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Abstract

Type I X-ray bursts are caused by thermonuclear explosions occurring on the surface

of an accreting neutron star in a binary star system. Observations and simulations of

these phenomena are of great importance for understanding the fundamental properties

of neutron stars and dense matter because the equation of state for cold dense mat-

ter can be constrained by the mass-radius relationship of neutron stars. During the

bursts, turbulence plays a key role in mixing the fuels and driving the unstable nuclear

burning process. This dissertation presents one dimensional models of photospheric ra-

dius expansion bursts with a new approach to simulate turbulent advection. Compared

with the traditional mixing length theory, the one-dimensional turbulence (ODT) model

represents turbulent motions by a sequence of maps that are generated according to a

stochastic process. The light curves I obtained with the ODT models are in good agree-

ment with those of the KEPLER model in which the mixing length theory and various

di↵usive processes are applied. The abundance comparison, however, indicates that the

di↵erences in turbulent regions and turbulent di↵usivities result in more 12C survival

during the bursts in the ODT models, which can make a di↵erence in the superbursts

phenomena triggered by unstable carbon burning.
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Chapter 1

Type I X-ray Bursts

In this chapter, I briefly review the historical background of Type I X-ray bursts

research with a focus on photospheric radius expansion bursts phenomena and simula-

tion techniques. There are several excellent review articles for a more comprehensive

background introduction: Lewin & Joss (1981), Lewin et al. (1993), and Strohmayer &

Bildsten (2006). In the end, I present the outline of this dissertation.

1.1 Historical background

In 1975, Grindlay & Heise (1975) detected two “intense X-ray bursts” by the soft

X-ray experiment (1–6 keV) and the hard X-ray experiment (1–30 keV) on the Astro-

nomical Netherlands Satellite (ANS; Gursky et al. 1975) and associated them with the

X-ray source 3U 1820-30 in the globular cluster NGC 6624. Both events had short rise

times (⇠ 1 s) and decayed approximately exponentially at a time-scale of about 10 s.

The peak luminosities are about 20 and 30 times the background intensity, respectively.

Independently, Belian et al. (1976) detected 20 “count-rate enhancements” 15� above

background luminosity with detectors abroad the Vela satellites 5A and 5B (3–12 keV),

11 of which could be attributed to 10 X-ray flares from the same area in the constel-

lation Norma. These two observations are usually considered as the discovery of X-ray

bursts. Subsequently, more bursts were detected within half a year and they can be

summarized along with aforementioned observations in Table 1.1. With the help of

OSO-8 Satellite (2–24 keV; Swank et al. 1976), the number of burst sources cumulated

1
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Reference and Time Bursts X-ray Source Satellite

Grindlay & Heise (1975) 2 3U 1820-30 ANS
Belian et al. (1976) 10 ? Vela 5
Clark et al. (1976) 10 3U 1820-30 SAS-3

Lewin (1976) 11 MXB1743-293, MXB1742-297 SAS-3

Lewin et al. (1976) 29
MXB1743-293, MXB1742-297,

MXB1728-34 SAS-3
Lewin et al. (1976) ⇠ 103/day MXB1730-335 (the Rapid Burster) SAS-3

Table 1.1: Summary of early X-ray bursts observations. From December 1975 to March
1976, about 8 burst sources were confirmed and 62 bursts (except those from the Rapid
Burster) were observed. MXB stands for MIT X-Ray Burst Source. The question mark
indicates that no known X-ray source could be associated to the observed bursts. The
Rapid Burst does both Type I and Type II X-ray bursts, which explains its peculiarity
on the large number of bursts.

to about 22 by the end of 1976 (Lewin 1977). Since 1995, the number of bursts observed

has had a tremendous increase because of studies associated with several new satellites,

i.e., RXTE (Galloway et al. 2008), BeppoSAX (e.g., Cornelisse et al. 2003), HETE II

(e.g., Suzuki et al. 2007), and INTEGRAL (e.g., Chenevez et al. 2011). To date, X-ray

bursts are probably the most frequent thermonuclear explosions in the universe with a

day count of about 11 thousands (in ’t Zand 2011).

