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ABSTRACT 

 
 

The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling 

and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical 

properties. These predictive computational modeling and simulations may yield insights that can be used to guide 

materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could 

play an important role in current plight towards greener energy. The main objectives of the proposed projects are: 

(1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic 

properties of ordered crystals and disordered lattices including solid solution; (2) application of the supercell 

approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and 

other simulations to guide the optimal design of Nb-Si based alloy.  
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I. EXECUTIVE SUMMARY 

This report summarizes our method development, software implementation, infrastructure 

improvement and computational studies for the Nb-Si based alloys system during the three and half year 

period over which we have developed coarse-grained cluster expansion approaches for modeling 

disorders and applied them to investigate structure-properties relation alloys. 

We have developed three methods which are implemented as modules in our G(p,T) package:  

• Supercell method. The large supercell models provide configuration freedom for calculating the 

carbon distribution. 

• Unitcell expansion method. Rigorous approach such as cluster expansion method is 

computationally prohibitive for boron carbide as partial occupations can be found on all 15 lattice 

sites. To overcome the challenge of complex lattices, we developed a coarse-grained unitcell 

expansion method in which each unitcell is considered a site thus greatly reduces the lattice 

complexity at the expense of more types at each site. 

• Uniaxial tensile simulation. Uniaxial tensile simulation under novel constraining conditions 

which permits slipping was developed.  

Additional modules for physical properties calculations are also developed: 

• Pressure dependent elastic constants. 

• Structure modeler that generate supercells, surface slabs and interfaces. 

• Input generator for first principles calculations based on our internal structure format. 

• Job manager for automating and parallelizing the complex physical properties calculations that 

involves many different kinds of input setups for those first principles calculations.   

 

To facilitate our software development, we had built an 18-node computer cluster (gpt.tsuniv.edu) 

with off-the-shell components with total budget less than $10K.  



 

II. INTRODUCTION 

Background 

Nb-Si based alloys are highly promising candidates for next generation hot section material enabling 

turbine engine operating at temperature above 1350°C[1]. Monolithic Nb has an array of attractive 

properties for high temperature applications including a very high melting point 2469°C, a relatively low 

density 8.56g/cm3, a low ductile-brittle-transition-temperature(DBTT)<-100°C, and good ductility at 

room temperature. But it suffers from low oxidation resistance at high temperature[2] and modest high 

temperature mechanical properties[3]. Alloying with Si introduces intermetallic phases Nb3Si and/or 

Nb5Si3 which significantly improve high temperature mechanical properties and lower the density further 

to a range from 6.6 to 7.2g/cm3. The intermetallic phases have a high melting point >1750°C but are 

brittle at room temperature. By incorporating a ductile Nb solid solution phase, the resulting in situ 

Nb/Nb Silicide composite can be strengthened through the ductile phase toughening mechanism. 

However, high creeping rate, low oxidation resistance, and insufficient fracture toughness remain the 

biggest roadblocks towards their eventually industry acceptance. Alloying with a third element such as Al, 

Cr, or Ta leads to a Cr2Nb type Laves phase which has shown to improve oxidation resistance[4]. More 

alloy elements have been studied to further improve the Nb-Si base alloys to satisfy the requirements of 

the targeted high temperature applications [1, 4-7]. Up to date, the evolution of Nb-Si alloy developments 

has now reaches a stunning complexity with often more than seven elements in those alloys[8]. Still, a 

Nb-Si based alloy with a well balanced set of properties that are suitable for commercial applications 

remains to be found. 

One key requirement for optimal alloy design is to have a detailed knowledge of physical properties 

including thermodynamic, kinetic, structural and mechanical properties of all phases involved and their 

corresponding phase field. Traditionally, these data are mainly obtained through careful experimental 

measurements. As more elements are adding to improve the Nb-Si base alloy, the complexity of the 



phases involved increases dramatically. It has been shown that adding Mo into the Nb-Si alloy can affect 

stability order of Nb silicide phases [9].  Interfaces may also be modified by additional alloy elements. 

Geng et al observed that addition of Al to the Nb-Si-Cr system causes the Laves phase to precipitate at the 

interface between Nb solid solution and Nb silicide[6]. In addition, microstructure of the Nb-Si based 

alloy can be significantly altered by the added alloy elements [1, 10]. The cost and time required to 

conduct these required experiments can increase prohibitively. Hence there is a strong demand for 

accurate computational studies to supply part of the required knowledge which can potentially lower the 

cost and speed up the developing cycle significantly.  

In the past few decades, thermodynamic modeling using the CALculation of PHAses Diagram 

(CALPHAD) method[11] which uses all thermodynamic data obtained from various means to predict 

phases diagram has evolved into a basic tool for material development. The success of CALPHAD 

method relies on accurate phase equilibria and thermochemistry data particularly the Gibbs free energy of 

the phases involved. For the Nb-Si base alloys, the lack of reliable thermochemistry data for the more 

complex ternary and quaternary alloys have been a major challenge for optimal alloy design. 

Owing to their predictive power, first principles based approaches have often been employed to 

compute physical properties of the alloy phases including mechanical, thermodynamic, and electronic 

properties. The two basic challenges of using first principles methods for these physical properties 

calculations are: (1) structural modeling; (2) temperature dependent thermodynamic properties calculation. 

Often the structural models of the phases involved are very complex or even unknown. For example, we 

may find grain boundaries, amorphous phases, phases with various defects and solid solution phases, etc 

in the alloys. These complex phases require very large atomistic models to properly describe their 

structures.  

In this project, we addressed two important issues in structure modeling and temperature dependent 

thermodynamic properties calculations: (1) modeling of solid solution system; (2) temperature pressure 

dependent elastic properties calculations.  

