature 

case, spalling occurs much later. However, due to its proximity to the critical viscosity temperature, such 

low temperature is avoided to prevent any solid slag build up on the wall of the refractory that could 

eventually lead to clogging of the gasifier.  

 

 

2.3 Gasification Island 

The gasification island model is developed for the two-tier sensor placement method. It consists of the 

sour water gas shift reactor (SWGSR) combined with the Selexol unit. In the IGCC plant, the water gas 

shift reaction is performed using two reactors operating at different temperatures. This allows for more 

residence time for the equilibrium reactions and to reduce the amount of SO2 in the reactor outlet. The 

outlet of the first reactor is fed to the second reactor, after which it is sent through a series of heat 

exchangers until finally being sent to the Selexol unit.  

In order to set-up the gasification island model, the SWGSR model and the Selexol model were first 

modified before they were integrated. The SWGSR model was enhanced to consider two trains consisting 

of two reactors in series with an intermediate cooler. The control system of the Selexol model was 

modified to ensure it was stable in the operating region of interest. Variables to be recorded were 

carefully selected so as to completely capture the fault progression through the simulation, while at the 

same time, reducing the memory load of the program to prevent slowing of the simulation.  

The SWGSR was modeled in MATLAB while the Selexol model was developed in Aspen Plus 

Dynamics. The SWGSR was not modeled using Aspen because, the in-house library reactor models in 

Aspen do not allow for simulating faults such as reduction in catalyst surface area, drop in catalyst 

porosity or catalyst activity etc. Plant level simulations on the other hand, are fairly easy to simulate using 

a process modeling software such as Aspen Plus or Aspen Dynamics. This brings forth the challenge of 

running two models in two different platforms, making them communicate and solve in a coupled 

manner.  

Sensor placement in a two-tier setting can help identify potential sensors that can detect faults at different 

levels. In this case, sensor placement using fault data from fault simulation in the gasification island may 

show sensors in the SWGSR that are sensitive to faults at both levels, viz. the SWGSR as well as the 

Selexol plant or vice versa. This study can help reduce the total number of sensors required to detect the 

faults if the sensor placement was done separately at both tiers.  

2.3.1 Model Development 

The first step was to develop the two-stage SWGS reactor in MATLAB which give the same output as its 

APD counterpart in the IGCC plant wide model. The initial reactor model was designed to run at different 

operating conditions as the APD SWGS reactors and thus had to be modified. In order to accommodate 

the large flow rate, the reactors were designed as a two-train system.  The rate of reaction equation for the 

shift reaction used in the SWGSR model shown earlier is different from the APD case and is derived by 

data reconciliation. The COS hydrolysis reaction rate expression was changed to the expression used by 

APD to match the conversion of H2S and COS. The first stage is designed to match the outlet composition 

of the water gas components in Aspen Plus Dynamics. The second stage of the reactor was developed 

independently using the outlet composition from the first stage and the inlet temperature from the APD 

model. The reactor was sized in order to achieve equilibrium at about 90% of the length and the valve 



coefficients were set so as to match the flowrates. Both stages were run independently until they achieved 

steady state.  

Once steady state was achieved in each of the stages, the code for the two stages was compiled into a one 

m-file and the SWGS reactor system was solved as a single unit. The system representation can be seen in 

Figure 52 below.  

 

Figure 52. Schematic representation of the Sour Water Gas Shift Reactor system developed in 

MATLAB. 

 

Once this system achieved steady state, work started on integrating the MATLAB model with Aspen Plus 

Dynamics. There is not much data in the literature about such integration between the MATLAB and 

APD to solve such a coupled system. The Matlab and APD files are integrated using SIMULINK. Using a 

Aspen Modeler Block in Simulink, the outlet variables from Matlab simulation, viz. Temperature, 

Composition and Pressure were sent to the inlet of the Aspen Plus Dynamics model.  

In order to ensure the models in both the software are squared, an outlet valve V4 as can be seen from 

Figure 52. Due to the coupled pressure-flow dynamics of the entire plant, the boundary conditions for 

pressure at the output of the MATLAB model and the pressure at the input of the APD models are not 

static, but dynamic and must be synchronized. A valve is added to the entrance stream in the Aspen 

simulation such that the valve coefficient and valve opening of the exit valve V4 of the MATLAB model 

and the entrance valve for the APD model are kept exactly the same to ensure they have the same flow 

rates.  The value for the pressure variable, Pexit, in MATLAB is sent from APD, and the pressure before 

valve V4 is sent to APD as the inlet pressure to the first valve. A schematic of the exchange of 

information across the platforms is shown in Figure 53.  



 

Figure 53. Exchange of information between the SWGSR in MATLAB and the Selexol model in 

APD. 

 

The algorithm for the process flows is:  the MATLAB solver solves for a fixed time step. This time span 

along with the outlet variables are sent to the APD model via SIMULINK. The APD model then solves, 

using a variable step solver, for the same timespan and sends back exit pressure value, P_exit, to 

MATLAB and so on. A few profiles are shown below.   

 

Figure 54. Temperature profile along reactor R2. 

The process fluid enters reactor R2 after being cooled in the heat exchanger. Figure 54 shows that the 

temperature begins to level out at the end of R2 as the shift reaction approaches equilibrium.  
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Figure 55. Profile of CO mole fraction along the length of reactor R2. 

As the WGS reaction reaches equilibrium towards the end of R2, mole fraction of CO changes negligibly 

towards the end of R2. The spatial profile of CO in R2 is shown in Figure 55.  

 

Figure 56. Plot of COS mole fraction along R2. 

The mole fraction of COS in the entering syngas stream is 1.38 x 10-4 and reduces to 1.7 x 10-5 at the end 

of R2 as can be seen in Figure 56. It should be noted that even though COS mole fraction at the inlet is 

small, it is important to convert it to H2S so that it can be captured in the acid gas removal unit for 

satisfying the overall emission requirements of sulfur.  

2.3.2 Study of Fault Effects  

Before simulating the faults in the gasification island, it is important to implement the control 

configuration as would be expected in an actual operating plant. In the WGS reactor system, the syngas 

flowrate is maintained for producing the desired amount of power by the integrated gasification combined 

cycle (IGCC) plant. In addition, the CO/H2O ratio at the inlet of the WGS reactor system is maintained by 

manipulating the steam flowrate to the reactors. These two controllers have been coded in MATLAB for 

manipulating valves V1 and V2. The controllers were then tuned for satisfactory response.  
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The integrated system is used to simulate some typical faults. As an example, the results due to change in 

porosity of the first reactor, R1, will be presented below. This fault is expected to happen in a WGS 

reactor system as part of an IGCC plant since tar or soot that are generated in the gasifier but can escape 

the scrubber could enter the reactor and clog the pores of the catalyst. As a result of this, the reaction rate 

goes down and yield could suffer. For this fault, it is assumed that the unwanted material is captured by 

the first reactor alone, and thus only the porosity of R1 is ramped down. This is done at a rate of 25% 

decrease in porosity over a period of 12 hours. The response of this fault is shown as follows. It should be 

noted that in real-life, such faults can happen over much longer period of time, but here a much faster rate 

is considered in order to study the capability of the integrated models.  

2.3.2.1  Effect on Reactor R1 

 

Figure 57. CO at the end of R1 as a result of a ramp change in the porosity. 

Figure 57 shows that CO composition at the end of R1 increases as time progresses. As the catalyst pores 

get clogged and the porosity decreases, the extent of WGS reaction reduces, and thus the amount of CO 

consumed reduces. 

 

Figure 58. COS at the end of R1 as a result of a ramp change in porosity. 
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The rate of COS hydrolysis also gets affected due to the fault. The amount of COS converted reduces due 

to the reduction in porosity. Therefore, the COS mole fraction at the end of the reactor R1, increases, as 

can be seen from Figure 58. 

 

Figure 59. Temperature at end of R1 as a result of a ramp change in porosity. 

The WGS reaction is an exothermic reaction. The reaction does not reach equilibrium in the first reactor. 

As the extent of reaction decreases in reactor R1, the temperature at the exit also reduces. This can be 

seen in Figure 59. 

2.3.2.2 Effect on Reactor R2 

Allowances have been provided in the design of the second reactor, R2, to accommodate acceptable 

deterioration in the performance of R1. Due to lower extent of WGS reaction in R1, the partial pressure of 

CO at the inlet of R2 increases. As a result, higher conversion of CO takes place in R2. The WGS 

reaction still approaches equilibrium, but it does so at different conditions as compared to what it had 

prior to the fault due to changes in the inlet conditions. 

 

Figure 60. CO mole fraction at end of R2 as a result of ramp change in porosity. 
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From Figure 60, it can be seen that the effect of the fault in R1 has very small impact on the overall 

conversion at the outlet of R2.  

 

 

Figure 61. COS mole fraction at end of R2 as a result of ramp change in porosity. 

As seen in Figure 61, COS seems to show stronger response than CO but the overall change in COS 

conversion is still negligible.  

 

Figure 62. Temperature response at the exit of R2 as a result of ramp change in porosity. 

Due to the increase in inlet CO composition, more reaction takes place in the R2. Being exothermic, as 

more reaction takes place, the temperature at the exit of the reactor, increases as shown in Figure 62.  
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CO at the end of Selexol unit
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Figure 63. CO response at the exit of the Selexol unit as a result of ramp change in porosity. 

The CO increase as a result of the ramp change in porosity is also reflected at the end of the Selexol plant. 

Figure 63 is a plot that shows CO mole fraction increases due to this fault. However, it takes around 12 – 

13 minutes for this effect to be seen. The changes in the mole fractions of other components are very 

small to be detected clearly by a measuring device. 

 

3 Model Simplification and Order Reduction 

3.1 Scaling Analysis 

The detailed 1D model of WGS reactor consists of PDEs, solution of which is computationally intensive. 

Therefore reduced order models, which approximate the detailed model with good computational 

efficiency, might become critical, particularly when such models are used in online optimization. In this 

section, such a reduced order model that is derived using scaling analysis and method of characteristics is 

described. Scaling analysis is a systematic way to identify important phenomena in a system for the given 

parameters and inlet conditions. This will help in retaining only these phenomena resulting in a simplified 

model. In literature, there are works which use scaling to simplify models and to identify the correlation 

between process performance and dimensionless groups. For example, Dahl et al.154 used scaling analysis 

to get insight into the behavior of fluid aerosol reactor without performing actual simulations. 

Kopaygorodsky et al.155, used scaling analysis to identify key differences between the approximation of 

conventional pressure swing adsorption and ultra-rapid pressure swing adsorption. Kaisare et al.156, used 

scaling analysis to identify phenomena occurring at varying scales in a reverse flow reactor. Balaji et 

al.157, have used scaling analysis for reverse flow reactor and have shown ways of simplifying the model 

equations. Rao et al.158, have used scaling analysis for pulsed pressure swing adsorber to identify useful 

correlations in terms of dimensionless numbers. Rezvanpour et al.159 studied electro hydrodynamic 

atomization process using scaling analysis to simply the model and to find correlation relating efficiency 

with single dimensionless number involving parameters of the process. Baldea et al.160 used scaling 

analysis to auto thermal reactors to identify a non-stiff model by separating fast and slow time scales. 

Krantz et al.161,162, described this scaling analysis in his book for various transport and reaction process. 



This study closely follows the methodology of Krantz et al.161,162 to derive appropriate dimensionless 

model for WGS reactor. The scaling analysis in this study differs from the rest of the literature in the 

manner in which the reaction terms are handled. This becomes important because with the present scaling 

methodology, approximating the nonlinearity in the reaction kinetics would result in unrealistic scales. 

This study also compares the scales obtained from scaling analysis with that of actual scales from 

simulation of the corresponding detailed model. This demonstrates that scaling is proper and the resulting 

reduced order model is appropriate. Further, in the scaling of the unsteady model, we introduce a new 

scale combining length and time scale which characterizes the velocity dynamics of a variable. This scale 

helps in assessing the quasi- steady assumption for some of the variables. The reduced order model 

obtained from scaling analysis consists of hyperbolic PDE coupled with ODEs. Hyperbolic PDE models 

can be further reduced using a recently developed technique using method of characteristics. Munusamy 

et al.163,164, used this technique to reduce the hyperbolic PDE model describing fixed bed and plug flow 

reactor. In this study, we follow this technique to further reduce the computational load in simulating 

WGS reactor. 

3.1.1 Scaling of WGS reactor model equations: 

Systematic scaling of model equations results in identifying phenomena with different scales. It provides 

a way for model simplification through approximation. These scales represent the characteristic values for 

the given parameters and operating conditions. Krantz161 has described scaling of model equations in 

detail in his book, where scales are obtained by forming dimensionless groups which vary in the order of 

1. In this study we follow similar approach to that of Krantz161, but differ in the manner in which the 

characteristic reaction terms are found. 

The procedure for scaling involves introducing scale values for each of the variables involved to make 

these variables dimensionless. Introduction of these scales and dimensionless variables will result in 

dimensionless equations. Scales can be obtained appropriately by making the dimensionless variables to 

vary in the order of 1. 

Following are the scales introduced for the variables in the model for water gas shift reactor 
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(106) 

In the above definition, variables with subscript 'r' represent reference variables, variables with subscript 

’s’ represent scaling variables and the variables with superscript φ  represent the dimensionless variables. 

Reference and scale variables need to be chosen such that the variables vary between 0 and 1. Additional 

scales are introduced for nonlinear terms such as derivatives and reaction rate terms.  
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The derivative scales introduced above can be approximated using the scaling definition for each 

individual variable in the derivative. Similar approximations for the reaction scale by introducing the 

scaling definition of each individual variable in the reaction kinetics would result in wrong scaling for the 

reaction term. In literature, this scale is either assumed to be the maximum reaction rate or the rate is 

found by introducing maximum values for the variables in the reaction rate. Both the approximations for 

reaction scale will result in errors while obtaining the reduced order model. Appropriate scaling of 

reaction terms will be discussed in section 3.1.1. The approximate derivative scales are given below 
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 In addition to derivative terms, scales for the other nonlinear terms are approximated as below 
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In this approximation we use 
min

1

u
as the scale for the variable

u

1
, because this will be the maximum and 

hence will make the variable to vary at most to 1. 

Introducing the above scaling definitions into the model equation and dividing the coefficient of one of 

the terms results in following dimensionless model equation. For the first four equations, we divide the 

coefficient of the derivative terms to form the dimensionless equation. For these equations it is assumed 

that variation of the corresponding variables over the length of the reactor is significant. In the equation 

for catalyst energy balance, we divide the coefficient of one of the reaction terms to form the 

dimensionless equation. This is because we assume that the heat generated from this reaction is the main 

source for energy which is convected to gas phase and conducted through the catalyst bed. Scaling 

analysis will confirm the validity of this assumption. 

Component balance: (where i = 1 to 6) 
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Total balance: 
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Pressure drop equation: 
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Gas phase energy balance: 
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Catalyst phase energy balance: 
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The boundary conditions are made dimensionless as follows 
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3.1.2 Calculation of scales and reference factors 

The scales and reference factors in the above dimensionless equation can be found by confining the 

dimensionless variables to vary between 0 and 1. In particular, the reference factors are found by equating 

the boundary conditions to 0. For example, the reference factor for the concentration variable is found as 

below 
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In a similar manner, reference factors for other variables can be found and it will be equal to the boundary 

values of the corresponding variables. The scale factors can be found by equating appropriate 

dimensionless variable to 1.  For example, consider the equation for species balance (Eqn. (110)), where 

there are two dimensionless groups.  
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Once zsC  and sir ,  are known, one can find the derivative scale for concentration iC  by equating either of 

these dimensionless groups to 1.  The dimensionless group which gives maximum value for the 

corresponding scale can be equated to 1. The resulting scale can be substituted  into the other 

dimensionless group and if the resulting value is much less than 1 then the term involving this 

dimensionless group contributes less to the characteristic derivative scale and hence can be neglected for 

the condition considered. 

 

3.1.3 Calculation of reaction rate scale 

Calculation of characteristic scale for reaction rate can be tricky for exothermic reactions in a tubular or 

fixed bed reactor where reaction rate varies along the length of the reactor.  A scale should be a 

representative value, which, when it divides the actual value makes it to vary in the order of 1. Also, the 

value of the scale should be close to the reaction rates occurring over entire length of the reactor. For 

exothermic reactions, the rate varies along the length such that it attains a maximum value at some point 

in the reactor.  This is because concentration drops along the length of the reactor which reduces the 

reaction rate and temperature increases due to release of heat which in turn increases the reaction rate. For 

sufficiently high temperature, this maximum can occur at the inlet of the reactor and for others it can 



occur at a small distance from inlet of the reactor. Typical reaction rate variation is shown in the Figure 

64. 

 

Figure 64. Typical variation of exothermic reaction rate along the length of the reactor. 

In the literature, the characteristic reaction rate is found by substituting the maximum temperature and 

maximum concentration in the reaction kinetic term.161,162 For exothermic reactions, maximum 

temperature and maximum concentration are rarely going to occur at the same point in the reactor. So 

substitution of these values will give unrealistic maximum reaction rates. This will lead to erroneous 

calculation of other scales. In a mass transfer limited reaction, this reaction scale is based upon mass 

transfer coefficient.157 

The proper scale for reaction rate which can make the corresponding dimensionless reaction rate order of 

1 would be the maximum reaction rate occurring in the reactor. It is difficult to obtain this rate without 

performing actual simulations of the given detailed model. So this reaction rate scale can be approximated 

to be 

• Reaction rate based on inlet condition which is a reasonable approximation for this 

maximum rate. In this study, we have used this inlet rate to be the characteristic rate to 

obtain the other scales. 

• Reaction rate obtained using simulation of simplified model. One can obtain a simplified 

model by assuming velocity to be constant, neglecting any mass transfer or heat transfer 

resistance, neglecting pressure drop, assuming only 1D variation, etc. This means that we 

assume reaction to be the main cause for the variation of concentration and temperature 

along the length of the reactor. Kaisare et al.156 have suggested in their paper the use of 

simulation data for obtaining the reaction scale. 

 

3.1.4 Calculation of scales based on inlet reaction rate 

Consider the dimensionless species balance equation Eqn. (110). In this equation, we have two 

dimensionless terms as mentioned in the previous paragraph. Let's assume the contribution of the second 



dimensionless term to be important for the concentration gradient, so this group is equated to 1, to find 

length scale over which the reaction occurs 
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This dimensionless group can be inferred as  
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This means that the species generated (or consumed) from reaction is made equal to that transported by 

axial convection based on inlet velocity. The other dimensionless groups present in this equation indicate 

the change in species concentration is due to change in pressure and temperature along the length of the 

reactor. The importance of this dimensionless group can be found from its value by inserting the 

concentration scale sC  from total balance equation. 

Let’s also assume there is complete conversion in the reactor and take isC  to be equal to inC .  With this 

assumption, we can calculate the characteristic length scale as follows 
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If the length scale obtained above is greater than the length of the reactor (L), then it indicates that the 

reaction is slow and there is no complete conversion. Then one can find the characteristic change in the 

concentration by making the length scale to be length of the reactor. Thus, 
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From Eqn. (113), we can make scatsg TT ,,  , so that the dimensionless temperature difference between 

catalyst and gas phase can be of order 1. The temperature change in a reactor is directly proportional to 

the rate of heat release from the reaction. In order to find the scale for the temperature change, we need to 

relate this to the heat of reaction. From Eqn. (113) and (114) we see that this relation is present in one of 

the terms in Eqn. (114). 
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The above dimensionless term multiplies the temperature difference and this cannot be used to calculate 

the temperature scale. Instead, this term can be used to verify the equality of the temperatures between 

gas phase and catalyst phase. This is because in order for the term   gcat TT 4  to be in the order 1, 

higher the value of 4  implies lower the value of  
gcat TT  , which implies that both the temperatures 

are equal and vice versa. Next, the term which multiplies the second derivative of temperatures can be 

used. If we assume conduction is not an important phenomenon compared to axial convection of heat then 

this term also cannot be used. So in order to find the temperature scale we can combine the energy 

balance for gas phase and catalyst phase by using the temperature difference terms in these equations as 

follows 
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Eqn. (123) can be made dimensionless using the scaling definition as follows 
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From the above equation, we can find the temperature scale by equating the following dimensionless 

group to 1,  
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The above dimensionless group implies that the rate of heat generated per unit volume from water gas 

shift reaction is equal to rate of heat convected by the gas in axial direction. In the above equation, we 

have assumed water gas shift reaction to be an important source of heat and we have selected the 

dimensionless group involving this reaction. We can verify this assumption by substituting the resulting 

scales into the other terms. 

Similarly one can find the pressure scale from the Eqn. (112) by equating following dimensionless group 

to 1, 
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In the above term, since pressure variation is seen over the entire length of the reactor, the appropriate 

length scale for finding pressure scales will be the actual length of the reactor. This also assumes that the 

Reynolds number is high enough that the contribution of second term in Eqn. (112) is lesser than the first. 

For lower Reynolds number we need to make the other dimensionless group to 1 to find the pressure 

scale. Further, the velocity scale in Eqn. (126) is represented in terms of temperature and pressure scale as 
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This represents the maximum velocity due to increase in temperature and decrease in pressure. Similarly, 

the total concentration scale can be found from either of the dimensionless term which gives the 

maximum value for this scale. The variable values present in these groups can be assumed to be the inlet 

values as the ratio of these values are maximum at the inlet. For example, consider the first group, 
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In the above equation, the ratio 
T

C
 can be assumed to be the ratio of the inlet values as 

in

in

T

C
. Once the 

necessary scales are found as described above, then one can substitute these values in other dimensionless 

groups. If the value of these dimensionless groups is much less than 1, it indicates its contribution is less 

in the corresponding equation and hence can be ignored. In the model equation for WGS reactor, based on 

the value of the following groups, one can neglect the corresponding phenomena 

For neglecting conduction phenomena, 
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For neglecting the heat contribution due to hydrolysis reaction term 
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Similarly one can decide on the significance of heat transfer between gas and catalyst phase and can make 

both the temperatures equal. 

3.1.5 Reduced order model of WGS reactor 

A reduced order model for WGS reactor can be obtained using scaling analysis by neglecting the terms 

with contribute less when compared to others in an equation. This model will be an approximate 

representation of the corresponding detailed model for the given parameter and inlet conditions. Table 12 

reports the typical parameters and inlet conditions for the reactor. 

 

Table 12. Parameters and inlet conditions for WGS reactor 

Parameter Value 

Length of the reactor L ,  m  29  

Porosity of bed,   38.0  

Heat transfer coefficient, fh  








Km

W
2

 210  

Heat of reaction - WGS, wgsH 








mol

J
 41085.3   

Heat of reaction - Hyd, wgsH 








mol

J
 4101.3   

Density of gas, g 







3m

mol
 5.20  

Viscosity of gas mixture, g  







 
2m

sN
 41025.0   

Specific heat of gas, gCp
 










 Kmol

J
 35  

Density of catalyst, cat 







3m

kg
 650  

Specific heat of catalyst, catCp 








 Kkg

J
 880  



Specific area per unit volume of catalyst ca ,
3

2

m

m
 31069.1   

Conductivity of catalyst, K 








 Km

W
 35  

Diameter of catalyst, catd  m  0035.0  

Inlet condition  

Molar flow, 








s

mol
  

CO  1128  

COS  4410.0  

2CO  435  

2H  1070  

OH2
 2240  

SH 2  78.22  

Inlet temperature, T   K  620 

Inlet pressure, P  Pa  61086.5   

 

The stoichiometric relation from reaction can be used to avoid species balance for all the species except 

for the key reactant. This is valid when species are transported mainly by convection and not by diffusion 

both in the axial and in radial direction. Then the transport of all other species can be exactly described by 

the variation of key reactant participating in each reaction. In the WGS reactor model, we consider two 

main reactions, water gas shift and hydrolysis reaction taking place in the reactor.  

222 222
HCOOHCO HCOOHCO    

SHCOOHCOS SHCOOHCOS 222 222
   

Considering CO and COS to be key reactants, we can write the variation of other species using 

stoichiometry as follows 
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The value of various dimensionless groups discussed in the previous section is found based on the 

parameters and inlet condition given in Table 12. Based on these values we can decide on approximating 

the model equations by neglecting terms which are much less than 1. 

 

Table 13. Values of dimensionless group for the WGS reactor model 

Dimensionless group Value 
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Based on the values of dimensionless group present in Table 13, we can decide on retaining or neglecting 

some of the phenomenon to obtain a reduced order model. The length scale for water gas shift reaction is 

equal to length of the reactor and the concentration scale is less than the inlet concentration, this implies 

there is no complete conversion in the reactor. On the other hand hydrolysis reaction goes to completion 

and this occurs at 23% of the length of the reactor. 

The dimensionless group π1 and π12
 
represent the variation of CCO

 
and CCOS

 
due to the variation of total 

concentration which in turn depends on temperature and pressure variation in the reactor. Though π1
 
is in 

the order of 1, π12
 
is much less than 1, indicating that CCOS variation is mainly due to reaction and this is 

also seen from the complete conversion of CCOS
 
well within the reactor. So we can neglect this term from 

the species balance of CCOS.
 

The value of dimensionless groups π3 and π4 are much higher than 1 and they both multiply the 

dimensionless temperature difference term. As mentioned previously, the value of the dimensionless 

group which multiplies dimensionless temperature difference will indicate whether this difference is 

significant or can be made equal. 
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Since π3 multiplies sgscat TT ,,  ,  if π3 >>1 then it implies that 

gcat TT   <<1, so that   gcat TT 3  will be 

in the order of 1 and hence both the temperatures can be made equal and vice versa.  The dimensionless 

group π3 implies the ratio of rate of heat transfer from catalyst to rate of heat convected along axial 

direction by the flowing gas. Similarly π4 indicates the ratio of rate of heat transfer from catalyst to gas 

phase to rate of heat generation from reaction. A large value of this dimensionless group indicates that the 

heat generated from reaction is convected by the flowing gas. This in turn verifies the assumption of π5 

equal to 1 while finding the temperature scale. From the value of these dimensionless groups in Table 13, 

catalyst and gas phase temperatures can be safely assumed to be equal. 

The scale of total concentration change Cs is found by assuming that temperature is the dominant cause 

for this variation by equating π7
 
to 1. From π11 which is in order 1, we see that Cs also depends on pressure 

variation. So we cannot neglect any term from the total concentration balance. 

The value of dimensionless group π8 indicates that its contribution in the energy balance equation is 

negligible. The dimensionless group π8 represents 
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This infers transport of heat by conduction through catalyst in axial direction is negligible. Resistance for 

conduction condR  through catalyst bed can be given by  
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where Ac is the cross sectional area of the reactor. The resistance for conduction increases with length of 

the reactor. So for the length considered, this resistance is higher and hence this contribution is negligible 

compared to heat transport by convection along axial direction.  



The dimensionless group π9 represents the ratio of rate of heat generation per unit volume by hydrolysis 

reaction to water gas shift reaction. Small value of this group indicates that this term in the energy balance 

equation can be safely neglected. The dimensionless number π9 is much less than 1 and it indicates that 

Reynolds number is high enough to neglect the contribution of the second term in pressure drop equation. 

3.1.6 Reduced order model after scaling 

A reduced order model is obtained after removing terms as discussed previously. The simplifications 

described require us to re-derive the energy balance by assuming instantaneous transfer of heat from 

catalyst to gas phase and neglecting any conduction. The new energy balance is given as 
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Reduced order model for the given parameter and inlet condition is given below 

Component balance: (CO) 
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Component balance: (COS) 
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Total balance: 
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Pressure drop equation: 
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Energy balance: 
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3.1.7 Comparison of simulation results from reduced order model with that of detailed model 

The reduced order model obtained through scaling analysis is tested by comparing the simulation results 

with that of detailed model. The percentage change in the average values of the variables between 

detailed and reduced order model and the computational time taken are considered as the metrics for 

comparison. These metrics represent the closeness of the reduced order model and its computational 

efficiency compared to the corresponding detailed model. For example, the average change in the 

temperature over the length of the reactor between two models is given by 
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In the above equation, the integral is calculated numerically based on the profile values of the 

corresponding variables. Computational load is measured in terms of time taken for simulation using tic-

toc command in MATLAB. Table 14 shows the values for these metrics and the values shows that error 

percentage is small enough that one can consider reduced order model is a good approximation for the 

given parameters and inlet conditions. On the other hand, the computational load is considerably lower 

and it is reduced by about 97.8% of the load required for the detailed model, which can make the use of 

this model preferred of several applications. 

 

Table 14. Metric for comparing reduced and detailed model simulation 

Variable/Model Metric Value (%) 

Concentration of CO  erroravgcoC ,,  3045.0  

Concentration of COS  erroravgC ,cos,  02.5  

Temperature erroravgT ,  0132.0  

Pressure erroravgP ,  1340.0  

Detailed model Computational load, s 86.74  

Reduced order model Computational load, s 96.0  

 

In the figure below, we show the profile of two of the variables between these two models. Figure 65-66 

show the profile of COS and temperature along the length of the reactor, respectively. From the 

temperature profile one can observe there is increase in catalyst temperature very near to the inlet of the 

reactor. This is because at a small enough lengths, conduction dominates over convection, hence there is 

rise in catalyst temperature and also we see difference between catalyst and gas phase temperature. This 

length where conduction is important can be approximately given by, 
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Figure 65. Concentration profile of COS from detailed and reduced model for WGS reactor. 

 

Figure 66. Temperature profile from detailed and reduced model for WGS reactor. 

 

3.1.8 Comparison of scales with actual simulation 

The scales can be thought of as maximum values which makes the dimensionless variable to take value at 

most of 1. These scales can be approximately calculated without performing any simulation, based on the 

inlet and parameter values. However if the detailed model is simulated then the exact values of these 

scales can be calculated based on the simulation results. In this section, we compare the approximate 

scales obtained in the previous section with the exact ones obtained through simulation. 

In the steady state model of WGS, maximum gradient of a variable can be calculated by considering the 

dimensionless variables taking maximum value of 1 in the corresponding dimensionless equation. For 



example, consider dimensionless species balance, Eqn. (110). The maximum concentration gradient can 

be found from this equation as follows,  
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In Eqn. (145), we see the maximum gradient depends on two terms zsiCy and  







1

s

i

u

r
.  These two 

terms can be calculated either approximately as detailed in the previous sections or can be calculated from 

values of simulation. 

The idea behind calculating scales approximately is to assume one of the terms in Eqn. (145) dominates in 

contributing to the maximum gradient. This is done by equating one of the corresponding dimensionless 

groups to 1.  In a similar way one can calculate all other relevant scales by assuming one of the terms 

dominates in each of the corresponding dimensionless equation. The obtained scales are then substituted 

in the other dimensionless group to see whether they are of order 1 or much less than 1 or much greater 

than 1.  If the value of the resulting dimensionless group is much less than 1, we can neglect this term 

resulting in model simplification, if it is of order 1, then it equally contributes to the gradient and hence 

needs to be retained. If the value is much greater than 1, then our assumption of selecting dominating 

dimensionless group is wrong and we need to equate this dimensionless group to 1 and test the other 

dimensionless groups. 