Several theoretical models were proposed to explain X-ray bursts but were ruled

out quickly. Even before the discovery, Hansen & van Horn (1975) published the first

theoretical paper about thermonuclear burning on the surface of neutron stars. Later

this idea was developed by Woosley & Taam (1976) and Maraschi & Cavaliere (1977),

which became supported by more and more observations, e.g., Swank et al. (1977)

and Ho↵man et al. (1977) measured the blackbody radii of sources and found them

comparable to the size of a neutron star. But the Rapid Burster could not be explained

by thermonuclear explosions because an otherwise present high flux of persistent X-ray

emission was not observed. Ho↵man et al. (1978) resolved this puzzle by discovering that

the Rapid Burster emitted two di↵erent kinds of bursts: one was due to thermonuclear

flashes and the other was due to the accretion instabilities. They also introduced the

classification of Type I and Type II X-ray bursts for these two kinds, respectively. For



3

the remainder of this dissertation, only Type I X-ray bursts (hereafter called XRBs or

simply bursts) are considered. After decades of development, theory describes an XRB

as a thin-shell thermonuclear instability that occurs in a binary system after a neutron

star accretes enough fuels through Roche Lobe overflow from a low-mass companion (less

than ⇠ 1M�). When the accumulated fuels are heated and compressed to a certain

threshold, a series of thermonuclear reactions happen and drive an outburst with its

energy released mainly as X-ray photons. The mass donors are typically old Population

II stars or degenerate helium or carbon/oxygen white dwarfs (Rappaport et al. 1982).

Depends on the composition of the fuels, the nuclear burning enters di↵erent regimes

to trigger an XRB (see Strohmayer & Bildsten 2006 for a detailed discussion).

1.2 Photospheric radius expansion bursts

A regular XRB profile shows a short rise time (⇠ 1 s) and an exponential decay time

(⇠ 10 s). Long bursts that last up to 15 minutes have been observed (e.g., Tawara et al.

1984b). These events usually start with a precursor which is a brief increase of intensity

lasting for a few seconds. After the intensity returns to the persistent flux level for

several seconds, the main event starts with a gradual increase in the hardness of the

blackbody spectrum until the maximum blackbody temperature has reached. Then the

main event decays in a similar way to what is observed in a regular XRB. Theoretical

work (Tawara et al. 1984a; Lewin et al. 1984) proposed that energy released during

these bursts was large enough to cause an expansion of the photosphere. Because the

luminosity is nearly constant early on in the burst, an increase in the photospheric radius

leads to a decrease in the e↵ective temperature. If the expansion is large enough, the

e↵ective temperature can be shifted entirely below the X-ray band. Thus a gap between

the precursor and the main event is observed. These bursts are called photospheric

radius expansion (PRE) bursts. Subsequent work indicates that, the luminosity during

the expansion stays within a small percentage of the Eddington limit, and the excess

luminosity is transformed e�ciently into kinetic and potential energy of the outflow

(Paczynski & Proszynski 1986; Joss & Melia 1987; Shaposhnikov & Titarchuk 2004).

When the burst is not that powerful, the burst profile may show a double-peak feature

instead of a precursor as only part of the flux is shifted.
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PRE bursts are of great importance in the following two aspects. First, they can

be considered as distance indicators. Since the peak luminosity is very close to the

Eddington limit (about 3.8 ⇥ 1038 erg/s for hydrogen-poor atmosphere), this limit can

provide a “standard candle” to within about 15% according to the test of a set of

globular clusters with independently known distances (Kuulkers et al. 2003). Second,

PRE bursts, in principle, provide a way to infer the mass-radius relationship of neutron

stars (see Lewin et al. 1993 for a detailed discussion). Here I only outline the main idea.

After the expansion, the photosphere starts to contract and the ending point of this

process is called “touchdown” at which the photosphere return to its original radius.

