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Comments on an Analytical Thermal Agglomeration for Problems with Surface Growth
(last updated: March 22, 2017)

Up until Dec 2016, the thermal agglomeration was very “heuristic”, and as such, difficult to define.
The general scheme was as follows (per the general definition of the problem below):

• Da = 20Dr,

• Ra

Da
= Rr

Dr
,

• va = vr,

• The power pa is chosen so that volumetric energy density was maintained + whatever “heuristic
effects” are necessary to make the results well-behaved.

The lack of predictability became problematic, and the current notes represent the first real attempt
to systematize the specification of the agglomerated process parameters.

First, consider a mathematical description of the problem: given a reference process, which is taken to
be the process at the physical scale at which it actually occurs, defined by the 4-tuple {Dr, Rr, vr, pr},
where Dr is depth of the material layer of interest, Rr is the radius of a (notionally cylindrical)
volumetric heat source, vr is the velocity of the heat source, and pr is the power of the heat source,
the “agglomeration” refers to a different process, which will be represented as {Da, Ra, va, pa}. In
a very real sense, we now have four unknowns (�a), for which we need four equations in order to
determine. For the sake of the current discussion, the first two of the constraints described above will
be maintained more-or-less as described, in order to allow the user control over the degree of geometric
agglomeration, in particular,

Da = nDDr, (1)

Ra = nRRr; (2)

indeed, these wholly specify Da and Ra, leaving va and pa to be determined.

An initial analysis of the reference problem may prove fruitful . . . Consider the case of a single track
of the heat source, with depth Dr, heat source radius Rr, and an arbitrary length L, and a larger array
of single tracks, with the end cross section specified via Da and Ra, such that they form a nD × nR

grid of single tracks, which is still just L long; we will refer to this larger volume hereafter as Va.
Introducing the relevant times, it is clear that it takes tr = L

vr
for the heat source to traverse a single

track. If we were to build up Va trackwise, it would take ta,r = (nD × nR)tr time to do so. Likewise,
the heat source imparts Er = pr tr energy into each single track, and building up Va trackwise would
result in Ea,r = (nD × nR)Er = (nD × nR)pr tr. At this point, we note the following:

• One obvious notion of agglomeration is the one of keeping the time to transform the larger
volume Va equal to the time required to build it up trackwise, i.e., ta = ta,r. In this sense, the
part-scale time scale is as realistic as possible. For this case,

va =
L

ta,r
=

L

(nD × nR)tr
=

1

nD × nR

vr, (3)
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and, for the constraint of constancy of energy over Va, the agglomeration of the energy results in

Ea = Ea,r, (4)

pata = (nD × nR)pr tr, (5)

pata,r = (nD × nR)pr tr, (6)

pa(nD × nR)tr = (nD × nR)pr tr, (7)

pa = pr. (8)

• Another notion of agglomeration would be to let ta = tr, which would result in va = vr. In this
sense, the pointwise time scale is maintained, but the time over which the volume Va is built up
is significantly reduced. In this case, the equivalence of the energy results in

Ea = Ea,r, (9)

pata = (nD × nR)pr tr, (10)

=⇒
pa = (nD × nR)pr. (11)

• It is noted that there are other possible criteria with respect to which to agglomerate the energy;
I was originally using constancy of the volumetric energy density, resulting in

pa = Va
pr
Vp
. (12)

As an example, for a typical use case of nD = nR = 20, for these two different agglomerations,
pa = 400 pr (case 1, derived herein) and pa = 8000 pr (case 2, with L = 1mm, which was the
method I previously used, and was “heuristic”). This might have had something to do with the
massive overheating . . . :\

• Of course, any reasonable (i.e., positive) value of ta could be chosen, but the obvious choices are
ta ∈ [tr, ta,r]; values on the interior of the interval would result in both va 6= vr and pa 6= pr. If
we consider ta parameterized by the scalar α ∈ [0, 1], where

log (ta) = log (tr) + α (log (ta,r)− log (tr)) , (13)

so that α = 0 =⇒ ta = tr, α = 1 =⇒ ta = ta,r, and α = 0.5 =⇒ ta =
√
tr ta,r (i.e., the

geometric mean), then, simply,

va =
L

ta
= vr

tr
ta
, (14)

and

Ea = Ea,r, (15)

=⇒

pa = pr
ta,r
ta

(16)

2



It is noted that if this new agglomeration works, it seems sensible to change the controls of the heat
sources to only allow sensible behavior. In this case, I would imagine the input parameters being the
reference process parameters Dr, Rr, vr, pr, the agglomerated geometry Da, Ra, and maybe the value
α, in the case that different values of ta are reasonable for different analysis cases.

Now, consider an example. Consider the reference process, defined by Dr = 0.050mm, Rr = 0.025mm,
vr = 1600mm/s, and pr = 250W . Next, assume that we choose Da = 1.0mm and Ra = 0.5mm,
which results in nD = 20 and nR = 20. It is noted that the two characteristic times are tr = 6.25e−04 s
and ta,r = (20× 20)tr = 0.25 s. If we chose ta = ta,r, then va = 4.0mm/s, and pa = 250W .

One final point is worthy of comment . . . It is the case that, to maintain a particular time scale over
the complete layer cycle, i.e., to maintain the time between the beginning of layers n and n + 1, not
only must the process be agglomerated, but the inter-layer time must be agglomerated as well. For
the particular constraint of maintaining the total time between layers precisely, the following relation
must be satisfied:

nD (tlayer,r + tinterlayer,r) = tlayer,a + tinterlayer,a. (17)

For the case of α = 1, the time to consolidate any volume of material is maintained, i.e.,

nDtlayer,r = tlayer,a, (18)

which would result in
nDtinterlayer,r = tinterlayer,a. (19)

Obviously, other values of α would require different agglomerated interlayer times, as would different
constraints on the total time between layers.
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