skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: DOE Energy Frontiers Research Center for Heterogeneous Functional Materials; the “HeteroFoaM Center”

Technical Report ·
DOI:https://doi.org/10.2172/1330922· OSTI ID:1330922
 [1]
  1. Univ. of South Carolina, Columbia, SC (United States)

Synopsis of five year accomplishments: Devices that convert and store energy are generally made from heterogeneous constituent materials that act and interact to selectively conduct, transport, and separate mass, heat, and charge. Controlling these actions and interactions enables the technical breakthroughs that have made fuel cells, batteries, and solid state membranes, for example, essential parts of our society. In the biological sense, these materials are ‘vascular’ rather than primitive ‘cellular’ materials, in which the arrangements and configurations of the constituents (including their void phases) play essential and definitive roles in their functional capabilities. In 2009 a group of investigators, with lifetime investments of effort in the understanding of heterogeneous materials, recognized that the design of such material systems is not an optimization problem as such. Local interactions of the constituents create “emergent” properties and responses that are not part of the formal set of constituent characteristics, in much the same sense that society and culture is created by the group interactions of the people involved. The design of emergent properties is an open question in all formal science, but for energy materials the lack of this foundation science relegates development tasks to Edisonian trial and error, with anecdotal success and frequent costly failures. That group defined, for the first time, multi-scale heterogeneous functional materials with functional disordered and void phase regions as “HeteroFoaM,” and formed the first multidisciplinary research team to define and codify the foundation science of that material class. The primary goal of the HeteroFoaM Center was, and is, to create and establish the multi-scale fundamental knowledge and related methodology required for the rational and systematic multiphysics design of heterogeneous functional materials and their interfaces and surfaces for applications in energy transformation and storage. The scope of the HeteroFoaM center was focused on the discovery and development of the control science of key phenomena across multiple length scales that create functionality in heterogeneous materials and their structured interfaces, boundaries, and surfaces for applications in energy technologies. The HeteroFoaM Center defined a critical path and established an essential foundation for progress in the field of heterogeneous functional materials. Perhaps the single most important element of progress was the establishment of the capability to design, characterize, and model heterogeneous functional materials at the conformal level, i.e., for a limited set of material systems, the HeteroFoaM team defined how to control the order / disorder at the atomic level, the surfaces, and the interfaces for selected constituent morphologies, and to use multiphysical models to explain the remarkable property variations resulting from that control science for several heterogeneous material systems. For those cases we defined “meso-structures” (at various scales) where the interactive physics of constituent phases acted to create emergent properties, e.g., strongly emergent mixed conductor behavior and ionic transport. The general approach used by this EFRC is shown in Fig. 1. The HeteroFoaM Center created the genre of Heterogeneous Functional Materials with functional surfaces and interfaces (including void phases) called HeteroFoaM as a science platform to enable rational analysis and design of functional material systems by focusing on the meso-interactions that drive emergent response. The team firmly established this approach with over 180 archival publications (see “Publications” section), 7 patent applications, and over 100 invited lectures in 15 countries on this topic, enabled by building a remarkably effective and uniquely coherent research team. Indeed, our team was our principal strength; this problem eluded solution earlier because such a team was not available.

Research Organization:
Univ. of South Carolina, Columbia, SC (United States)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
DOE Contract Number:
SC0001061
OSTI ID:
1330922
Report Number(s):
Final
Country of Publication:
United States
Language:
English