   



III. Methods and Software Developments 

Prior Work 

Lattice dynamics with the G (P, T) package 

We had developed the G(p,T) package capable of computing elastic tensor, phonon structure, 

Helmoltz and Gibbs free energy and many other thermodynamic properties such as entropy, heat capacity, 

isothermal bulk modulus, thermal expansion coefficient, and Grüneisen parameters, etc. The G(p,T) 

package were parallelized at task level and successfully tested on supercomputers of NERSC.   

G(p,T) package was implemented as an easy-deploy script based job management and automation 

system. It included an elastic properties module, a phonon calculation module, a Born effective charge 

module, an optical and dielectric properties module, a job management and automation module, and a box 

of analysis and graphic tools for phonon, thermodynamic properties, elastic waves, and dielectric 

properties etc. G(p,T) calculates the free energy of solid with Born-Oppenheimer approximation that 

separates electron and ion motion. Electronic contribution to free energy is calculated using first 

principles method such as VASP [12-14]. Ionic contribution to free energy is calculated using semi-

classical lattice dynamic approach. Volume dependent lattice free energies were calculated using quasi-

harmonic approximation in which the lattices were considered harmonic at each volume and free energies 

of harmonic lattices can be calculated from their force constant matrices. G(p,T) package computes the 

force constant matrix using finite difference approach with energy and force evaluated by a first 

principles method. Phonon structure is then obtained from the dynamic matrix constructed based on force 

constant matrix. Once phonon spectrum is obtained, it is possible to estimate all other thermodynamic 

functions. The free energy F(V,T) at temperature T and volume V is given by,    
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where  Felec(V,T), Fvib(V,T), Uelec(V,0), and Felec,T(V,T) are electronic free energy, vibrational free energy, 

internal energy, electronic excitation free energy,  εF is the Fermi energy, εi is the ith energy of fermions, 

ωi(V,q) is the round frequency  of ith branch of bosons at wave vector q.  

Other thermodynamic properties can also be calculated from the above obtained Helmholtz free 

energy, for example, entropy ( )VTFS ∂∂−= , pressure ( )TVFP ∂∂−= , Gibbs free energy G=F+PV, 

constant volume specific heat ( )VV TSTC ∂∂= , volume thermal expansion coefficient αV(T) = 

d{lnV(T)}/dT, isothermal bulk modulus B(T) = -1/(d[lnV(T)]/dP), thermal Grüneisen parameter γth = 

VαV(T) B(T)/CV, and constant pressure specific heat CP=(1+ γth αV(T))CV.  

The G(p,T) package has been successfully used in elastic constants studies of common ceramics[15], 

the prediction of a novel phase of SiO2 in which a similar supercell approach was applied on modeling 

solid solution zirconium silicate (ZrO2)x(SiO2)1-x[16, 17]. More recently similar work has recently been 

performed on mullite-type lattice of alumina[18].  

 

Software Modules Implemented During the Project Period 

We implemented additional automation modules within our G(p,T) package to meet the challenge of 

carrying out large number of complex first principles calculations required for sufficient sampling of the 

configuration space using large supercell models for disordered crystals.  

UnitCell Expansion Method for Multicomponent Multi-sublattice Solid Solution System 

In traditional cluster expansion method, the energy was expressed in terms of atomic clusters. In 

practices, a maximum complete cluster set γ is used as cut off in the energy expression, 
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where Nσσσσ ,,, 21 



=  is the configuration vector, α is a cluster in γ, σi is the site occupation 

variable at ith lattice site, Vα is the effective cluster interaction coefficient, and  Φα( )σ   is the cluster 



function of cluster α. The above approach has been extensive used to study binary alloys. However, if the 

lattice is complex and many non-equivalent lattice sites existed in the structure, the traditional cluster 

expansion method can be computationally expensive if not prohibitive. In the case of boron carbide, 

where carbon atoms could reside randomly on the stable conjugated icosahedra, the maximum cluster can 

be exceedingly large as huge maximum cluster set with clusters up to 12 atoms may be needed. 

We propose to express the energy of the disordered crystal in terms of primitive unitcell,  
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σσσττ =  is ith unitcell configuration variable, Vβ is the 

effective unitcell cluster interaction coefficient, and Φβ( )σ   is the unitcell cluster function of cluster β. 

Energy expansion in terms of unitcells trades the complexity in lattice for increased component types. For 

one unique site simple lattice such as BCC/FCC, UEM reduces to traditional cluster expansion method. 

For complexity lattice, particularly large unitcells, UEM has significant advantages. First, it is possible to 

reduce the number of unique unitcell types, nτ . For a given concentration, we can carry out an extensive 

in unitcell or small supercell calculations to identify the lowest configurations that will be used in the 

UEM calculations. Second, if the unitcell is large enough, it is possible only small clusters up to near-

neighbor clusters or at most triplets will be needed in the energy expression, thus the total number of 

effective cluster interaction coefficients (ECI) 
τβ n,N , remains manageable (~nτ2~3). Third, it is quite 

simple to introduce lattice defects, surface structures in this approach. 

 If only considering the nearest neighbor interaction, the UEM becomes a Potts model. Potts models 

is a generalized Ising model in which a finite set of symbols, here we referred as unique unitcell types, is 

used to defined to the lattice site occupations, 
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where Jij is the near-neighbour interaction, hi is the self-interaction energy coefficient of ith lattice site.  

 If only considering the nearest neighbor interaction, the UEM becomes a Potts model. Potts models 

is a generalized Ising model in which a finite set of symbols, here we referred as unique unitcell types, is 

used to defined to the lattice site occupations, 

 

Unitcell expansion method (UEM) implementation: Discrete Chebyshev polynomials. 
 