The maximum value of a variable from simulation can be taken as scale for the corresponding variable. 

For example, maximum temperature change  inTT max  can be taken as the scale for temperature sT . 

Then this scale can be substituted into the dimensionless group to identify which terms are important to 

be retained or not important to be neglected.  For example consider again Eqn. (145). In this equation, the 

maximum value of iy  i.e. iny  can be substituted and the  maximum value of total concentration gradient 

can be calculated from total balance equation and substituted, maximum of ratio 








u

ri  from simulation 

can be substituted in the second term. Then this will give the maximum value of the concentration 

gradient. Based on the percentage of contribution of each term, one can decide on retaining or neglecting 

the terms. 
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Table 15 shows the scales for WGS reactor calculated from simulation and through scaling analysis and it 

is seen that they are close to each other.   

                           

Table 15. Exact values and approximate values of the scales 

Variable scales Actual values from simulation Approximate value through scaling analysis 

scoC ,  33.246  33.246  

sCcos,  0963.0  0963.0  

scor ,  34.2  17.2  



srcos,  0053.0  0049.0  

su  2817.0  296.0  

sT  26.156  79.185  

sP  51031.2   51094.2   

 

In Table 16, we show the dimensionless equation of WGS reactor in the limit of dimensionless variables 

taking the value of 1. This results in a simple algebraic equation containing the maximum values.  In 

values under simulation, each value represents the actual value that is obtained through simulation.  For 

example, in the first equation, 9.024  represents the maximum gradient of coC , 79.2  represents 

maximum value of zscoCy  and 33.6 represents the maximum value of  







1

s

co

u

r
. In the values under 

scaling analysis, values on the right hand side of the equation (2.54 and 6.23) represent the one that 

obtained by substitution of appropriate scales. It is seen that all the values of the equation obtained from 

simulation and from scaling analysis are again close to each other. Table 15 and Table 16 confirm that 

reduced order model obtained from scaling analysis is based on realistic scales and hence will be a good 

approximate model. 

 

Table 16. WGS reactor dimensionless equations are shown as algebraic equations with their 

corresponding values from simulation and scaling analysis 

Equation Values through simulation 
Values through scaling 

analysis 
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3.1.9 Scaling of unsteady WGS model 

Scaling can be done for unsteady model using the definitions introduced above. In addition to the scales 

for steady state model, we need to introduce one more scale which characterizes the unsteady nature of 

the model. We define this scale as 'velocity of dynamics of a variable'. Following is the unsteady model of 

WGS reactor, 

Component balance: 
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Pressure drop equation: 
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Gas phase energy balance: 
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Catalyst phase energy balance: 

 
  





















hydRhydwgsRwgsgcat

cfcat
cat

catcat

cat HrHrTT
ah

z

T
K

Cpt

T
,,2

2

1

1


 (150) 

In the dimensionless model Eqn. (151) and (152), we have introduced the new scales scV , , 
scatTV

,
and  

sgTV
,

 which characterize the dynamics of concentration and temperature. Reaction scale for this can be the 

maximum of two inlet rates corresponding to two steady states before and after the introduction of 

dynamics or can be obtained by simulating the simplified version of the corresponding unsteady model.  

Dimensionless species balance: 
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Dimensionless combined energy balance: 
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The scales scV , , 
scatTV

,
and  

sgTV
,

can be obtained by equating the dimensionless group multiplying the 

unsteady term to 1.  
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Based on the values of the scales, dynamics of gas phase temperature is faster compared to catalyst 

temperature. But from 3  and 
4 , it is seen that catg TT   , this means that dynamics of gas phase 

temperature is limited by the catalyst temperature dynamics. On comparing the velocity of dynamics of 

temperature with that of concentration, one can observe that concentration dynamics is about 25 times 

faster. This implies we can safely assume the concentration variation to be quasi steady. We can remodel 

the energy balance by considering the both catalyst and gas phase temperature to be equal and its 

dynamics is governed by that of catalyst temperature. 
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From scaling analysis, we see that the dynamics of detailed of model of WGS reactor for the given 

parameter and inlet conditions is governed mainly by temperature dynamics. The coupled parabolic and 

hyperbolic PDE model becomes only hyperbolic PDE model which can be further simplified using 

recently developed model reduction techniques through method of characteristics. The computational load 

of simulating this model is about 40 seconds, which is about 75% reduction compared to the 

corresponding detailed model. Table 17 shows the summary of relevant properties for comparison 

between the detailed and reduced model. Figure 67 shows the dynamic response of outlet temperature for 

a step change in inlet temperature from 620 to 640 K. 

 

 

Table 17. Summary of detailed and reduced order model 

Properties Detailed model Reduced model 

No. of PDEs 8 1 

No. of ODEs 1 3 

No. of algebraic equations 0 4 

Types of problem solved IVP & BVP Only IVP 

Steady state simulation time, sec 96 1 

Dynamic simulation time, sec 130 40 

Further order reduction can be achieved by POD+MOC MOC 

 



 

Figure 67. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas 

temperature from detailed and reduced order model. 

 

3.2 Method of Characteristics 

Model reduction using method of characteristics is a recently developed technique to reduce the model 

described by hyperbolic PDE.163,164 This method has been applied to a model consisting of hyperbolic 

PDEs like fixed bed reactor and plug flow reactor. Here, we can employ this technique to the hyperbolic 

PDE model of WGS reactor obtained from scaling analysis. 

Method of characteristics is a method which converts partial differential equations to a set of ordinary 

differential equations. This is possible by finding a relation between two independent variables  tz,   and 

these results in equations having single independent variable (ODEs). The relation between the two 

independent variables is given by the equation of the lines called characteristic lines in  tz   plane. The 

resulting ODEs for the dependent variables are solved along these characteristic lines. The accuracy of the 

solution obtained from MOC depends on the density of characteristic lines in the solution surface.163,164 

Consider the following equation which is similar to the reduced order model of WGS reactor: 
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Here 1

1

n
R , 2

2

n
R  and Rzt , .  In the above equation 1  

corresponds to quasi steady variables 

such as concentration and pressure in the reduced WGS reactor model and 2    
corresponds to 

temperature variable. The variable 1 is assumed to vary instantaneously and the variable 2  is assumed 

to vary with finite rate. In these equations as  tends to zero, equation for 1 is assumed to be quasi 

steady. The model exhibits characteristic lines with two slopes given by two different time scale behavior 

of the variables. One set of characteristic lines is assumed to be with a slope zero as  tends to zero and 



the other set of characteristic lines have finite slope given by the value of  
2
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
. The value of 
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reduced WGS reactor model corresponds to 
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Figure 68. Schematic figure showing the characteristic lines in (z-t) plane. 

The characteristic lines are schematically represented in the Figure 68 where the horizontal line with 

slope zero and slanting lines with finite slope represent these characteristic lines. These lines are 

represented by  00 ,; tzzta  and  00 ,; tzztb  where  00,tz  represents the starting point of these lines. For 

example, the points   00,tz ,  01,tz ,  11,tz  etc. as shown in  Figure 68 represent these starting points. 

Based on the model equations Eqn. (155) and (156), using the concept of method of characteristics, 

equations for the characteristic lines starting from the point  00,tz   are given by, 
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  Similarly, equations for the dependent variables are given by, 
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The above equations represent the steady state model for 1 and 2  which is solved along respective 

characteristic lines and the solution of each of these equations requires information of simultaneous 

variation of both the variables 1  and 2 . Since this information is only partially available, i.e. only 1  

along  00 ,; tzzta  and only 2 along  00 ,; tzztb ,  some sort of approximation is needed. This is 



addressed by an approximation where for the solution of one variable, the available information of the 

other variable in another characteristic line is approximated. The approximation involved is schematically 

shown in Figure 69. Arrows in the figure shows the direction of approximation. 

 

Figure 69. Schematic figure showing the approximation involved in the solution of dependent 

variable along characteristic lines. 

 

Thus starting from the information at  00,tz , Eqn. (159) and (160) are solved to find the value of 
1  

at 

 01,tz  and 2  at  11,tz . This procedure is repeated for all the points in a plane to obtain the solution of 

the corresponding hyperbolic PDE model. Figure 70 shows the dynamic response of outlet gas 

temperature from detailed and reduced order model from MOC. The computational load is further 

reduced to 6 seconds from 40 seconds taken by the model obtained from scaling analysis. Hence the 

original computational load of 130 seconds using detailed model is reduced to 6 seconds using reduced 

order model through scaling analysis and method of characteristics. 

 

Figure 70. Dynamic response of outlet gas temperature for a step up of 20 degrees in the inlet gas 

temperature from detailed and reduced order model. 

 



3.3 In-Situ Adaptive Tabulation 

Sensor network design for water-gas shift reactor (WGSR) involves repeated simulation of its model 

equations inside extended Kalman filter (EKF). Direct numerical simulation of the current detailed model 

in EKF which is called by genetic algorithm during the design of sensor network is computationally 

intensive. Use of scaling analysis on the original detailed model of WGSR resulted in a simplified model 

with computational reduction by about 60%. To further reduce the computational burden, in situ adaptive 

tabulation (ISAT) is currently investigated. 

ISAT is a tabulation method developed by Pope165 and is used for the computationally efficient simulation 

of nonlinear equations through efficient storage and retrieval of solution data. This has been used for 

computational reduction of simulating detailed chemistry in reactive flow calculations (Pope 1997), for 

simulation of heterogeneous reaction166,167, for computational reduction during online implementation of 

nonlinear model predictive control168, for dynamic simulation of large scale flowsheet169, etc. 

ISAT is a storage and retrieval method, where solutions of DAE are stored in the form of a binary tree. 

This step is called 'Addition' during which the DAE model is numerically simulated (called as 'Direct 

integration (DI)'.) During this step, no computational advantage is realized and is done offline. Once 

sufficient data is added to the table or after sufficient time of addition of data to the table, one can retrieve 

the solution from the table during which higher computational efficiency can be realized. 

The working of ISAT is represented in Figure 71. The left hand side figure shows the normal numerical 

integration to find the solution and this direct integration is done as many times as the model is called 

during sensor network design. The right hand side figure shows similar direct integration along with 

'retrieval' of the stored solution from the ISAT table. In this case, the number of times the direct 

integration is performed will be less and is dependent on the density of the data in the table. Hence using 

ISAT for sensor network design will result in higher computational efficiency. 

 

 

Figure 71. Concept of direct integration and ISAT when the model is solved several times. 

 

3.3.1 Algorithm 

The ISAT algorithm is explained by the following simple 2-state problem as given below. In this we 

consider a 2-state problem with an objective of solving the equations several times for different initial 

conditions. 
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One way to accomplish the above objective is numerically integrate the Eqn. (161) and (162) for each of 

the initial conditions which would be computationally intensive. The other way would be to use storage 

and retrieval method such as ISAT, which is explained below. ISAT algorithm typically involves three 

main steps: 

3.3.1.1 Addition 

In this step, solution data is added to the table. In ISAT, this data is called a record which holds 

four main pieces of information 
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• Sensitivity matrix which holds the information about the sensitivity of output with respect 

to input. This is given by 
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This sensitivity information matrix is used in the linear equation for the calculation of 

output for the inputs within the 'region of accuracy'.  Due to this region of accuracy, 

ISAT requires only finite number of solution data points to be added to cover the whole 

of operating region. The nonlinear solution surface can be thought as approximated to be 

several 'linear' regions where following linear equation can be used. 

 AxsssAss fqf

l

fq  )( 00,,  (163) 

where x  represents )( 00, ssq  . In the above equation , 0s  and fs  come from the added 

record to the ISAT table, 0,qs  is the new query point, which is within the region of 

accuracy of 0s . Thus one can see that for the points within the region of accuracy of 

added points in the table, one can calculate the output using the linear equation without 

resorting to computationally intensive nonlinear numerical integration. 

 

• Ellipsoid of accuracy (EOA) or region of accuracy:  As seen before, EOA is required, 

which defines a region around the added point in the table. One way to find this region is 

to define an accuracy   for the solution from linear equation compared to actual solution 

from direct integration, i.e. 
l

fqfq ss ,.  . The region should be in such a way that it 

covers all the initial points 0,qs  whose final solution fqs ,  when found through linear 

equation will at most have error of  . 



   

 In practice, to avoid complexity165, only an estimate of this region is found initially. This 

estimate is improved during 'growth' phase where the region is expanded. This initial 

estimate is found as follows 

   

Let us define the solution from 'constant approximation' for the solution of query point 

f

c

fqfq sss  ,
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, .  The error in solution between this constant approximation and the 

linear approximation is bounded to  . 
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Squaring the above equation by multiplying with the transpose, we get 

  TTT AxAx         MxxT  (165) 

In Eqn. (165), M  represent EOA. The major and minor axis of the ellipse is given by 

singular value of M . 

Following figure represents the addition of this record in the solution space 

 

Figure 72. Addition of record in a solution space. 

 

3.3.1.2 Growth 

In this step, initial estimate of EOA is grown whenever the following condition is satisfied 

 
MxxT and      l

fqfq

Tl

fqfq ssss ,.,.  (166) 

This condition implies that whenever a new query point is outside EOA but the solution from the 

linear equation is within the specified accuracy in comparison with the solution from the actual 

numerical integration, then EOA is grown and this results in a modified M . The details of the 

growth step involves concepts from linear algebra and can be found in the literature. Following 

figure shows the growth of initial EOA to final grown EOA which encompasses the initial EOA 

and the query point. 



 

Figure 73. Growth of EOA where  grow EOA encompasses the initial EOA and the query point. 

 

3.3.1.3 Retrieval 

This is the most important step for the computation reduction, where a linear equation is used for 

the retrieval of the solution. So whenever MxxT  or xMx if ied

T

mod , retrieval can be 

performed. 

Once sufficient records are added to the table, for any new query point, the first step is to search for the 

closest record. Once the closest record is found and the condition MxxT  or xMx if ied

T

mod  is 

satisfied, retrieval is performed, otherwise either growth to modify EOA or new record corresponding to 

the query point is added to the table. Thus one can see that during initial phase there will be more addition 

and growth, which are computationally intensive as actual numerical integration is required. After 

sufficient data is added to the ISAT table, one can realize more retrieval leading to computational 

efficiency. 

3.3.2 Binary tree structure 

Binary tree structure is an efficient way to find the closest record which is necessary to determine 

addition, growth or retrieval from the ISAT table. During addition of record to the ISAT table, this binary 

tree structure is formed. This tree has node from which two braches come out and these branches either 

hold another node or record. The first node in the tree is called the root node, which can have child node. 

The child node can have further children nodes as one traverses the tree. This tree is schematically 

represented in the following Figure 74. 

0s

qs



 

Figure 74. Binary tree showing nodes and leaves. 

 

Each of the nodes in the binary tree holds information, which will help in deciding whether to take the left 

branch or right branch while searching for the closest record. 
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Considering two records (whose corresponding initial points are 1,0s  and 2,0s  ) are already present, when 

third point 3,0s  is encountered, one has to decide which among 1,0s  and 2,0s  is close to 3,0s . One way is 

sequentially check with each of the points in the table, which is time consuming. Another way is to use 

the binary tree structure as follows 

3,0svT
        take left branch, otherwise take right branch 

Using binary tree structure takes only  )(log2 NO  operations compared to )(NO  operations in a 

sequential search, thus improving the search time. Here, N  represents the number of data points in the 

table. In a search space of this binary tree represented as in Figure 75, a 3 record addition is shown. In 

Figure 75, the dotted line represents the cutting plane given by  Tv , where   is the new query point. 

Root node

Child node - 1

Child node - 2

leaf or recordChild node - 3



 

Figure 75. Binary tree shown in search space where   represent a new query point . Corresponding 

binary tree structure is shown on the right hand side. 

3.3.3 ISAT for WGSR model 

ISAT algorithm is used in the dynamic simulation of simplified WGSR model obtained after scaling 

analysis. On the computational aspect, using ISAT, the computational load during retrieval of output 

takes only 0.0027 seconds compared 0.12 seconds for the corresponding direct numerical integration. 

This shows the significant benefit of using ISAT. Figure 76 shows the open loop dynamic simulation 

result from ISAT with only retrieval compared with direct integration of WGSR model. 

 

Figure 76. Dynamic simulation of WGSR model using ISAT with retrieval and direct integration 

(DI). 

 

3.4 Conclusion 

The simulation of mathematical model of WGS reactor is computationally expensive. In this study we 

have shown the use of scaling analysis and method of characteristics for computationally efficient 

simulation of WGS reactor model. In the scaling analysis we have used inlet reaction rate as the reaction 
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scale as opposed to using the rate based on maximum temperature and concentration suggested in the 

literature. Comparison of scales with the actual ones obtained from simulation, confirms the scales are 

realistic and the resulting reduced order model is reliable. The scaling analysis resulted in an approximate 

model involving hyperbolic PDEs which is further approximated using recently developed techniques 

involving method of characteristics. The simulation results shows that the obtained reduced order model 

is a good approximation for the detailed model with higher computationally efficiency. 

Simulation of WGSR model is performed several times during sensor network design inside EKF. 

Currently, the computational load involved during the design is intensive. Usage of ISAT proves to be 

computationally efficient in such similar scenarios and hence the use of this algorithm is investigated. 

Initial results from application of ISAT to WGSR are encouraging and further work is needed to test its 

effectiveness inside EKF during sensor network design.  

 

4 System-Level Sensor Placement 

4.1 Introduction 

Highly integrated and complex processes and advancements in control technologies for controlling 

these processes have increased the necessity of cost-effective automated diagnostic systems that can 

efficiently detect, identify and diagnose abnormalities and their origins as they propagate in the process. 

The diagnostic systems traditionally use underlying mathematical models and the on-line measurement 

from sensors specific to the process. As a fault enters a system, it affects the process variables, which 

deviate from normal operating conditions. Diagnostic systems compare the response of the process 

variables with respect to a reference model in the presence of faults in order to detect fault symptoms and 

monitor the performance of the process which depends crucially on the location of the sensors that 

capture the behavior of process variables. However, it is not economically viable and practically possible 

to measure all the process variables. Therefore, designing a cost-effective sensor network based on 

various criteria, e.g. observability, reliability, diagnosability, etc., poses a unique problem for process 

engineers. Several techniques have been reported in the literature, such as fault trees, cause-effect 

diagraphs, fuzzy logic-based methods, neural network, principal component analysis, qualitative trend 

analysis, support vector machines, hidden Markov model-based methods, and multivariate analysis 

techniques for sensor placement for fault diagnosis. For a broader discussion on available techniques, 

interested readers are referred to the review articles by Kramer and Mah170, Bagajewicz171, Frank et al.172, 

Venkatasubramanian et al.173and Ould Bouamama et al.174 

Generally, the diagnostic systems are categorized into quantitative model-based, qualitative model-

based and process history based techniques173. The model-based techniques are centered around 

fundamental first-principal mathematical equations of the process, whereas the process history techniques 

rely on the analysis of long-time acquired process data.173 Cause and effect models such as the directed 

graph (DG) and signed directed graphs (SDG) are popular qualitative model-based techniques that have 

been studied in the context of sensor placement for fault diagnosis (FD) by many researchers. The DG 

representation is one where the nodes (representing process variables and root causes) are connected by 

arcs. The SDG is a DG where a positive or negative sign is associated with each arc. In both the 

representations, the direction of the arcs are from 'cause' nodes to the 'effect' nodes.173 Iri et al.175 were 

first to use SDG representation for FD where they used SDG representation to identify the origin of 

failure for the available set of measurements. While the various fault observability and resolvability 

criteria for graph models used by the researchers are fundamentally analogous, e.g. diagnostic 

observability means at least one variable corresponding to the actual fault is estimated correctly176,177, this 

study follows the definition by Raghuraj et al.178 Fault observability means that at least one of the sensors 

in the network can observe the fault, and fault resolution means that the fault can be uniquely identified 

from other faults by the sensor network. 



The problem of sensor placement (SP) was first tackled by Lambert179 using a fault tree representation 

based on failure probabilities. Chang et al.180 adopted the concept of observability and resolution and 

proposed a sensor placement method to minimize the number of sensors while ensuring the observability 

and highest resolution. Raghuraj et al.178 incorporated the concept of fault observability and resolution 

into DG representation of the process and proposed an approach to identify the optimal location of the 

sensors. Bhushan and Rengaswamy181 extended the work of Raghuraj et al.178 to SDG analysis for FD and 

continued the work by taking into account additional quantitative information such as fault occurrence 

probabilities, sensor failure probabilities and sensor costs.182 Bhushan and Rengaswamy183 presented their 

framework by formulating the problem as a mixed integer linear programming (MILP) formulation by 

using the bipartite matrix for various fault diagnostics and reliability criteria. Bagajewicz et al.184 

formulated the problem as an MILP formulation for simultaneous process monitoring and fault detection 

and resolution. Recent efforts in cause-effect modellings are centered around incorporating useful 

concepts or adding more information that improve the FD by DG and SDG models. Kolluri and 

Bhushan185 improved the FD capability by introducing the sensor network audit while minimizing 

unreliability of fault detection and ensuring fault observability and resolution. Bhushan et al.186, Yang et 

al.187 and Gao et al.188 incorporated robustness, false alarm rates and qualitative trend analysis into SDG, 

respectively. Recently, Chen and Chang189 enhanced the SDG algorithm by considering the sequence in 

which the faults propagates throughout the process. In their work, the problem is posed as a binary integer 

linear programming (BILP) formulation with sensor pairs as additional decision variables.  

In almost all of the works using cause-effect models, the sensor network design is obtained by 

considering the qualitative simulation of the process; numerical solutions are used to verify the sensor 

network. However, the problem of spurious solutions, which refers to the solutions that are not realizable 

physically, inherent in qualitative models might reduce the efficacy of the sensor placements, particularly 

for complex processes. On the other hand, optimization solutions involving large-scale first-principles 

models for sensor placement might still be intractable. As a result, a compromise might be to directly 

utilize the numerical solution of the process models in the traditional sensor placement algorithms. We 

believe that this approach while keeping the sensor placement algorithms still tractable will also enhance 

the specificity of these algorithms. In this work, the SDG algorithm is enhanced by taking advantage of 

available numerical data and the relationship among the variables. We adapt the DG and SDG philosophy 

under the assumption that a numerical solution is available and propose magnitude ratio (MR) – ratio of 

the changes in a pair of process variables in response to a fault – to improve sensor placements for FD. 

The sensor placement problem is posed as a BILP formulation by using the bipartite matrix while 

ensuring observability and maximum possible resolution. Moreover, we generalize this idea of magnitude 

ratio to the realistic case of multiple process variables and multiple faults. We also study the fault 

evolution sequence (FES) – sequence in which a pair of sensor variables deviate from their nominal 

values in response to a fault - for improvements in the sensor placements for FD.  

 

4.2 Sensor Placement Approach 

To facilitate the use of MR and FES information in a SP algorithm, a set of artificial sensors, which 

correspond to pair-wise sensors from the original list of sensors are defined. In MR algorithm, artificial 

sensors represent the magnitude ratio of the corresponding pairs; and in FES algorithm, artificial sensors 

represent the sequence in which the corresponding pairs respond to the faults as the faults propagate in the 

system. We believe these enhancements not only improve the capability of the SP algorithms, but they 

can be viewed as independent components of a more general and complex SP problem that is decomposed 

into simple, yet efficient components.  

Theoretically, the SP problem can be thought of as an optimization problem that requires 

minimization of the cost of the sensor network while satisfying the underlying mathematical equations 

and constrained to some fault diagnosis performance metrics. However, the major drawbacks to this 

theoretical view are: (i) solving such minimization problems for large complex systems is 



computationally expensive, (ii) the underlying mathematical equations must be embedded within the 

optimizer and might require solution to a mixed-integer non-linear programming problem, (iii) it is in 

general non-obvious and difficult to define fault diagnosis performance metrics, and (iv) finally, simple 

engineering interpretation of the results might be difficult. We believe that one way to resolve these 

drawbacks is to decompose the underlying mathematical model into smaller and simpler interacting 

building blocks of information such as DG, SDG, FES and MR. By doing this, the resultant optimization 

problem can be solved easily as the underlying complex mathematical equations are removed from the 

optimizer. The complexity of optimization problem can be reduced to solving an integer linear 

programming problem. Further, the sensor placement results can be easily interpreted. Moreover, further 

improvements can be achieved by adding more information components to the model description. One 

such example could be qualitative trends or “signatures” that faults leave in the measured variables. 

Another interpretation of this approach is that the sensor placement problem is simplified and 

efficiently solved through the use of appropriate features. The DG and SDG develop qualitative features, 

whereas FES is a purely temporal feature. Clearly, none of these are quantitative features. The MR is 

probably the simplest quantitative feature that one could include in the sensor placement algorithm; this 

has not been attempted before. We will show that the inclusion of this feature can help in both better 

resolvability and also in deriving more cost-effective sensor placements with the same level of 

performance. 

 

4.3 SDG and FES Algorithms in the Presence of Numerical Simulations 

In a process system, a change in one variable can cause one or more variables to change significantly. 

These cause-effect (CE) relations among the variables are very useful for diagnosing faults in the system. 

The optimum number and locations of sensors for diagnosis of a process can be identified through an 

algorithmic approach when process simulation is available. Such an approach is detailed next. First, the 

total number of faults (M) that one is interested in diagnosing is chosen. Then under the assumption of 

occurrence of one fault at a time, fault simulations are performed. Next, the candidate sensor locations (N) 

are chosen. Fault sets - which are a set of all the sensors that respond to the occurrence of a fault - are 

generated. Due to large differences in the magnitude and direction of change of the process variables in 

response to the occurrence of a fault, it is important to use a threshold value for each process variable 

while developing the fault sets. A variable should be included in a fault set whenever that process variable 

deviates beyond the threshold limit. The extent of deviation in a particular process variable depends on its 

actual operating value, type, operating condition, noise and disturbances. For simplicity, we have 

considered the threshold limit on the process variables as ±2σ variation of the sensor that measures the 

variable where σ is the standard deviation, e.g. 2 °F for temperature sensors.190 If the variable changes 

from its nominal value beyond the ±2σ of the sensor that measures the variable, the variable is assumed to 

be changed from its nominal value. 

All the faults are introduced at the same operating condition. No disturbance is introduced into the system 

during fault simulations. In DG, if a variable changes beyond its operating limit, a "1" is assigned, 

otherwise "0" is assigned, i.e. RDG ϵ {0,1}. This operation returns a row vector for each fault with the 

dimension of 1×N and performing this operation for M faults will return matrix ADG with the dimension of 

M×N. In SDG, "1" is assigned if the variable changes beyond the upper limit and "-1" if it changes 

beyond the lower limit. If the variable stays within its limits, "0" is assigned. Note that the deviations are 

based on the incipient response of the process, thus, if a variable response changes during the course of 

the fault evolution, e.g. "1" then after some time "-1", only the initial response is considered, i.e. "1". 

Therefore, RSDG ϵ {-1,0,1}. Considering all the faults, the matrix ASDG of dimension M ×N is obtained. The 

constraint matrix is constructed by augmenting the observability (𝐴𝑜𝑏𝑠) and resolution matrices (𝐴𝑟𝑒𝑠), 

𝐴 = [𝐴
𝑜𝑏𝑠

𝐴𝑟𝑒𝑠]. For observability, since only observing the fault is required and not the direction, 𝐴𝑜𝑏𝑠 =

𝐴𝐷𝐺. For resolution, symmetric difference sets of the form 𝐴𝑖𝑗
𝑟𝑒𝑠 = 𝐴𝑖

𝑆𝐷𝐺 ∪ 𝐴𝑗
𝑆𝐷𝐺 − 𝐴𝑖

𝑆𝐷𝐺 ∩ 𝐴𝑗
𝑆𝐷𝐺  for each 



pair of faults results in matrix 𝐴𝑟𝑒𝑠 with the dimension MC2×N .182,183,191 However, it is possible that some 

of the faults may produce deviation in the same direction for the same set of variables. In that case, the 

corresponding rows in the observability matrix are the same. If q  rows are same in the observability 

matrix, the resolution matrix will have qC2 number of rows with zero elements. Therefore, those faults 

cannot be resolved. 

A binary integer programming problem for sensor placement is formulated for minimizing the sensor cost 

subjected to fault observability and resolution considering all the process variables as decision variables. 

A binary decision variable is assigned to each process variable; if the decision variable takes a value of 

"1" then a sensor is placed to measure that variable and a "0" value implies that the variable is not 

measured. The constraint matrix, A, in the optimization problem represents the coefficient matrix 

obtained by DG and SDG. Since for observability and resolution at least one sensor must be picked by the 

optimizer, the b vector represents the constant vector of unity with (𝑀 +  𝑀𝐶2) rows.  

𝑚𝑖𝑛 ∑𝑤𝑗𝑥𝑗

𝑁

𝑗

 (168) 

Subject to: 

𝐴𝑥𝑇 ≥ 𝑏 

and 𝑥𝑗 binary 

wj  is weight for the sensor for j =1,…,N 
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The sign of the variables’ response to a fault and the sequence in which the variables respond to a fault 

can be utilized to enhance the fault resolution. The FES algorithm, proposed by Chen and Chang189, takes 

into account the sequence in which fault propagates through the process. This is the first work where this 

approach was proposed. In their work, sensors are paired together and assumed as a pseudo-sensor to 

obtain the sequence information. Since the work of Chen and Chang189is based on qualitative analysis 

without numerical simulations and the current work assumes that numerical solutions are available, an 

algorithmic approach for FES had to be developed. This is described below. 

After a set of M faults are modeled individually, the sequence in which sensors capture the changes in the 

process variables for each fault is determined by the time elapsed from a reference time, which is set 

before any variable goes beyond the threshold limit. As soon as a variable goes beyond the threshold 

limit, it is added to the sequence. To pair the sensors, NC2 combinations are considered as the available 

pairs and a base sequence is assumed for each pair as {𝑆𝑖,𝑆𝑗} where 𝑗 > 𝑖 and 𝑆 represents the 

corresponding sensor. The pairs used in this study are of the form of 𝑃𝑖𝑗 , where 𝑃𝑖𝑗 is the pseudo-sensor 

assigned to the sequence of sensors 𝑆𝑖 and 𝑆𝑗. This will result in the generation of 
𝑁(𝑁−1)

2
  pseudo-sensors 

as pairs.  If the sequence of any pair (𝑃𝑖𝑗) is in the same sequence as the base pairs, "1" is assigned to that 

pair variable, if the pair is in the opposite sequence of the base pairs, "-1" is assigned and for all others "0" 

is assigned to the pair variables. However, it would not be possible in practice to determine the sequence 



of pairs of variables if the time elapsed between the responses is short. Thus, a threshold time is defined 

to determine if responses can be arranged in the sequence. If the difference in response time of the pair is 

greater than the time threshold then it will take the values as described, otherwise, "0" is assigned to 

distinguish them from pairs that can be practically assumed in sequence. Therefore, P ϵ {-1,0,1}. This 

operation will return a matrix with dimension M × NC2. Figure 77 shows the flowchart of FES algorithm 

in presence of numerical solution. In this flowchart, 𝐺 is the measurement value, 𝑡 is the time elapsed 

from a reference time until the sensor magnitude (measured value) goes beyond the threshold limit, 𝑇𝑖 and 

𝑇𝑗 are the operational threshold limit, and 𝑇𝑡 is the time threshold.  

