
Exploring Asynchronous Many-Task Runtime Systems
toward Extreme Scales

Samuel Knight§, Marc Gamell†, Gavin Baker¶, David Hollman‡, Gregory Sjaardema‡,
Keita Teranishi‡, Hemanth Kolla‡, Jeremiah Wilke‡, Nicole Slattengren‡, and Janine

Bennett‡
§ Florida Institute of Technology, Melbourne, FL, USA

skingh@sandia.gov

¶ California Polytechnic State Univerisity, San Luis Obispo, CA, USA
gmbaker@sandia.gov

†Rutgers Discovery Informatics Institute, Rutgers University, Piscataway, NJ, USA
mgamell@cac.rutgers.edu

‡Sandia National Laboratories, Livermore, CA, Albuquerque, NM, USA,
{dshollm, gdsjaar, knteran, hnkolla, jjwilke,nlslatt, jcbenne}@sandia.gov

ABSTRACT
Major exascale computing reports indicate a number of soft-
ware challenges to meet the dramatic change of system archi-
tectures in near future. While several-orders-of-magnitude
increase in parallelism is the most commonly cited of those,
hurdles also include performance heterogeneity of compute
nodes across the system, increased imbalance between com-
putational capacity and I/O capabilities, frequent system in-
terrupts, and complex hardware architectures. Asynchronous
task-parallel programming models show a great promise in
addressing these issues, but are not yet fully understood nor
developed sufficiently for computational science and engi-
neering application codes.

We address these knowledge gaps through quantitative
and qualitative exploration of leading candidate solutions in
the context of engineering applications at Sandia. In this
poster, we evaluate MiniAero code ported to three lead-
ing candidate programming models (Charm++, Legion and
UINTAH) to examine the feasibility of these models that
permits insertion of new programming model elements into
an existing code base.

1. INTRODUCTION
System architectures for extreme-scale computing are pro-

jected to be drastically different from current architectures
which poses challenges in terms of performance, scalability
and reliability. In particular, the several-orders-of-magnitude
increase in parallelism with less proportional increase in the
main memory capacity will pose a huge scalability challenge.
This increase in parallelism is further complicated by in-

SC’15, November 15-20, 2015, Austin, TX, USA

ACM ISBN XXX-X-XXXX-XXXX-X.

DOI: XX.XXXX/XXXX

creased imbalance between computational capacity and I/O
capabilities, performance heterogeneity due to OS noise and
thermal throttling, and complex hardware architectures. In
response to these scalability and performance challenges, a
number of asynchronous many-task (AMT) programming
models [?,?,?,?,?] have emerged as alternatives to the single
program multiple data model (SPMD) in which a sequen-
tial communicating ”task” in each process is executed. In an
AMT model, a program is viewed as a flow of data processed
by many tasks, each of which executes a distinct kernel. Dur-
ing program execution, these tasks are launched in any order
based on the availability of their input data, enabling mul-
tiple concurrent task execution on available computational
resources, something which is difficult to optimize by hand
for the SPMD model. The load imbalance is automatically
managed by a task scheduler associated with the runtime,
rather than explicit load re-balancing through data parti-
tioning tools [?,?,?]. Despite these advantages in AMT mod-
els over SPMD, they are not yet fully understood nor devel-
oped sufficiently to support a variety of computational sci-
ence and engineering applications. For example, one of large
scale multi-physics engineering simulations require scalable
implementations of several application components, includ-
ing meshing, matrix assemblies, implicit solvers and precon-
ditioners, particle interactions, and data (in-situ/in-transit)
analyses. For production use, AMT programming models
need to be capable of coupling these components in a seam-
less manner.

In the poster, we address our knowledge gap in AMT mod-
els through quantitative and qualitative exploration of the
leading candidate solutions in the context of engineering ap-
plications at Sandia. For the initial step, we have evaluated
MiniAero code, ported to three leading candidate program-
ming models (Charm++, Legion an Uintah) [?, ?, ?]. Our
evaluation includes (1) a qualitative ranking of each model
based on our porting experience , (2) scalability test of Mini-
Aero including the original MPI version and (3) assessment
of dynamic load balancing capability under performance het-
erogeneity.

SAND2015-9155C

XX.XXXX/XXXX


2. EVALUATION

Asynchronous Many Task Runtime.
In our studies, we have selected three AMT programming

models (Charm++ [?], Legion [?], and Uintah [?]) based on
the following criteria:

1. Performance demonstrated at scale

2. Maturity of runtime

3. Different methodologies in implementation and abstrac-
tions of data and tasks

4. Accessibility of developers

The goal of our studies is to identify the characteristics in
programmability, relevance to out target multi-physics ap-
plications (Computational Fluid Dynamics and Particles in
Cell), and performance at extreme scale.

MiniAero.
MiniAero is designed to represent parallel CFD simula-

tions, which employs finite volume method for 3 dimen-
sional unstructured mesh. For the numerical solution, ex-
plicit Runga-Kutta 4th order (RK4) is implemented for time
marching, and inviscid Roe Flux and three types of bound-
ary conditions are supported. The code is written in C++
and MPI-2.2 (3800+ lines total) with extensive use of C++
templates and Kokkos [?] for the parallelizing the loops in
single node level.

Qualitative Evaluation.
Our porting experience reveals several feasibility issues for

the development of Sandia’s multi-phyiscs simulation code.
We have evaluated the three AMT programming models
through the metrics listed in Table ?? to identify the re-
quirements of future AMT programming models. Note that
these metrics are inherently subjective, but still serve our
purpose. In summary, we found that none of these models
meet our requirements as indicated by Figure ??.

Figure 1: Qualitative Evaluation of Three AMT models
based on the porting experience of MiniAero.