The cluster interactions are not independent. Direct fitting of supercell energies to clusters tends to 

have numeric instability problems. Moreover, the convergence of such direct energy expansion is poor. 

To accelerate the convergence of the energy expansion, we transform these interactions into new effective 

cluster interactions (ECIs) on a complete orthonormal basis. Our current implementation uses the discrete 

Chebyshev polynomials . 

Considering a cluster with N lattice points, each point p is characterized by an occupation number  

)0(,,...,,1 11
mm

m
p ±±±= −σ for a system with M different components, where M = 2m (or 2m+1). A 

configuration of the cluster in real space can then be expressed as a vector of occupation numbers  

{ }Nσσσσ ,...,, 21= and energy is a function of .  We used the M discrete Chebyshev polynomials to 

describe the point variables on orthonormal basis space. For each lattice point p the orthogonal 

polynomial is defined by 

                                           (5) 

(6) 

where the coefficients and  must agree with the orthogonally relations, 

                                                                                        (7) 



where the inner product of any two functions of , and is defined as 

                                                         (8) 

The coefficients and  can be obtained using the Grad-Schomidt algorithm for over-determined 

systems.  

Any structure determined property can then be represented as the linear function of the cluster 

functions in the system, 

                                                                                                        (9) 

where the Kαs are the effective cluster interactions (ECIs). We assume this variable only relative with the 

local interactive clusters, so the system size has no effect on ECIs. We can calculate the ECIs on small 

systems which the first principle method can handle with, and then applied to large systems. 

UEM implementation in G(p,T) package 
 

The UEM implementation consists of five programs and related scripts. The first step in a UEM 

calculation is to build the unitcell list. Our approach is to exhaustively calculate formation energy of 

unitcells at a given concentration. The formation energies are then ranked and the lowest few are selected 

for the UEM calculation. It is possible to examine the stability of the result by including more unitcells in 

the UEM calculations.   

 

G(p,T) module for calculating temperature dependent properties.  

We implemented a pressure dependent elastic constants calculation module. Ab initio force 

calculations are the bases for theoretical evaluation of mechanical, elastic and vibrational 

properties. In the G(p,T) package, the elastic constants Cij(P,T=0) at a given pressure P are 

calculated from the following equation, 
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where U({e}) is the total energy of a given periodic structure represented by a strain {e} relative 

to a reference structure.  

To calculate the elastic constants Cij(P,T=0), U({e}) has to be evaluated in a six dimension 

strain parameter space, which can be computationally prohibitive if the full parameter space is to 

be explored. If only elastic constants at hydrostatic pressures are to be calculated, the 

computational complexity can be greatly reduced since the total energy calculations are limited 

to the strain space within the proximity of the structures under hydrostatic pressures. We 

calculate the hydrostatic pressure and elastic constants in the following steps. (1) A zero 

temperature equation of state is calculated to estimate the periodic cell volume range 

corresponding to the targeted pressure range. (2) A series of structures covering the volume 

range estimated from the targeted pressures are first optimized at zero temperature as the 

reference structures  where k is the index of the reference structure. (3) A set of strains in the 

form of , where x is a small factor,  is a constant, and   is the strain basis, are 

applied to the reference structure. The total energies of the strained structures , where j is the 

index of strain, are calculated using the total energy module in the G(p,T) package. Symmetry is 

explored to reduce the number of strains and to maintain as higher symmetry as possible in the 

strained structure. (4) The obtained total energies of the strained structures )}({ k
jeU   are used to 

fit against the free energy model, 
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where )}({ k
jeV , )}({ k

jeσ , and )}({ k
jeC  are the volume, strain, stress and elastic constants tensors, 

 is the higher order error term. From the free energy model, we locate the strained structure 

  with hydrostatic pressure  on the energy surface. For a quadratic energy model, we have:  
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assuming  is at the close proximity of . It is possible to include higher order terms in the 

total energy model but the computational costs will be significantly larger since much more 

parameters will be included in the total energy model. Step 4 is repeated for each reference 

structure to obtain the pressure dependent )( k
ij PC . This approach as implemented in the G(p,T) 

package can be applied to any symmetry type of solids.  

 

G(p,T) module for novel uni-axial tensile simulation.  

Calculation of ideal tensile strength of crystal using first principles method is mostly carried out with 

a small unitcell. Depending on the tensile direction, the unitcell is chosen based on known deformation 

pathways related to a particular crystal symmetry break[19-21]. The tensile test is simulated by applying 

strain or stress to the unitcell. In practice, the unitcell is to be relaxed under either fixed strain or fixed 

stress and a uniform strain is applied to the whole unitcell.  

One serious drawback of current approach is that it does not allow non-uniform strain pathway, for 

example, slipping and rotation of the crystal. Up to now, the methods used to calculate the ideal tensile 

strength are often either unrealistic or unreliable, for example, most ideal tensile strength calculations 

show failure at strain of more than 10%.  It is well known that metal accommodates strain by dislocation. 

These small unitcell models prevent slipping since small model means the slipping planes have to be 

forbiddingly dense. 



To circumvent the problem, we use a much larger supercell model which allows the slipping planes to 

be separated by about 10-20Å. Under uniaxial tensile stress, the supercell model will be able to slip along 

their preferred direction. A rotation of the supercell model is necessary to maintain the orientation of the 

model so that a large vector along the uniaxial tensile direction remains in the same direction. Figure 1 

illustrates the deformation of a unitcell under uniaxial stress. 

 

 

We developed a module in G(p,T) that are capable of simulating tensile test which allows non-

uniform strain pathways to be examined. In our scheme, uni-axial tensile simulation can be carried out in 

both fixed overall strain and fixed stress conditions. In both cases several small non-uniform symmetric-

breaking initial strains are applied to the non-deformed supercell, the supercell is then relaxed under 

either constant cell parameters or constant stress conditions. The non-uniform initial strain may lead to 

different deformation pathways and different final energies.  