 

Figure 77. Flowchart of FES algorithm in presence of numerical solution 

 

4.4 Sensor Placement Using Magnitude Ratio 

Qualitative reasoning, in general, predominantly focuses on the behavior of single process variables and 

neglects relationship among process variables.192 Other than the information available from single 

variables, partial information such as absolute value ranges, relative orders of magnitudes and 

approximate numerical values can be utilized.192 Qualitative reasoning disregards such available 

information and practices reasoning at a very abstract level. Thus, the focus is on the signs exclusively 

and practical use of numerical values is excluded. Explicit use of numerical information in conjunction 

with qualitative reasoning makes such reasoning more applicable for engineering systems. Such reasoning 

has been reported in the work of Mavrovouniotis and Stephanopolous192, and Raiman193 for FD. In their 



work, the order of magnitude reasoning is discussed through the definition of three relations among 

quantities: A is negligible in relation to B, A has the same sign and is close to B, and A has the same sign 

and order of magnitude as B. Although this approach uses quantitative information of the variables, it 

cannot relate numbers to order of magnitude relations; and order of magnitude reasoning contains no 

extra information when full numerical solutions are available.192 Therefore, a somehow similar reasoning 

is proposed that take advantage of the available numerical data. The magnitude ratio can be thought as 

reasoning by A>>B or AB1, where, A and B represent the ratio of normalized magnitude of the 

sensors. To better understand this idea, consider the example in Table 18. SDG algorithm cannot 

distinguish between 𝐹1 and 𝐹2, but, we can examine the ratio of the sensors and see if we can distinguish 

between these faults. Figure 78 shows the ratio of 𝑆1to 𝑆2 for each fault. Note that the magnitude of each 

sensor is normalized by its steady state value. The magnitude ratio for fault 𝐹1 is much higher than that of 

𝐹2's. This indicates that the sensor 𝑆1 is much more affected than 𝑆2, or vice versa, for 𝐹1 compared to 𝐹2. 

Therefore, this way we can distinguish between faults 𝐹1 and 𝐹2.  

 

Table 18. SDG example 

Fault Sensor 

 
S1 S2 

F1 1 -1 

F2 1 -1 

 

 

Figure 78. Magnitude ratio for example in Table 18 



Generally, the extent that a variable is affected by a fault gives an insight into the propagation of the fault 

through the process. Although both quantitative and qualitative analysis shows that changes in variables 

can be utilized, as in DG and SDG, some variables are affected more by a fault while others are less 

affected. While this information is neglected in DG, SDG and FES, magnitude ratio can uncover such 

information from the relationship between pairs of variables. The magnitude ratio of a pair of sensors, 𝑆𝑖 

and 𝑆𝑗, is written as: 

𝑟𝑖𝑗 =
𝐺𝑖 𝐺𝑖,𝑆𝑆⁄

𝐺𝑗 𝐺𝑗,𝑆𝑆⁄
 (169) 

where 𝐺𝑖 and 𝐺𝑗 are the magnitude of the sensors 𝑆𝑖 and 𝑆𝑗 and are normalized by their steady-state values 

𝑆𝑖,𝑆𝑆 and 𝑆𝑗,𝑆𝑆, respectively. Note that both 𝑆𝑖 and 𝑆𝑗 must at least go beyond their threshold limit to be 

considered for further analysis. The magnitude ratio, 𝑟𝑖𝑗, is initially at "1".  After a fault is introduced to 

the system, 𝑅𝑖𝑗 changes from its steady state ("1"), and can change in either direction. Recall that the pair 

𝑃𝑖𝑗 is assigned to the sensors 𝑆𝑖 and 𝑆𝑗, here, if 𝑟𝑖𝑗 ≫ 1, 𝑃𝑖𝑗 is assigned "1", if 𝑟𝑖𝑗 ≪ 1, 𝑃𝑖𝑗 is assigned "-1" 

and 𝑃𝑖𝑗 is assigned "0" if otherwise. For this, a threshold is required to satisfy the inequalities. Therefore, 

the threshold value is tuned for maximum fault resolvability by a sensitivity analysis of the upper 

threshold value. Note that the lower threshold is calculated as the inverse of the upper threshold. If a 

variable is at "0" initially - like the error in a controller - 𝑃𝑖𝑗 is assigned "0". Eventually, P ϵ {-1,0,1} and 

after simulation of M  faults, the operation will return a matrix with dimension M × NC2, same as in the 

FES algorithm. Figure 79 shows the flowchart of MR algorithm. In this flowchart, 𝑇𝑀𝑅 is the MR 

threshold value. 

 



 

Figure 79. Flowchart of MR algorithm 

 

 

4.5 Constraint matrix for FES and MR 

Similar to the resolvability problem of SDG, MC2 pseudo-faults with corresponding symmetric 

differences of fault sets is constructed using the information provided by the 𝑃 matrix. This results in an 
MC2×

 NC2 matrix that contains the fault resolution by FES or MR. The constraint matrix for SDG, before 

removing any zero rows, have (M + MC2) × N dimension with first M rows representing the observability 

and the following MC2 rows representing the fault resolution. To add the resolution by FES or MR, the 

constraint matrix is augmented by NC2 columns which consist of two blocks. An M × NC2 block of zeros is 

generated for observability, since FES and MR do not contribute to fault observability. In addition, an 
MC2×

 NC2 block is generated by performing symmetric difference set on FES matrix (resulting in AFES 

matrix) or MR matrix (resulting in AMR matrix). The new augmented constraint matrix is treated as in 

SDG where rows that are the same and the rows that contain only zeros should be removed. Note that in 

order to solve the optimization problem, these rows must be removed from the constraint matrix A and the 

constant vector b.  

After construction of the new augmented constraint matrix, the optimization problem has N+ NC2 

decision variables, including the sensors and pseudo-sensors. However, to ensure consistency between the 

sensors and corresponding pseudo-sensors, the following constraint should be added to the optimization 

problem (augmented constraint matrix) for each pseudo sensor:189  

 



(1 − 𝑥𝑖) + (1 − 𝑥𝑗) + 𝑥𝑖𝑗 ≥ 1 

(1 − 𝑥𝑖𝑗) + 𝑥𝑖 ≥ 1 

(1 − 𝑥𝑖𝑗) + 𝑥𝑗 ≥ 1 

(170) 

 

where 𝑥𝑖𝑗 is the pseudo-sensor corresponding to the sensors 𝑥𝑖 and 𝑥𝑗 in the decision variables. Eqn. (170) 

implies that per each pair of sensors, three linear inequality constraints must be added to the optimization 

problem constraints; therefore, the constraint matrix and the constant vector must augment with the 

consistency matrix, 𝐴𝑐𝑜𝑛𝑠, with the dimension of (3×NC2)×(N+NC2) and a vector of unity with the 

dimension of (3×NC2)×1, respectively.  

 

4.6 Formulation Summary 

4.6.1 Optimization Problem 

The optimization problem in Eqn. (168) is summarized as: 

 

𝑚𝑖𝑛 ∑𝑤𝑗𝑥𝑗
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Subject to: 

𝐴𝑥𝑇 ≥ 𝑏 

𝑥𝑗 binary 

where 
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𝐴𝑜𝑏𝑠 0𝑀× 𝑁𝐶2

𝐴𝑟𝑒𝑠 0 𝑀𝐶2× 𝑁𝐶2

0 𝑀𝐶2×𝑁 𝐴∗

𝐴𝑐𝑜𝑛𝑠 ]
 
 
 
 

(𝑀+ 𝑀𝐶2+3× 𝑁𝐶2 − 𝑞𝐶2)×(𝑁+ 𝑁𝐶2)

 
 𝑏 =

[
 
 
 
 
 

1

1

1



]
 
 
 
 
 

(𝑀+ 𝑀𝐶2+3× 𝑁𝐶2 − 𝑞𝐶2)×1

  

 

where 𝐴∗ = 𝐴𝐹𝐸𝑆 for FES algorithm and 𝐴∗ = 𝐴𝑀𝑅 for MR algorithm. Note that a joint FES and MR 

algorithm can be obtained by 𝐴∗ = 𝐴𝐹𝐸𝑆 & 𝑀𝑅 = 𝐴𝐹𝐸𝑆 ∪ 𝐴𝑀𝑅. 

 

4.6.2 Solution Approach 

The sensor network design is posed as a BILP and can be solved by a number of commercially 

available optimization software. In this work, the optimization problem is formulated in MATLAB and 

the solution is obtained by the CPLEX optimization toolbox integrated in MATLAB. 

 

4.7 Network Decomposition 

As mentioned before, using the qualitative approach in presence of numerical solution reduces the 

complexity of optimization problem into solving an integer linear programming problem. However, 

complexity still exists with respect to the processing of the signed directed graph, especially as the size of 



the system increases. One of the main issues is the memory limitations of computers for storage and 

computations. A computing machine is not only limited by the amount of information it can store for a 

particular problem, for a simple example, the augmented FES-MR matrix or constraint matrix, it is also 

limited by the amount of memory available for computations, resulting in slower computations due to low 

availability of memory. Therefore, diagraph-based causal models are vulnerable to such complexities 

though the problem is defined as a linear optimization problem. 

Generally, in graph theory, a system can be depicted by a set of vertices and edges that connect the 

vertices. Vertices can represent the system variables or any aspect of a system, for example sources and 

clients in a wireless network or variables in diagraph-based fault detection, while the edges represent the 

relationship between the vertices. Mathematical efforts in graph theory have been made to reduce the 

computational complexities by reducing the problem into smaller components, through “graph 

partitioning” techniques. In graph partitioning, one tries to decompose the graph into smaller sub-systems 

with specific properties. However, very little work exists in graph partitioning that considers fault 

detection as an objective. Almost all of the works in the area of graph partitioning focus solely on 

minimizing the number of edges between the sub-systems. However, it is not intuitive for one to think 

that the same reasoning holds while considering fault detection. Although, it is intuitive that the solution 

to the decomposed graph can be sub-optimal compared to the solution to the original graph, this 

compromise might be acceptable due to the complexity reduction achieved by decomposition. 

The graph partitioning problem is classified as a NP-hard (non-deterministic polynomial-time hard) 

problem. In computational complexity theory, NP-hard problems are a class of problems, whose solutions 

cannot be found in polynomial time and hence are generally obtained by heuristic algorithms. Developing 

graph partitioning algorithms that fits the fault detection context might be complex. However, an initial 

understanding of the impact of graph partitioning on different aspects of fault detection such as the trade-

offs between the fault detection, optimality and computation speed can be developed through sensitivity 

analysis. 

Since different systems have different properties with different possible decompositions, thus, the study 

includes a Monte Carlo simulation of a pool of random systems with similar properties and different 

decomposition. The random systems are constructed by a bottom-up design. In this approach, initially 

random sub-systems are generated; and the overall system is obtained by cross-connecting the sub-

systems. Certain constraints on the overall system, such as total connectivity, are handled at the sub-

system level which ensures the constraint satisfaction at overall level. 

For simplicity, each random system represents a directed graph (DG). More complex systems can be 

achieved if the edges not only represent the direction but are also associated with real or integer 

quantities. Directed graph is the most widely used causal model, a popular technique in model-based 

analysis for fault detection. For simplicity, in this work, fault detection is performed by only considering 

the directed graph (DG) algorithm. In DG formulation for a process where vertices represent the variables 

and edges represent the relation between the variables, one tries to find a network of sensors with 

minimum cost that satisfies the fault detection constraints. Sensor placement is formulated as a binary 

integer linear programming problem constrained by the required fault detection and resolution. A 

thorough study of DG algorithm can be found in previous sections. It is worth mentioning that a major 

part of the DG analysis is to find the initial response table (IRT). The initial response table is a matrix of 

binary values that represents from each vertex what other vertices can be reached directly or indirectly. 

Using the IRT and the optimization constraints, fault detection and resolution matrices can be obtained. 

Therefore, IRT is critical to fault detection and must be consistent with the system of interest. While 

generating a random system, the IRT is obtained using the DG matrix that represents the system. 



This section is organized as follows: In subsection 1, the method for generating the random systems is 

thoroughly explained. In subsection 2, fault detection in the  presence of system decomposition is 

explained. 

4.7.1 Method 

4.7.1.1 Assumptions 

As mentioned before, random system generation is performed in a bottom-up process where, first, sub-

systems are generated and the overall system is obtained by cross-connecting the sub-systems. Generating 

random systems for fault detection requires some basic assumptions that must be met by the random 

systems. 

1. Faults in the system are presented by independent nodes. Fault nodes are the only nodes that have 

no inward edge. 

2. All the nodes must be connected to at least one other node. 

3. There is no self-connection in the system. 

A mathematical representation of a directed graph is through the use of a node adjacency matrix. Rows 

and columns of node adjacency matrix represent the vertices and each (i,j)th entry is assigned “1’’ if there 

is a directed edge; and “0” otherwise. Figure 80 shows an example of the node adjacency matrix for the 

corresponding DG. 

 

Figure 80. Representation of adjacency matrix 

Generating random systems requires some parameters to be provided in advance. These parameters 

include: 

a. Number of sub-systems (Ns):  

A scalar that represent the total number of sub-systems.  

b. Number of nodes (Nn):  

A 1× Ns vector where each array in the vector represents the number of nodes in each sub-system.  

c. Number of edges (Ne):  

A 1× Ns vector where each array in the vector represents the number of edges in each sub-system. 

d. Number of cross-connection edges (Nce):  

A 1× Ns(Ns-1)/2 vector of values where each array represents the number of edges between each 

pair of sub-systems. 

e. Number of faults (Nf):  

A 1× Ns vector where each array in the vector represents the number of faults in each sub-system. 

f. Number of fault edges (Nfe):  

A 1× Nf vector where each array in the vector represents the total number of output edges of the 

faults in each sub-system. 

It should be mentioned that all the parameters must be positive integers and must follow the mentioned 

assumptions, for example, Nfe≥ Nf, otherwise, there will be at least a fault node without any edges. 

 



4.7.1.2 Algorithm 

In order to explain the algorithm, first, a logical reachability matrix must be defined. Each (i,j)th entry in 

the adjacency matrix shows the number of ways possible to go from ith node to the jth node with distance 

of one. Considering the squared matrix of adjacency matrix, each (i,j)th entry in the squared adjacency 

matrix shows the number of ways possible to go from ith node to the jth node with distance of two; and so 

on for higher powers of the adjacency matrix. The reachability matrix is defined as the sum of all powers 

of the adjacency matrix up to Nn
th power. Each array in this special matrix shows the total number of ways 

to go from ith to jth node with any distance. Since we are only interested if there is any connection between 

two nodes by any distance, the reachability matrix is transformed into a logical form where the non-zero 

arrays in the reachability matrix are assigned “1”. It should be noted that self-connections, if any, must be 

converted to zero for further analysis.  

The algorithm follows these steps for each sub-system: 

1. Initialize the adjacency matrix  

2. Randomly pick Ne arrays in adjacency matrix and assign “1” (Self-connections excluded) 

3. Check if constraints are satisfied 

a. All nodes are connected: Sum of each row of logical reachability matrix is equal to Nn-1 

b. All nodes have at least one input edge: Sum of each column of adjacency matrix is 

greater or equal to one 

4. Randomly connect the faults 

a. For each fault, the number of output edges are determined randomly 

b. For each output edge of each fault, a node without input from the same fault is randomly 

determined 

Steps 2 and 3 are repeated until a system that satisfies the constraints is achieved. After performing the 

algorithm for each sub-system, sub-systems are randomly cross-connected as per Nce without overlapping 

edges. For each cross-connection, one node in each corresponding sub-systems are randomly chosen and 

the direction of the edge is chosen as random. 

The main drawback of this algorithm is that finding appropriate sub-systems that satisfy the constraints 

gets harder for larger number of nodes and lower number of edges. Therefore, a second algorithm is 

introduced when a system is not found within a reasonable number of iterations. The algorithm is as 

follows: 

1. Randomly choose two nodes from the pool of available nodes and connect them. Mark the node 

at the end of the directed edge as current node and place it in the pool of visited nodes 

2. Define probability parameter β for each sub-system: 

a. With chance of β, connect the current node to a randomly chosen node from the pool of 

available nodes. Mark the chosen node as current node and place it in the pool of visited 

nodes 

b. Otherwise, randomly choose a node from the pool of visited nodes and connect it to a 

randomly chosen node from the pool of available nodes and place the second node in the 

pool of visited nodes 

It should be noted that step 2 is performed until Ne number of connections are made. Other than the fact 

that the second algorithm is faster, another advantage of it lies in the choice of value for parameter β. 

Higher values of β result in systems analogous to recycle process systems while lower values result in 

systems analogous to spanning tree systems. 

 

4.7.1.3 Initial Response Table calculation 

After generating the random sub-systems with fault nodes and cross-connecting the sub-systems, the 

overall system is achieved. The total DG matrix that includes the fault nodes for the overall system can be 

obtained by augmenting the fault DG (FDG) matrices with augmented system DG matrices. As shown 

below, the total DG matrix contains four blocks. The zero blocks are due to the assumption that faults 

have no input edges. The FDG block is made by augmenting the fault adjacency matrices of all sub-



systems. Similarly, DG block is made by augmenting the adjacency matrix of all sub-systems’ DG. After 

calculating the logical reachability matrix of the total DG matrix, the FDG block of the logical 

reachability matrix will represent the IRT. 

 

4.7.2 Fault detection for decomposed system 

While performing fault detection for each sub-system, one can either ignore that there are faults outside 

the sub-system (in other sub-systems) and assume they cannot affect the sub-system through the inward 

cross-connection, or, we can find a simple way to mitigate the effects and bring these faults into 

consideration. Clearly, the former will cause some information loss due to the naïve approximation, while 

the latter add more information to the system and may improve fault detection. The latter can be realized 

by simply assuming that all the inward cross-connections as a pseudo-fault inside the sub-system. This 

way all the inward cross-connections are assumed to be coming from a single node marked as a pseudo-

fault. While one may argue that each inward cross-connection can act as a single pseudo-fault and add 

more information to the system, the drawback to this assumption is that large number of pseudo-faults can 

further complicate the fault detection and may compromise the speed for very little additional 

information. Therefore, the approach taken in this work is based on assuming all the inward cross-

connections from other sub-systems as coming from a single pseudo-fault. The pseudo-fault is then added 

to the system as a node and considered in fault detection. Figure 81 shows an example of how the pseudo-

fault is considered in a sub-system. In this example, red nodes indicate the faults while black nodes 

indicate the graph nodes. The effect of faults F1 and F2 in sub-system 1 are passed to sub-system 2 

through the dashed edges, which represent the cross-connection between the sub-systems. The cross-

connections in Figure 81 are then replaced by a pseudo-fault (yellow node) and the pseudo-fault is 

connected to the same nodes, marked as SP1 and SP2 in sub-system 2.   

 

The main issues that arise in the pseudo-fault approach are the existence of multiple solutions in fault 

detection and the information loss due to decomposition. As an example, consider performing fault 

detection for sub-system 2, where we want to resolve between fault F3 and the pseudo-fault. The multiple 

solutions which are available for fault resolution are S1, SP1 and SP2 nodes. Assume the cost of placing 

sensors on all the nodes are the same, thus, placing a sensor on each of the nodes can be the solution to 

our sensor placement problem. However, due to information loss by decomposition, each solution can 

have different impact on the fault detection of overall system. If S1 is picked as the solution and 

implemented on the overall system, fault pairs (F3,F1) and (F3,F2) can be resolved. If SP1 is picked as 

the solution and implemented on the overall system, although fault pair (F3,F1) can be resolved, fault pair 

(F3,F2) cannot be resolved. Similarly, if SP2 is picked as the solution and implemented on the overall 

system, although fault pair (F3,F2) can be resolved, fault pair (F3,F1) cannot be resolved. Therefore, 

Figure 81. Pseudo-fault representation for two sub-systems. 



since no extra information is available about the overall system, multiple solutions with different overall 

fault resolution may exist. One way to overcome this issue is to pick the nodes affected by the faults but 

not the pseudo fault, for example, S1 in Figure 81. This ensures total resolution from the faults out of the 

sub-system.  

In the original fault detection method, fault resolution is based on the set difference of the nodes affected 

by the fault that are being resolved. If A is a set of nodes affected by fault f1 and B is set of nodes affected 

by f2, then, set difference S is defined as: S = A ⋃ B – A ⋂ B. In the new approach, when resolving 

between a fault (as set A) and the pseudo-fault (as set B), symmetric difference is replaced by Snew = A – A 

⋂ B. This ensures that the fault is resolved from all the other faults outside the sub-system. However, 

there may be cases when resolving between a fault and the pseudo-fault where Snew = ∅ and S ≠ ∅. In this 

case, S contains at least a solution and can be used over Snew.  

5 Distributed Sensor Placement 

5.1 State Estimation Development 

5.1.1 Introduction 

Differential-algebraic equation (DAE) systems often arise in modeling of physical and mechanical 

systems, such as robotics, chemical processes, electrical circuits and so on. DAE systems which are also 

called descriptor systems, can be viewed as ordinary differential equations (ODEs) that are constrained by 

the algebraic equations. In general, both the differential and algebraic equations can be linear or 

nonlinear. Although the dynamic behavior is modeled by ODEs, the presence of algebraic constraints 

results in some complications while solving the DAE systems. State estimation of linear and nonlinear 

ODEs have been studied thoroughly in literature and several techniques are present for state estimation 

including but not limited to Kalman filter (KF), extended Kalman filter (EKF) Unscented Kalman filter 

(UKF), Ensemble Kalman filter(EnKF), particle filters and etc.197 The Kalman filter is an estimator of 

linear stochastic ODEs where the term “stochastic” represents the presence of process and measurement 

noises. Kalman filter is optimal when the noise is assumed as Gaussian white noise. Although the Kalman 

filter is optimal for linear systems, an extension of KF is sub-optimal when applied to non-linear 

systems.198 The idea of extended Kalman filter (EKF) is based on local linearization of the non-linear 

equations and application of the linear Kalman filter framework. At first glance, it seems that by 

converting the DAE to an implicit ODE, state estimation can be performed using the KF or EKF 

framework as it is done for implicit ODE systems. However, unlike ODE systems, there is a necessity for 

generation of consistent initial guesses that respect the algebraic constraints. Further, DAEs are 

characterized by the index of the system, which is the number of differentiations that are required to 

convert a DAE system into fully implicit ODEs. As a result, state estimation techniques for ODEs cannot 

be directly extended to DAE systems.199  

The index of a DAE represents the difficulty in the numerical treatment of such systems. DAEs of index- 

zero and one are considered to be the easiest for numerical treatment compared to higher index systems. 

The systems considered in this work are all assumed to be index-1 DAEs.200 A literature search indicates 

extensive work on applying KF to linear DAEs, see201-206, though there is very little work on 

implementation of EKF on non-linear DAEs.197,207 

For applying EKF to DAE systems, Becerra et al.207 proposed a modified EKF for DAE systems. In their 

approach, the DAE is converted to implicit ODE and the non-linear equations are linearized locally, then, 

the Kalman filter is performed at each sampling time while the error covariance matrix is updated for 

differential states. A disadvantage of this approach is that the effect of prior algebraic state estimates and 

measurements from algebraic states are ignored and updated algebraic state estimates are obtained by 

solving the algebraic equations after updated differential state estimates are computed.197 Further, 

measurements of the algebraic states cannot be directly included in this framework. To address these 

disadvantages, in our previous work, an approach was proposed that takes into consideration the effect of 

prior algebraic states and accommodates the measurements from the algebraic states in the framework.197  



One of the difficulties in state estimation of DAEs is that derivative of white noise may show up in state 

estimates. However, derivative of white noise is not well-defined.208 For linear systems, researchers have 

proposed different approaches to address this problem. For instance, Campbell209 suggested the use of 

band limited noise filter and in turn compromised the optimality of the Kalman filter. Schon et al.210 

explained the transformation of the DAE into a state space form and the conditions under which the 

derivative of white noise in algebraic equations can be avoided in state-space form. Darouach et al.202 

avoided the presence of white noise derivative by decomposing the filtering problem into two 

subproblems: (i) computing the estimates and error covariance of differential states, and (ii) using them in 

computation of estimates and error covariance of algebraic states.  

In almost all of the works that consider the EKF for non-linear DAEs, the algebraic equations are noise-

free and the process noise is considered only in the differential equations. The reason is that when 

differentiating the algebraic equations to convert the DAE to an implicit ODE, white noise will be 

differentiated, if present in the algebraic equations. Therefore, algebraic equations must be certain for 

differentiation to be meaningful. However, in practice, algebraic equations are not always exact and they 

might themselves be uncertain equations. This is particularly true when simplifying correlations are used 

in the modeling framework. Moreover, when extra information such as exact state equality constraints are 

available for the system, current EKF formulations cannot handle such information. Thus, EKF must be 

modified to include such constraints. In this work, we address these issues by proposing a modification to 

the EKF to handle constrained DAEs of index-1 with uncertainties in both differential and algebraic 

equations. 

In the proposed work, the error covariance matrix is written as a 4-block matrix with separate square 

blocks for differential and algebraic variables, respectively. Since the DAE is of index-1, the algebraic 

equations are written in terms of the differential variables and the error covariance in the corresponding 

covariance matrix are updated by linear or non-linear transformation of the error covariance of the 

differential equations. This avoids the differentiation of algebraic equations and makes the filter practical. 

The following sections are organized as follows. First, the currently available state estimation techniques 

for DAEs in the absence of uncertainties in algebraic variables are reviewed. Then, the EKF formulation 

is modified to account for exact equality constraints. We also discuss how this avoids the differentiation 

of algebraic equations. Finally, the performance of the proposed work on two examples, a simple example 

system and the system of interest, water gas shift reactor are described. 

5.1.2 State estimation of DAE systems 

5.1.2.1 Problem formulation 

Consider the following stochastic nonlinear discrete-time DAE system with discrete measurements 

sampled at intervals of Δt 

𝑥𝑘+1 = 𝑥𝑘 + ∫ 𝑓(𝑥(𝑡), 𝑧(𝑡)) 𝑑𝑡
(𝑘+1) ∆𝑡

𝑘 ∆𝑡

+ 𝜔𝑘+1 

𝑔(𝑥𝑘+1, 𝑧𝑘+1) = 0 

𝑦𝑘+1 = ℎ(𝑥𝑘+1, 𝑧𝑘+1) + 𝜈𝑘+1 

𝜔 ~ 𝑁(0,𝑄)           𝜈 ~ 𝑁(0, 𝑅) 

(172) 

   

where xk+1 ∈ ℝm×1 and zk+1 ∈ ℝp×1 are the differential and algebraic states at interval (k+1), respectively; 

and Q ∈ ℝm×m  and R ∈ ℝp×p  are known covariance matrices.  

5.1.2.2 Propagation 

 Let 𝑥𝑘|𝑘 and 𝑧̂𝑘|𝑘be the updated differential and algebraic states estimates at time t = kΔt using the 

information available up to and including kth measurement sample, respectively. The predicted states, 

𝑥𝑘+1|𝑘 and 𝑧̂𝑘+1|𝑘, are obtained by integrating the DAE system in Eqn. (172). Let Pk|k be the error 



covariance matrix of updated estimates, the predicted error covariance, Pk+1|k, is obtained by first 

linearizing the nonlinear system in Eqn. (172) around the updated differential and algebraic states (𝑥𝑘|𝑘 

and 𝑧̂𝑘|𝑘) and second, differentiating the algebraic equations in Eqn. (172) to convert the DAE into a 

continuous implicit ODE. Therefore, augmenting the resulting system as: 

[
𝑥̇
𝑧̇
] = [

𝐴 𝐵
−𝐷−1𝐶𝐴 −𝐷−1𝐶𝐵

] [
𝑥
𝑧
] = 𝐴𝑎𝑢𝑔𝑥𝑎𝑢𝑔 (173) 

 

where superscript ‘aug’ represents the augmented form (i.e. 𝑥𝑎𝑢𝑔 = [
𝑥
𝑧
]) and the Jacobian matrix around 

the 𝑥𝑘|𝑘 is evaluated as 

𝐽 = [
𝐴 𝐵
𝐶 𝐷

] = [

𝜕𝑓

𝜕𝑥

𝜕𝑓

𝜕𝑧
𝜕𝑔

𝜕𝑥

𝜕𝑔

𝜕𝑧

]

𝑥̂𝑘|𝑘,𝑧̂𝑘|𝑘

 (174) 

   

The transition matrix, calculated as Φ = exp(JΔt), is used to obtain the predicted error covariance by 

𝑃𝑘+1|𝑘 = 𝜙𝑃𝑘|𝑘𝜙𝑇 + Γ𝑄𝑘+1Γ
𝑇 (175) 

where  

Γ = [
𝐼

−𝐷−1𝐶
] (176) 

 

5.1.2.3 Correction 

In the update step of EKF, the augmented states are updated as 

𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

= 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

+ 𝐾𝑘+1 (𝑦𝑘+1 − ℎ (𝑥𝑘+1|𝑘
𝑎𝑢𝑔

)) (177) 

 

Only the differential part of the estimated augmented states are retained and the algebraic part is obtained 

by solving 

𝑔(𝑥𝑘+1|𝑘+1, 𝑧̂𝑘+1|𝑘+1) = 0 (178) 

 

The updated covariance matrix is obtained by 

𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻𝑘+1)𝑃𝑘+1|𝑘 (179) 

 

where in the update step, Hk+1 is the linearized measurement model evaluated at 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

 and Kk+1  is the 

Kalman gain matrix calculated by 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐻𝑘+1
𝑇 (𝐻𝑘+1𝑃𝑘+1|𝑘𝐻𝑘+1 + 𝑅𝑘+1)

−1
 

            = (𝑃𝑘+1|𝑘
𝑎 −1

+ 𝐶𝑇𝑅−1𝐶)
−1

𝐶𝑇𝑅−1 
(180) 

 



Note that these equations are written for augmented system except for Eqn. (178) where the algebraic part 

is only calculated. 

 

5.1.3 Equality constrained state estimation of uncertain nonlinear DAEs 

In practice, not all the algebraic equations that describe the behavior of a physical system are exact and 

additional information about the dynamic system may be available. If the algebraic equations are not 

exact, uncertainties must be considered in these equations to more closely represent the real behavior. 

Therefore, one could model uncertainties in the algebraic equations also as Gaussian random variables 

with known statistical properties. Moreover, if additional information about the system represents an 

equality constraint, which the system variables must satisfy, then this information must be incorporated 

into the estimation framework. To the best of our knowledge no work exists for estimation of such 

systems in the literature. In this section, we propose enhancements to the EKF approach for DAE systems 

to address this class of problems. We believe this class of systems is quite common in all engineering 

disciplines and particularly in chemical engineering, where the DAE models are likely to be uncertain in 

addition to the presence of exact equality constraints arising out of flow balances and summation of mole 

fractions. 