The Eddington luminosity is given by

L = (4⇡cGM/)(1� 2GM/Rc

2)�1/2
, (1.1)

where M is the mass of the star, R is the radius measured by a local observer, and 

is the opacity of the photosphere. The gravitational redshift is included as the second

bracket above. The relation of the luminosity to the e↵ective temperature Te↵ is

L = 4⇡R2
�T

4
e↵ , (1.2)

where � is the Stefan-Boltzmann constant. So Te↵ at “touchdown” can be expressed in

terms of M , R, and . A mass-radius relationship can be determined if Te↵ is measured

and an atmosphere model is applied. Usually, Te↵ is obtained from the observed color

temperature. The importance of a mass-radius relationship lies in the fact that it

constrains the equation of state of neutron star matter (Lattimer & Prakash 2001),

which is a fundamental problem of cold dense matter.

1.3 Simulation techniques

Because of the complexity of XRBs problems, e.g., large nuclear networks, di↵usion

processes, and the equation of state, numerical simulation functions as an important

tool for theoretical studies from the very beginning. In fact, numerical models based on

a combination of multiple integrators appeared in the first theoretical paper of XRBs

(Hansen & van Horn 1975) about 10 months before the phenomena were even observed.

After decades of development, there are three simulation approaches in general:

one-zone models, multi-zone models or one-dimensional models, and multi-dimensional
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models. As the name indicates, one-zone models use only one zone for numerical calcu-

lations with models retaining the fundamental physics that is necessary to yield quali-

tative, and even quantitative results similar to full-scale computations (e.g., Paczynski

1983). They usually require less computing time and programming e↵ort. But some

one-zone simulation uses the computing power to focus on particular aspects of the prob-

lem in detail. For example, Schatz et al. (2001) explored the rapid proton (rp) capture

process of hydrogen burning during an XRB and found the end point of this process was

a closed SnSbTe cycle. One-dimensional models are probably the most prevalent choice

because of the advantage as a compromise between one-zone and multi-dimensional

models. Many of these models have successfully reproduced lots of observable features

of XRBs such as peak luminosities, rise times, durations, and recurrence times (e.g.,

Woosley & Weaver 1984; Taam et al. 1993; Woosley et al. 2004; Heger et al. 2007). But

the model inherited assumptions such as uniformly distributed accreting fuels are highly

unrealistic. Besides, the convection motion are usually simulated by the stellar mixing

length theory (Böhm-Vitense 1958) or through various di↵usive processes (Heger et al.

2000), which don’t always agree well with multi-dimensional simulations (Arnett et al.

2009). Ideally, multi-dimensional models, especially 3D models, are the closest to real-

ity, but the requirement of computational resources makes it rather restrictive and less

practical. So far, there is limited number of published work with this technique, over

half of which assumes an idea gas law in incompressible regime without thermal di↵u-

sion (Fryxell et al. 2000; Zingale et al. 2001; Spitkovsky et al. 2002). More recently, A

low-Mach number approximation method is developed to improve the input physics and

applied to simulate convective burning at the base of an accreted layer of a burst (Lin

et al. 2006). By using MAESTRO, both the large-scale heating and small-scale com-

pressibility e↵ects are captured in simulating the convection before a pure helium burst

(Malone et al. 2011). Later this technique is improved and applied to the simulation of

a mixed hydrogen/helium burst (Malone et al. 2014).

1.4 Outline of this dissertation

Since this dissertation focuses on the numerical hydrodynamic simulation of XRBs,

I first introduce the basic idea of the simulation approach (one-dimensional turbulence
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model) we chose in this dissertation in Chapter 2. In Chapter 3, I describe all the

adaptations we made to prepare this model for XRBs simulations including the choice

of coordinate, the stellar equation of state, and the di↵usion processes. Several tests

and applications are discussed to verify these adaptations. After the code is described,

I present the results of a pure helium burst simulation that demonstrates PRE features

and show the comparisons with those of a KEPLER model in Chapter 4. Finally, I

summarize what has been accomplished and discuss the future work to improve the

results.



Chapter 2

One-dimensional Turbulence

Model

In this chapter, I start with a brief introduction to the background of the one-

dimensional turbulence (ODT) model. Then I explain the formulation in detail because

of the unique features in its formulation that distinguishes ODT from most of the

other turbulence simulation methods, and the intactness these features maintain to

the adaptations that are discussed extensively in Chapter 3. Finally, I discuss the

applications of ODT models.