The constant stress relaxation algorithm implemented in VASP applies consecutively small strains on 

the cell based on the stress calculated at each step, 

nTnn CIC )((1 σσµ −+=+         (13) 

where Cn is the supercell lattice matrix at step n, σn is the stress tensor at step n, σT is the targeting stress 

tensor, I is the identity matrix, and µ is a small step factor. Even though the stress tensor is symmetric, the 

Slipping direction 

Slipping direction 

Uniaxial Tensile 

Figure 1 Left: Deformation of the unitcell under uniaxial stress. Right: supercell setup. The larger supercell is 
to ensure large separation between the slipping planes in the periodic cell. 



Figure 2. Ball-stick model of a 15 atom 
crystal model of B4C. Gray and white 
represent B and C, respectively. 

consecutively multiplication of symmetric matrix leads to non-symmetric transformation to the original 

cell. Therefore the algorithm leads to rotation which is particularly problematic when the symmetric of 

the crystal is low.  

To prevent unrestricted rotation, we implemented in the G(p,T) module, a new algorithm for constant 

stress simulation in which the cell parameters are updated according to, 

  

nTTnn CIC ))(( |1 σσµ −+=+        (14) 

where σn|T is the modified stress tensor at step n to ensure a vector along the tensile direction remaining in 

the same direction thus preventing arbitrary rotation.  

IV. Results and Discussions 

We use the following accuracy setting for all VASP calculations: (1) planewave energy cutoff is 

400eV; (2) energy convergence is 10-8eV/cell and force convergence is 10-5eV/Å; (3) use reciprocal mesh 

for charge density representation.  

UnitCell Expansion Method 

Boron Carbide  

Boron carbide is a complex multi-sublattice binary solid solution. Figure 2 illustrates the 

primitive rhombohedra cell of boron carbide which 

consists of 15 sublattice sites and all of them can be 

occupied by either Boron or Carbon. There will be about 

215= 32768 possible configurations if carbon is allowed 

at all sites in the 15-atom rhombohedra primitive 

unitcells. For feasible unitcell expansion method 



calculation, it is necessary to reduce the candidate unitcell configurations. Figure 3 plots the 

energy and pressure of all possible unrelaxed primitive unitcell models with 1 to 5 carbon atoms 

which correspond to 6.67% to 33.3%. Experimental unitcell parameters are used in these 

calculations. We selected total 16 primitive cells from all concentrations calculated. 
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Figure 3. Total energy and pressure plot of all un-relaxed B12-xC3+x primitive cells with x=-2,-1,0,1,2. The 
color indicates the structure of the 3-atom chain. The shapes of the symbols, up triangle, right triangle, 
diamond, left triangle, and down triangle, correspond to primitive cell structures with x=-2,-1,0,1,2, 
respectively. The colors of the symbols, dark yellow, yellow, magenta, cyan,  blue, green, red, and black, 
represents C-C-C,  C-B-C, B-C-C, B-B-C, C-C-B, C-B-B, B-C-B, and B-B-B, respectively. Clearly the 
C-C-C and C-B-C are the energetically favored 3-atom chain configurations for all allowable range of x. 
When there is only one carbon in the unitcell, it prefers to reside at either end of the 3-atom chain. 
 

In current study, we only consider the cluster with 1 or 2 pseudo-atoms since the primitive 

cells of boron carbide are quite large. There are 16 kinds of functions of the clusters containing 1 

pseudo-atom. Because a pseudo-atom has 6 neighbors with same face, 12 neighbors with same 

edge, and 8 neighbors with same point, theoretically, there are 26 kinds of clusters containing 2 



pseudo-atoms. However, the number of clusters can be reduced by exploiting the symmetry. We 

cannot tell the difference between two clusters which are symmetrically equivalent, so we can 

say the cluster functions are same with each other. In boron carbon system, we have 5 different 

kinds of clusters (2 pseudo-atoms) after considering the symmetry. Thus the number of cluster 

functions with two pseudo-atoms are 680, and the total number of cluster functions we 

considered is 696. 

In principle any extensive properties of the lattice model can be represented as the linear 

function of the cluster functions in the system (Equation 9). We calculate the ECIs based on 

properties of small supercells which are computationally feasible. The obtained ECIs are then 

applied to large supercell Monte Carlo simulations to estimate their properties. 

 
Figure 4 The energies of two groups of small systems calculated from DFT (Ereal) and cluster 
expansion method (Efit). 



We calculate the energies of small training systems with 8 pseudo-atoms (120 atoms) using 

VASP with the common accuracy setting. The energy of the small supercell is expressed in terms 

of cluster functions,  

           (14)  

where  is the energy vector whose elements are energies of small supercells.   is a matrix, of 

which every row represents the cluster functions of every small system.  is the ECIs, which can 

be estimated by least square linear fit method. Figure 4 shows two groups of energies calculate 

from DFT and cluster expansion. Each group contains 1000 systems composed of 120 atoms. 

The energies from DFT is treated as “real” energies (Ereal) of the systems and those from cluster 

expansion is showed as a “fitting” energies (Efit). The figure shows that two groups of energies 

from different calculation method meet very well, which means the energy can be expanded on 

cluster basis. 

A cross-validation method can be used to decide whether the ECIs is effective on 

calculating the unknown system’s properties. We use part of the training data to estimate the 

ECIs, then use these estimated ECIs to predict the other training data. Figure 5 shows the cross-

validation results of two groups of systems (1000 training data of each system). These two 

groups of energies also meet very well.  