Most efforts in constrained Kalman filtering involves linear systems with optimal filtering while non-

linearities in the system result in sub-optimal and complicated filtering.198 Therefore, approximation is 

inevitable in filtering non-linear systems while they remain sub-optimal. Although there is no extensive 

investigation on constrained Kalman filtering of non-linear models due to their sub-optimal nature and 

complications, we make the assumptions that handling constraints in Kalman filtering of non-linear 

models can be done similar to their linear counterparts due to their linear approximations. There are 

several ways in which equality constraints can be incorporated into the linear Kalman filter.  An attractive 

approach is to substitute the constraints into the model equations. This approach has an advantage of 

reducing the constrained problem to a simpler unconstrained problem with lower computational load of 

the Kalman filter. However, a major disadvantage is that this method will sacrifice the physical meaning 

of the variables, especially in systems expressing the detailed phenomena taking place in a process. Study 

on constrained filtering has shown that projecting the unconstrained estimates of the Kalman filter on the 

constraint surface accommodates ease of implementation, low computational cost and flexibility 

compared to other approaches for both linear and non-linear systems.198  

5.1.3.1 Problem formulation 

 The system of interest in this section is as shown in Eqn. (181). 

𝑥𝑘+1 = 𝑥𝑘 + ∫ 𝑓(𝑥(𝑡), 𝑧(𝑡)) 𝑑𝑡
(𝑘+1) ∆𝑡

𝑘 ∆𝑡

+ 𝐺𝜔𝑘+1 

𝑔(𝑥𝑘+1, 𝑧𝑘+1) + 𝛾𝑘+1 = 0 

𝑦𝑘+1 = ℎ(𝑥𝑘+1, 𝑧𝑘+1) + 𝜈𝑘+1 

𝜔 ~ 𝑁(0, 𝑄)           𝜈 ~ 𝑁(0, 𝑅)      𝛾 ~ 𝑁(0,𝑊)  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐸𝑥𝑘+1
𝑎𝑢𝑔

= 𝑏 

(181) 

 

where in addition to the assumptions for system described in Eqn. (172), G ∈ ℝm×m  is a known matrix 

with rank(G) = l < m , E ∈ ℝl×m+n  is the equality constraint with rank(E) = l which can be split into 𝐸 =
[𝐸𝑥 𝐸𝑧] where Ex ∈ ℝl×m satisfies ExG = 0l×m and Ez = 0l×n, b ∈ ℝl×1 is a vector of equality constraint 

values and W ∈ ℝn×n is a known covariance matrix. The estimation algorithm described previously is not a 

valid framework for the defined system. The main issue is that the white noise is not differentiable; 

therefore, the system cannot be converted into an implicit ODE as shown in Eqn. (173). 



Remark 2.1: Assume rank(E) = m+n, then for all k ≥ 1 the system is fully constrained and the updated 

states are calculated as xk+1 = E-1b. 

Proof: If rank(E) = m+n, then E is square and invertible. Therefore, the constraint equation has unique 

answer as xk+1 = E-1b. 

5.1.3.2 Propagation 

Let  𝑥𝑘|𝑘 and 𝑧̂𝑘|𝑘 be updated differential and algebraic state estimates, respectively, at kth time instant and 

𝑃𝑘 be the error covariance of the states. States are propagated by solving the DAE from kth time instant to 

k+1th time instant to get 𝑥𝑘+1|𝑘 and 𝑧̂𝑘+1|𝑘. In what follows, the superscripts ‘c’ and ‘st’ represent the 

corrected and standard form, respectively. In order to propagate the covariance matrix, the DAE system is 

linearized around the 𝑥𝑘|𝑘 and 𝑧̂𝑘|𝑘 as 

𝑥̇ = 𝐴𝑥 + 𝐵𝑧 (182) 

𝐶𝑥 + 𝐷𝑧 = 0 (183) 

   

where the coefficient matrix of linearized form is simply the Jacobian evaluated at the operating point, 

𝑥𝑘|𝑘 , 𝑧̂𝑘|𝑘, similar to Eqn. (173). Solving Eqn. (183) in terms of z and rewriting the Eqn. (182) results  

𝑧 = −𝐷−1𝐶𝑥 (184) 

𝑥̇ = (𝐴 − 𝐵𝐷−1𝐶)𝑥 (185) 

   

Based on differential and algebraic variables, the error covariance matrix can be split into 

𝑃𝑘+1|𝑘 = [
𝑃𝑘+1|𝑘

𝑥𝑥 𝑃𝑘+1|𝑘
𝑥𝑧

𝑃𝑘+1|𝑘
𝑧𝑥 𝑃𝑘+1|𝑘

𝑧𝑧 ] (186) 

 

The error covariance of differential states is calculated as 

𝑃𝑘+1|𝑘
𝑥𝑥 = 𝜙𝑃𝑘|𝑘

𝑥𝑥 𝜙𝑇 + 𝐺𝑄𝐺𝑇 (187) 

 

where Φ is the transition matrix of differential states and is obtained as   

𝜙 = 𝑒(𝐴−𝐵𝐷−1𝐶)Δ𝑡 (188) 

 

The error covariance of algebraic states is propagated as 

𝑃𝑘+1|𝑘
𝑧𝑧 = (𝐷−1𝐶)𝑃𝑘+1|𝑘

𝑥𝑥 (𝐷−1𝐶)𝑇 + 𝐷−1𝑊𝐷−1𝑇
 (189) 

 

Since the algebraic states are linear transformation of the differential states, the error covariance between 

differential and algebraic states is propagated as a linear transformation of the error covariance of 

differential states as 

𝑃𝑘+1|𝑘
𝑥𝑧 = 𝑃𝑘+1|𝑘

𝑥𝑥 (𝐷−1𝐶)𝑇 (190) 



𝑃𝑘+1|𝑘
𝑧𝑥 = (𝐷−1𝐶)𝑃𝑘+1|𝑘

𝑥𝑥  (191) 

   

5.1.3.3 Correction 

The updated augmented state estimates are obtained by solving the following minimization problem  

𝑚𝑖𝑛
𝑥𝑘+1|𝑘+1

𝑎,𝑐 (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

− 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

)
𝑇
𝑃𝑘+1|𝑘

−1 (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

− 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

)

+ (𝑦𝑘+1 − 𝐶𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

)
𝑇
𝑅−1 (𝑦𝑘+1 − 𝐶𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔,𝑐
) 

(192) 

 

subject to the  state constraints  

𝐸𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝑏 (193) 

where 𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

 is the augmented updated state estimates (i.e. 𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= [
𝑥𝑘+1|𝑘+1

𝑐

𝑧̂𝑘+1|𝑘+1
𝑐 ]) that satisfies the 

state constraints.  

Remark 2.2: In the absence of any constraints, the optimization problem is similar to the problem 

investigated in the work of Vachhani et al.211 and the solution to the optimization problem for all k ≥ 1 is 

given by standard KF.  

Proof: The proof is described in the work of Vachhani et al.211 

The optimization problem is solved using the standard Lagrange multiplier technique, where the 

Lagrangian is defined as 

𝐿 (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

, 𝜆) = (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

− 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

)
𝑇
𝑃𝑘+1|𝑘

−1 (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

− 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

)

+ (𝑦𝑘+1 − 𝐻𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

)
𝑇
𝑅−1 (𝑦𝑘+1 − 𝐻𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔,𝑐
) + 𝜆𝑇 (𝐸𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔,𝑐
− 𝑏) 

(194) 

 

The necessary conditions for 𝑥𝑘+1|𝑘+1
𝑎,𝑐

 minimizing Eqn. (194) are 

𝜕𝐿

𝜕𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐 = 2𝑃𝑘+1|𝑘

−1 (𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

− 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

) − 2𝐻𝑇𝑅−1 (𝑦𝑘+1 − 𝐻𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

) + 𝐸𝑇𝜆 = 0 (195) 

𝜕𝐿

𝜕𝜆
= 𝐸𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔,𝑐
− 𝑏 = 0 (196) 

 

Solving Eqn. (195) for 𝑥𝑘+1|𝑘+1
𝑎,𝑐

 after some manipulations yields 

𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝑥𝑘+1|𝑘
𝑎𝑢𝑔

+ (𝑃𝑘+1|𝑘
−1 + 𝐻𝑇𝑅−1𝐻)

−1
𝐶𝑇𝑅−1 (𝑦𝑘+1 − 𝐻𝑥𝑘+1|𝑘

𝑎𝑢𝑔
)

−
1

2
(𝑃𝑘+1|𝑘

−1 + 𝐻𝑇𝑅−1𝐻)
−1

𝐸𝑇𝜆 
(197) 

 

Following the definition of Kalman gain matrix, Kk+1, in Eqn. (180) and matrix inversion lemma212 we 

have 



[𝑃𝑘+1|𝑘
−1 + 𝐻𝑇𝑅−1𝐻]

−1
 

          = [𝑃𝑘+1|𝑘
−1 + 𝐻𝑇𝑅−1𝐻]

−1
[𝐼 + 𝐻𝑇𝑅−1𝐻𝑃𝑘+1|𝑘 − 𝐻𝑇𝑅−1𝐻𝑃𝑘+1|𝑘] 

          =  [𝑃𝑘+1|𝑘
−1 + 𝐻𝑇𝑅−1𝐻]

−1
[[𝑃𝑘+1|𝑘

−1 + 𝐻𝑇𝑅−1𝐻]𝑃𝑘+1|𝑘 − 𝐻𝑇𝑅−1𝐻𝑃𝑘+1|𝑘] 

          = 𝑃𝑘+1|𝑘 − [𝑃𝑘+1|𝑘
−1 + 𝐻𝑇𝑅−1𝐻]

−1
𝐻𝑇𝑅−1𝐻𝑃𝑘+1|𝑘 

          = 𝑃𝑘+1|𝑘 − 𝐾𝑘+1𝐻𝑃𝑘+1|𝑘 

                       = 𝑃𝑘+1|𝑘+1 

(198) 

 

Substituting Eqn. (198) into Eqn. (197) and using the state update in Eqn. (177) we have 

𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

−
1

2
𝑃𝑘+1|𝑘+1𝐸

𝑇𝜆 (199) 

 

Substituting Eqn. (199) into Eqn. (196) and solving for Lagrangian multiplier, λ, we get   

𝜆 = 2(𝐸𝑃𝑘+1|𝑘+1𝐸
𝑇)

−1
(𝐸𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔
− 𝑏) (200) 

 

Substituting the value of Lagrangian multiplier from Eqn.(200), the states are updated in the presence of 

equality constraints as 

𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝐹𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

+ 𝑏′ (201) 

 

where   

𝐹 = (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸) (202) 

𝑏′ = 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝑏 (203) 

   

where 𝑃𝑘+1|𝑘+1 is the KF covariance matrix calculated similar to Eqn. (179). Using the state propagation 

matrix, for covariance matrix update we have  

 

𝑃𝑘+1|𝑘+1
𝑐  

= 𝐹𝑃𝑘+1|𝑘+1𝐹
𝑇 

= (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸)𝑃𝑘+1|𝑘+1 (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸)
T

 

= 𝑃𝑘+1|𝑘+1 − 𝑃𝑘+1|𝑘+1 [𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸]
𝑇

 

          −𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1  

          +𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 [𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸]
𝑇

 

= 𝑃𝑘+1|𝑘+1 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

(204) 



          −𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

          +𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

(𝐸𝑃𝑘+1|𝑘+1𝐸
𝑇)(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

= 𝑃𝑘+1|𝑘+1 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

          −𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 + 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

= 𝑃𝑘+1|𝑘+1 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸𝑃𝑘+1|𝑘+1 

= (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸)𝑃𝑘+1|𝑘+1 

= 𝐹𝑃𝑘+1|𝑘+1 

 

Remark 2.3: Assume that equality constraint, E, in Eqn. (181) can be split into 𝐸 = [
𝐸𝑥

𝐸𝑧
]
𝑇

 where Ex ∈ 

ℝl×m  is left eigenvector(s) of Φ that satisfies ExG = 0l×m, Exfx = 0m×1 and Ez = 0l×n where fx is the 

differential equations of the DAE system represented by Eqn. (181). Also assume that for a given k = 1, 

𝐸𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝑏 and 𝐸𝑃𝑘+1|𝑘+1
𝑐 = 0𝑙×𝑚+𝑛. Then, for all k ≥ 2, 𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔,𝑐
= 𝑥𝑘+1|𝑘+1

𝑎𝑢𝑔
 and 𝑃𝑘+1|𝑘+1

𝑐 =

𝑃𝑘+1|𝑘+1. 

Proof: By multiplying the differential equations in DAE system of Eqn. (181) by E we get 

𝐸𝑥𝑘+1
𝑎𝑢𝑔

= 𝐸𝑥𝑥𝑘 + ∫ 𝐸𝑥𝑓𝑥(𝑥(𝑡), 𝑧(𝑡)) 𝑑𝑡
(𝑘+1) ∆𝑡

𝑘 ∆𝑡

+ 𝐸𝑥𝐺𝜔𝑘+1 + 𝐸𝑧𝑧𝑘+1 

             = 𝑏 + 0𝑙×1 + 0𝑙×1 + 0𝑙×1 

             = 𝑏 

(205) 

Since Ex is the left eigenvector(s) of Φ, then we can write ExΦ = λEx  where λs are the eigenvalues of the 

corresponding eigenvectors. Multiplying Eqn. (186) by E then yields    

𝐸𝑃𝑘+1|𝑘 = [
𝐸𝑥𝑃𝑘+1|𝑘

𝑥𝑥 + 𝐸𝑧𝑃𝑘+1|𝑘
𝑧𝑥

𝐸𝑥𝑃𝑘+1|𝑘
𝑥𝑧 + 𝐸𝑧𝑃𝑘+1|𝑘

𝑧𝑧 ]

𝑇

 

                = [
(𝐸𝑥𝜙𝑃𝑘|𝑘

𝑥𝑥 𝜙𝑇 + 𝐸𝑥𝐺𝑄𝐺𝑇) + 𝐸𝑧(𝐷
−1𝐶)𝑃𝑘+1|𝑘

𝑥𝑥

𝐸𝑥𝑃𝑘+1|𝑘
𝑥𝑥 (𝐷−1𝐶)𝑇 + (𝐸𝑧(𝐷

−1𝐶)𝑃𝑘+1|𝑘
𝑥𝑥 (𝐷−1𝐶)𝑇 + 𝐸𝑧𝑀)

]

𝑇

 

                = [
(𝜆𝐸𝑥𝑃𝑘|𝑘

𝑥𝑥 𝜙𝑇 + 0𝑙×𝑚) + 0𝑙×𝑚

0𝑙×𝑛 + (0𝑙×𝑛 + 0𝑙×𝑛)
]

𝑇

 

                = 0𝑙×(𝑚+𝑛) 

(206) 

Lemma 2.1: let ν be a left eigenvector of the square matrix U with a corresponding eigenvalue λ. Then, 

νeUΔt = eλΔtν. 

Proof: To prove this, we can write UΔt = UΔt – λIΔt + λIΔt, therefore 

𝜈𝑒𝑈Δ𝑡 = 𝜈𝑒𝑈Δ𝑡−𝜆𝐼Δ𝑡+𝜆𝐼Δ𝑡 

            = 𝜈𝑒(𝑈−𝜆𝐼)Δ𝑡+𝜆𝐼Δ𝑡 

            = 𝜈𝑒(𝑈−𝜆𝐼)Δ𝑡𝑒𝜆Δ𝑡 

            = 𝜈 (𝐼 + (𝑈 − 𝜆𝐼)Δ𝑡 +
(𝑈 − 𝜆𝐼)2Δ𝑡2

2!
+ ⋯)𝑒𝜆Δ𝑡 

            = (𝜈𝐼 + 𝜈(𝑈 − 𝜆𝐼)Δ𝑡 +
𝜈(𝑈 − 𝜆𝐼)2Δ𝑡2

2!
+ ⋯)𝑒𝜆Δ𝑡 

(207) 



            = (𝜈𝐼 + 0 + 0 + ⋯)𝑒𝜆Δ𝑡 

            = 𝑒𝜆Δ𝑡𝜈 

Therefore, in Eqn. (206) Ex is already the left eigenvector(s) of (A-BD-1C). Multiplying Eqn. (201) and 

(204) by E yields 

𝐸𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝐸𝐹𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

+ 𝐸𝑏′ 

                     = 𝐸 (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸)𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

+ 𝐸𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝑏 

                     = (𝐸 − 𝐸)𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

+ 𝑏 

                     = 𝑏 

(208) 

 

𝐸𝑃𝑘+1|𝑘+1
𝑐 = 𝐸𝐹𝑃𝑘+1|𝑘+1 

                    = 𝐸 (𝐼 − 𝑃𝑘+1|𝑘+1𝐸
𝑇(𝐸𝑃𝑘+1|𝑘+1𝐸

𝑇)
−1

𝐸)𝑃𝑘+1|𝑘+1 

                    = (𝐸 − 𝐸)𝑃𝑘+1|𝑘+1 

                    = 0𝑙×(𝑚+𝑛) 

(209) 

 

Giving Eqn. (208)-(209), from Eqn. (205)-(206) we have 𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔,𝑐

= 𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

and 𝑃𝑘+1|𝑘+1
𝑐 = 𝑃𝑘+1|𝑘+1. 

Therefore, if the assumptions hold, the correction step in Eqn. (201) and (204) has to be performed only 

once at k = 1 and for all k ≥ 2 the corrected states given by Eqn. (177) already satisfies  𝐸𝑥𝑘+1|𝑘+1
𝑎𝑢𝑔

= 𝑏.213  

5.2 Distributed Sensor Placement Problem Formulation 

5.2.1 Introduction 

 

In the past decades, process monitoring for safety and optimal operation has been a vast area for 

researchers to develop techniques for control, optimization, fault detection, condition monitoring and etc. 

With growing scale and complexity of the processes, mathematical models cannot be solely used and 

information from sensors as an alternate source of information is necessary. The problem of sensor 

placement is defined as finding optimal locations throughout the process for maximum possible 

information to be acquired. Most important constraints involved are the feasibility of placing sensors and 

cost and redundancy of the sensors. For example, in a fixed-bed reactor, it is not feasible to directly 

measure the temperature of the catalyst. Sensor redundancy includes placing multiple sensors at the same 

location to handle the probability of the sensor failure. Also, clustering sensors in an area may result in 

significantly less information compared to if they were distributed. Therefore, optimizing sensor 

placement is important for maximizing the profit from the process and reducing the risk of health and 

environmental issues. 

 

Sensor placement has been studied for different tasks such as parameter estimation214-221, state 

estimation222-233 and fault detection234 that deals with distributed parameter systems (DPS). Distributed 

parameter systems represent the dynamical systems governed by partial differential equations (PDE). A 

common idea in sensor placement is the idea of choosing sensors that optimize some performance criteria. 

Many contributions in literature can be found that consider the steady-state behavior of the systems235, 

including the sensor placement by qualitative analysis236-238. Although many efforts on sensor placement 

belong to linear DPS, various optimality criteria are either developed or adapted from linear systems to 

account for nonlinear systems. A common metric used in sensor placement involves the use of empirical 



Sensor placement has been applied in different tasks such as parameter estimation 214-221, state 

estimation222-233 and fault detection234 that deals with distributed parameter systems (DPS). Distributed 

parameters systems represent the dynamical systems governed by partial differential equations (PDE). A 

most common technique in sensor placement is by optimizing performance criteria. Many contributions in 

literature can be found that consider the steady-state behavior of the systems235, including the sensor 

placement by qualitative analysis236-238. Although many efforts on sensor placement belong to linear DPS, 

various optimality criteria either developed or reinstated from linear systems to account for nonlinear 

systems. A common metric used in sensor placement involves the use of empirical observability 

Grammian proposed by Muller and Weber239. This includes evaluation of different aspects of the 

observability matrix such as smallest eigenvalue, determinant, trace of the inverse, condition number, 

spectral norm and smallest singular value222,233,239-245. Different criteria in sensor placement has been also 

proposed based on the geometric approach223,246, measurement cost232,247, sensor failure248,249, max-min 

optimization250, posterior Cramer-Rao lower bound249 and so on. 

 

Despite the information from common observability matrix, efforts in state estimation have been made in 

defining metrics for sensor placement that considers trace, determinant, variance and norm of the error 

covariance matrix of the Kalman filter228-231,244,245,251-254. Colantuoni and Padmanabhant230, Kumar and 

Seinfeld231 and Omatu et al.227 consider minimization of the trace of the error covariance as the metric in 

their sensor placement work and proposed an iterative optimization procedure for sensor placement for a 

tubular reactor. Harris et al.229 performed the sensor placement for a tubular reactor while minimizing the 

trace and determinant of the error covariance matrix. Alvarez et al.244 approached the problem by 

developing a variable measurement structure for the tubular reactor with minimum variance as the 

optimality index. Morari and O'Dowd253 considered optimality criteria as minimization of the error caused 

by the unobservable subspace and Morari and Stephanopoulos254 extended the criteria to also include the 

minimization of the estimation error.  

 

In most of the works mentioned above, sensor placement is performed for steady state condition. In the 

cases where dynamical systems are considered, sensor placement is performed by linearizing the 

nonlinear equations around the steady-state point. This reduces the complexity of the nonlinear equations 

to linear form and the sensor placement can be performed as if the system is linear. This is due to the 

reason that solving the nonlinear equations in the sensor placement frameworks is cumbersome. However, 

this is not always applicable for two reasons. First, since the previous works on sensor placement always 

consider the system is represented by PDE, it is not always possible to have the system as fully implicit 

PDE (or ordinary differential equations, ODE). For example, as the system in this work is represented by 

differential and algebraic equations (DAE), it is not possible to differentiate the equations to get ODE 

since the white Gaussian noise in algebraic equations cannot be differentiated. Second, in terms of fault 

detection, if a fault occurs in the process it will significantly move the system from steady-state condition 

and will result in the system reaching a new steady-state condition. Therefore, the linearized system or the 

assumption of the dynamics around the initial steady-state condition is no longer valid. These drawbacks 

of the classical sensor placement approaches necessitate the use of nonlinear models in the sensor 

placement framework. 

 

The most important drawback of using nonlinear models in sensor placement is the computational burden 

and tractability of the calculations caused by nonlinear models in state estimation. A recent work in use of 

nonlinear model in extended Kalman filter (EKF) is reported in the work of Olanrewaju and Al-Arfaj228 in 

which the sensor placement problem is not extensively addressed. One way to address the tractability of 

use of detailed nonlinear models is to use simplified or reduced models. However, it is not clear how 

much this will affect the computational burden and how close will the sensor placement results are to that 

of detailed models. To our best knowledge, no one has investigated the suitability of the simplified 

models in sensor placement.  

 



In this work, a sensor placement framework is developed that makes use of EKF for state estimation. For 

simplicity, the optimality index is chosen as the accuracy of the state estimates by minimizing the error 

between the true solution and the state estimates. The infinite dimensional model of the reactor is 

discretized along the reactor axis by finite element method and the discrete points on the reactor are the 

locations where sensors can be placed. The sensor placement is performed by genetic algorithm (GA) 

where the genes are assumed to be measurement models and each measurement model represents a vector 

of binary decision variables in which if a sensor is placed, the decision variable will take a value of "1" 

and a value of "0" otherwise. The GA evolves while minimizing the objective function and the optimal 

measurement model as the result of the optimization is obtained. The optimal measurement model is then 

the optimal sensor placement when projected on the discretized locations. 

 

5.2.2 Summary of WGS Model simplification 

The detailed reactor model represents complex equations that must be solved. A simplified model of the 

reactor has been developed in section 3.1. Model simplification retains the most important phenomena 

occurring in the reactor by means of scaling analysis. In the scaling analysis, dimensionless groups are 

formed using the parameters and inlet condition values. The decision on retaining or discarding the 

phenomenon in the reactor is made by analyzing the values of the dimensionless groups where the 

phenomenon with least values can be discarded from model equations. Through this analysis, it is 

observed that the model can be represented by only a single differential equation which combines the 

energy balance for gas and catalyst phases while the rest of the equations are algebraic. The temporal 

differential mass balance equation can be reduced to algebraic equation where it is sufficient to solve the 

algebraic equation only for one species and the rest of the species can be calculated on side from the 

result of other equations. The simplified model is expressed by following equations: 

 

Mass balance: 

 𝑑𝐶𝐻2𝑂

𝑑𝑧
= −𝑦𝐻2𝑂𝐶 (

1

𝑇

𝑑𝑇

𝑑𝑧
−

1

𝑃

𝑑𝑃

𝑑𝑧
) + 𝑟𝐶𝑂

1 − 𝜀

𝑢
 (210) 

 

Energy balance: 

 𝜕𝑇𝑔

𝜕𝑡
=

𝜀

𝜀𝜌𝐶𝑃 + (1 − 𝜀)𝜌𝑐𝑎𝑡𝐶𝑃,𝑐𝑎𝑡
(−𝐺𝐶𝑃

𝜕𝑇𝑔

𝜕𝑧
+ 𝑟𝐶𝑂∆𝐻𝑅

1 − 𝜀

𝜀
) (211) 

 

Momentum balance: 

  𝑑𝑃

𝑑𝑧
=

𝜌𝑢2

𝑑𝑐𝑎𝑡
(
1 − 𝜀

𝜀
) (1.75 +

150

𝑅𝑒
) (212) 

 

5.2.3 EKF for simplified model 

In a mathematical view of the simplified model, part of the differential equations are decoupled from the 

original system and assumed to be algebraic through the analysis shown in previous sections. Although 

the corresponding states represent the states of the original system, they have no effect on the internal 

states of the simplified model and can be treated as exogenous states with corresponding exogenous 

equations. In view of DAEs, these exogenous equations can be either part of the DAE system as algebraic 

equations or be used outside the DAE model and computed independently. A simple drawback of 

assuming the exogenous equations as part of the DAE is that since exogenous equations do not impose a 

constraint on the system, though they have to be solved at each integration step in the propagation step of 



the filter. Therefore, this poses a burden on the DAE solvers and hence complicating the computations. 

Another drawback is that in the propagation step of the filter, the updated states at the next time step are 

only required while the path that these states take to the final states can be neglected. For these reasons, 

the decoupled algebraic equations are treated as independent exogenous equations. The overall simplified 

system is presented by 

 

𝐷𝐴𝐸 {
𝑥𝑘+1 = 𝑥𝑘 + ∫ 𝑓(𝑥(𝑡), 𝑧(𝑡)) 𝑑𝑡

(𝑘+1) ∆𝑡

𝑘 ∆𝑡

+ 𝜔2,𝑘

𝑔(𝑥𝑘+1, 𝑧𝑘+1) = 𝛾𝑘+1

 

𝑠𝑘+1 = 𝑈𝑥𝑘+1
𝐴 + 𝐽𝑠𝑘 + Γ𝑘+1 

𝑦𝑘+1 = ℎ(𝑥𝑘+1, 𝑧𝑘+1, 𝑠𝑘+1) + 𝜈𝑘+1 
𝜔 ~ 𝑁(0,𝑄2)           𝜈 ~ 𝑁(0, 𝑅)      𝛾 ~ 𝑁(0,𝑊)     Γ ~ 𝑁(0, Ω) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐸𝑥𝑘+1
𝑎𝑢𝑔

= 𝑏 

(213) 

 

where 𝑠𝑘+1 is the vector of exogenous states and 𝑈 and 𝐽 are the coefficient matrices of the linearized 

exogenous equations around the state updates, 𝑥𝑘+1
𝐴  and 𝑠𝑘, respectively. Here, 𝑥𝑘+1|𝑘

𝐴  is the augmented 

internal states, 𝑥𝑘+1|𝑘
𝐴 = [

𝑥𝑘+1

𝑧𝑘+1
], and 𝑥𝑘+1

𝑎𝑢𝑔
 is the augmented internal and exogenous states, 𝑥𝑘+1

𝑎𝑢𝑔
=

[
𝑥𝑘+1

𝐴

𝑠𝑘
]. Also, here, the exogenous states do not depend on their initial states, therefore, 𝐽 = 𝟎. Note that 

𝜔2,𝑘 is assumed uncorrelated with 𝜈, 𝛾 and Γ; and since the exogenous equations are decoupled from the 

differential equations, 𝐺 matrix that correlates the noise in mole fractions is omitted, however, a white 

noise term, Γ𝑘+1, is assumed in the exogenous equations. Although omitting 𝐺 may have effect on the 

quality of the state estimates, it is not easy mathematically to account for the correlated noise in the mole 

fractions when considering the simplified model.  

The modification made to the original system requires modifications of the filter equations as well. The 

new filter formulation follows the same process as for DAEs while adding the presence of the exogenous 

states. In the propagation step, the DAE model can be solved again by the DAE solvers from instant 𝑘 to 

𝑘 + 1, while the exogenous states are computed using the updated internal states to obtain the updated 

exogenous states. The updated error covariance matrix is calculated by splitting the matrix for internal 

and the exogenous states as 

 

𝑃𝑘+1|𝑘
𝑎𝑢𝑔

= [
𝑃𝑘+1|𝑘

𝑥𝐴𝑥𝐴
𝑃𝑘+1|𝑘

𝑥𝐴𝑠

𝑃𝑘+1|𝑘
𝑠𝑥𝐴

𝑃𝑘+1|𝑘
𝑠𝑠

] (214) 

 

where 𝑃𝑘+1|𝑘
𝑥𝐴𝑥𝐴

 is the error covariance matrix of the simplified DAE and is derived using general derivation 

explained in section 5.1. This results in equations similar to equations derived in Section 5.1.3 with the 

exception that the simplified model has now modified process noise covariance (𝜔 ~ 𝑁(0, 𝑄2). The other 

blocks in 𝑃𝑘+1|𝑘
𝑎𝑢𝑔

 can be calculated by 

 𝑃𝑘+1|𝑘
𝑥𝐴𝑠 = 𝑃𝑘+1|𝑘

𝑥𝐴𝑥𝐴
 𝑈𝑇 (215) 

 𝑃𝑘+1|𝑘
𝑠𝑥𝐴

= 𝑈 𝑃𝑘+1|𝑘
𝑥𝐴𝑥𝐴

 (216) 

 𝑃𝑘+1|𝑘
𝑠𝑠 = 𝑈 𝑃𝑘+1|𝑘

𝑥𝐴𝑥𝐴
 𝑈𝑇 + Ω (217) 

 



Eqn. (215)-(217)   can be proved simply by taking similar approach as for filtering of the DAE systems. 

Therefore, for the sake of brevity we have omitted the mathematical proofs. In the correction step of the 

filter, the corrected states can be calculated similar to the Eqn. (201)-(204). 

 

Although considering noise in exogenous equations may results in better quality estimates since the 

original states are not noise free, it raises the need for the presence of constraint in the formulation. 

However, another approach would then be to remove the noise from the exogenous equations. Since the 

exogenous equations automatically satisfy the constraint, therefore, the constraint in Eqn. (213) can be 

removed and the correction step reduces to use of standard EKF correction step. It is not clear to what 

extent this can affect the quality of state estimates and the SP results. Removing the noise term from 

exogenous equations may or may not be compensated by tuning the error covariance matrix 𝑄2 in the 

filtering.  