2.1 Background

The fact that molecular mixing in turbulence is sensitive to both of the large-scale

and small-scale fluid motions makes it an important role to test turbulence models. The

e↵ort of simulating molecular mixing dates back at least to the coalescence-dispersion

model (Curl 1963). Only the direct numerical simulation (DNS), however, can solve

the Navier-Stokes equation and molecular di↵usion equations with su�cient resolution

but at the expense of computing time and power. Kerstein (1991) sorted the other

approaches into two categories: computational models intended to be flexible tools, and

conceptual models addressing specific issues. These models either simplify the micro-

scopic mixing by assuming that the mixing is implemented instantaneously within an

appropriate length-scale (e.g., Kolmogorov scale), or sacrifice the mechanistic distinction

7
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to some extent between molecular and convective processes. Under these circumstances,

the linear-eddy model, or LEM, highlights its advantages in the following aspects. First,

all the relevant length-scales are resolved. The fluid motion is considered as a sequence

of instantaneous measure-preserving maps that are called triplet maps, whereas the mi-

croscopic motion is implemented by molecular di↵usion directly. Second, the mapping

events are implemented according to a Poisson process. The mechanistic distinction

that is partly lost in the previous models can now be evaluated by a wide variety of

mixing-field statistics. More importantly, it preserves the successful feature of the two-

particle-dispersion model. Although LEM is conceived as a computationally e�cient

way to model the mixing of passive scalars, the flow properties are specified empirically

by assigning parameters governing the Poisson process. ODT was developed based on

LEM in the sense that it kept the two aforementioned features. But ODT pushed

the stochastic model forward to minimal empiricism by allowing the scalar fields to

self-consistently determine the rate of turbulent mixing in the model.

2.2 Formulation

Following the two special features as mentioned in Section 2.1, ODT has two major

assumptions. First, there is only one kind of eddies in the turbulent system and it can

be represented by an instantaneous map. Second, these maps form a sequence of events

governed by a stochastic Poisson process with its frequency determined by the current

stability of the flow.

The triplet map is chosen as the standard measure-preserving map in most ODT

and LEM applications, although there is no strict constraint on it. A quintuplet map

was used in some computation to determine the sensitivity of the results to the choice

of maps (Kerstein 1991). In this dissertation, only triplet map is discussed and used

because it is the simplest in its class. Figure 2.1 shows the e↵ect of a triplet map on

an initially linear scalar field (e.g., concentration). The eddy region (1  y  4, where

y marks the 1D simulation domain) is divided into three segments. The first and the

third segments are formulated by compressing the original eddy region by a factor of

three along y-direction. And they are attached by the second segment that is a copy

of either segment but with a reversed gradient. It is obvious that the map doesn’t
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Figure 2.1: Example of a triplet map on a linear profile. The eddy region l is divided
equally into three segments. The first and third segments are obtained by increasing
the original gradient by a factor of three. The second segment is the reversed copy of
the first one.

introduce any spatial discontinuity to the scalar field and the choice of instantaneous

implementation can be considered as a compromise to guarantee the continuity. After

the rearrangement, the strain intensity increases and the strain length-scale decreases,

which mimics the rotational and compressive e↵ect of a real eddy. Here the three seg-

ments have the same length in y, which gives uniform strain intensity multiplication and

length-scale reduction. There are situations when non-uniform maps are considered but

with additional empirical parameters. Again, these situations are not considered in this

dissertation. During the rearrangement, the non-local displacement imitates the large-

scale fluid motion and keeps the physical integrity of the fluid elements. Operationally,
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a triplet map can be expressed as

f(y) =

8
>>>>>>><

>>>>>>>:

y0 + 3(y � y0) if y0  y  y0 +
1
3 l

y0 + 2l � 3(y � y0) if y0 +
1
3 l  y  y0 +

2
3 l

y0 + 3(y � y0)� 2l if y0 +
2
3 l  y  y0 + l

y otherwise,

(2.1)

where l is the eddy length, and y0 is one end of the eddy region. Consider a velocity

field u(y) during this transformation

u(y) ! u[f(y)] + cK(y), (2.2)

where the cK(y) term is introduced in order to conserve total energy. The kernel is

defined as K(y) = y � f(y). The momentum will be automatically conserved for an

incompressible fluid on an Eulerian grid, since

Z y0+l

y0

K(y)dy = 0. (2.3)

It is helpful to derive the following identity first.