 
Figure 5 The energies of two groups of small systems from DFT (Ereal) and cluster expansion 
method using ECIs (Efit) from each other 

 

Figure 6 shows the relative error of the energies from cluster expansion.  First, we can see 

the relative error is always less than about 2.2%. It is a very precise method to calculate energy. 

Second, if we use more training data, e.g. twice the number of ECIs, the relative error can be 

reduced to about 1.6% or even less. That is, if possible, we can use more training data to improve 

the precision of the results.  

 



 

Figure 6 Average relative error of the energies calculate from cluster expansion method vs. the 
relative number of training data (ntraining/nECIs) 

 
Figure 7 The value of ECIs vs. the order of cluster functions 

We can define the cluster function’s order: , which is the sum of the 

highest exponents of the basis in the lattice functions. Figure 7 is the relationship of the values of 

ECIs with the cluster functions’ orders. Most ECIs with high orders (> 2) have near 0 value, 

which means they contribute less to the systems energy. If the computation capacity is limited, 

we can use only the ECIs with low orders and still get acceptable results.  



After the ECIs are estimated, we can integrate the cluster expansion method into traditional 

Monte Carlo simulation to calculate system’s properties. Here we study the relationship of free 

energy and the components of boron carbon material of large size. The system size we used is 

composed of 125 000 pseudo-atoms (1 875 000 atoms), while the percentage of carbon is from 

6.67% (1 carbon atom per pseudo-atom) to 26.67% (4 carbon atoms per pseudo-atom). The 

system is so large that calculating the energy directly is impractical. Thus we use cluster 

expansion method to predict energy instead of traditional ways, such as DFT etc.  

We start from a system with a random configuration with a certain percentage of C, and 

calculate the initial energy. In every step we randomly choose two atoms and change them to 

other possible atoms under the constraint that the number of C does not change. The new energy 

of the new configuration can also be calculated by cluster expansion method, and then 

Metropolis algorithm is used to determine whether new configuration is accepted. The evolving 

process can be repeated for long enough time and after the system achieves equilibrium state the 

time average configuration energy is a good approximation of the system’s free energy. 

Figure 8 shows the energy evolution of the system with 6.67% C under different 

temperature (300K, 1000K , and 2000K). It is easy to see that under low temperature, the system 

has low energy, but high temperature make the system easy to be equilibrium.  



 

Figure 8 The energies under 300K (red), 1000K (green), and 2000K (blue) 

 

Figure 9 is the energy of the systems with different percentage of C (6.67%, 17.01%, and 

26.67%) when the temperature is 1000K. First, the energy of the system with more carbon atoms 

is lower. Second, the energy does not has a linear relationship with the percentage of carbon 

atoms. Actually, the energy of the system with 17.01% carbon atoms is lower than the weighted 

mean value of the energies of the systems with 6.67% and 26.67% carbon atoms. The detail of 

this phenomena is shown in figure 10. In figure 10, the energy is rescaled that the new “energy” 

is almost the same in the system with least and most C. It is easy to see that the system with 

intermediate percentage of carbon atoms does have lower energy than the intermediate energy. 

Figure 11 and 12 show the same phenomena under 300K and 2000K, respectively.  

Figure 13 shows the distribution of carbon in boron carbide   B1-xCx. Clearly there are 

distinct changes in carbon distribution at B13C2 and B4C where physical properties have gone 

through distinct changes. 



 

 
Figure 9 The energies of system with 6.67% (red), 16.67% (green), and 26.67% (blue) carbon 
atoms 

 
Figure 10 the rescaled free energies (green line) and the convex plot (red crosses). The 
temperature is 1000K 



 

Figure 11 the rescaled free energies (green line) and the convex plot (red crosses). The 
temperature is 300K 

 

Figure 12 the rescaled free energies (green line) and the convex plot (red crosses). The 
temperature is 2000K 
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Figure 13. Carbon distribution in Boron carbide B1-xCx. Red line indicates carbon percentage at two edge 
sites of the 3-atom chain. Blue line shows the carbon percentage in the icosahedrons. Black line depicts 
carbon percentage at the center of the 3-atom chain.  
 

 

Z-phase 

Figure 14 illustrates the tetragonal unitcell of Cr(Nb,V)N which has five 

sublattice sites per primitive cell. Among the five sites, two are randomly occupied 

by Nb or V atoms. Therefore, there are only four possible unitcells and they are all 

included the unitcell list for UEM calculations.  485 random small supercells are 

used to estimate the ECIs. Figure 15 shows the estimated ECI vs. the order of the 

ECI parameter and cross-validation of the chosen cluster expansion cutoff. 

Clearly, higher order terms (>2) are very small and a maximum order cutoff at two does not significantly 

impact the results.  

Figure 14. Ball-stick 
model of Z-phase. 
 



(a) 

(b) 

Figure 15. (a) Effective cluster interaction (ECI) versus cluster function order parameter s. (b) Cross-
Validation: (energy difference between energies obtained from direct VASP calculations and cluster 
expansion). ECIs are obtained from different supercell set. 
 



Temperature and Pressure Dependent Elastic Constants Calculations 

Silicon Carbide 

Silicon carbide (SiC) has wide range of high temperature applications owing to its unique 

properties such as high hardness, high sublimation temperature, and excellent chemical inertness 

at high temperatures. It has dozens of polymorphs that consist of different ordered stacking 

sequences of SiC atomic double layers. Whether the origin of these polymorphs is of 

thermodynamic nature or non-equilibrium processing has been discussed previously. Because of 

its vast polymorphs and relative ease of defect formations and impurity inclusions, its high 

temperature properties measured experimentally are often found to vary significantly in the 

literature. Thus it is highly desirable to develop reliable and robust methodologies to provide 

accurate data of thermodynamic and elastic properties for the pure polymorphs from the first-

principles calculations as a benchmark reference for its various applications. Extensive 

researches using first-principles methods have been reported in the literature for its electronic 

structure, optical properties, and mechanical properties, etc. However, calculations of its high 

temperature elastic properties using first-principles methods have not been reported. In principle, 

temperature and pressure dependent elastic constants can be calculated from either lattice 

dynamics or molecules dynamics. 