5.2.4 Genetic algorithm 

In the GA, the genes represent the binary measurement models that can be used by EKF for state 

estimation. The fixed population of GA evolves by the elitist selection strategy where a portion of the 

population is considered as the elite genes and carries over to the next generation. The rest of the 

population are obtained  based on the tournament selection where fitness values of 2 randomly chosen 

genes are compared against each other and the gene with highest fitness is considered as the winner. This 

selection is repeated until two winner genes are selected for crossover and mutation- the GA operators for 

obtaining the two children from parent genes. Since in our work the number of measurements (sensors) 

are fixed for a particular study, the crossover and mutation on the winner genes are repeated until at least 

one of the children has the same number of fixed measurements. The tournament selection results in 

obtaining two children per each run, therefore, this process must be repeated until a new population is 

generated. The objective of the GA is to minimize the error between actual data and the state estimates 

and the objective function is given by 

 

min∑∑(
𝑥𝑎𝑐𝑡𝑢𝑎𝑙,(𝑖,𝑗) − 𝑥𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,(𝑖,𝑗)

𝑥𝑎𝑐𝑡𝑢𝑎𝑙,(𝑖,𝑗)
)

2𝑛𝑇

𝑗=1

𝑘𝑇

𝑖=2

 

subject to:      EKF of WGSR for kT time instants and nT variables 

(218) 

 

It should be noted that the summation in Eqn. (218) is over all the estimated values for all time instants 

while the initial state estimates are discarded and summation start from i = 2. This assumption will be 

justified later when we study the effect of initial error covariance of the states. 

6 Interpretation of Results 

6.1 System-Level Sensor Placement 

In this section, four illustrative case studies are used to demonstrate the performance of FES and MR 

algorithms. A set of predefined faults are simulated in each case while assuming no disturbances exist in 

the system. Table 19 shows the sensors’ cost assumed in all three cases which are normalized by the cost 

of flow sensor.190 In all three cases, MR algorithm is performed for three different levels of MR threshold 

value as low, medium and high with values 1.1, 1.5 and 2, respectively. Results are compared for FES 

and MR algorithms individually and jointly. Detail tabulated results for the SDG, FES and MR algorithms 

are provided in the supporting documents. Also, sensitivity analysis of the MR threshold value is 

performed for each case study and the results are included in the supporting document. 

 

 

 



Table 19. Type and cost of each sensor used in all case studies190 

Sensor type Cost 

Temperature sensor 0.1 

Pressure sensor 0.5 

Flow sensor 1 

Level sensor 1 

Concentration sensor 10 

 

6.1.1 CSTR Case Study 

The CSTR system used in the work of Bhushan and Rengaswamy181 is considered in this work for 

application of FES and MR algorithms. For more details of the process, interested readers are referred to 

their work.181 Figure 82 shows the schematic of the CSTR system. Table 20 and Table 21 show lists of 

measured variables and simulated faults in the CSTR system. Faults are simulated one by one and 

measured variables are stored for later implementation of FES and MR algorithms. As seen in Table 21, 

all faults except U and Cd can change in both directions with "+" representing increase and "-" decrease in 

the fault. The heat transfer coefficient, U, and the catalyst activity, Cd can only decrease due to nature of 

the fault. Therefore, these faults are unidirectional and can only change in "-" direction.  

 

Figure 82. Schematic of the CSTR system182 

 

Table 20. List of measured variables in CSTR system 

Sensor 

no. 

Measured 

variable 
Description 

 

Sensor 

no. 

Measured 

variable 
Description 

s1 CA 
CSTR Outlet 

concentration  
s5 VL 

Level controller valve 

opening 



s2 Tc 
Coolant outlet 

temperature  
s6 VT 

Temperature controller valve 

opening 

s3 F CSTR outlet flow rate 
 

s7 VP 
Pressure controller valve 

opening 

s4 Fc Coolant flow rate 
    

 

 

 

Table 21. List of simulated faults and the corresponding affected sensors in CSTR system 

Fault Description Affected sensors 

1 CAi
+ 

Inlet concentration 
s1,s2,s4,s6,s7 

2 CAi
- s1,s2,s4,s6,s7 

 

3 Ti
+ 

Inlet temperature 
s4,s6,s7 

4 Ti
- s4,s6,s7 

 

5 Fi
+ 

Inlet flow rate 
s1,s3,s4,s5,s6,s7 

6 Fi
- s1,s3,s4,s5,s6,s7 

 

7 TCi
+ 

Coolant outlet temperature 
s4,s6,s7 

8 TCi
- s2,s4,s6,s7 

 

9 U Heat transfer coefficient s4,s6 

10 Cd Catalyst deactivation s1,s2,s4,s6,s7 

 

 

 

Table 22. Results of applying different algorithms to CSTR system 

Algorithm(s) MR threshold level Selected sensors 
Sensor network 

cost 
Irresolvable fault sets 

SDG 
 

s1,s2,s6,s7 10.7 [3,7] 

FES 
 

s2,s6,s7 0.7 [3,7] 

MR 

Low s1,s2,s6,s7 10.7 [3,7] 

Medium s2,s6,s7 0.7 [ ] 

High s2,s6,s7 0.7 [3,7] 



FES & MR 

Low s2,s6,s7 0.7 [3,7] 

Medium s2,s6,s7 0.7 [ ] 

High s2,s6,s7  0.7 [3,7] 

 

Both FES and MR algorithms are run individually and in combination. Although both algorithms are 

associated with SDG, for illustration, SDG is also performed individually and results are shown in Table 

22. FES algorithm has less number of variables measured compared to SDG, thus, decreasing the capital 

cost of the network. However, there is still a fault set that cannot be resolved by FES. At low MR 

threshold level, MR algorithm shows no improvement over the associated SDG algorithm and the results 

are the same as if the SDG is performed individually. The combination of both MR and FES algorithms 

take advantage of the FES as it has lower sensor network cost. At medium MR threshold level, MR 

algorithm chooses the same sensors as FES but it can resolve all the faults, thus, the algorithm shows 

improvement in terms of fault resolvability compared to FES algorithm. The combination of both 

algorithms takes advantage of the MR algorithm as it can resolve all the faults. At high MR threshold 

level, although MR algorithm again chooses the same sensors as FES, it cannot resolve all the faults. The 

combination of both algorithms uses the same sensors as if the MR or FES performed individually since 

the sensor network cost and number of irresolvable faults is the same for both algorithms. Table 21 and 

23 show the affected variables and variables that can be used for fault resolution, respectively. The fault 

resolution of MR algorithm shown in Table 23 is shown only for medium MR threshold level (value of 

1.5). In Table 23 and the upcoming tables for fault resolution, each single sensor (i.e. s1) represent the 

sensor that can individually resolve the corresponding pair of faults and each sensor pair (i.e. P1,2 which 

represents pair s1 and s2) represent pairs of sensors that can resolve the corresponding pair of faults.  

 

Table 23. Fault resolution by SDG, FES and MR in CSTR system 

Fault Resolution sensors Fault Resolution sensors 

 
Single   Pair 

 
Single   Pair 

      FES   MR       FES   MR 

[1,2] 
s1,s2,s

4,s6,s7     

[3,10

] 

s1,s2,s4, 

s6,s7  

P1,4, P1,6, 

P1,7, 

P2,4, P2,6, P2,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[1,3] s1,s2 
 

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[4,5] 
s1,s3, 

s5,s7  

P1,3, P1,4, 

P1,5, P1,6, P1,7   

[1,4] 
s1,s2,s

4,s6,s7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[4,6] 
s1,s3,s4, 

s5,s6  

P1,3, P1,4, 

P1,5, P1,6, P1,7   

[1,5] 
s2,s3,s

4,s5,s6  

P1,2, P1,3, P1,4, 

P1,5, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 

  
[4,7] s4,s6,s7 

   
P4,7, P6,7 

[1,6] 
s1,s2,s

3,s5,s7  

P1,2, P1,3, P1,4, 

P1,5, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 

  
[4,8] s2 

   

P2,4, P2,6, 

P4,7, P6,7 

[1,7] s1,s2 
 

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7,  
P4,7, P6,7 [4,9] s4,s6,s7 

    



P4,6, P4,7, P6,7 

[1,8] 
s1,s4,s

6,s7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
 

P2,4, P2,6, 

P4,7, P6,7 

[4,10

] 
s1,s2 

 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[1,9] 
s1,s2,s

7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[5,6] 
s1,s3,s4, 

s5,s6,s7     

[1,10

] 

s2,s4, 

s6,s7  

P1,2, P1,4, P1,6,  

P1,7, P4,6, P4,7, 

P6,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[5,7] 
s1,s3,s4, 

s5,s6  

P1,3, P1,4, 

P1,5, P1,6, P1,7  
P4,7, P6,7 

[2,3] 
s1,s2,s

4,s6,s7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[5,8] 
s1,s2,s3, 

s5,s7  

P1,3, P1,4, 

P1,5, P1,6, P1,7  

P2,4, P2,6,  

P4,7, P6,7 

[2,4] s1,s2 
 

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[5,9] 
s1,s3,s4, 

s5,s6,s7  

P1,3, P1,4, 

P1,5, P1,6, P1,7   

[2,5] 
s1,s2,s

3,s5,s7  

P1,2, P1,3, P1,4,  

P1,5, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 

  

[5,10

] 

s2,s3, 

s5,s7  

P1,3, P1,5, 

P2,4, P2,6, P2,7  

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[2,6] 
s2,s3,s

4,s5,s6  

P1,2, P1,3, P1,4, 

P1,5, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 

  
[6,7] 

s1,s3, 

s5,s7  

P1,3, P1,4, 

P1,5, P1,6, P1,7  
P4,7, P6,7 

[2,7] 
s1,s2,s

4,s6,s7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
 

P4,7, P6,7 [6,8] 
s1,s2,s3, 

s4,s5,s6  

P1,3, P1,4, 

P1,5, P1,6, P1,7  

P2,4, P2,6,  

P4,7, P6,7 

[2,8] s1,s2 
 

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
 

P2,4, P2,6, 

P4,7, P6,7 
[6,9] 

s1,s3, 

s5,s7  

P1,3, P1,4, 

P1,5, P1,6, P1,7   

[2,9] 
s1,s2,s

4,s6,s7  

P1,2, P1,6, P1,7, 

P2,4, P2,6, P2,7, 

P4,6, P4,7, P6,7 
  

[6,10

] 

s1,s2,s3, 

s4,s5,s6  

P1,3, P1,5, 

P2,4, P2,6, P2,7  

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[2,10

] 
s1 

 

P1,2, P1,4, P1,6, 

P1,7,  P4,6, 

P4,7, P6,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 

[7,8] 
s2,s4, 

s6,s7    

P2,4, P2,6,  

P4,7, P6,7 

[3,4] 
s4,s6,s

7     
[7,9] s7 

   
P4,7, P6,7 

[3,5] 
s1,s3,s

4,s5,s6  

P1,3, P1,4, P1,5, 

P1,6, P1,7   

[7,10

] 

s1,s2,s4, 

s6,s7  

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7, 

P4,7, P6,7 

[3,6] 
s1,s3, 

s5,s7  

P1,3, P1,4, P1,5, 

P1,6, P1,7   
[8,9] 

s2,s4, 

s6,s7    

P2,4, P2,6,  

P4,7, P6,7 

[3,7] 
    

P4,7, P6,7 
[8,10

] 
s1,s2 

 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 
 

P1,4, P1,6, 

P1,7, P2,7, P4,7, 

P6,7 

[3,8] 
s2,s4, 

s6,s7    

P2,4, P2,6, 

P4,7, P6,7 

[9,10

] 

s1,s2,s4, 

s6,s7  

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7 
 

P1,4, P1,6, 

P1,7, P2,4, 

P2,6, P2,7,  



[3,9] s7 
          

 

 

6.1.2 Five-Tank Case Study 

The five-tank system from Bhushan and Rengaswamy181 is considered as the next case study in this work. 

Figure 83 shows the schematic of the process. Lists of measured variables and simulated faults are shown 

in Table 24 and Table 25, respectively.  

 

Figure 83. Schematic of the five-tank case-study181 

 

Table 24. List of measured variables in five-tank case-study 

Sensor 

no. 
Measured variable Description 

 

Sensor 

no. 
Measured variable Description 

s1 L1 Level in Tank 1 
 

s7 F7 Stream 7 

s2 L2 Level in Tank 2 
 

s8 F8 Stream 8 

s3 L3 Level in Tank 3 
 

s9 F9 Stream 9 

s4 L4 Level in Tank 4 
 

s10 F10 Stream 10 

s5 L5 Level in Tank 5 
 

s11 F11 Stream 11 

s6 F6 Stream 6 
 

s12 F12 Stream 12 

 

Table 25. List of simulated faults and the corresponding affected sensors in five-tank case-study 

Fault Description Affected sensors 



1 qi
+ 

Inlet flow 
s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 

2 qi
- s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 

 

3 V6 

Valve closed 

s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 

4 V7 s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 

5 V8 s2,s8 

6 V9 s2,s3,s4,s5,s8,s9,s10,s11,s12 

7 V10 s2,s3,s4,s5,s8,s9,s10,s11,s12 

8 V11 s2,s3,s4,s5,s8,s9,s10,s11,s12 

9 V12 s2,s5,s8,s12 

 

10 LT1 

Leakage in tank 

s1,s2,s3,s4,s5,s6,s7,s8,s9,s10,s11,s12 

11 LT2 s2,s8 

12 LT3 s3,s4,s5,s9,s10,s11,s12 

13 LT4 s3,s4,s5,s9,s10,s11,s12 

14 LT5 s5,s12 

 

The solution to the optimization problem is shown in Table 26 that compares the different algorithms. 

Although faults qi
- and LT1 are not resolvable by SDG, both FES and MR can resolve these faults. At low 

and medium MR threshold level, the cost of the sensor network is the same as FES as well as SDG. 

Interestingly, at low MR threshold level, the combination of both algorithms picks a subset of the selected 

sensors by both algorithms and resolves all the faults at lower sensor network cost. At medium MR 

threshold level, the sensor network cost is similar to the sensor network cost of the FES algorithm, thus, 

the combination of the algorithms will have the same result as if the algorithms are performed 

individually. Interestingly, the selected sensors are not a combination of sensors selected through 

individual algorithms since there are multiple solutions to the optimization problem when algorithms are 

combined. At high MR threshold value, the sensor network cost is reduced compared to other algorithms, 

thus, the combination of the algorithms will have the same sensor network cost as the MR algorithm. 

Table 25 and Table 27 show the affected variables for each fault and the fault resolution using all 

algorithms individually. The fault resolution of MR algorithm shown in Table 27 is shown only for low 

MR threshold level (value of 1.1). For compactness, only key rows of the fault resolution are shown and 

pairs that are combination of sensors in SDG results are not shown. 

 

Table 26. Results of applying different algorithms to five-tank case-study 

Algorithm(s) 
MR threshold  

level 
Selected sensors Sensor network cost 

Irresolvable fault 

sets 

SDG 
 

s2,s4,s5,s10 4 [2,10] 

FES 
 

s2,s4,s9,s12  4 [ ] 

MR 

Low s2,s10,s11,s12 4 [ ] 

Medium s2,s10,s11,s12 4 [ ] 

High s2,s5,s10 3 [ ] 



FES & MR 

Low s2,s11,s12 3 [ ] 

Medium s2,s8,s10,s12 4 [ ] 

High s2,s5,s10 3 [ ] 

 

 

Table 27. Fault resolution by SDG, FES and MR in five-tank case-study 

Fault Resolution sensors Fault Resolution sensors 

 
Singles   Pairs 

 
Singles   Pairs 

      FES   MR       FES   MR 

[1,4] s2,s7,s8 
   

P5,9 [4,10] 

s1,s3,s4,s5,

s6,s9,s10,s

11,s12 
 

P2,8 
 

P2,7, P2,8, 

P7,8 

[1,6] 
s1,s5,s6,s7

,s8,s9,s12    
P2,3 [4,11] 

s1,s3,s4,s5,

s6,s7,s9,s1

0,s11,s12 
    

[1,7] 

s1,s4,s6,s7

,s8,s10,s1

1 
 

P2,9 
 

P2,3,P5,9 [6,8] 
s5,s9,s10,s

11,s12  
P3,4 

 
P3,4 

[1,8] 
s1,s6,s7,s8

,s10,s11  

P2,9,P3,4, 

P4,9  
P2,3, P3,4 [6,9] 

s3,s4,s5,s9,

10,s11  
P2,12, P8,12 

 
P8,12 

[2,4] 

s1,s3,s4,s5

,s6,s9,s10,

s11,s12 
 

P2,8 
  

[6,10] 

s1,s2,s3,s4,

s6,s7,s10,s

11 
 

P5,12, P8,9 
 

P5,8, P5,9, 

P5,12, P8,9, 

P8,12, P9,12 

[2,6] 

s1,s2,s3,s4

,s6,s7,s10,

s11 
 

P5,12, P8,9 
 

P8,9 [6,12] 
s2,s3,s4,s8,

s10,s11  
P5,12 

 
P5,9, P9,12 

[2,7] 

s1,s2,s3,s5

,s6,s7,s9,s

12 
 

P8,10 
 

P4,8 [6,13] 
s2,s3,s4,s8,

s11  
P5,12, P9,10 

 

P5,9, P5,12,  

P9,12 

[2,8] 

s1,s2,s3,s4

,s5,s6,s7,s

9,s12 
 

P8,10,P8,11,

P10,11  

P8,10, P8,11, 

P10,11 
[6,14] 

s2,s3,s4,s8,

s9,s10,s11     

[2,9] 

s1,s2,s3,s4

,s5,s6,s7,s

9,s10,s11 
 

P8,12 
 

P8,12 [7,8] s4 
 

P2,11, 

P8,10, 

P8,11, 

P10,11 

 

P5,9, P8,10, 

P8,11, 

P10,11 

[2,12

] 

s1,s2,s6,s7

,s8    

P3,4, P3,10, 

P4,10, P5,9, 

P5,11, P9,10, 

P9,12, P11,12 

[7,9] 
s3,s4,s9,s1

0,s11,s12    
P2,5 

[2,13

] 

s1,s2,s6,s7

,s8,s10  

P3,4, P3,11, 

P4,9, P9,11  

P3,12, P3,5, 

P3,9, P3,11, 

P5,9, P5,11, 

P5,12, P9,12 

[7,10] 

s1,s2,s3,s5,

s6,s7,s9,s1

2 
 

P8,10 
 

P4,8, P4,10, 

P4,11, P8,10, 

P8,11 P10,11 

[3,6] 
s1,s3,s4,s6

,s7,s8,s10,  
P5,12 

  
[7,12] 

s2,s3,s5,s8,

s9,s12    
P4,10 



s11 

[3,7] 

s1,s3,s5,s6

,s7,s8,s9,s

12 
 

P2,4,P2,11 
  

[8,9] 
s3,s4,s9,s1

0,s11,s12    
P2,5 

[3,8] 

s1,s3,s4,s5

,s6,s7,s8,s

9,s12 
 

P10,11 
 

P10,11 [8,10] 

s1,s2,s3,s4,

s5,s6,s7,s9,

s12 
 

P8,10, 

P8,11, 

P10,11 
 

P8,10, P8,11, 

P10,11 

[3,9] 

s1,s3,s4,s5

,s6,s7,s8,s

9,s10,s11 
 

P2,12 
  

[8,12] 
s2,s3,s4,s5,

s8,s9,s12  
P10,11 

 
P10,11 

[3,14

] 

s1,s2,s3,s4

,s6,s7,s8,s

9,s10,s11 
 

P5,12 
  

[9,10] 

s1,s2,s3,s4,

s5,s6,s7,s9,

s10,s11 
 

P8,12 
 

P8,12 

[4,6] 
s1,s2,s5,s6

,s7,s9,s12     

[10,12

] 

s1,s2,s6,s7,

s8    

P3,5, P3,9, 

P3,10, P3,11, 

P3,12, P4,5, 

P4,9, P4,10, 

P4,11, P4,12, 

P5,10, P5,12, 

P10,11, 

P10,12 

[4,7] 

s1,s2,s4,s6

,s7,s10,s1

1 
    

[10,13

] 

s1,s2,s6,s7,

s8,s10  

P3,4, P3,11, 

P4,9, P9,11  

P3,4, P3,12, 

P4,5, P4,9, 

P4,11, P4,12, 

P11,12 

[4,8] 
s1,s2,s6,s7

,s10,s11  
P3,4,P4,9 

 
P3,4, P5,9 

[12,13

] 
s10 

 

P3,4, P3,11, 

P4,9, P9,11  

P3,4, P3,5, 

P3,9, P3,11, 

P5,12, P11,12 

 

6.1.3 Tennessee Eastman Case Study 

Tennessee Eastman (TE) process, first introduced by Downs and Vogel194
, has been widely used as a 

benchmark problem for process control, optimization, diagnosis and etc. Figure 84 shows the schematic 

of the TE process. An MPC controlled TE developed by Ricker and Lee195 is considered in this work. A 

detailed description of the process with detailed qualitative SDG analysis of the process has been 

presented by Bhushan and Rengaswamy196 and Maurya et al.197 A total of 33 faults considered by Maurya 

et al.197 are simulated in the process and the 40 variables are stored together for further analysis. Table 28 

and Table 29 show lists of variables and faults considered in this work, respectively. 



 

Figure 84. TE process flowsheet196 

 

Table 28. List of measured variables in TE process197 

Sensor 

no. 

Measured 

variable 
Description   

Sensor 

no. 

Measured 

variable 
Description 

s1 F7 Stream 7 
 

s21 yD,6 D in stream 6 

s2 F1 Stream 1 
 

s22 yE,6 E in stream 6 

s3 F2 Stream 2 
 

s23 yF,6 F in stream 6 

s4 F3 Stream 3 
 

s24 yA,9 A in stream 9 

s5 F4 Stream 4 
 

s25 yB,9 B in stream 9 

s6 F8 Stream 8 
 

s26 yC,9 C in stream 9 

s7 F9 Stream 9 
 

s27 yD,9 D in stream 9 

s8 F10 Stream 10 
 

s28 yE,9 E in stream 9 

s9 F11 Stream 11 
 

s29 yF,9 F in stream 9 

s10 Tcr Reactor temperature 
 

s30 yG,9 G in stream 9 

s11 Tcs Separator temperature 
 

s31 yH,9 H in stream 9 

s12 Pr Reactor pressure 
 

s32 xG,11 G in stream 11 

s13 VLr Reactor liquid holdup 
 

s33 xH,11 H in stream 11 

s14 Ps Separator pressure 
 

s34 PA,r A in reactor 

s15 VLs Separator liquid holdup 
 

s35 PC,r C in reactor 



s16 VLp Product liquid holdup 
 

s36 PD,r D in reactor 

s17 F6 Stream 6 
 

s37 PE,r E in reactor 

s18 yA,6 A in stream 6 
 

s38 VLre Error signal VLr 

s19 yB,6 B in stream 6 
 

s39 VLse Error signal VLs 

s20 yC,6 C in stream 6   s40 VLpe Error signal VLp 

 

 

Table 29. List of simulated faults in TE process197 

Fault no. Description   Fault no. Description 

1,9 F1+, F1- 
 

17,26 VLrm
set+, VLrm

set- 

2,10 F2+, F2- 
 

18,27 VLrVP,bias
+, VLrVP,bias

- 

3,11 F3+, F3- 
 

19,28 VLsm,bias
+, VLsm,bias

- 

4,12 F4+, F4- 
 

20,29 VLsm
set+, VLsm

set- 

5,13 F8+, F8- 
 

21,30 VLsVP,bias
+, VLsVP,bias

- 

6,14 F9+, F9- 
 

22,31 VLpm,bias
+, VLpm,bias

- 

7,15 Tr
+, Tr

- 
 

23,32 VLpm
set+, VLpm

set- 

8 Cd
- 

 
24,33 VLpVP,bias

+, VLpVP,bias
- 

16,25 VLrm,bias
+, VLrm,bias

- 
   

 

Table 30 shows the comparison of SDG, FES and MR for TE process. FES is preferred over SDG 

algorithm as it has lower sensor network cost and number of irresolvable fault sets. At low MR threshold 

level, MR resolves same number of faults with lower sensor network cost compared to FES. As can be 

seen in Table 30, FES and MR have the same sensors except that "s12" -pressure sensor- is not present in 

the network for MR algorithm. Therefore, the combination of both algorithms takes advantage of the MR 

algorithm. At medium MR threshold level, MR only shows slight improvement over SDG algorithm in 

terms of the sensor network cost, thus, the combination of both FES and MR takes advantage of the FES. 

At high MR threshold level, MR shows no improvement over SDG algorithm and the combination of 

both FES and MR takes advantage of the FES algorithm. For compactness, presenting large matrix of 

affected variables and faults resolution are avoided. Table 31 only presents fault resolution for the fault 

sets that are resolvable by FES and MR algorithms but not SDG. 

 

Table 30. Results of applying different algorithms to TE process 

Algorithm(s) 
MR value 

level 
Selected sensors 

Sensor 

network cost 
Irresolvable fault sets 

SDG 
 

s2,s3,s7,s8,s9,s10,s11,s15,s16 7.2 

[16,26],[16,27],[17,18], 

[17,25],[18,25],[19,29], 

[20,28],[22,32],[23,31], 

[26,27] 

FES 
 

s2,s7,s8,s9,s11,s12,s15,s16 6.6 
[16,26],[17,25],[19,29], 

[20,28],[22,32],[23,31] 



MR 

Low s2,s7,s8,s9,s11,s15,s16 6.1 Same as FES 

Medium s2,s3,s7,s8,s9,s11,s15,s16 7.1 Same as SDG 

High s2,s3,s7,s8,s9,s10,s11,s15,s16 7.2 Same as SDG 

FES & MR 

Low s2,s7,s8,s9,s11,s15,s16 6.1 Same as FES 

Medium s2,s7,s8,s9,s11,s12,s15,s16 6.6 Same as FES 

High s2,s7,s8,s9,s11,s12,s15,s16 6.6 Same as FES 

 

Table 31. Fault resolution by SDG, FES and MR in TE process 

Fault Resolution sensors Fault Resolution sensors 

 
Singles   Pairs 

 
Singles   Pairs 

      FES   MR       FES   MR 

[16,27] 
  

P8,16,P8,40 
 

P8,13, P8,16, 

P9,13, P9,15, 

P9,16, P11,13, 

P11,16, P14,16, 

P15,17, P16,17 

[18,25] 
  

P8,16,P8,40 
 

P8,13, P8,16, 

P9,13, P9,16, 

P11,13,P15,16 

[17,18] 
  

P8,16,P8,40 
 

P8,13, P8,16, 

P9,13, P9,16, 

P11,13, P15,16 

[26,27] 
  

P8,16,P8,40 
 

P8,13, P8,16, 

P9,13, P9,15,  

P9,16, P11,13, 

P11,16, P14,16, 

P15,17, P16,17 

 

 

6.1.4 SELEXOL Process Case Study 

As a unit in integrated gasification combined cycle (IGCC), the acid gas removal unit is used for 

removing H2S and CO2 contents of the syngas using SELEXOL solvent. The pressure-driven dynamic 

model SELEXOL process that is used in our work is developed in the work of Bhattacharyya et al.198, 

where Figure 85 shows the configuration of the SELEXOL process used in their study. The entire model 

has 24597 variables. However, considering all the variables makes the FES and MR algorithms 

intractable. Therefore, only variables that respond to DG (or SDG) algorithms are taken to account since 

the rest of the variables will not have any effect in FES and MR. After removing such variables, 542 

variables are left for performing the algorithms. In order to save space, showing the lists of all measured 

variables and variables that respond to each fault are avoided and only the key variables are shown in 

Table 32. Table 33 shows the list of faults considered in the SELEXOL process. 

 



 

Figure 85. Schematic of the SELEXOL process198 

Table 34 shows the comparison of different algorithms for SELEXOL process. Although all faults are 

resolvable by all algorithms, there is a slight improvement in sensor network cost by applying FES and 

MR compared to SDG. All algorithms suggest that for resolving all faults, flow and concentration sensors 

are mainly required. FES algorithm uses a temperature sensor less than SDG although only sensor s1 is 

the same in both algorithms. Therefore, the sensor network cost is reduced. At low and medium MR 

threshold level, less temperature sensors are selected and the sensor network cost is reduced compared to 

FES and the combination of FES and MR takes advantage of the results of MR. At high MR threshold 

level there is no improvement from SDG and the combination of FES and MR takes advantage of results 

of FES. 