Z y0+l

y0

K

2(y)dy =

Z y0+l

y0

[y � f(y)]2dy

=

Z y0+l/3

y0

(2y � 2y0)
2dy +

Z y0+2l/3

y0+l/3
(4y � 4y0 � 2l)2dy +

Z y0+l

y0+2l/3
(2y � 2y0 � 2l)2dy

=

✓
4

3
y

3 � 4y0y
2 + 4y20y

◆����
y0+l/3

y0

+ 4


4

3
y

3 � 2(2y0 + l)y2 + (2y0 + l)2y

�����
y0+2l/3

y0+l/3

+ 4


1

3
y

3 � (y0 + l)y2 + (y0 + l)2y

�����
y0+l

y0+2l/3

=

✓
4

81
l

3 +
8

9
y0l

2

◆
+

4

81
l

3 +

✓
�8

9
y0l

2 +
4

81
l

3

◆

=
4

27
l

3

(2.4)

For the convenience of later discussion in this chapter, y is chosen as the spatial coor-

dinate, and potential energy is added to kinetic energy to solve the energy conservation
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equation

1

2
⇢0

Z y0+l

y0

u

2(y)dy + g

Z y0+l

y0

⇢(y)ydy =
1

2
⇢0

Z y0+l

y0

(u[f(y)] + cK(y))2dy

+ g

Z y0+l

y0

⇢[f(y)]ydy.

(2.5)

Here Boussinesq approximation is applied and ⇢0 is the reference density. Combining

identities (2.3) and (2.4), and u(y) = u[f(y)], it yields a quadratic equation for c

2

27
l

3
c

2 + uK l

2
c+

g

⇢0
�Eg = 0, (2.6)

with

uK ⌘ 1

l

2

Z y0+l

y0

u[f(y)]K(y)dy, (2.7)

and

�Eg ⌘
Z y0+l

y0

(⇢[f(y)]� ⇢(y)) ydy. (2.8)

The solution of the above equation is

c =
27

4l


�uK + sgn(uK)

r
u

2
K � 8g

27⇢0l
�Eg

�
. (2.9)

The turbulent energy term inside the square root reflects the change of total energy

between the configurations before and after the map. In other words, it can be used to

measure the stability of the flow in the eddy region. If c is imaginary, this implies that

the region examined is stable in terms of energy and that there is not enough energy to

drive a turnover. The calculation above only included one dimensional velocity profile

for the purpose of simplification. In fact, ODT is capable of capturing some features of

3D fields (Kerstein 1999), in which one needs to consider that the turbulent energy may

redistributed in an anisotropic way (Ashurst & Kerstein 2005). In this dissertation, a

simple isotropic option is adopted because the properties of interest are not sensitive on

this matter.

Similar to LEM, ODT generates a sequence of mapping events according to a Poisson

process. Although a triplet map is implemented instantaneously, it should occur at a

time scale ⌧(l, y0, t) that is approximate to the real eddy turnover time. One main

distinction in ODT is that ⌧ is treated as a local, instantaneous time scale rather than
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a mean time scale as in LEM. There are di↵erent approaches to estimate the eddy time

scale based on dimensional analysis. Kerstein (1999) started from the local strain and

considered it in the Fourier picture. The others (Kerstein & Dreeben 2000; Ashurst &

Kerstein 2005; Kerstein & Wunsch 2006; Gonzalez-Juez et al. 2011) usually associate it

directly to the eddy driving energy. From the previous calculation, the relation can be

expressed in the following way
✓
l

⌧

◆2

⇠ u

2
K � 8g

27⇢0l
�Eg � Z

⌫

2

l

2
. (2.10)

The first two terms match the turbulent energy term in the square root of Equation (2.9).