Figure 18 shows the calculated phonon dispersions for both 3C- and 2H-SiC. The calculated 

zone center modes are listed in Table I. LO/TO splitting due to long range dipole-dipole 

interaction is included the calculation. The TO and LO frequencies of 3C are in excellent 

agreement with experimental data.[22] Various thermodynamic properties are calculated using 

the G(p,T) package. We selectively plot the second order derivatives of Gibbs free energy, 

specific heat and linear thermal expansion coefficients in Figure 19. At temperature below 700 K, 



the calculated specific heat Cp for both 3C and 2H are found to be in good agreement with the 

experiment.[23] When the temperature reaches 1500 K, the calculated Cp becomes about 6% 

lower.[24] On the other hand, the calculated thermal expansion coefficients for both phases are 

slightly larger at higher temperatures if compared to experiments.[25-27] The discrepancies at 

higher temperature are usually attributed to the anharmonic affect largely due to phonon-phonon 

interactions that are not included in present calculation. However, other sample preparation 

related factors such as defect and impurity may also contribute to this discrepancy. It is known 

that vacancy defects often raises specific heat and thermal expansion coefficient at higher 

temperature.[28] Recently, Stockmeier et al showed that Al and N doping in hexagonal single 

crystals silicon carbide led to decrease of thermal expansion at higher temperature.[27] At 

temperature below 100K, our calculation showed a small negative thermal expansion for 3C-SiC 

contrary to earlier calculations by Tawler et al.[29]      

To examine the relative thermodynamic stability, we computed their Gibbs free energies for 

temperature from 0 to 2500 K and pressure from 0 to 20 GPa. At P=0.1 MPa and T=298.15 K, 

the calculated Gibbs free energy difference between 3C and 2H (∆G=G2H-G3C) is 0.6 kJ/mol, 

well within the error range of the experimental value of 1.7±8.9 kJ/mol quoted in the NIST 

database.[23] Figure 20 shows the contour plot of the Gibbs free energy difference of 3C and 2H. 

The result indicates that 3C is more stable for the whole temperature and pressure ranges plotted 

as the Gibbs free energy difference remains positive, which agrees with early calculations 

reported by Nishitani et al.[30] Note that the difference is, however, very small (<1.2 kJ/mol) 

and it is comparable to the commonly accepted uncertainty for density functional theory based 

calculations. Nevertheless, the trend indicates increasing temperature will not make 2H more 

stable than 3C. In fact, using the full-potential linear muffin-tin orbital method, Limpijumnong 



and Lambrecht[31] found that 2H has higher energy than 3C by 2.3±0.3  kJ/mol for the four 

most complete basis sets they considered at zero temperature. On the other hand, earlier 

theoretical studies[31-33] predict that 4H and 6H are slightly more stable than 3C by <1.9 kJ/mol 

at zero temperature.  

Figure 21 shows the contour plots of the temperature and pressure dependent isotropic 

polycrystalline shear modulus of 3C and 2H. The shear modulus is calculated using the Voigt-

Reuss-Hill (VRH) approximation.[34] Apparently, the two phases of SiC have almost the same 

shear modulus over the calculated temperature and pressure ranges. Their shear moduli are also 

slightly higher at the low-temperature high-pressure region than the high-temperature ambient-

pressure region. Under ambient pressure, the calculated shear modules are 181 GPa and 166 GPa 

for 2H at room temperature and 1773 K, respectively, which are in excellent agreements with 

Munro’s measurements of 179±5 GPa and 165±5 GPa for 6H-SiC at the same temperatures.[35] 

Figure 22 plots the temperature dependent elastic constants at ambient pressure. For 3C, the 

calculated temperature slopes at elevated temperatures for C11, C12, and C44 are -0.024, -0.006, 

and -0.011 GPa/K, respectively. The temperature slope of C11 is in excellent agreement with 

experimental values of -0.025 GPa/K, while those of the shear moduli C12 and C44 differ 

significantly from the measured values, -0.011 and -0.007 GPa/K.[36] For 2H, the calculated 

elastic constants show better agreement with the experimental value[37] than 3C. The 

temperature slopes at higher temperature for C11, C33, C12, C13, and C44 are -0.014, -0.030, -0.012, 

0.001, and -0.006 GPa/K, respectively. To determine the contribution to the elastic constants 

from thermal excitation, we plotted the elastic constants due to vibrational free energy at zero 

pressure. The contributions to the elastic constants from vibrational free energy are shown to be 

significant at elevated temperature particularly for C11 and C33 which counts about 40% of the 



overall temperature slope. At zero temperature, where the vibrational free energy corresponding 

to the zero point energy, the contribution to elastic modules is generally less than 4 GPa.    

In summary, we demonstrated that temperature and pressure dependent elastic constants of 

solids can be reliably predicted from first-principles method via computing the total Helmholtz 

free energy. The case with two polymorphs (3C and 2H) of SiC showed the importance to 

include the vibrational free energy in the elastic constants calculation in order to accurately 

predict the temperature coefficients particularly at elevated temperature. We believe that the 

ability to calculate temperature and pressure dependent elastic constants reliably from first-

principles method will accelerate new alloy design and development of next-generation high-

temperature materials with improved thermal and mechanical stability towards greener energy.    

           

 

Table I. Zone-centered vibrational modes. 