 

Table 32. List of measured variables in SELEXOL process 

Sensor 

no. 
Measured variable Description   

s1 BLOCKS.("SELST").Stage(7).Mc("N2") 
N2 composition in 7th tray of SELEXOL 

stripper  

s2 BLOCKS.("SELST").Stage(10).Mc("NH3") 
NH3 composition in 10th tray of 

SELEXOL stripper  

s3 BLOCKS("LENPUR").T 
Pure SELEXOL from SELEXOL stripper 

temperature  

s4 BLOCKS("CO2ABS").Stage(10).T 10th tray of CO2 absorber temperature 
 



s5 STREAMS("LPCO2-2").T 
1st stage compression of LP CO2 

temperature  

s6 STREAMS("CO2FMMP2").F 
CO2 stream top of flash vessel at MP flow 

rate  

s7 STREAMS("MKUPSEL1").F Make-up SELEXOL stream flow rate 
 

s8 BLOCKS("SELST").Stage(10).Mc("H2S") 
H2S composition in 10th tray of 

SELEXOL stripper  

s9 BLOCKS("H2SCONC").Stage(6).T 6th tray of H2S concentrator temperature 
 

s10 BLOCKS("SELST").Stage(6).T 6th tray of SELEXOL stripper temperature 
 

s11 STREAMS("CO2FMMP3").F 
CO2 stream from LP flash vessel to 1st 

stage compressor flow rate  

s12 BLOCKS("CO2ABS").Stage(5).Mc("H2S") 
H2S composition in 5th tray of CO2 

absorber  

s13 STREAMS("2MPHPMIX").F 
CO2 stream from HP flash vessel to mix 

with MP stream flow rate  

s14 BLOCKS("H2SCONC").Stage(4).Mc("COS") 
COS composition in 4th tray of H2S 

concentrator  

s15 BLOCKS("CO2ABS").Stage(7).T 7th tray of CO2 absorber temperature 
 

s16 STREAMS("2LPMPMXR").F 
CO2 stream from MP flash vessel to mix 

with LP stream flow rate  

s17 
BLOCKS("SELST").Stage(8).Mc("DIMET-

02") 

SELEXOL composition in 8th tray of 

SELEXOL stripper  

s18 BLOCKS("CO2ABS").Stage(4).Mc("H2S") 
H2S composition in 4th tray of CO2 

absorber  

s19 BLOCKS("SELST").Stage(11).Mc("NH3") 
NH3 composition in 11th tray of 

SELEXOL stripper  

s20 
BLOCKS("H2SSTRBT").HotOutVol(1).Mc("

H2S") 

H2S composition in bottom stream of H2S 

absorber fed to concentrator 
  

s21 STREAMS("SEL2PMP").T 
Temperature of circulating SELEXOL 

stream from tank  

s22 BLOCKS("SELST").Stage(8).Mc("H2S") 
H2S composition in 8th tray of SELEXOL 

stripper  

s23 BLOCKS("SELST").Stage(9).Mc("NH3") 
NH3 composition in 9th tray of SELEXOL 

stripper  

s24 BLOCKS("SELMXTK").T SELEXOL mixing tank temperature 
 

s25 STREAMS("2MPHPMX1").F 
CO2 stream from HP flash vessel to mix 

with MP stream flow rate   

 

Table 33. List of simulated faults in SELEXOL process 

Fault no. Fault symbol Description 

1 F1 Reduction in area of 13th tray of CO2 absorber by 15% 

2 F2 Reduction in area of bottom (15th ) tray of CO2 absorber by 15% 

3 F3 Reduction in area of 23rd tray of H2S absorber by 15% 

4 F4 Reduction in area of bottom (26th ) tray of H2S absorber by 15% 

5 F5 Reduction in area of 4th tray of H2S concentrator by 15% 



6 F6 Reduction in area of bottom (6th ) tray of H2S concentrator by 15% 

7 F7 Reduction in overall heat transfer coefficient of Lean/Rich H.E. by 15% 

8 F8 1% leakage in the H2 recovery compressor suction line 

9 F9 1% vapor leakage in H2 recovery flash drum 

10 F10 1% vapor leakage in CO2 high pressure flash drum 

11 F11 1% vapor leakage in CO2 low pressure flash drum 

12 F12 1% vapor leakage in CO2 medium pressure flash drum 

13 F13 Reduction in area of 8th tray of SELEXOL stripper by 15% 

14 F14 Reduction in area of bottom (11th) tray of SELEXOL stripper by 15% 

 

Table 34. Results of applying different algorithms to SELEXOL process 

Algorithm(s) MR value level Selected sensors 
Sensor 

network cost 
Irresolvable fault sets 

SDG 
 

s1,s2,s3,s4,s5,s6,s7 22.3 [ ] 

FES 
 

s1,s7,s8,s9,10,s11 22.2 [ ] 

MR 

Low s1,s7,s12,s13 22 [ ] 

Medium s7,s8,s14,s15,s16 22.1 [ ] 

High s1,s6,s7,s10,s15,s16,s17 22.3 [ ] 

FES & MR 

Low s7,s11,s18,s19 22 [ ] 

Medium s7,s8,s11,s20,s21 22.1 [ ] 

High s7,s10,s22,s23,s24,s25 22.2 [ ] 

 

6.1.5 Combined Cycle Case Study 

The combined cycle island consists of a series of heat exchangers and the gas turbines (GT) and steam 

turbines (ST) as shown in Figure 86. Clean synthesis gas, exiting the SELEXOL unit is heated and mixed 

with N2, which is used as a diluent. After going through an expander, it is sent to the combustor of the 

GT. Two advanced “F” class combustion turbines partially integrated with an elevated-pressure air 

separation unit (ASU) are modeled in Aspen Plus Dynamics. The hot flue gas exhaust from the GT is 

used to generate high pressure, intermediate pressure and low pressure steam in the heat recovery steam 

generator (HRSG). The flue gas is finally vented to the atmosphere. The steam generated using the HRSG 

is used to produce power in the ST.  



 

Figure 86. Schematic of the combined cycle power plant. 

6.1.5.1 Model development  

The combined cycle model is taken from the work of Bhattacharyya et al.1 and has been modified to be 

able to incorporate faults. The gas turbine (GT) converts the chemical energy in the supplied hydrogen-

rich syngas fuel into shaft work which turns a generator and produces electricity.  

The GT is simulated using turbine models available in the Aspen Plus library on the basis of the 

specifications of a GEE 7FB turbine. N2 is used as a diluent and is manipulated by a design specification 

so that the lower heating value (LHV) of the syngas fuel is reduced to 4.55 MJ Nm3 to keep the NOx 

concentrations in the ppmv range in the exhaust.  The combustion air is compressed in an axial flow 

compressor which raises the ambient air to a pressure of 1.65 MPa. When the flow of combustion air is 

manipulated, the GT combustor temperature is maintained at 1377 °C with a specified heat loss equal to 

1.5% of the lower heating value (LHV) of the syngas. The GT firing temperature is maintained at 1327 

°C by a design specification which manipulates the air flow rate to the combustor outlet gas before it 

reaches the first expansion stage. The air flow rates to the second and third expansion stages are 

maintained at predetermined values. The isentropic efficiencies of the GT are manipulated such that the 

exhaust temperature is maintained at 566 °C. The isentropic efficiencies of all the three stages are 

assumed to be equal. The flue gas goes to the heat recovery steam generator (HRSG) where steam is 

generated at three pressure levels. The flue gas is used to superheat the HP steam generated both in the 

HRSG evaporator and in the radiant syngas cooler before it finally exits the system at 132 °C, well above 

the cold end corrosion temperature. 

The steam cycle generates steam from the flue gas and other process streams at three pressure levels. The 

minimum temperature approach is considered to be 10 °C in this study. HP steam, generated at 12.4 MPa 

and 538 °C, is mainly used for generating power in the HP steam turbine (ST). IP steam is used for 

generating power, as well as in the reboilers. LP steam generated in the HRSG is mainly used for heating 

process streams and in the reboilers. Condensate at the outlet of the surface condenser and from the LP 

steam circuit and flash steam from the HP blow down drum are sent to the deaerator. The BFW at the 

outlet of the deaerator is pumped at various pressure levels for generating HP, IP, and LP steam. The HP 

stream is heated and sent to the RSC and HRSG. It is then superheated and sent to the HP turbine. IP 

BFW passes through the economizer and evaporator to generate IP steam which is sent to the IP turbine. 

The LP split of the BFW is used to generate LP and IP steam. The exit temperature of the flue gas above 

the cold end corrosion temperature is maintained by manipulating the flow of the BFW that goes to the 

LP steam evaporator. IP steam 

The faults simulated in the combined cycle island include leakage at several locations, fouling within a 

few heat exchangers and an increased loss of heat through the combustor. Since the turbines itself are 

highly advanced and consist of several sensors that detect and report any deviation from operation 

immediately, faults in these units have not been simulated. The leakage faults are mainly considered for 

the heat exchangers where high pressure differences exist between the shell and tube sides. Fouling is a 

concern within the heat exchangers as well. These faults are modeled similar to the methods mentioned 



earlier for the SELEXOL unit. The GT combustor has insulation to prevent heat loss to the environment. 

However, the insulation might get damaged in the course of operation and this can be modeled by 

increasing the heat loss in the GT combustor block.  

 

6.1.5.2 Fault Simulation 

The combined cycle section was segregated from the plant wide model developed in the works of 

Bhattacharyya et al31. The faults to be simulated in the combined cycle unit were identified. With the 

exception of Fault 5, all faults are simulated with a ramp function of 1 hour duration initiated after half an 

hour of simulation. The faults that were selected and implemented are as follows:  

1. Leakage from the high pressure steam flash vessel 

Steam at very high temperature and pressure is produced in a steam generator block using the heat from 

hot flue gas. The steam produced is then sent to the high pressure steam turbine. A leakage in the high 

pressure steam generator can cause mixing of the steam with the flue gas which could build up in the 

steam cycle. 

 

 

 

2. Leakage within a HE between syngas and steam streams 

This heat exchanger is used to heat in the hydrogen rich syngas from the Selexol plant before being sent 

to the combustor. The steam stream is at higher pressure and a rupture in the tube could result in steam 

entering the gas cycle. This could negatively impact the combustion process and the power generated in 

the gas turbines.  

 

 

 

 

 

 

 

 

 

 

3. Leakage within a Condenser between Steam and water streams 

Usually a composition sensor placed at the one of the streams exiting the HE would be able to detect any 

leakage taking place within the HE. However, if the heat transfer involves two streams of the same 

material, this becomes difficult. In this unit, we have considered a leakage of cooling water into the 

condensing steam. 
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Figure 87. Schematic of the high pressure steam generation vessel. 

Figure 88. Schematic of the heat exchanger between the syngas stream and the high pressure steam. 



 

 

 

4. Fouling simulated as loss of area within HE 

A fouling fault is simulated in the heat exchanger used to cool the flue gas from the combustor using 

steam. The combustor flue gas could have particulate matter entrained from the N2 stream that could 

deposit on the walls of the HE. This fault is simulated by decreasing the surface area of the HE. 

 

 

 

5. Increase in heat loss from the combustor  

The combustor operates at high temperatures and has insulation to limit the heat loss to the environment. 

However, the insulation might get damaged or may suddenly fall off in course of operation. This fault is 

modeled by introducing a step change in the heat loss from the GT combustor block after half an hour of 

simulation time.  
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Figure 89. Schematic of the condenser where steam/condensate is cooled by cooling water. 

Figure 90. Schematic of the heat exchanger (part of HRSG) where the combusted syngas is 

used to superheat the steam. 

Figure 91. Schematic of the gas turbine combustor. 



 

6. Leakage within a HE between combusted syngas and steam stream.(IPEVAP1) 

A leakage in an IP steam generator HE is simulated where heat from flue gas at almost atmospheric 

pressure is used to generate steam. This fault is to see if a sensor can be found to differentiate faults in 

heat exchangers operating at different pressures.  

 

7. Fouling simulated as loss of area within HE 

In this fault, the same HE as Fault 2 has been used to simulate a fouling fault. In the SELEXOL process, 

there can be some foaming or formation of undesirable chemicals on the trays of the absorbers. These 

materials could be carried by the syngas and could deposit on the heat exchanger surfaces thereby 

reducing the surface area for heat exchange.  

 

The faults were initially simulated while recording minimum number of variables. The following 

guidelines were used in order to select these variables: 

1. Instead of the molar flow, the volumetric flow rate is recorded. This is because, in the industry, 

typically the volumetric flow rates are measured.  

2. Across a HE the composition is not expected to change. Therefore, only pressure, flow rate and 

temperature are recorded.  

3. Pressure and temperatures after splitter/mixers are not recorded.  

4. Only pressures after valves or other pressure-drop devices are recorded.  

5. The composition of only the gas stream exiting the flash vessel is recorded. The pressure and 

temperature of the vessel is recorded. Note that the exiting streams will have the same pressure and 

temperatures as the vessel. 

6. Levels in flash vessels were recorded. 

7. Power outputs from turbines were recorded. 

These criteria however would result in the omission of variables that could help in the detection of faults 

involving a leak of dissimilar materials. For example, as a result of Fault 2, the composition of the syngas 

stream would change. Under the previous context, these changes would go undetected as the stream does 

not undergo any chemical change in the section until the combustor. Each unit in the combined cycle 

section is checked for all possible faults that can occur, and accordingly the final set of variables to be 

recorded are obtained.  

 

6.1.5.3 Study of Fault Effects 

For the sake of brevity of this report, we will show the responses of only a few select variables due to a 

few select faults. In Fault 2, water leaks into the syngas stream. Hot water is used to heat the syngas 

stream from the SELEXOL unit before it is sent to the combustor of the gas turbines. Intuitively, one 
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Figure 92. Heat exchanger cooling combusted syngas with intermediate pressure steam. 



might think that the temperature and flow rate of the syngas exiting the heat exchanger would increase 

due to the leakage.  Interestingly enough, this is not the case.  
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Figure 93. Volumetric flow rate of the leaking steam stream into the syngas stream due to Fault 2. 

Fault 2 is initiated after half an hour simulation time. The leakage is initiated and ramped for one hour and 

then held steady at the final value. The mole flow rate of water is about 9% of that of the syngas stream 

exiting the heat exchanger. The flow of water can be seen from Figure 93 above.  

T_outlet_Reheter1

Time Hours

S
T

R
E

A
M

S
("

2
E

X
P

A
N

D
1
J
r"

).
T

 F

0.0 0.5 1.0 1.5 2.0 2.5 3.0

4
2

0
.0

4
4

0
.0

4
6

0
.0

4
8

0
.0

5
0

0
.0

 

Figure 94. Temperature change of the Syngas stream at the outlet of the Heat exchanger due to 

Fault 2. 

Due to Fault 2, the pressure of the water drops in pressure significantly leading to its evaporation. Due to 

the latent heat of evaporation, the syngas temperature decreases. This can be seen from Figure 94. 
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Figure 95. Flow rate change of the syngas stream exiting the heat exchanger due to Fault 2. 

The effect of this is not confined to temperature itself. The volumetric flow rate is a function of 

temperature and the temperature of the outlet stream has decreased. In addition, vaporization of water 

creates backpressure decreasing the flow rate of clean syngas.  Therefore, the overall volumetric flow rate 

of the exit syngas stream has decreased as compared to before as can be seen in Figure 95.  

Furthermore, fouling faults in the heat exchangers are also simulated. This is simulated at two locations; 

the first one (Fault 4) was in the superheater of the HP steam, and the second one (Fault 7) was on the HE 

that heats the syngas before the GT combustor. Fault 4 is simulated by reducing the area of the HE by 

10% over a time period of 1 hour. Figure 96 and 97 show two sample responses as a result of this fault.  
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Figure 96. Temperature change of the flue gas at the outlet of the superheater due to Fault 4. 

 



Due to the reduced area, the outlet temperature of the flue gas increases as shown in Figure 96. Due to the 

increase in temperature, the volumetric flow rate is also expected to increase. This can be seen in Figure 

97 below.  
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Figure 97. Change in Flow rate of Combusted Syngas stream due to Fault 4. 
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Figure 98. Change in Temperature of the outlet Syngas stream due to Fault 7. 

 

In contrast, the temperature change due to Fault 7 as shown in Figure 98 does not respond in the same 

manner as it did in Fault 4 even though the reduction in the area is similar in both the cases.    

Multi-severity faults 



The previously shown faults in the combined cycle power plant are simulated at three severity levels. The 

data for the 21 faults were compiled and sent to TTU for sensor placement studies. The severity of the 

faults and their levels are shown in Table 35 below. 

 

Table 35. Faults at different severity level simulated in the combined cycle model 

Fault # Fault Type Duration Severity 

1 Ramp 1 hour 0.5%, 1%, 2% leak valve opening 

2 Ramp 1 hour 0.1%, 0.2%, 0.4% leak valve opening 

3 Ramp 1 hour 5%, 10%, 20% leak valve opening 

4 Ramp 1 hour 80%, 90%, 95% area available 

5 Step - 90%, 95%, 98% of original heat loss 

6 Ramp 1 hour 0.05%, 0.2%, 0.5% of leak valve opening 

7 Step - 85%, 90%, 95% of area available 

 

The fault severities have been chosen such that the levels are in a high, medium and low level. The effect 

of the high severity level should be captured by the algorithm easily. The low level faults may not have a 

strong effect on the system to be resolved by the algorithm. The faults would help determine the level of 

severity that the sensor placement can detect and the minimum number of sensors required to detect them.   

There are 736 number of variables chosen carefully for further processing. Table 36 shows the weight and 

threshold value for each type of variables: 

Table 36. Weight and threshold of each variable in the sensor placement algorithms 

Variable type Weight Threshold 

Temperature 0.1 1 F 

Level 1 1 inch 

Flow 1 3% 

Power 0.1 3% 

Concentration(mole fraction) 10 0.01 

Pressure 0.5 2 psi 

 

Table 37 and Table 38 show the results of the different algorithm for fault resolution of combined cycle. 

Table 38 shows that the MR algorithm can resolve faults [8,9] in the medium ratios of range 1.3 - 1.8. 

However, the sensor network cost is sensitive to the MR threshold value in this range. 

Table 37. SDG and FES algorithms results 



Algorithm(s) Selected sensors 
Sensor network 

cost 

Irresolvable 

fault sets 

SDG 1,13,14,21,34,37,112,130,154,179,188,221,285 5.8 [8,9] [14,15] 

FES 10,13,14,42,49,456,469,171,221,242,251,285 4.8 [8,9] [14,15] 

 

 

Table 38. MR algorithm results 

Algorithm MR threshold value Irresolvable fault sets 

MR 

1.1 - 1.2 [8,9] [14,15] 

1.3 - 1.8 [14,15] 

1.9 - 3 [8,9] [14,15] 

 

Figure 99 shows the number of irresolvable faults and the corresponding sensor network cost for different 

MR threshold values. 

 

Figure 99. Number of irresolvable faults (left) and the corresponding sensor network cost (right) at 

different MR threshold values 
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6.1.6 System Decomposition 

Here, we study the effect of different system and decomposition parameters on the fault detection and 

computation speed. The results in this section are based on a Monte Carlo simulation analysis where a 

pool of systems are considered and the presented results are either the probability of occurring (fault 

detection results) or the mean average over the pool of systems (computation speed results). The 

sensitivity analysis of system parameters includes the effect of number of nodes, sub-systems, and cross-

connections on the computation speed, fault resolution capability and sensor network cost. For 

computation speed, the average computation time for fault detection of overall system (TO) is compared 

with the average sum of computation times of sub-systems (TD). For comparison, the average percent 

reduction in computation time by decomposition (TR) is also presented (TR = (1-TD/TO) ×100). For fault 

resolution capability, the solutions obtained from sub-systems are augmented to form the decomposition 

solution. The decomposition solution is implemented in the overall system to check the resolution, which 

is how many of the faults cannot be resolved using the decomposition solution. The optimal resolution is 

always achieved by considering the overall system and counting the number of unresolvable faults. For 

comparison, the percentage of the systems in the pool where their decomposition have resolution greater 

than that of optimal resolution is presented (PF). For sensor network cost, the cost of sensor networks for 

all sub-systems are summed up and compared with the sensor network cost of the overall system. For 

comparison, percentage of the systems in the pool that have sensor network cost different than the cost of 

sensor network of their overall system is presented (PC). It should be noted that cost of placing sensor on 

all nodes are assumed equal with the value of 1. 

Table 39 shows the sensitivity analysis of number of sub-systems. In this analysis, total number of nodes, 

edges, fault nodes, fault edges and cross-connections are fixed for the overall systems at 3600, 1.2 × 

3600, 60, 60 and 60, respectively. In all of the subsequent studies, the number of edges is chosen to be 

20% more than the number of nodes in order to have feedback/recycle edges similar to process systems; 

and the number of fault edges is chosen equal to the number of faults in order to ensure each fault has 

single outward edge. Also, the values for number of nodes, edges, fault, fault edges and cross-connections 

in all subsequent tables represent the parameters of each sub-system in an overall system.  The random 

systems in each pool are generated with a specified number of sub-systems. In Table 39, for each system 

in each pool, number of sub-systems is fixed and the mentioned fixed parameters are divided equally 

among the sub-systems. For example in Table 39, pool 1 has systems where each system is consists of 2 

sub-systems where each sub-system has 1800, 2160, 30, 30 and 30 number of nodes, edges, faults, fault 

edges and cross-connections, respectively. Only for pool 6, the number of cross-connections cannot be 

divided equally among the sub-systems, therefore, number of cross-connection between each sub-system 

is chosen randomly for each sub-system with summation equal to 60. It should be noted that it is assumed 

that each pair of sub-systems has at least 1 cross-connection. In order to be consistent, the maximum 

number of cross-connections is then 16 for pool 6. 

 

 

 

 



Table 39. Sensitivity analysis of number of sub-systems 

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6 

Sub-Systems 2 3 4 5 6 10 

Nodes 1800 1200 900 720 600 360 

Edges 2160 1440 1080 864 720 432 

Faults 30 20 15 12 10 6 

Fault Edges 30 20 15 12 10 6 

Cross-Connections 30 20 10 6 4 1-16 

TO (s) 1.6587 1.6587 1.6587 1.6587 1.6587 1.6587 

TD (s) 0.4372 0.2404 0.1818 0.1439 0.1186 0.0819 

TR 74% 86% 89% 91% 93% 95% 

PF 0% 0% <1% 2% 2% 3% 

PC 44% 59% 73% 85% 90% 100% 

 

In Table 39, the computation time of the overall system, TO, is averaged over all 6 pools as all the overall 

systems have similar properties. As the number of sub-systems increase, the reduction in computation 

time is increasing, meaning that it takes much less time to perform fault detection for all the sub-systems 

than performing on the overall system. This can be seen as the average of sum of sub-systems’ 

computation time, TD, is reducing due to fault detection of smaller systems. One of major reasons behind 

the computation time reduction is the amount of time required to perform fault resolution (symmetric 

difference) in a system. For the overall system, the number of computations required for fault resolution is 

equal to the number of non-repetitive fault pairs in the overall system, which is 60×59/2 = 1770. If the 

system is decomposed to 10 sub-systems, the total number of computations required for fault resolution is 

10×6×5/2 = 150. This means that the total number of computations, which is directly related to the 

computation time, has been reduced by approximately 92%. As the number of sub-systems increase, the 

probability of systems with more faults being unresolved is slightly increasing due to the reason that the 

probability of presence of nodes that can resolve those faults in the corresponding sub-system gets lower 

as the number of sub-systems increase. Moreover, as the number of sub-systems increase, resolving the 

faults in sub-systems requires more number of sensors to be placed due to the reason that sensors which 

could resolve multiple faults are not available for use in different sub-systems. Therefore, there is high 

probability that decomposition results in higher sensor network cost. In summary, choosing the 

appropriate number of sub-systems for decomposition is a tradeoff between computation speed, fault 

resolution and sensor network cost. Increasing the number of sub-systems reduces the computation time 

significantly while it may result in lower fault resolution and different sensor network cost.  

Table 40 shows the sensitivity analysis of number of nodes and fault nodes. The number of sub-systems is 

fixed at 4 in this study. In pools 1-3 in Table 40, the number of nodes increases from 10 to 1000 while the 

number of faults are fixed at 4. Although the computation time for both overall and decomposed systems 

increases by increasing the number of nodes, the amount of reduction in computation time is actually 



increasing, meaning that decomposition efficiently reduces the computation time as the size of the system 

increases. Moreover, while the number of faults is fixed, as the number of nodes increase, there are more 

sensors available for fault resolution; therefore, the probability of systems with more unresolved faults 

due to decomposition is reducing. Similarly, the probability of systems with different sensor network cost 

increases as the number of nodes increase due to more availability of sensors for fault resolution. 

However, the sensor network cost maybe greater or less than the overall system depending on the fault 

resolution. For example, fault resolution maybe achieved by using more sensors while if some faults 

cannot be resolved in the sub-systems, less number of sensors will be involved in the fault resolution, 

thus, resulting in less sensor network cost. In pool 4-6, the number of nodes is fixed at 1000 while the 

number of faults increases from 40 to 80. Pools 4 and 5 show that at higher number of faults compared to 

pool 3, computation time reductions are significant, however, the impact of increasing the number of fault 

nodes on both overall and decomposed systems’ computation time is significantly larger than the effect of 

increasing the number of nodes. This effect can also be explained by the number of computations as in the 

study of number of sub-systems. The probability of systems with higher number of unresolved faults 

increases at higher number of faults. However, compared to pool 3, we can see that this probability has 

remained approximately the same for larger number of faults. An explanation is that since the number of 

faults is large, many faults are even unresolved in the overall system and system decomposition has little 

effect on fault resolution. For the same reason, the probability of systems with different sensor network 

cost for pools 4 and 5 is lower compared to the pool 3. For pool 6, the number of faults is too high that 

exceeds the computation memory of the computer, while it is still possible to perform the fault detection 

on the decomposed system. Therefore, no comparison can be made for pool 6. This interesting result 

justifies the need for system decomposition for fault detection of large systems and large number of 

faults. 

Table 40. Sensitivity analysis of number of nodes and fault nodes 

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6 

Sub-Systems 4 4 4 4 4 4 

Nodes 10 100 1000 1000 1000 1000 

Edges 12 120 1200 1200 1200 1200 

Faults 4 4 4 40 50 80 

Fault Edges 4 4 4 40 50 80 

Cross-Connections 4 4 4 4 4 4 

TO (s) 0.0257 0.0349 0.1251 14.3853 26.4105 
Out of 

memory 

TD (s) 0.0158 0.0182 0.0288 1.3469 2.6569 4.8287 

TR 37% 48% 77% 91% 90%  

PF 9% 3% <1% 1% 1%  

PC 100% 98% 97% 66% 63%  

 



Table 41 shows the sensitivity analysis of number of cross-connections while other parameters remain 

fixed. Although in a decomposed system an edge can either be inside a sub-system or between a pair of 

sub-systems, the following sensitivity analysis shows the effect of number of cross-connections, for 

example in a highly interconnected system, on computation time and fault detection when the system is 

decomposed. As seen in Table 41, the number of cross-connections has very little effect on the 

computation time reduction, although still the decomposition has resulted in significant time reduction of 

approximately 90%.  The probability of systems with higher number of unresolved faults in the 

decomposed system is at a minimum when there are only one cross-connections between the sub-systems. 

As can be predicted, the less the interaction between the sub-systems, the more the probability of 

achieving optimal resolution with system decomposition. At higher number of cross-connections, 

although not highly probable, it is possible that the decomposition results in some faults being unresolved. 

Moreover, as the number of cross connections increase, the probability of system decomposition resulting 

in sensor network cost higher than the optimal cost gets higher. This is due to the reason that the when a 

system is more interconnected, it is possible that a single sensor can resolve multiple faults. Therefore, 

decomposing systems with more connections can result in sensor network with higher cost for achieving 

the optimal resolution.  

 

Table 41. Sensitivity analysis of number of cross-connections 

Parameters Pool 1 Pool 2 Pool 3 Pool 4 Pool 5 Pool 6 

Sub-Systems 4 4 4 4 4 4 

Nodes 1000 1000 1000 1000 1000 1000 

Edges 1200 1200 1200 1200 1200 1200 

Faults 40 40 40 40 40 40 

Fault Edges 40 40 40 40 40 40 

Cross-Connections 1 5 10 20 40 80 

TO (s) 10.28 15.81 16.15 16.93 16.95 16.47 

TD (s) 1.26 1.44 1.50 1.55 1.3317 1.59 

TR 88% 91% 91% 91% 92% 90% 

PF 0% 2% 3% 3% 2% 2% 

PC 70% 70% 84% 93% 99% 100% 

 

 

6.1.7 Conclusion 

The case studies, clearly brings out the value of every piece of information that is used in sensor 

placement. Further, because of this, it is also easy to interpret and explain the results to the operator. If a 

pseudo-sensor corresponding to a MR pair helps in resolution then a corresponding explanation such as, 

for example, “Temp T-101 has increased by a large amount, whereas concentration C-502 shows only 



moderate increase indicative of F15” fault can be provided.  Further, it is possible to use these results 

directly in the development of a diagnostic approach for each of these case studies. Finally, the 

optimization algorithms are solved, even at a flow-sheet level, in a very short time. It will be extremely 

difficult to solve problems at this scale if one were to take recourse to a full-scale optimization problem 

that incorporates the nonlinear dynamic first-principles model within the optimizer. A more 

computationally efficient approach might be to add the detailed first principles model as the next level of 

information to address only the faults that are left unresolvable after MR and FES information have been 

used in identifying the sensor placements. Elegant computational approaches to realize this will be one 

avenue for future work. 

The system decomposition for fault detection is promoted by a series of sensitivity analysis that promises 

computation time reduction while it is highly probable that the optimal resolution using the decomposed 

system is achieved. However, it is likely that the decomposed system will result in higher sensor network 

cost compared to the optimal cost. The optimal resolution and sensor network cost can be obtained by the 

fault detection of the original system before decomposition. 

The system decomposition promises significant computation time reduction as the number of sub-systems 

and the system size, which includes number of nodes and fault nodes, increases. The larger the system, 

the more appealing the system decomposition is. It is more likely for system decomposition to achieve the 

optimal resolution as the size of the system increases; and when system decomposition has lower number 

of sub-systems and lower number of cross-connections. It is highly probable that system decomposition 

has higher sensor network cost while the probability is lower for larger systems, when the system is 

decomposed to lower number of sub-systems, and when sub-systems’ interaction through cross-

connections are lower. 

An appropriate graph partitioning algorithm for fault detection must compromise between the 

computation speed for fault resolution and sensor network cost. Minimizing the number of cross-

connections promises higher chance of achieving optimal resolution while the number of sub-systems is a 

tradeoff between computation speed, fault resolution and sensor network cost. Maximizing the number of 

nodes in each sub-system ensures highest computation time reduction, which can be done by equally 

dividing the nodes in the sub-systems as possible. Also, the less the number of fault nodes in each sub-

system, the less the number of computations can be, which again means equal number of fault nodes in 

each sub-system can be an appropriate choice. 

 

6.2 Distributed Sensor Placement 

6.2.1 State Estimation Validation 

In this section, the performance of the proposed state estimation technique is demonstrated on two 

examples. The first example is a nonlinear system that is akin to a batch reactor and the second example is 

the water gas shift reactor (WGSR), where a catalytic reaction is performed in a plug-flow reactor. The 

performance of the filter is demonstrated by comparison of root mean square error (RMSE) of the data 

and the estimated states calculated as   

𝑅𝑀𝑆𝐸 = √∑ (𝑥𝑖,𝑘 − 𝑥𝑖,𝑘
𝑐 )

2𝑠
𝑖=1

𝑠
 

(219) 

Where xi,k  is the actual value that is specific to the simulation study and 𝑥𝑖,𝑘
𝑐  is the constrained state 

estimates. In order to calculate the RMSE of the measurement data, 𝑥𝑖,𝑘
𝑐  in Eqn. (219) is replaced by the 

measured value yi,k. Another metric that is used in the following analysis is the normalized sum of squared 

errors (SSE) of all state estimates over the total time instance and is calculated as 



𝑆𝑆𝐸 = ∑∑(
𝑥𝑖(𝑡) − 𝑥𝑖(𝑡)

𝑥𝑖(𝑡)
)

2𝑋

𝑖=1

𝑇

𝑡=1

 (220) 

 

where T is the number of time instances, X is the number of variables and xi(t) and 𝑥𝑖(𝑡) are ith actual and 

estimated states at tth time instance, respectively. It should be noted that in the following studies, SSE 

values are calculated by averaging over 100-run Monte Carlo simulations. 