If both terms are positive and the whole term increases, the driving of the eddy becomes

stronger and the required time for a region of size l to mix convectively becomes shorter.

On the contrary, if both terms decrease and the whole term reaches negative value, the

eddy turnover time increases till no eddy occurs. The last term is added to represent

the viscous damping e↵ect with the first free parameter Z serving as a local Reynolds

number to suppress small eddy events with time scales longer than the viscous time

scale l

2
/⌫. At last, the eddy rate distribution can be expressed as

�(l, y0, t) ⌘
C

l

2
⌧(l, y0, t)

=
C

l

3

s

u

2
K � 8g

27⇢0l
�Eg � Z

⌫

2

l

2
, (2.11)

where C is the second free parameter that controls the overall eddy rate. Strictly

speaking, �(l, y0, t)dl is the frequency of events in the size range [l, l + dl] per unit

length at time t and location y0. The instantaneous frequency is capable of collecting

feedback directly from the current flow status, but requires costly reconstruction at

each time step. To resolve this nonstationary Poisson Process, ODT applies a thinning

algorithm (Kelton & Law 2000) to reduce the computing load. Briefly speaking, thinning

algorithm chooses a �

0 always bigger than the actual rate so that the system advances

at the smallest time step possible to avoid missing any feedback from the flow. At each

time step, an eddy trial is carried out at a certain location and � is calculated according

to Equation (2.11). By comparing �0

� to a random number U(0, 1), the eddy trial is

decided to be accepted (�
0

� � U(0, 1)) or rejected (�
0

� < U(0, 1)). In this way, the time

step becomes smaller when the flow is turbulent in order to capture all the information

of the flow, and the time step becomes bigger when the flow is stable in order to save

eddy sampling time.
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2.3 Application

Due to the limit of spatial dimensionality, ODT manages to capture as many flow

properties as possible by generally dividing the problems into two categories in its

application (Kerstein 1999): temporal flows (T-flows) and spatially developing flows (S-

flows). T-flows are represented by a time evolution of the transverse profile of streamwise

velocity and other scalar profiles. In this category, ODT has been applied to the Couette

flow, channel flow, pipe flow, double di↵usive convection (Gonzalez-Juez et al. 2011),

and reactive Rayleigh-Taylor turbulent mixing (Gonzalez-Juez et al. 2013). S-flows are

di↵erent in that the realizations are parameterized by two spatial dimensions (stream-

wise coordinate x and vertical coordinate y) instead of y and time t as in T-flows.

The velocity along y�direction is solved by the combination of the momentum di↵u-

sion equation and the continuity equation. In this category, ODT has been applied to

buoyancy-driven flows such as the Rayleigh convection, penetrative convection in the

atmospheric-boundary-layer problem, and meter-scale buoyant turbulent flames (Ricks

et al. 2010).



Chapter 3

Implementation

In this chapter, I describe the development of my version of ODT. For better adap-

tation to the astrophysical problems of my interest, a Lagrangian grid is chosen over

an Eulerian grid. The advantages and disadvantages of this choice are discussed in

detail below. A flowchart is presented to explain how ODT processes on the newly

chosen grid. After adding in a large-eddy-suppression mechanism, ODT is tested with

the Rayleigh-Taylor instability problem and the results are compared with those of 3D

direct numerical simulations (DNS). The Helmholtz equation of state is adopted and

modified for di↵erent cases in the stellar application, each of which is tested on both

accuracy and e�ciency. Two di↵usion solvers included in ODT are discussed and com-

pared by di↵using a step-function profile on an isolated grid. Finally, a simple XRB

model with 3-isotope burning is presented to test all the building pieces included so far.

3.1 Lagrangian grid

In previous applications, ODT has been applied primarily on an Eulerian grid be-

cause of convention and specific problems. For similar reasons, we decide to apply ODT

on a Lagrangian grid for our applications. In detail, the advantages of a Lagrangian

grid are listed as follows.