Branch         λ(cm-1)         Branch     (cm-1) 

     2H-SiC                             3C-SiC 

E2               256.3     TO       793.5(796.2a)  

B1                589.2              LO        964.2(972.2a)    

E2                   740.0 

A1                   749.2 

E1(TO/LO)     777.4/941.6  

B1                   807.2 

a) Experimental data from Ref.[22]    
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Figure 18. Thermodynamic properties at P=0 up to 1800 K. Solid lines represent the calculated 
results. (a) Specific heat Cp of 3C. Empty circles are plotted using the experimental data 
(Ref.[23]) (b) Thermal expansion coefficient of 3C. Empty circles and solid starts are 
experimental values from Ref.[24] . and Ref.[25] . respectively. (c) Specific heat Cp of 2H. 
Empty circles are the experimental data from Ref.[23] (d) Thermal expansion coefficient of 2H. 
The red symbols are α11 and the black symbols are α33. The circles and diamonds are recent data 
from Ref.[27] . for undoped single crystals of 6H-SiC and 4H-SiC, respectively. The solid stars 
are from Ref.[26] 
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Figure 19. Contour plot of the Gibbs free energy difference from 3C-SiC to 2H-SiC. 
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Figure 3. Contour plots of the temperature pressure dependent shear modulus: (a) 3C-SiC. (b) 

2H-SiC.   
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Figure 21. Temperature-dependent elastic constants at ambient pressure. Solid lines are the 
calculated properties and the symbols are from experimental measurements. (a) and (b) plot the 
elastic constants and thermal excitation contribution to elastic constants of 3C-SiC. The 
experimental data are from Ref. [36].. (c) and (d) show the elastic constants and thermal 
excitation contribution to elastic constants of 2H-SiC. The experimental data are from Ref.[37] 

 
 



Tungsten 

The temperature and pressure dependent elastic constant module implemented in G(p,T) allows 

calculation of equation of state. To examine the validity of the method, we calculated the equation of state 

of Tungsten which has extensive experimental data available over a wide range of temperature and 

pressure. Figure 22 shows the computed the equation of state surface and the dotted points are obtained 

from shock wave high pressure studies. We observed an excellent agreement between the computed and 

experimentally measured. 

 

Figure 22. Equation of state P-V-T of Tungsten calculated using the G(p,T) package.  



Uni-axial tensile simulation 

To examine the uni-axial tensile scheme implemented in G(p,T), we selected simple FCC metal Al as 

our material. Figure 23 illustrate the energy and stress evolution over the non-uniform pathways.  

 

Figure 23. Tensile Simulation on FCC Aluminum. [001] is the tensile direction. Supercell: [ 1/2a 0 1/2a; 0 
1/2a 1/2a; -4a -4a 4a]. Slipping direction preferably [1 0 1] and slipping plane {-1 -1 1} 
 
 

 

 

 

 

 

 

 

Figure 24. Evolution of volume/stress under uni-axial tensile strain. 
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Figure 25. Evolution of Al supercell under tensile stress. The relaxation under constant stress using 

algorithm described in previous section.  

 

The Gensurf program 

We have developed a set of useful script tools to generate slab/interface modules. The gensurf script 

can be used generate slab model for a given VASP POSCAR file. By specifying plane miller index, slab 

position, slab thickness, and vacuum thickness, gensurf produces another VASP POSCAR file of the 

model. Different slabs can be combined by matching the surface basis and origins.  

 

Physical properties of Nb-Si based Alloys 

There are six stable solid phases in the Nb-Si binary system: (1) the bcc W-type terminal solid 

solution of Nb; (2) tetragonal Ti3P Nb3Si (tP32); (3) tetragonal W5Si3-type β-Nb5Si3 (tI32); (4) tetragonal 

Cr5Si3-type α-Nb5Si3 (tI32); (5) hexagonal CrSi2-type NbSi2 (hP9); (6) diamond cubic terminal solid 

solution of Si. Additional meta-stable phases are also reported in the literature including Nb3Si (tI32), 

Nb3Si(cP4), Nb3Si(cP8), and Nb3Si2(tP10). We have systematically studied all crystalline phases in the 

binary system. First, we calculated the formation enthalpy ∆H of all known binary phases according to, 

∆H=Ep-(xENb+(1-x)ESi)        (15)   

where Ep, ENb, and ESi are the total energy of the binary phase, pure ground state Nb and pure ground state 

Si, respectively. Figure 26 shows the convex plot of the zero temperature formation energy of the binary 

Nb-Si phases. The calculations correctly identified the stable binary phases marked as black squares.  



 

Figure 26. Convex plot of Nb-Si binary phase formation energy. 

 

Mechanical Properties of Nb-Si based alloys 

Two G(p,T) modules have been implemented to automated the calculations of pressure dependent elastic 

constants at zero temperature (calET) and both temperature and pressure dependent elastic constants 

(calCET). We calculated the pressure dependent elastic constants of most binary and ternary systems 

found in the Nb-Si-Cr-Al system. Due to computational resource limit, we only calculated T,P-dependent 

elastic constants for selected system.    

 

 

 

 

 

 



 

 

 

 

Table II. List of computed elastic constants of Nb-Si binary alloys at zero temperature and zero pressure. 

 

 

Pressure dependent elastic constants at zero temperature 

The pressure dependent elastic constants of Nb-Si alloy phases are calculated used the G(p,T) package. 