Quantitative Evaluation.
We made two different performance evaluations: (1) scal-

ability test and (2) load balancing studies. For scalability
test, we execute three versions of MiniAero implementations
(MPI, Charm++ and UINTAH) on Cielo (Cray XE6) sys-
tem at Sandia and Los Alamos National Laboratory. For

the initial load balancing study, we execute Charm++ ver-
sion of MiniAero on 16 nodes of a PC cluster with power
throttling applied to several nodes to artificially create per-
formance heterogeneity across the nodes in the range of 1.2
to 2.3GHz. Figure ?? highlights the load-balancing capa-
bility of Charm++, which can mitigate the worst scenario
when over-decomposition is enabled with its load-balancer.

1x 2x 4x 8x 16x
Overdecomposition level

50

60

70

80

90

100

W
a
ll 

ti
m

e
 (

s)

all procs 52%
(1x overdecomposition)

all procs 83% ("perfect" load balancing)
(1x overdecomposition)

all procs 100%
(1x overdecomposition)

with artificial load imbalance introduced on Shepard (random frequencies)

Load Balancer
BlockLB

ComboCentLB

DistributedLB

DummyLB

NeighborLB

RefineCommLB

RefineLB

RefineSwapLB

MiniAero-Charm++ Load Balancing

Figure 2: Performance of Charm++ version of MiniAero.
The power of individual nodes are set to between 52% and
100% (83% in average).

3. CONCLUSION
Our preliminary qualitative study indicates that all lead-

ing AMT programming models and runtime systems can
meet the requirement for a limited set of applications, and
none of them are production ready for broad classes of appli-
cations. However, these AMT models show tremendous po-
tential for addressing extreme scale challenges; in particular,
load-balancing capability of Charm++ can handle the per-
formance heterogeneity anticipated in future extreme-scale
computing systems. Future work includes the completion of
the performance study on Legion and Uintah on the scala-
bility and load-balancing capability and more detailed qual-
itative study with other Sandia’s applications (multi-physics
simulations and Particles-in-Cell code) in order to identify
the requirements for general-purpose scalable AMT runtime
and software.

Acknowledgments
The authors would like to thank National Energy Research
Scientific Computing Center and Karen Pao at DOE Office
of Science for allocating a large amount their MPP system
resources. The authors also thank Nikhil Jain, Laxmikant
Kale and Eric Mikida at University of Illinois, Martin Berzins,
Todd Harman, and Alan Humphrey at University of Utah,
and Alex Aiken, Michael Bauer, Wonchan Lee, Elliot Slaugh-
ter and Sean Treichier at Stanford University for the con-
sistent code development assistance. Finally, the authors
thank Robert Clay, David DeBonis, Ryan Grant, Simon
Hammond, Victor Kuhns and Stephen Olivier for interest-
ing discussions and infrastructure support. Sandia National
Laboratories is a multi-program laboratory managed and



Categories Description

Maturity How stable is the API? Likelihood of encountering bugs?
Fault tolerance support What fault models/recovery mechanisms are supported?

How easy is the API?
Dynamic workload support What load-balancing/work stealing mechanisms are supported?

How easy is the API?
Modularity (Runtime and Application) How reusable are components? How extensible is the framework?
APIs What do developers like/dislike regarding the interface?
MiniAero How easy is it to express MiniAero?
MiniPIC How easy is it to express Mini version of Particles in Cell code?

Table 1: Metrics of qualitative evaluation. Value and relevance measures may differ across the users.

operated by Sandia Corporation, a wholly owned subsidiary
of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

4. REFERENCES
[1] C. Augonnet, S. Thibault, R. Namyst, and P.-A.

Wacrenier. StarPU: A unified platform for task
scheduling on heterogeneous multicore architectures.
Concurr. Comput. : Pract. Exper., 23(2):187–198, Feb.
2011.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken.
Legion: Expressing locality and independence with
logical regions. In Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, SC ’12, pages
66:1–66:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[3] M. Berzins, J. Schmidt, Q. Meng, and A. Humphrey.
Past, present and future scalability of the uintah
software. In Proceedings of the Extreme Scaling
Workshop, BW-XSEDE ’12, pages 6:1–6:6, Champaign,
IL, USA, 2012. University of Illinois at
Urbana-Champaign.

[4] E. G. Boman, U. V. Çatalyürek, C. Chevalier, and

K. D. Devine. The zoltan and isorropia parallel toolkits
for combinatorial scientific computing: Partitioning,
ordering and coloring. Sci. Program., 20(2):129–150,
Apr. 2012.

[5] C. Chevalier and F. Pellegrini. PT-Scotch: A tool for
efficient parallel graph ordering. Parallel Comput.,
34(6-8):318–331, July 2008.

[6] H. C. Edwards and C. R. Trott. Kokkos: Enabling
performance portability across manycore architectures.
In Proceedings of the 2013 Extreme Scaling Workshop
(Xsw 2013), XSW ’13, pages 18–24, Washington, DC,
USA, 2013. IEEE Computer Society.

[7] C. Huang, C. W. Lee, and L. Kale. Support for
adaptivity in armci using migratable objects. In Parallel
and Distributed Processing Symposium, 2006. IPDPS
2006. 20th International, pages 9 pp.–, April 2006.

[8] L. V. Kale and A. Bhatele, editors. Parallel Science and
Engineering Applications: The Charm++ Approach.
Taylor & Francis Group, CRC Press, Nov. 2013.

[9] J. D. Teresco, J. E. Flaherty, S. B. Baden, J. Faik,
S. Lacour, M. Parashar, V. E. Taylor, and C. A. Varela.
Parallel Processing for Scientific Computing, chapter
Approaches to Architecture-Aware Parallel Scientific

Computation, pages 33–58. SIAM, 2006.