First, no numerical di↵usion is introduced to a simulation on a Lagrangian grid. The

transformation from Lagrangian coordinates to Eulerian coordinates can be expressed

14
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as a material derivative
D

dt
=

@

@t

+ u ·r. (3.1)

The non-linear advection term on the right side introduces numerical di↵usion on an

Eulerian grid, which sometimes causes especially di�cult problems in simulations like

modeling thermonuclear burning fronts (LeVeque et al. 1998). It is of great advantage

that it is not present on the left side of the equation that corresponds to a Lagrangian

grid. Although this advantage of the Lagrangian formulation breaks down in some

multi-dimensional simulations in which the comoving grid becomes very distorted, it

is not a concern in our one-dimensional turbulence model. On an Eulerian grid, ODT

usually treats problems as T-flows or S-flows (Section 2.3). For T flows, only the term
@
@t is considered for time evolution. For S-flows, the other term, u ·r, is solely included

in the calculation for two-dimensional spatial evolution. Because there is only time

derivative on a Lagrangian grid, it falls into T-flows category.

Second, when the flow is compressible, ODT in the Eulerian formulation has to

resolve the following two issues (Ashurst & Kerstein 2005). The mass flux induced by

molecular di↵usion yields an auxiliary variable that is called mass-average velocity. It

can be eliminated but requires adopting a molecular transport model such as Fickian

transport. Another issue is that the momentum conservation is no longer automatically

maintained by property (2.3) simply because the density can no longer be pulled out of

integration of equation
Z

⇢(y)u(y)dy =

Z
⇢[f(y)]u[f(y)]dy. (3.2)

An extra term has to be included in the velocity transformation to enforce momentum

conservation, which also causes complexity to the energy conservation. These two issues

become trivial in the Lagrangian formulation. The mass-average velocity is caused by

advection and is included in the advection term of the Navier-Stokes equations. This

factor is not present on a Lagrangian grid. When we consider momentum conservation,

if the density terms in Equation (3.2) are absorbed into integration variable by defining

dm = ⇢dy, then the momentum conservation still holds without further complication.

Here m is usually referred to as column depth and its physical meaning is mass per unit

area.
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Figure 3.1: Implementation of a triplet map on a simulation grid by permutation. The
solid lines are the original linear profile and the profile after a triplet map. The color
bars represent the corresponding discrete values on the grid. All the bars are marked
with numbers to show the permutation pattern.

Third, it is easier to implement triplet maps on a uniform Lagrangian grid. Generally

speaking, there are two ways to implement a triplet map: permutation and adaptive-

mesh. Permutation is a simpler method that can be demonstrated by Figure 3.1. Similar

to Figure 2.1, an originally linear profile of any scalar field is chosen as the example.

Its value is represented by the vertical axis and the simulation grid is represented by

the horizontal axis. During the mapping process, nine zones are permutated in the

following fashion. Both the first and last zones stay at the original position owing

to the continuity requirement. To increase the gradient by a factor of three, the rest

two zones in the first segment are chosen by jumping two zones forward in each step.

The second segment starts with the second to last zone (eighth zone) and proceeds by

jumping two zones backward in each step. The rest three zones form the third segment

similar to the first segment. Permutation is often used on a uniform grid because of its

simplicity. When the grid becomes non-uniform, the adaptive-mesh method is usually

adopted instead. It involves the splitting of individual zones and merging of adjacent

zones in a conservative way. For our current stage of development, a uniform Lagrangian

grid is chosen so that permutation is used as the operation method of a triplet map.
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Considering the environment of a neutron star surface layer in which density variation

can span multiple orders of magnitude, permutations of zones cause great changes in

density. In other words, the sizes of the zones change a lot after a permutation on an

Eulerian grid. Thus it is almost impossible to implement triplet map without involving

adaptive-mesh method. But for a Lagrangian grid with equal mass or column depth,

the sizes of the zones are not a↵ected by the density variations at all.