Due to the high computational cost of temperature dependent elastic constant, we performed temperature 

dependent elastic constant for only selected systems and the rest are calculated at zero temperature.  The 

method is described in previous sections (Equation 10). In the following section, we summarized the 

calculated pressure dependent elastic constant of binary, ternary alloy phases. The electronic structure of 

the systems have been examined and compared with results published in the literature whenever 

available. To limit the amount of diagrams in this report, we plotted only the pressure dependent elastic 

constants at zero temperature.  
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Figure 27. Pressure dependent elastic constants of Nb3Si(cP4) 
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Figure 28. Pressure dependent elastic constants of Nb3Si(cP8) 
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Figure 29. Pressure dependent elastic constants of Nb3Si2(hP9) 
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Figure 30. Pressure dependent elastic constant of Cr3Si(cP8) 
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Figure 31. Pressure dependent elastic constants of Cr5Si3 (hP16). 
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Figure 29. Pressure dependent elastic constants of Cr5Si3(tI32). 
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Figure 30. Pressure dependent elastic constants of CrSi(cF8). It is clearly an unstable structure. 
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Figure 31. Pressure dependent elastic constants of CrSi2(hP9) 
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Figure 32. Pressure dependent elastic constants of NbCr2(cF24) 
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Figure 33. Pressure dependent NbCr2 (hP12) 

 

Ternary phases 
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Figure 34. Pressure dependent elastic constants of Nb2CrSi3(hP12) 

 

b. Nb2Cr3Si (hP12) 
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Figure 35. Pressure dependent elastic constants of Nb2Cr3Si (hP12) 

 



Phonon dispersion of Nb-Si based  alloy 

 

Binary systems: 

(1) Nb-Si system 

a. Nb3Si (cP8) 

 

Figure 36. Phonon dispersion of Nb3Si(cP8).  

 

 



Linear Thermal Expansion Coefficient of Pure Nb 

Figure 37 plot the calculated linear thermal expansion coefficient of pure Nb at zero pressure. The 

calculated results of 8.02×10-6/K at zero pressure and room temperature is in very good agreement with 

experim7nts (7.75×10-6/K) [38].  

 

 

 

 

 

 

 

 

 

 

Figure 37.linear thermal expansion coefficient of pure Nb from calculations.  

 

Figure 38 shows the zero pressure temperature dependent elastic constants of pure Nb. To understand the 

contribution to elastic constant from lattice vibration, we plot the part of elastic constants only from 

vibrational free energy. It is clearly, the contribution of electronic part of the free energy, decreasing as 

temperature increases since volume expanded, cancels the contribution of the lattice vibration which are 

largely increasing with temperature. The C12 appears flat throughout a wide temperature range and C44 

shows significant temperature hardening.    
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Figure 38. Temperature dependent elastic constant of Nb pure metal. 
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Contour plots of thermodynamic properties: 

The temperature and pressure dependent thermodynamic properties calculations are computationally 

expensive. Here we report three phases that such calculations had been performed: Si(cF8), Nb(cI2), and 

Nb3Si(tI32). While many thermodynamic properties calculated, we plot here only the Gibbs free energy, 

bulk modulus, and thermal expansion coefficient, which are 0th, 1st, and 2nd order derivatives of free 

energy, to illustrate the accuracy of the calculations.  
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Figure 39. Temperature and Pressure dependent Gibbs free energy of Si (cF8) 
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Figure 40.  Temperature and Pressure dependent bulk modulus of Si (cF8) 
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Figure 41. Temperature and Pressure dependent thermal expansion coefficient of Si (cF8) 

 

(2) Nb (cI2) 
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Figure 42. Temperature and Pressure dependent Gibbs free energy of Nb (cI2) 
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Figure 43. Temperature and Pressure dependent bulk modulus of Nb (cI2) 
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Figure 44. Temperature and Pressure dependent thermal expansion coefficient of Nb (cI2) 

 

 

 

 

(3) Nb3Si (tI32) 
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Figure 45. Temperature and Pressure dependent Gibbs free energy of Nb3Si (tI32). 
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Figure 46. Temperature and Pressure dependent bulk modulus of Nb3Si (tI32). 
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Figure 47. Temperature and Pressure dependent thermal expansion coefficient of Nb3Si (tI32).



CONCLUSIONS 

In conclusion, we have further extended the G(p,T) package to calculate temperature-

pressure dependent thermodynamic, mechanical properties of crystals; developed a uniaxial 

tensile simulation modules which allows non-uniform deformation; developed a coarse-grained 

cluster expansion method which can be used to study complex or dilute solid solution systems. 

The accuracy of the temperature-dependent elastic constant module was demonstrated in the SiC 

calculations in which excellent agreement has been obtained (less than 1% error in elastic 

modulus). The coarse grained cluster expansion was also tested in the Boron carbide and Z-phase 

system. However, these calculations are computationally very expensive, requiring typically 

thousands of supercell calculations, which may be not suitable for large scale material screening. 

A simpler approximation to cluster expansion method at high temperature, the special 

quasirandom structure (SQS) may be more appropriate method for calculating large number of 

solid solution structures. Nevertheless, it provided a method for quality checking of SQS 

calculations. 

We have systematically studies mechanical properties of Nb-Si based alloys. We developed 

modules to automate such complex calculations. With only a structure input in the format of 

GULP input or CIF, we can complete the calculation with a few lines of shell script.  

We have evaluated pressure dependent elastic properties of binary and ternary systems 

including Nb-Si, Cr-Si, Nb-Cr, and Nb-Cr-Si. We had compiled a structure databases for most of 

the phases involved in the Nb-Si-Al-Cr-W system. However, due to limited computational 

resources, only selected crystal phases were completed. We will continue the calculation beyond 

the project period.  

 



 

V. FACILITIES AND RESOURCES 

We have built a 36-node cluster using AMD phenomTM 6-core and 8-core CPU, and Intel 4-core 

hyperthread CPU. Among them, 34 nodes are dedicated to computing, 1 node serves as head node that 

provides internet interface and cluster management, and 1 node is dedicated to storage service. Each 

computing node has 8GB memory. All computer nodes use a small 40-60GB solid state disk for boot and 

temporary scratches. An 8TB storage array is used to provide the shared cluster file system. 
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