 

6.2.1.1 Example 1: Non-linear synthetic system 

Our synthetic example is comprised of two differential equations and an algebraic equation. The system 

under study is given as 

[
𝑥̇1

𝑥̇2
] = [

8.69×10−4𝑧(0.6 − 𝑥1) − 𝑧×10−3 (𝑥1 −
𝑥2

2
)

8.69×10−4𝑧(0.4 − 𝑥2) + 𝑧×10−3 (𝑥1 −
𝑥2

2
)
] + 𝐺 [

𝜔1

𝜔2
] (221) 

𝑔(𝑥) = 𝑧0.3 + 0.5𝑥1
3𝑧 − 10

𝑥2

𝑧
= 𝛾 (222) 

   

where 𝐺 = [
0.5 −0.5

−0.5 0.5
] and true initial state of 𝑥0 = [0.431 0.569 3.546]𝑇. The sampling time is 

chosen as Δt = 5 s and the state estimator is initialized with 

 

𝑄 = [2.5×10−5 0
0 2.5×10−5] 

𝑊 = 2.5×10−3 

 𝑅 = [
2.5×10−5 0 0

0 2.5×10−5 0
0 0 2.5×10−3

] 

𝑃0 = [
10−4 0 0

0 10−4 0
0 0 10−4

] 

𝑥0|0 = [0.555 0.456 2.822]𝑇 

(223) 

 

The constraint given for this system is 

𝐸 = [1 1 0], 𝑏 = 1 (224) 

 

Note that the initial estimate does not satisfy the constraint. From the constraint, it can be seen that 𝐸𝑥 =
[1 1], Ez = 01×1,  ExG = 01×2 and Exfx = 01×1. The Jacobian matrix is calculated analytically as 

[
𝐴 𝐵
𝐶 𝐷

]

=

[
 
 
 
 
 
 (−0.869𝑧 − 𝑧)×10−3 −

𝑧

2
×10−4 (0.869(0.6 − 𝑥1) − (𝑥1 −

𝑥2

2
))×10−3

𝑧×10−3 (−0.869𝑧 −
𝑧

2
)×10−3 (0.869(0.4 − 𝑥2) + (𝑥1 −

𝑥2

2
))×10−3

1.5𝑥1
2𝑧

−10

𝑧
0.3𝑧−0.7 + 0.5𝑥1

3 +
10𝑥2

𝑧2 ]
 
 
 
 
 
 

 

(225) 



Multiplying Ex  by (A-BD-1C) yields 

𝐸𝑥(𝐴 − 𝐵𝐷−1𝐶) 

= [1 1] [
−8.69𝑧×10−4 − 𝑧×10−3 + 𝑧×10−3 −

𝑧

2
×10−3

𝑧×10−3 −8.69𝑧×10−4 +
𝑧

2
×10−3

] 

= [−86.9𝑧×10−4 −86.9𝑧×10−4] 
= −86.9𝑧×10−4×[1 1] 

(226) 

 

From Eqn. (224), it is known that x1 + x2 = 1 after the first iteration of the filter, therefore, 𝐸𝑥𝐵𝐷−1𝐶 = 0. 

From Eqn. (226), Ex is a left eigenvector of Φ. Figure 100-102 show the actual, measured and estimated 

values of each variables for 100 time instances. Initially, states do not satisfy the constraint, however, 

after the first iteration of the filter, estimated states satisfy the constraints for all time instances.  

 

 

 

Figure 100. Actual, measured and estimated values of differential variable x1. 

 



 

Figure 101. Actual, measured and estimated values of differential variable x2. 

 

Figure 102. Actual, measured and estimated values of algebraic variable z 

Table 42 shows the RMSE and SSE values of measured and estimated variables. In Table 42, RMSE and 

SSE are compared for filter I, with certain algebraic equation assumption as described before, and filter II, 

the proposed filter. It should be noted that the propagation step in filter I is modified to include the state 

constraints as shown in Eqn. (192). As seen in Table 42, RMSE of differential variables x1 and x2 using 

filter II are slightly reduced over using filter I although both filters result in better estimates compared to 

the measurements. The RMSE of the algebraic variable z for filter I is greater than that of the 

measurement due to underestimation of noise in its corresponding equation. This suggests that measuring 

the algebraic variable would result in more accurate values than using filter I. However, the reduced 

RMSE of the algebraic variable for filter II compared to the RMSE of the measurement justifies the 

correct assumption of uncertain algebraic equation. Also, the SSE value of filter II indicates significant 

improvement over filter I, which means the estimates are closer to the actual values. These improvements 

show that the proposed filter can mitigate the effect of uncertain algebraic equations and result in better 

estimates.  



Table 42. Comparison of RMSE and SSE values for measured and estimated values 

 
 

RMSE 
 

SSE 

 
 

x1 x2 z 
 

 

Measurement (data) 
 

0.0050 0.0050 0.0501 
 

 

Filter I 
 

0.0029 0.0029 0.0684 
 

0.0479 

Filter II 
 

0.0027 0.0027 0.0417 
 

0.0215 

 

6.2.1.2 Example 2: Water gas shift reactor 

 

State estimation of reactors has been the focus of many researchers for control and fault diagnosis. The 

next example is the system of interest, water gas shift reactor (WGSR), in which carbon monoxide (CO) 

reacts with steam (H2O) to produce hydrogen (H2) and carbon dioxide (CO2), through the water gas shift 

reaction. A non-linear DAE model of the sour water gas shift reactor (SWGSR) has been developed in 

section 2.1 where in addition to the water gas shift reaction, carbonyl sulfide (COS) reacts with H2O (i.e., 

COS hydrolysis), and CO2 and hydrogen sulfide (H2S) are produced. For simplicity, here, the sulfur 

content of the feed is assumed negligible and only the water gas shift reaction is considered. In addition to 

the reactor model, feed and product stream flowrates are controlled by valves (V1, V2 and V3) as shown 

in Figure 103. The corresponding equation for calculation of flows through the valves is 𝐹𝑉𝑖 =

(
𝑑𝑉𝑖

𝑆𝑉𝑖

𝑀𝑉𝑖

)√𝜌𝑉𝑖
Δ𝑃𝑉𝑖

, where 𝑑𝑉𝑖
, 𝑆𝑉𝑖

, 𝑀𝑉𝑖
, 𝜌𝑉𝑖

 and Δ𝑃𝑉𝑖
 are flow coefficient, valve opening, average 

molecular weight, average density and pressure drop across the valve, respectively.  Syngas and steam are 

passed through valves V1 and V2, respectively, and it is assumed that these streams are well mixed in an 

ideal mixer before entering the reactor. The presence of the valve adds an additional algebraic equation to 

the system model as described by Eqn. (227)-(231). Table 43 shows the summary of the equations used to 

represent the system with parameters shown in Table 44. Some of the parameters in our previous work are 

changed for simplicity and reduced computations. For example, the reactor size and correspondingly the 

number of grid points in discretization are reduced. These parameters are shown in Table 44. 

 

Figure 103. Schematic of the WGSR system 

 

Table 43. Summary of equations for Water gas shift reactor 



𝜕𝑦𝑖

𝜕𝑡
=

𝑅𝑇

𝑃
(−𝐹𝑀𝐹

𝜕𝑦𝑖

𝜕𝑧
+ 𝑟𝑊𝐺𝑆,𝑖

1−𝜀

𝜀
) + 𝐺𝜔1,𝑖    i = CO, H2O, CO2 and H2 (227) 

𝜕𝑇𝑔

𝜕𝑡
=

1

𝜌𝑔𝑎𝑠𝐶𝑝
[−𝐶𝑝𝐹𝑀𝐹

𝜕𝑇𝑔

𝜕𝑧
+

ℎ𝑓𝑎𝑐

𝜀
(𝑇𝑐𝑎𝑡 − 𝑇𝑔𝑎𝑠)] + 𝜔2 (228) 

𝜕𝑇𝑐𝑎𝑡

𝜕𝑡
=

1

𝜌𝑐𝑎𝑡𝐶𝑝,𝑐𝑎𝑡
[𝐾𝑐𝑎𝑡

𝜕2𝑇𝑐𝑎𝑡

𝜕𝑧2
−

ℎ𝑓𝑎𝑐

1 − 𝜀
(𝑇𝑐𝑎𝑡 − 𝑇𝑔𝑎𝑠) + 𝑟𝑊𝐺𝑆𝜌𝑐𝑎𝑡∆𝐻𝑅,𝑊𝐺𝑆] + 𝜔3 (229) 

𝑑𝑃

𝑑𝑧
=

𝜌𝑢2

𝐷𝑐𝑎𝑡
(
1 − 𝜀

𝜀3
) (1.75 +

150

𝑅𝑒
) + 𝛾1 (230) 

Δ𝑃𝑉3
=

1

𝜌𝑉3 
(
𝐹𝑉3

𝑀𝑉3

𝑑𝑉3
𝑆𝑉3

)

2

+ 𝛾2 (231) 

    

 

Table 44. Summary of the parameters of the WGSR model used in this work 

Parameter Value 

Length  1 m 

Diameter  0.5 m 

Number of grids (Ngrid) 
 25 

Valve V1 (syngas) 

 

Opening 50% 

Flow Coefficient 6 ×10−5 

Valve V2 (steam) 
Opening 50% 

Flow Coefficient 2 ×10−5 

Valve V3 (products) 
Opening 50% 

Flow Coefficient 10−4 

Inlet temperature  580 K 

Feed pressure (steam and syngas)  5626121 Pa 

Outlet pressure  4.5×106 Pa 

Catalyst diameter  0.1 mm 

 

The state vector consists of 176 states including mole fractions of CO, H2O, CO2, and H2, temperature and 

pressure at each grid-point and pressure at the inlet of the reactor (Pin). The constraint for this system is 

imposed as the summation of mole fractions at each grid-point is equal to one. Since the actual mole 

fraction values must sum up to one for consistency, in simulating the actual mole fraction values, the 

process noise is introduced in the mole fractions in such a way that the summation of the process noises at 

each grid-point and time instance are equal to zero. To do this, random process noises generated for each 



mole fractions at a particular grid-point are corrected by subtracting the mean average of the process 

noises from each. Therefore, G in system of Eqn. (181) is written such the diagonal elements are +
3

4
 and 

the elements corresponding to mole fractions of the other components at the same grid-point are −
1

4
. The 

process covariance, Q, of each equation type is assumed the same and chosen as 10-4 and 2.5×10-5 for 

mole fraction and temperature equations, respectively. The covariance matrix of algebraic equations 

(pressure) is also fixed at 4×10-4. The measurement covariance, R, is also assumed in the same manner 

with 6.4×10-5, 2.5×10-5 and 4×10-6 for mole fraction, temperature and pressure measurements, 

respectively. It should be mentioned that temperature and pressure variables are normalized using 580 K 

and 55 atm, respectively. The sampling time is chosen as Δt = 5 s and the state estimation is performed 

for 100 time instances. The error covariance is P0 = 10-6 I176×176. The correction step for constraint is 

applied only once in the beginning. Note that since a large portion of the reactant is consumed in the first 

half of the reactor, it is more desirable to accurately estimate the states in this zone. Therefore, a random 

grid-point in the first half of the reactor is chosen to show the performance of the proposed filter. Figure 

104 and Figure 105a show the actual, measured and estimated states at 9th grid-point using Filter II with 

all the states measured. The corresponding RMSE are shown in the figure captions where RMSEdata and 

RMSEest represent RMSE in measured and estimated values, respectively. Clearly, estimated values have 

smaller errors compared to the measurements, thus, the proposed filter performs reasonably. It should be 

mentioned that for better visualization, Figure 104 and Figure 105 are shrunk for the first 30 time 

instances although the calculations of RMSE and SSE values are based on 100 time instances. In order to 

avoid comparing the RMSE of large number of variables for filter I and filter II in this example, the 

superiority of the proposed filter, filter II, is shown by comparing SSE values and also RMSE values at 9th 

grid-point for the algebraic variable P. The SSE values are 10.312 and 6.819 for filter I and filter II, 

respectively. Comparing the SSE values, the proposed filter results in estimated values significantly 

closer to the actual values as the squared error is reduced approximately by 33%. Moreover, higher 

RMSEest for filter I than RMSEdata shows that the filter fails to outperform the measurements and produce 

unreliable estimates while filter II results in estimates with lower errors than of measurements.  The state 

estimation results are presented in Figure 105a and Figure 105b for filter II and filter I, respectively. From 

Figure 105, it can be seen how accurately filter II tracks the changes in algebraic state compared to filter 

I. As mentioned before, this is due to the fact that filter II correctly accounts for the presence of noise in 

the algebraic state. Consequently, this is reflected in the quality of the state estimates. 



 

Figure 104. Actual (-), measured (*) and estimated (--) value at 9th grid-point on the reactor for (a) 

𝒚𝑪𝑶 (RMSEdata = 5.005 × 10-3, RMSEest= 3.852 × 10-3)  (b) 𝒚𝑯𝟐𝑶 (RMSEdata = 5.003 × 10-3, RMSEest= 

3.827 × 10-3) (c) 𝑻𝒈 (RMSEdata = 7.978 × 10-3, RMSEest= 4.945 × 10-3) 

 

 

Figure 105. Actual (-), measured (*) and estimated (--) value at 9th grid-point on the reactor for (a) 

𝑷 (RMSEdata = 1.998 × 10-3, RMSEest= 0.894 × 10-3 using Filter II)  (b) 𝑷 (RMSEest= 5.312 × 10-3 

using Filter I). 



6.2.1.3 Discussion 

In the previous section, our proposed filter which accurately estimates the states, especially the algebraic 

states, was used to estimate the states in the WGSR example. In the WGSR example, however, all the 

states are measured for the purpose of filtering. Practically, it is neither possible nor economical to 

measure all the states in the WGSR. In operating plants, as the budget and integrity of the equipment 

items limit the number and type of sensors that can be used for monitoring the process, state estimation 

becomes a challenge. Increasing the number of sensors results in more accurate estimates of the variables. 

On the other hand, reducing the number of sensors requires identifying the most important variables that, 

if measured, accurate state estimates would be obtained. However, following questions arise. What should 

be the type and location of the sensors? How much does each measurement type and location contribute 

to the accuracy of the state estimates especially when using a rigorous filter for state estimation? To 

answer these questions, we begin by evaluating the case where only a few measurements are available. 

First, it is assumed that measurements are mutually exclusive and only available at fixed locations for 

similar states (i.e. only mole fractions of CO, yCO, or, only gas temperature, Tg, at fixed locations). The 

fixed grid-points are assumed to be 1st, 5th, 9th, 13th, 17th and 21st grid-points. For satisfying product 

specification, product concentration, temperature and pressure are usually monitored at the reactor outlet. 

Therefore, in subsequent studies it is assumed that all the states except the catalyst temperature, Tcat, are 

always measured at the outlet of the reactor (25th grid-point). Table 45 shows the SSE values for the 

corresponding available measurements with T = 100. As seen in Table 45, the lowest estimation error is 

achieved if the measurements of CO mole fraction (yCO) are available. In contrast, if measurements of 

only pressure (P) are available, estimation error is comparatively higher than others in Table 45. 

Therefore, it can be concluded that the type of the variable that is being measured contributes to the 

accuracy of the estimation, and if identified, it can result in better estimation accuracy.  

Table 45. Sum of squared errors value when fixed points measure the same type of states 

  Measured state type 

SSE value 

 𝑦𝐶𝑂 𝑦𝐻2𝑂 𝑦𝐶𝑂2
 𝑦𝐻2

 Tg P 

 31.889 35.522 34.626 35.500 36.077 37.790 

 

Next, we investigate how informative are each of the fixed measurement locations when only yCO is 

measured. Therefore, six independent cases are considered, where in each case it is assumed that one of 

the measurement locations is unavailable and information from only 5 other measurement locations are 

used for state estimation. Table 46 shows the SSE values for each of these state estimations with T = 100. 

Table 46 shows that the 13th, 17th, and 21st grid-points have the highest impact on the accuracy of the 

estimates with approximately minimum 3% increase in the overall squared estimation error in absence of 

measurements from each of these grid-points individually. Moreover, even with one less measurement of 

yCO, measurement of yCO results in better estimation accuracy in comparison to the cases where 

temperature or pressure are measured. Next we investigate if measurements from other variables at 

different locations combined with measurements of yCO can actually improve the accuracy of the 

estimates while the total number of locations are still six. For this study, yCO measurements from the 13th 

and 17th, and 21st grid-points, which have highest impact on the accuracy, are combined with a 

measurements of temperature and 𝑦𝐻2𝑂. Table 47 shows SSE values when combinations of variables are 

measured at different locations. Since the number of combinations of the type and locations is large, only 

a few combinations are considered and shown in Table 47. Interestingly, combinations 2, 8 and 11 show 

improvement over when only yCO is measured. Moreover, in practice, if a measurement of yCO can be 

replaced by a temperature measurement that is significantly cheaper, a considerable reduction in cost can 

be achieved. This means that not only the type of the measured variable contributes to the accuracy of the 



state estimates, the location where each of these variables are measured also contributes to the accuracy of 

the estimated values. However, if one were to consider all of the grid-points on the WGSR as candidate 

locations and pick the location and type of the variables with fixed total number of variables, a large 

number of combination need to be evaluated. This motivates further research on the development of 

systematic ways to answer the question: what are the best types and locations of sensors on WGSR in 

order to generate the most accurate estimates with limited budget? 

Table 46. Sum of squared errors with one missing measurement 

  Removed measurement location 

SSE value 
 None 1st 5th 9th 13th 17th 21st 

 31.889 32.119 32.171 32.439 32.982 33.315 33.572 

 

Table 47. SSE values with measurement combination 

Iteration Locations SSE value 

1 𝑇𝑔[21]   𝑦𝐶𝑂2
[13]  𝑦𝐻2𝑂[5] 32.160 

2  𝑇𝑔[5]   𝑦𝐶𝑂2
[9]  𝑦𝐻2𝑂[5] 31.685 

3  𝑇𝑔[13]   𝑦𝐶𝑂2
[5]  𝑦𝐻2𝑂[21] 32.087 

4   𝑇𝑔[9]     𝑦𝐶𝑂2
[13]  𝑦𝐻2𝑂[21] 31.966 

5 𝑇𝑔[5]   𝑦𝐶𝑂2
[13]  𝑦𝐻2𝑂[17] 31.906 

6 𝑇𝑔[9]   𝑦𝐶𝑂2
[17]  𝑦𝐻2𝑂[1] 32.035 

7 𝑇𝑔[5,13]   𝑦𝐶𝑂2
[17]   31.964 

8 𝑇𝑔[13]   𝑦𝐶𝑂2
[5,9]   31.493 

9 𝑇𝑔[21]   𝑦𝐶𝑂2
[1,17]   32.003 

10 𝑇𝑔[17]   𝑦𝐶𝑂2
[5,21]   32.325 

11 𝑇𝑔[5]   𝑦𝐶𝑂2
[1,21]   31.432 

12 𝑇𝑔[17]   𝑦𝐶𝑂2
[9,21]   31.931 

 

6.2.2 Optimal Distributed Sensor Placement 

In this work, it is assumed that gas temperature, species mole fractions and pressure are available for 

measurements at each grid points and the measured values for all type of measurements are available at 

the same time. However, it may be difficult to make pressure and concentration measurements in practice 

and availability of all measured values at the same time may not be practically feasible. But, this work can 

be considered with the assumptions that the most easiest and rapid measurements are from temperature 

and perform the sensor placement for the case that only temperature measurements can be made. Also, the 

EKF can be tailored for the case when there are delayed measurements and so on. 

 



6.2.2.1 Steady-state solution 

Table 48 shows the parameters considered in the WGSR reactor. The system of equations are consist of 

176 equations which are solved in MATLAB using 'fsolve' function; and the steady-state solution for the 

parameters shown in Table 48 is obtained. 

 

Table 48. Water gas shift reactor model parameters 

Parameter Value Parameter Value  

Inlet steam and gas pressure (Pa) 5,626,121 Inlet steam and gas temperature (K) 580  

Catalyst 

Diameter (mm) 0.1 Syngas Valve 
Opening (%) 50 

 
coefficient 6 × 10-5 

Density (g/cm3) 0.65 Steam Valve 
Opening (%) 50  
coefficient 2 × 10-5 

Thermal 

conductivity 

(W/m-K) 

35 
Syngas mole 

fractions 

CO 0.31 

 H2O 0.26 

CO2 0.13 

H2 0.30 

Porosity 0.38 Reactor Length (m) 1  

tortuosity 5 Reactor diameter (m) 0.5  

Specific heat (J/Kg-

K) 
880 Number of grid points 25  

 

6.2.2.2 Actual data 

The actual data used in the GA's objective function is obtained by simulating the WGSR over a certain 

period of operation time and the actual data is stored at each sampling time. Noise simulation in the actual 

data is performed in two steps: (i) Noise with known variance in differential state are added after the 

states are integrated from k to k+1 using DAE solver (ii) after integration and obtaining noisy differential 

states, noise in algebraic states are introduced by solving algebraic equations with presence of algebraic 

noise with known variance. Random noises with known variance are added to the initial states and the 

initial noisy data along with the stored data at each time instant are considered as the actual data. In our 

work, process time is assumed as 200 seconds with a sampling time of 5 seconds. Therefore, a total of 41 

set of data are obtained for use in GA. The measured values are obtained by adding the random noise with 

known variance to the corresponding actual values.  

 

6.2.2.3 Sensor placement results 

Based on the model descriptions explained in the previous sections, five different models are formulated 

and the performances of these models in the sensor placement framework are compared. The result of 

these comparisons will be an appropriate model that can be used for study of the effect of different 

parameters on the sensor placement results. The understudy models are as follows: (1) Model I: In this 

model, both state and error propagations are performed using the detailed model shown in Eqn. (181) (2) 

Model II: In this model, state propagation is performed by integrating the simplified model, but, the error 

propagation is performed by firstly computing the numerical Jacobian matrix around the current state 

estimates using the detailed model (3) Model III: This model has both state and error propagations 

performed using the simplified model. In this model, the covariance of the noise in the simplified model 

is assumed equal to the covariance of the noise in the detailed model (i.e. 10-3 for both Tg and H2O mole 

fractions) and the exogenous equations are assumed to be noise free (Γ𝑘+1 = 𝟎), consequently, no state 

constraints) (4) Model IV: This model is similar to Model III except that here the error covariance matrix 



is tuned to account for the lost information due to the model simplification, i.e. absence of assuming 

correlated noise in mole fractions. (5) Model V: In this model, as shown in Eqn. (213), it is assumed that 

the exogenous algebraic states are not noise free (Γ𝑘+1 ≠ 𝟎) and a corresponding error covariance matrix 

is added in the error propagation step as in Eqn. (217) to account for the noise in CO2, CO, H2 mole 

fractions and Tcat. Since it is theoretically difficult to account for the correlated noise while the equations 

are decoupled, therefore, the error covariance matrices are tuned to account for such information loss. 

Table 49 shows the parameters used in each model for state estimation. 

 

Table 49. Process noise variance values for different models 

Noise Term Model  

 I II III IV V  

𝝎 
𝑦: 10−3 
𝑇𝑔: 10−3 

𝑦: 10−3 
𝑇𝑔: 10−3 

    

𝝂 

𝑦: 10−3 
𝑇𝑔: 10−3 

𝑃: 5×10−3 

𝑦: 10−3 
𝑇𝑔: 10−3 

𝑃: 5×10−3 

𝑦: 10−3 
𝑇𝑔: 10−3 

𝑃: 5×10−3 

𝑦: 10−3 
𝑇𝑔: 10−3 

𝑃: 5×10−3 

𝑦: 10−3 
𝑇𝑔: 10−3 

𝑃: 5×10−3 

 

𝜸 𝑃: 10−3 𝑃: 10−3 𝑃: 10−3 𝑃: 10−3 𝑃: 10−3  

𝝎𝟐   
𝑦𝐻2𝑂: 10−3 

𝑇𝑔: 10−3 

𝑦𝐻2𝑂: 2.5×10−3 

𝑇𝑔: 9×10−4 

𝑦𝐻2𝑂: 3.7×10−4 

𝑇𝑔: 8×10−4 

 

𝚪     

𝑦𝐶𝑂: 10−3 
𝑦𝐶𝑂2

: 10−3 

𝑦𝐻2
: 10−3 

𝑇𝑐𝑎𝑡: 10−3 

 

 

Sensor placement is studied for a fixed number of sensors (50 number of sensors) by running GA for each 

model separately. Figure 106 shows normalized fitness values for each model as the GA searches for the 

optimal sensor placement. It should be noted that the fitness values are normalized by the fitness value 

that is obtained if all available states are measured. In Figure 106, Model I has the highest fitness as the 

sensor placements are obtained using the detail model that has no information loss. Model II shows 

interesting results in terms of fitness value compared to Model III and Model IV as the only difference is 

that Model II uses Jacobian matrix computed from the detailed model,. This shows that more accurate 

Jacobian matrix for error propagation can compromise for loss of information due to use of less accurate 

model for state propagation. Model V provides highest fitness although it is fully based on the simplified 

model. This shows the importance of considering presence of noise in algebraic states while considering a 

DAE system.  

 



 

Figure 106. Normalized fitness evolution for each model 

 

The most important factor in considering the simplified model in sensor placement is to achieve reduction 

in computation complexity of the model that can be studied by comparing the computation time for each 

model. Although the fitness values of each model in Figure 106 shows the performance of each model for 

state estimation, the final sensor placement results of each model must be checked against the detailed 

model, therefore, the reduction in computation time and sensor location of each final results will be 

compared. Table 50 shows the detailed analysis of the final solution of each model. In Table 50, Model I 

is the benchmark as it represent the full use of detailed model and other models are compared against 

Model I . The sensor placement from Model I is considered as the optimal solution of the SP and the SP 

results of other models will be compared against this solution. The first 6 columns of Table 50 show the 

number of sensors picked after 4500 number of generation of the GA optimization for each type of 

variable out of 25 available locations on the reactor, however, values in the parenthesis represent number 

of sensors that have similar location as the sensors picked in Model I. As can be seen in Table 50, none of 

the models pick any pressure sensors as system pressure is very high that slight variation in the system 

pressure due to process noise has very little effect on the accuracy of the state estimates compared with 

the effect of other variables. The optimal solution, Model I, has only a temperature sensor picked to get 

most accurate estimates; also, it shows that it is possible to achieve 84% of accuracy compared to the case 

where all states are measured. This is only achieved if the sensors are placed at optimal locations. 

However, the average time to achieve the optimal solution is relatively high when compared to the 

simplified models as the average time can be reduced up to approximately one-sixth of the original time 

when considering Model V. Number of temperature sensors picked by simplified models are relatively 

high compared to Model I, this is because that gas temperature is the only differential variable in the 



simplified models and accurately estimating the only differential variable can affect the state estimates. 

Model II shows significant reduction in computation time while maintaining high fitness (0.83) when the 

obtained solution is evaluated in a detailed model compared to Model I. Although Model III and IV show 

significant computation time reduction, neglecting the process noise has resulted in significant 

information loss, therefore, lower fitness in both GA and when evaluated in detail model. Among all 

simplified models, Model V shows the lowest computation time and superiority over computation time 

reduction. Moreover, Model V results in reasonably good estimates when compared to Model I. This is 

due to fact that Model V accounts for process noise in algebraic variables, thus, resulting in better 

estimates compared to other models. Therefore, we can claim that Model V not only results in reasonably 

good estimates, it reduces the computation time significantly. 

 

Table 50. Sensor placement results and computation time for each model 

Model 
Number of sensors (Number of sensors 

similar to Model I) 
Fitness 

Average CPU time per 

generation (s) 
 

 CO H2O CO2 H2 Tg P 
in 

GA 

In 

detail  
  

I 17 6 17 9 1 0 0.84 0.84 24.33  

II 16 (16) 6 (5) 17 (17) 6 (6) 5 (1) 0 (0) 0.81 0.83 8.27  

III 19 (15) 2 (0) 14 (12) 6 (3) 9 (0) 0 (0) 0.57 0.77 5.14  

IV 20 (15) 2 (0) 15 (12) 8 (4) 5 (0) 0 (0) 0.63 0.78 4.89  

V 19 (17) 0 (0) 18 (16) 7 (7) 6 (0) 0 (0) 0.79 0.81 4.41  

 

 

6.2.2.4 Study of Number of Sensors 

Practically, it is more desirable to reduce the number of sensors while achieving reasonable state 

estimates. Therefore, sensor placements are investigated for different number of sensors and the results 

are tabulated. In Table 51, the sensor placement results of Model V is compared against the detailed 

model to study the effect of number of sensors on the performance of Model V and amount of information 

loss due to reducing the number of sensors. Increasing the number of sensors, the difference in 

normalized fitness values of Model V and I seem to be reducing. However, this difference in accuracy can 

be compensated by the computation burden reduction that is gained by simplified model. For all number 

of sensors, Model V seems to rely more on the measurements of temperature, Tg, rather than the 

measurements from H2O. In contrast, as the number of sensors increases, the detailed model requires 

more number of H2O sensors, whereas the numbers of temperature sensors remain fairly the same. These 

results are interesting in the sense that the simplified model picks more temperature sensors than the 

detailed model while maintaining good performance. Choosing simplified model over detailed model not 

only reduces the computation time for SP, in view of the sensor network cost, one would achieve less 

expensive sensor network by using more temperature sensors that are orders of magnitude cheaper than 

the concentration sensors. 

 

  

 

 

 



Table 51. Sensor placement results comparison of Model I and Model V for different number of 

sensors 

Number 

of sensors 
Normalized fitness 

 

Sensor placement {
𝑴𝒐𝒅𝒆𝒍 𝑰

𝑴𝒐𝒅𝒆𝒍 𝑽 (𝒔𝒊𝒎𝒊𝒍𝒂𝒓 𝒕𝒐 𝑴𝒐𝒅𝒆𝒍 𝑰)
} 

 

 Model I Model V 

 

CO H2O CO2 H2 Tg P 

 

10 0.60 0.55 

 
8 

6 (6) 

0 

0 (0) 

0 

0 (0) 

0 

0 (0) 

2 

4 (0) 

0 

0 (0) 

 

20 0.69 0.64 

 
13 

10 (10) 

2 

0 (0) 

2 

4 (1) 

2 

1 (1) 

1 

5 (0) 

0 

0 (0) 

 

30 0.74 0.72 

 
15 

15 (14) 

2 

0 (0) 

9 

9 (6) 

3 

2 (1) 

1 

4 (1) 

0 

0 (0) 

 

40 0.79 0.77 

 
15 

16 (14) 

3 

0 (0) 

15 

14 (12) 

6 

5 (5) 

1 

5 (1) 

0 

0 (0) 

 

50 0.84 0.81 

 
17 

19 (17) 

6 

0 (0) 

17 

18 (16) 

9 

7 (7) 

1 

6 (0) 

0 

0 (0) 

 

 

 

6.2.2.5 Study of Effect of Process Noise Covariance 

Choosing appropriate process noise covariance matrices is important for the accuracy of the state 

estimates; however, it is not clear how sensor placement is affected and how much of information is lost 

when process noise covariance is not chosen properly. Table 52 shows the sensor placement comparison 

for Model I and V for different process noise covariance. In Table 52, Model V-c has the same parameters 

as Model V in Table 50. Underestimating and overestimating the process noise covariance, as in Model V-

a and V-e, significantly reduces the performance of the obtained solution. This can be seen as the 

normalized fitness of the solution of these models in detail modeled have lowest normalized fitness 

compared to the other models. Also, SP results of these models show obvious deviation from the SP 

results of detailed model to such a great extent that pushes the SP algorithm to pick more of temperature 

sensors.  

Table 52. Effect of process noise covariance on the sensor placement results 

Model 
Process noise 

covariance 

Normalized 

fitness 

Number of sensors (Number of sensors similar to 

Model I) 

 

   CO H2O CO2 H2 Tg P  

I  Q = 10-6 0.84 17 6 17 9 1 0  

V-a 

QH2O  = 10-8 

QTg  = 10-8 

Qalg  = 10-8 

0.66 16 (10) 5 (0) 6 (5) 5 (1) 18 (1) 0 (0) 

 



V-b 

QH2O  = (3.7×10-4)2 

QTg  = (8 × 10-4)2 

Qalg  = 10-8 

0.74 17 (13) 0 (0) 10 (9) 7 (3) 16 (1) 0 (0) 

 

V-c  

QH2O  = (3.7×10-4)2 

QTg  = (8 × 10-4)2 

Qalg  = 10-6 

0.81 19 (17) 0 (0) 18 (16) 7 (7) 6 (0) 0 (0) 

 

V-d 

QH2O  = 10-6 

QTg  = 10-6 

Qalg  = 10-6 

0.80 17 (16) 1 (0) 18 (16) 9 (6) 5 (0) 0 (0) 

 

V-e 

QH2O  = 10-4 

QTg  = 10-4 

Qalg  = 10-4 

0.70 9 (9) 5 (2) 10 (9) 9 (5) 15 (0) 2 (0) 

 

 

 

 

6.2.2.6 Study of Effect of initial error covariance 

In this part, we examine the effect of initial error covariance of Model V on the SP results and compare it 

with the SP results of Model I as shown in Table 53. It should be noted that the initial error covariance is 

known through actual data preparation. In all models, Model V-a though c, no H2O sensors are picked 

whereas more number of temperature (Tg) sensors are picked when comparing with the detailed model. 

Model-Va assumes higher initial error covariance. However, for other sensors except for pressure sensor, 

numbers of the sensors as well as the number of sensors similar to the detailed model are relatively high. 

In all three models, the normalized fitness of the solution remains reasonably high and confirms their 

reliability for not only state estimation, but also for SP.  It is worth mentioning once again that in 

calculating the fitness of these models, the first set of state estimates are ignored and the corresponding 

fitness and its normalizing fitness are calculated without considering the quality of the initial estimates. It 

can be seen from Table 53 that the choice of initial error covariance has a slight effect on the SP results. 

 

Table 53. Effect of initial error covariance on the sensor placement results 

Model 

Initial error 

covariance 

matrix 

Normalized 

fitness 

Number of sensors (Number of sensors similar to Model 

I) 

   CO H2O CO2 H2 Tg P 

I  P0 = 10-6 0.84 17 6 17 9 1 0 

V-a P0 = 10-4 0.80 18 (17) 0 (0) 17 (16) 7 (6) 8 (1) 0 (0) 

V-b P0 = 10-6 0.81 19 (17) 0 (0) 18 (16) 7 (7) 6 (0) 0 (0) 

V-c  P0 = 10-8 0.81 19 (17) 0 (0) 17 (16) 7 (6) 7 (1) 0 (0) 

 

 

6.2.3 Conclusion 

Previous EKF frameworks for DAE systems published in the literatures assume that algebraic equations 

are exact. However, in practice, algebraic equations could be describing a physical state and derived using 

modeling assumptions which introduces uncertainties in these process equations. Therefore, stochastic 

algebraic equations cannot be handled in the previous EKF formulations due to differentiation of white 

noise, which is not well-defined. Moreover, extra information about the process may be present in the 



form of implicit equality constraints, such as mole balance in a reactor, which cannot be handled by 

previous EKF frameworks. A modification to the EKF approach that addresses these difficulties by 

avoiding the differentiation of the algebraic equations is proposed. The error covariance of algebraic 

variables are propagated as linear and non-linear combinations of error covariance of differential 

variables. The performance of the proposed filter is demonstrated through two examples. In the simple 

example, it is shown that estimates are improved over the measurements as RMSE of estimated states are 

considerably reduced in comparison to the RMSE of the measured data. In the WGSR example, the filter 

also shows considerably higher estimation accuracy of the states over the measurements when all states 

are measured. In both examples, the proposed filter shows superiority over the previous filtering 

framework by returning estimates with lower RMSE and closer to the actual values. Application of the 

proposed filter to the WGSR revealed that the type and location of the sensors used on the WGSR have 

important role in the accuracy of the state estimates. 

In this section, a framework for sensor placement of water gas shift reactor is described. The proposed 

framework combines the state estimation technique with an evolutionary algorithm to obtain the optimal 

sensor locations (and types) that return most accurate estimates of the process states for a fixed number of 

sensors. The state estimation technique used in this work was developed for models that are described by 

the differential and algebraic equations (DAE). The already developed extended Kalman filter (EKF) for 

DAE is suitable for implementation on the reactor. A 1-D detailed model of the reactor is discretized 

along the reactor axis to convert partial differential equations to ordinary differential equations (ODE). 

This results in solving the complex mathematical equation of the reactor model at each discretization 

point while the discretization points are available locations for measurement for EKF. However, the 

number of discretization points and number of equations that must be solved at each point result in high 

computation time and gives rise to a need for simpler models. A common way to reduce the 

computational complexity of detailed models is to linearize the model around the operating point. 

However, since a main future application of this work is to come up with sensor placements for fault 

detection and identification, linearized models are ruled out due to severe drift of these model from 

normal operating condition as a consequence of process faults; and also linearized form of highly non-

linear models carry much less information of the process and causes difficulties in tracking the crucial 

process variables. A simplified model through scaling analysis developed in previous sections that seem 

promising in effective reduction of complexity of the system while maintaining reasonable accuracy is 

used. The EKF for DAE is briefly re-derived for the simplified reactor model. As a result, different state 

estimation formulation of the system can be derived. A genetic algorithm (GA) is used to generate 

measurement models for use in the state estimations which represent the sensor placements. The GA 

searches over possible measurement models to obtain an optimal sensor placement that result in most 

accurate state estimates. The GA is performed for different EKF formulations and the results are 

compared. A significant reduction in computation time is observed by using the simplified model. 

However, the accuracy of each model seems not only affecting the quality of state estimates, but, different 

sensor placements are obtained by these model. Model V seems superior to the other model as it has 

lowest computation time, relatively high state estimate accuracy and closest SP results to the detailed 

model. 

As a brief summary, the goal in this section was to develop a novel framework for sensor placement and 

address issues of using comprehensive models that gives rise to computational complexities. Our analysis 

has shown that using an appropriate simplified model can be an advantage in terms of reducing 

computational complexity while achieving reasonable sensor placements that can result in the 

performance that is comparable to the detailed model. This analysis has shown that using simplified 

models in both the state and error propagation can further reduce the computational load; and when 

appropriately tuned, it can replace the complex detailed model as the study of process noise covariance 

suggests. Study of the initial error covariance has shown insignificant change of the placement and 

performance of the solution. 



However, a future application of the proposed framework is to obtain optimal sensor placements that can 

help in detection and identification of the faults in a system. Take catalyst deactivation in a reactor due to 

thermal cycling, ash decomposition and etc. as an example. One is interested in locating such abnormality 

in a lengthy reactor by optimally placing sensors on the reactor that not only identifies that somewhere 

catalyst is being/has deactivated, but, also interested in locating such abnormality and prepare for 

preventive/corrective action. From an economical viewpoint, since reactors’ catalyst are usually removed 

and replaced by fresh catalyst after certain time, locating the area with deactivated catalyst reduces the 

catalyst replacement cost. From a process viewpoint, an optimal sensor placement can help in better 

monitoring of the process and assess the estimation of faults that can degrade the process or drive the 

system to hazardous conditions. Therefore, our future work will focus on designing a sensor network that 

can help in estimating possible faults that can harm the process operation and/or production. 

 

6.3 2-tier Sensor Placement for Gasification Island 

6.3.1 Fault Simulation 

Faults are simulated in the combined system of the sour water gas shift reactor (SWGSR) and Selexol. 

These faults selected are those which occur in a short period of time. This includes the undesired 

accumulation of fly ash onto the catalyst of SWGSR that can reduce the porosity of the catalyst, or 

change its surface area (SA). Undesired materials can also poison the catalyst resulting in reduction in the 

catalyst activity.  

6.3.1.1 Single Faults 

The faults that have been simulated are as follows: 

1. 10% reduction in the surface area of catalyst in the first reactor of the SGSR within 22 minutes  

2. 10% reduction in the porosity of catalyst in the first reactor of the SGSR within 22 minutes 

3. 5% reduction in the surface area in each of the reactors of the SGSR within 22 minutes 

4. 5% reduction in the porosity of each of the reactors of the SGSR within 22 minutes 

5. 10% reduction in the catalyst activity in the first reactor of the SGSR within 49 minutes. 

6. 5% reduction in the catalyst activity in each of the reactors of the SGSR within 49 minutes. 

Due to the size of the simulation and the number of variables being recorded, ASPEN Plus Dynamics 

runs out of memory if several variables are recorded. Variable selection was done such that the number of 

variables recorded would be reduced. Following are the responses at a particular location, viz. end of the 

SWGSR. The responses of the CO and COS mole fractions, and the temperature at the outlet of the 

SWGSR are shown below. The legends for the plots are as follows: 

 

Representation Fault # 

 Fault 1 

 Fault 2 

 Fault 3 

 Fault 4 

 Fault 5 

 Fault 6 

 



 

Figure 107. Change in CO mole fraction at the exit of the SWGSR due to faults. 

 

Figure 108. Change in COS mole fraction at the exit of the SWGSR due to faults. 
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Figure 109. Change in outlet temperature of the SWGSR due to faults. 

In the figures presented above, the response to Fault 2 is found to be the highest. The decrease in porosity 

by 10% in the first reactor results in reduced extent of reaction for the shift reaction as well as the COS 

hydrolysis reaction. The fault is implemented at 5 minutes and is ramped for a period of 22 minutes. 

When the fault stabilizes, the profile can be seen to drop and finally settle at a lower value. For Fault 2, 

this temperature could be a candidate variable in identifying and resolving the fault due to the amplitude 

of its initial response. Faults 5 and 6 are implemented for a period of 49 minutes. The CO and COS 

profiles for these faults differ slightly, however, the temperature profile appears to follow the similar 

trajectory initially.  

The responses of a few variables are shown above. It should be noted that the variables that respond best 

will be selected by the sensor placement algorithm and the variables presented in the report are in order to 

show the extent and effect of the fault on a few key variables. 

 

6.3.1.2 Multiple Severity Faults 

Faults in the integrated system consisting of the sour water gas shift reactor (SWGSR) and the acid gas 

removal unit or SELEXOL unit were simulated. The objective of simulating multiple severities of each 

fault is to understand until what level of severity can the fault be observed and resolved. This would add a 

new dimension to the problem of sensor placement to see how the location, number and type of sensors 

would change given this information.  

In the SELEXOL side of the integrated model, faults at 4 locations in the acid gas removal plant have 

been simulated. Once again, 3 fault levels were chosen at these locations. These locations and their fault 

severities are shown below in Table 54.  
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Table 54. Faults simulated on the SELEXOL side of the integrated model 

Fault Description 

F1-3 Reduction in the area of the bottom (15th)tray of the CO2 absorber × 3 

F4-6 Reduction in the area of the  bottom(26th) tray of the H2S absorber × 3 

F7-9 Reduction in the area of  the bottom(5th) tray of the H2S concentrator × 3 

F10-12 Reduction in the area of  the bottom (6th) tray of the SELEXOL stripper × 3 

F13-15 Leakage fault at start of heat exchanger H2SSTRBT × 3 

F16-18 Leakage fault at end of heat exchanger H2SSTRBT × 3 

F19-21 Fouling fault simulated in heat exchanger H2SSTRBT × 3 

F22-24 Fouling fault simulated in heat exchanger PRCRE × 3 

 

Faults were simulated previously in the SELEXOL model as part of the system level fault simulation and 

sensor placement studies. However, an approach was taken to improve the criteria for the selection of the 

location at which faults were to be simulated. The explanation for choosing this is shown below.  

• CO2 Absorber fault: simulated by reducing the 15th tray area as syngas enters from bottom.  

• H2S absorber fault: simulated by reducing the 26th tray area. This tray is in the vicinity of stream 

coning from SWGSR, stream rich with H2S coming from SELST and gas turbine outlet 

containing CO2 and H2. Reasons could be Sulfur deposition or ash/soot carried along SWGSR. 

• H2S concentrator fault: simulated by reducing the 5th tray area. N2 stream enters at this tray. 

Could have particulate matter entrained in it.  

• SELEXOL stripper fault: simulated by reducing the 6th tray area. This is the feed tray for stream 

coming from H2S concentrator. Either elemental sulfur or N2 particulate matter entering could get 

deposited here. 

• The heat exchanger H2SSTRBT is an important heat exchanger that heats the stream coming 

from the bottom of the H2S absorber and sends it to the H2S concentrator using the lean solvent 

stream. 

•  The heat exchanger PRCRE is a heat exchanger that is used to cool the solvent stream to the 

CO2 absorber.  

A more detailed approach to simulate a fault at different locations within the same equipment is made 

while simulating Fault F13-15 and F16-18. Both faults are simulated in the HE H2SSTRBT, however the 

configurations are different.  Fault F13-15 is simulated in the following manners shown in Figure 110. 



 

Figure 110. HE configuration 1: leak simulated as mixing of inlet high pressure stream into outlet 

low pressure stream. 

Fault F16-18 is simulated as shown in Figure 111. 

 

Figure 111. HE configuration 2: leak simulated as mixing of outlet high pressure stream into inlet 

low pressure stream. 

The purpose of simulating the leak fault in two separate ways is to assess whether the sensor network 

could give information of the location of the leakage within the heat exchanger. In fault F13-15, the leak has 

taken place closer to the entrance of the tubes while in fault F16-18 it is simulated as if the leak has taken 

place towards the end of the tubes. This would bring a key information into the sensor placement study if 

it can detect the location within a single equipment while considering plant wide faults. Fault F22-24 is to 

see whether a sensor network can be found that can distinguish between a leakage fault and a fouling fault 

within the same equipment.  



On the SWGSR side of the integrated model a total of 17 faults were simulated i.e. 3 instances of 6 faults 

(except for fault F31-32 due to stability problems). These are shown below in Table 55.  

 

Table 55. Faults simulated on the SWGSR side of the integrated model 

Fault # Description Fault type Duration Severity 

F25-27 Porosity reduction (1st reactor) Ramp 25min 2%, 5%, 10% 

F28-30 Porosity reduction (both reactors) Ramp 25min 2%, 5%, 10% 

F31-32 Activity reduction (1st reactor) Ramp 25min 2%, 5% 

F33-35 Activity reduction (both reactors) Ramp 25min 2%, 5%, 10% 

F36-38 Surface area reduction (1st reactor) Ramp 25min 2%, 5%, 10% 

F39-41 Surface area reduction (both reactors) Ramp 25min 2%, 5%, 10% 

 

6.3.2 Results 

6.3.2.1 System-Level: Gasification Island 

The system-level sensor placement algorithms are implemented on the gasification island and the results 

are presented in Table 56. From the case studies in previous sections we have learnt that the optimal 

results are obtained from the combination algorithm (FES & MR). Here, since the magnitude of the faults 

considered in the gasification island is low (maximum 10% change as a fault), therefore, we can predict 

that low level MR threshold should be chosen. This can be verified by the results in Table 56. The FES & 

MR algorithm with low MR threshold level has the lowest number of unresolvable faults and sensor 

network cost. The results of SDG and FES individual algorithm are shown for the sake of comparison. In 

order to save space, the sensors and unresolved faults of different algorithms are avoided and results are 

only shown for FES & MR with low MR threshold level in Table 57. Note that almost all of the sensors 

picked for resolution are temperature sensors except for a concentration sensor on the first stage sour 

WGS reactor. Since the temperature sensors are the least expensive sensors in this study, system-level 

fault resolution has been achieved with a significantly cost effective sensor network. Out of 703 pair of 

fault sets, only 25, which are shown in Table 57, cannot be resolved. This implies that more than 96% of 

the faults considered in the system can be resolved by a cost effective network of sensors. 

 

 

Table 56. System-level sensor placement results of gasification island 

Algorithm(s) 

MR 

threshold 

level 

Number of sensors 
Sensor 

network cost 
Number of unresolvable fault sets 

SDG 
 

112 21.8 26 

FES 
 

13 30.9 25 

MR 

Low 11 11.7 25 

Medium 11 21.7 26 

High 12 21.8 26 



FES & MR 

Low 11 10.9 25 

Medium 13 30.9 25 

High 13 30.9 25 

 

 

Table 57. List of sensors and unresolved fault sets for FES & MR algorithm with low MR threshold 

level 

Sensors 
Unresolvable fault sets (where [Fi,Fj] is shown as 

[i,j]) 

STREAMS("2IPSTMDR").T 

STREAMS("2RGCOOL5").T 

STREAMS("TO-AGR").T 

STREAMS("PR2H2SCT").T 

STREAMS("H2SCTBT1").T 

STREAMS("LENSL1").T 

STREAMS("PRCRPMD2").T 

BLOCKS("CO2ABS").Stage(9).T 

yco_19_R1 

Tg_16_R1 

[4,5] [4,6] [5,6] [7,8] [7,9] [7,21] [7,22] [7,23] 

[7,24] [8,9] [8,21] [8,22] [8,23] [8,24] [9,21] 

[9,22] [9,23] [9,24] [19,20] [21,22] [21,23] 

 [21,24] [22,23] [22,24] [23,24] 

 

6.3.2.2 Component-Level: First-Stage Sour Water Gas Shift Reactor 

The distributed sensor placement is performed on the first stage sour WGS reactor. The actual data for the 

optimization problem is obtained by simulating the faults in the integrated system for each fault 

individually. The noise in the data is assumed as additive noise, where white Gaussian noise with known 

mean and variance is added to each state. The model in the state estimation is chosen as the simplified 

model where noise in the differential, algebraic and exogenous algebraic states are tuned due to the use of 

simplified model as explained in previous sections. The faults considered in the component-level are F25, 

F26 and F27 for catalyst activity reduction; and F31 and F32 for catalyst porosity reduction. Each fault is 

assumed as a state and is augmented with other states in the system. Since the faults are modeled as a 

reduction in the catalyst activity, each fault state is assumed to be associated with a process noise, which 

is also tuned for in the EKF. Table 58 shows the reactor and EKF parameters. Figure 112 shows the 

progress of the GA for different faults. As seen in Figure 112, with only 30 sensors optimally placed on 

the reactor, more than 60% accuracy of measuring all the states (201 sensors on CO, H2O, CO2, H2, COS 

and H2S mole fractions, temperature and pressure states) has been achieved. Table 59 shows the optimal 

solution, sensor type and location, for each fault. The numbers in Table 59 show the grid-point number 

out of 25 total available grid-points of the corresponding sensor type at which measurement must be 

made. The grid-point numbers represent the location of the sensors on the reactor and the variable names 

represent the sensor type in Table 59. Using the optimal sensor placements, each corresponding fault state 

is estimated and plotted in Figure 113. Figure 113 shows that the fault severities are estimated with 

reasonable accuracy.  



 

Figure 112. GA progress for different faults 

 

Table 58. Reactor and state estimation parameters 

Parameter Value 

Reactor parameters  

Length 7 m 

Diameter 3 m 

Inlet temperature 487.5 K 

Inlet pressure 6093 kPa 

Inlet Composition  

CO mole fraction 0.25711 

H2O mole fraction 0.37753 

CO2 mole fraction 0.11025 

H2 mole fraction 0.24960 

COS mole fraction 0.00014 

H2S mole fraction 0.00534 

EKF parameters  

Number of grids 25 

Sampling time 5.4 s 

Mole fraction process noise covariance  

CO, H2O, CO2, H2 
 10-6 

COS, H2S 2.5 × 10-11 

Mole fraction measurement noise covariance  

CO, H2O, CO2, H2  10-6 

COS, H2S 10-12 

Temperature process noise covariance 2.5 × 10-7 



Temperature measurement noise covariance 10-6 

Pressure process noise covariance 10-6 

Pressure measurement noise covariance 2.5 × 10-7 

Fault state process noise covariance 2.5 × 10-5 

Initial error covariance  

COS, H2S 10-12 

Other states  10-6 

 

Table 59. Optimal location and type of sensors for different faults 

 

 

Sensor 

Type 
Sensor Location 

 F25  F26  F27  F31  F32 

Tg 21,22,24  17,21  15,17  10,21  13,14,24 

P          

Pin          

CO 
13,16,21, 

22,23,24,25 
 

11,14,21, 

22,23,24,25 
 

13,20,21,22,2

3,24,25 
 

12,13,15,19, 

20,21,22,23, 

24,25 

 
19,20,21, 

22,23,24,25 

COS 25  23,24,25  22,23,24,25  22,24,25  
19,20,21,22, 

23,24,25 

H2O 13  14  13  12   

CO2 

2,7,8,9, 

10,11,12,14,

15,23,24,25 

 

4,6,8,10, 

11,12,13, 

15,16,22, 

23,24,25 

 

5,14,15,17, 

19,20,21, 

22,23,24,25 

 

3,5,14,17, 

18,22,23, 

24,25 

 

3,13,14, 

16,21,23,24,

25 

H2 
10,11,12, 

14,15,16 
 12,13,15,16  

14,15,17, 

19,21 
 

14,15,16, 

17,18 
 

13,14,15,16,

17 

H2S          



 

Figure 113. Fault severity estimation using optimal solution for fault (a) F25 (b) F26 (c) F27 (d) F31 (e) 

F32 

 

6.3.2.3 Conclusion 

The system-level sensor placement resulted in a set of sensors that help in fault resolution with a great 

extent although some fault sets remain unresolved. For each fault in the component-level of sour WGS 

reactor, type and location of set of sensors with fixed quantities are obtained by solving the optimization 

problem where each set can be used to estimate the severity of the corresponding fault with reasonable 

accuracy. 



A few sensors obtained by system-level sensor placement are placed on the sour WGS reactor. These 

sensors along with all the sensors obtained by distributed sensor placement are combined to make up the 

total sensors for the component monitoring and fault severity estimation. For each fault, 30 sensors are 

chosen to be placed on the reactor. While some sensor type and locations are similar for each fault, there 

are 66 unique sensors when the sensor sets are combined. These 66 sensors are combined with the two 

sensors placed on the reactor in system-level sensor placement. Also, since usually the states at the outlet 

of the reactor are measured for control and product specification purposes, 8 more sensors are placed at 

the reactor outlet to measure the mole fractions, temperature and pressure. This results in a set of 72 

unique sensors. Therefore, in the integrated sensor placement which is the combination of the sensors 

obtained in the system- and component-level sensor placement, a network of 72 sensors is used for state 

monitoring and fault severity estimation. 

Figure 114 shows the fault severity estimation for each fault using the final sensor network. Table 60 

compares the normalized fitness values using the optimal sensor placements and the final integrated 

sensor network. Although more number of sensors can help in improved estimation of the states, the 

improvement in quality of the fault severity estimation is not significant. The slight improvement can 

hardly be seen by comparing Figure 114 with Figure 113. This is due to the reason that the improvement 

in the normalized fitness values represents slight improvement in the estimation quality of each state 

rather than significant improvement in the fault state.  

Figure 115-119 shows the actual, measured and estimated states at the outlet of the reactor for mole 

fractions, temperature and pressure in presence of different faults using the final sensor network. Figure 

115-119 shows that using the final network, the filter can estimate the states with good accuracy. States at 

different locations can be estimated using the final sensor network, thus, the reactor can be monitored 

efficiently using the sensor network. 

 

 

 



 

Figure 114. Fault severity estimation using final sensor network for fault (a) F25 (b) F26 (c) F27 (d) 

F31 (e) F32 



Table 60. Comparison of normalized fitness values for GA solution and final sensor network 

Fault GA solution normalized fitness Final sensor network normalized fitness 

F25 0.6168 0.7561 

F26 0.6391 0.7716 

F27 0.6491 0.7751 

F31 0.6261 0.7800 

F32 0.6282 0.7749 

 



 

Figure 115. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the 

reactor for fault F25 

 

 



 

Figure 116. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the 

reactor for fault F26 

 

 



 

Figure 117. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the 

reactor for fault F27 

 



 

Figure 118. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the 

reactor for fault F31 

 

 



 

Figure 119. Actual (-), measured (*) and estimated (--) value of different states at the outlet of the 

reactor for fault F32 

 

 



7 Summary 

A 2-tier sensor placement framework has been developed for condition monitoring and fault diagnosis in 

fossil energy systems. The framework consists of system- and component-level sensor placement 

approaches. The system-level sensor placement is based on a model-based qualitative analysis combined 

with the numerical solution. The system-level sensor placement is enhanced by introducing the magnitude 

ratio and fault evolution sequence algorithms. The network of the sensors obtained in the system-level 

help in observation and identification of the faults in the system with an optimum cost. The distributed 

sensor-placement is based on solving an optimization problem that minimizes the errors in estimated 

states of an extended Kalman filter and result in optimal location and type of the sensors. The 

optimization problem is solved using a genetic algorithm approach. The resulting sensors not only help in 

better estimation of the states, but the fault severities can also be estimated using the filter. 

Each of the system- and component-level algorithms are mathematically derived and implemented on 

different case studies. The integrated algorithm is then implemented on the gasification island of the 

IGCC plant. The sensors required for fault detection and identification in gasification island are obtained 

by the system-level sensor placement; and the sensors required for monitoring and fault severity 

estimation of the gasification island are obtained by distributed sensor placement. The sensors obtained in 

system-level that are also present in the component level are then combined with sensors obtained in the 

component-level for monitoring and state estimation. 

A novel dynamic model for a downward firing, slurry fed, oxygen blown, entrained flow, GEE-Texaco 

type gasifier has been developed in this report. Models for slag formation, detachment and deposition 

onto the walls of the gasifier have been developed and integrated into the gasifier model to provide a 

better estimate of the slag flow layer. A new hybrid shrinking core shrinking particle characterization is 

used, to represent the homogeneous reactions and slag detachment processes in a physically more 

accurate way. The dynamic simulation of the slagging gasifier model is able to capture the effect of the 

changing operation conditions on important variables in the gasifier including the slag layer thickness. 

The slag flow layer thickness is an important variable in the gasifier and a sudden increase in the layer 

could result in the choking of the gasifier. The slag layer is also known to interact with the refractory 

layer, resulting in accelerated degradation of the refractory wall. If the gasifier operating temperature is 

low, the slag layer could solidify and increase in thickness. Operating the gasifier at higher temperature 

on the other hand, could prevent slag solidification and increase the conversion of the coal, but would 

negatively affect the refractory by increasing the degradation rate. The current model is able to capture 

the effect of this trade-off quantitatively and provide a realistic picture of the gasifier operation.  

Slag penetrates into the refractory and results in swelling of the refractory brick. If the slag is able to 

penetrate deep into the refractory brick, spalling can take place, which could accelerate the refractory 

degradation process and trigger a shutdown of the gasifier. A refractory model is also developed that 

captures the effect of refractory degradation due to compressive spalling as a result of slag penetration. 

The model is able to identify the location where the gasifier wall is most susceptible to slag penetration 

and predict the time for the first spall to take place at that location. 

 

8 Recommendations and research output 

The sensor placement developed in this report can easily be used for different processes. This requires 

availability of the mathematical model of the process and an appropriate state estimation  algorithm. 

When the process model is available, fault simulations and system-level sensor placement can be 

performed. A major drawback would be the implementation of system-level sensor placement on very 

large processes. For large processes, future research on network decomposition can help in reducing the 

complexity of the problem and make the system-level sensor placement easier to be implemented. 

Through the use of process model and a state estimation technique, the component-level sensor placement 



is performed. The main drawback of the component-level sensor placement is the complexity of detailed 

process models that increases the computations in state estimation and, thus, the optimization problem. In 

this work, we have shown that this issue can be tackled through the use of simplified models. Future 

research work in this area could be on the exploration of order reduction methods for process models. 

This has been initiated in this project through the method of characteristics and ISAT for implementation 

on the sour WGS reactor. One of the efficient uses of sensor placement framework is monitoring and fault 

detection of the gasification process. An important step in implementing the sensor placement algorithm 

on the gasification process and on the gasifier is the development of a valid mathematical model. 

The slagging gasifier model and the refractory degradation model can be used to simulate changes in 

operating conditions of the gasifier and observe the effect of the fault severity and the condition of the 

refractory. The coupling between the models is one way, where certain variables of interest for a case 

scenario from the gasifier model are recorded and used in the refractory degradation model. The time 

constants in both the models are very different. While the dynamics of the gasifier manifests in seconds or 

minutes, the slag penetration and refractory degradation mechanisms take place over the period of months 

or years.  Running both models together, for a simulation time of months, is impractical for the purposes 

of sensor placement using the approach similar to the sour water gas shift reactor. Therefore, in order to 

attempt sensor placement studies in the model, the gasifier model needs to be simplified and integrated 

with the refractory degradation model.  

One method in order to reduce the simulation time for the gasifier model would be to consider a 

linearized model of the gasifier around the operating conditions of interest and integrate it with the 

refractory degradation model. The output variables in the linear model could be selected as the location at 

which sensors can be placed on the wall of the gasifier. Candidate locations for sensor placement will not 

only be limited to various locations in the axial direction, but should also include the depth into the 

refractory at which the sensor needs to be embedded to detect a fault. To consider the entire length of the 

gasifier as potential sensor location sites may result in a large number of outputs in the linear model. 

Therefore, it may be beneficial to identify, through other studies, locations that may respond well to 

change in operating conditions and narrow the range of output variables.  

In the present report, the mechanism of compressive spalling due to slag penetration is selected as the 

only method for refractory degradation. Several other mechanisms are known to exist that may cause, or 

accelerate the process of degradation in the refractory. Tensile spalling is said to occur when chrome 

(Cr3+) from the high chrome refractory migrates out of the refractory matrix. This leads to the formation 

of cracks in the refractory brick and a decrease in the strength of the refractory, eventually leading to 

spalling. Refractory degradation can take place in the absence of slag as well through mechanisms such as 

creep, thermal fatigue and thermal shock. These mechanisms are known to take place at high temperature 

and high stress conditions. Creep is the slow deformation of a material at elevated conditions which result 

in the loss of material strength, eventually weakening the material. Thermal fatigue is said to occur due to 

the cyclic variation in temperature. The properties of the material begin to deteriorate over the course of 

several cycles and this change is irreversible. The level of degradation due to thermal fatigue depends on 

the number of cycles, the temperature, its magnitude of the fluctuation of temperature and the frequency. 

When there is a rapid change in temperature, the sudden increase in the temperature gradient in the 

refractory brick could lead to a large build-up of stress. This could cause damage due to thermal shock. 

The formation of cracks, and in extreme cases, spalls are known to occur due to rapid changes in 

operational conditions. The presence of slag could accelerate these degradation mechanisms and result in 

faster refractory degradation.  

The current refractory degradation model can be expanded to account for other degradation mechanisms. 

Another recommendation would be to consider the compound effect of these mechanisms so as to capture 

how the interdependency of these mechanisms could accelerate or control the total time to failure. This 

could be done, for example, by calculating effect of each of the mechanisms on the total stress, and 

keeping track of when the stress exceeds the maximum allowable stress. Such a model will be able to 



better reflect the level of degradation in the refractory when two or more of the degradation processes 

occur simultaneously. Furthermore, it is likely that some degradation mechanisms may be dominant in 

certain sections of the gasifier, while others not. This framework for refractory degradation using stress 

modeling would be helpful to identify the key degradation mechanisms in various sections of the gasifier, 

and thus help in the selection of the appropriate type of sensors for fault detection.  
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