Despite the convenience of choosing the Lagrangian formulation, the coordinate

transformation from spatial to mass/column depth is usually lengthy and can cause

di�culties particularly in eddy sampling process. As introduced in Section 2.2, thinning

algorithm provides an approach of accepting or rejecting an eddy trial by comparing

�/�

0 with a uniformly distributed random number. Practically speaking, � should

be a joint probability that involves not only the turbulent energy terms but also a

probability function that relates to a location and length of the eddy trial. For the

location, it is usually considered as a uniformly distributed function on the grid. But

for the eddy length, ODT calculates it according to an assumed probability density

function that was originally designated for a spatial coordinate. Although the function

itself is dimensionless and pure mathematical, the result calculated carries an inherited

spatial unit. If the result is used directly with a unit of mass/column depth, the density

information will be missing. For example, in the region with large density profile, a

reasonable length of an eddy trial on a Lagrangian grid can easily become so small

on its corresponding Eulerian grid that the transformed length yields impossible or

trivial case for a triplet map, i.e., smaller or equivalent to three grid spacings. For this

consideration, the eddy length sampling on a Lagrangian grid is implemented in the

following steps.

1. Locate the smallest spatial grid spacing by �y = �m/⇢max.

2. Calculate the total spacing of the simulation domain and split it into a uniform

Eulerian grid with grid spacing as �y.

3. Calculate the length of an eddy trial on the new grid using the probability density

function.

4. Transfer the eddy region back to the Lagrangian coordinate and include all the
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a↵ected zones as the new eddy region. Reject the eddy trial if the new region is

too small to implement a non-trivial map.

The rejection of the trivial or impossible eddy trial in the last step can be considered

as information lost due to di↵erent resolutions. Even when two grids share the same

resolution, this problem still occur if a small eddy trial takes place at a low density

region. To fully resolve this issue, the adaptive-mesh method is required.

3.2 Flowchart

Based on the previous introduction and discussion, a flowchart of ODT on a La-

grangian grid is concluded in Figure 3.2. Starting from initialization, ODT processes

through two time systems: the eddy sampling time and the physical time. As the names

indicate, the former advances according to a nonstationary Poisson process with thin-

ning algorithm (Section 2.2) while the latter advances according to the requirements of

various actual physical processes. At the beginning of the realization, a time step of

eddy sampling time is calculated by

�t = � 1

�

0 lnU(0, 1), (3.3)

where �

0 is the estimated initial frequency. The location and length of an eddy trial

are obtained by associating the corresponding probabilities to random numbers, respec-

tively. After the coordinate transformation, the trial will be considered as an eddy

sampling event only if it is non-trivial. Apply a triplet map in the eddy trial region

and the turbulent energy terms can be calculated. Combining the aforementioned two

probabilities, the overall eddy rate � is obtained and one reaches the select and reject

process of the thinning algorithm in which the eddy is accepted with a probability �/�

0.

If the trial is rejected, the eddy sampling time will advance by a new time step accord-

ing to Equation (3.3) and the sampling process will repeat without any update on the

physical time. Here �

0 will be increased if �/�0 reaches a threshold value in order to

guarantee the condition of thinning algorithm, i.e., �0
> �. In other words, the average

sampling time, ⌧ = 1/�0, will be reduced. If the trial is accepted, then the triplet map

will be implemented in the trial region, and all the physical processes will evolve after

the mapping with respect to the physical time. Once the physical time reaches the eddy
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Figure 3.2: Flowchart of ODT on a Lagrangian grid.
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sampling time, ODT switches back to eddy sampling time advancement and another

eddy sampling cycle starts. For each cycle, ODT updates a cycle counter and records

the non-zero value of �/�0. Once the counter reaches a certain threshold, ODT sums

up all the non-zero values and calculates the average of this ratio. If the average is

too small, the sampling frequency �

0 will be decreased to reduce the sampling loads.

In this way, ODT manages to couple these two time systems in one realization. To

collect statistical average, ODT runs multiple realizations in parallel. It is worth noting

that multiple random numbers have been applied in the process of each realization. A

pseudorandom number generator named RANMAR (James 1990) is chosen because of

its e�ciency and capability of generating independently disjoint sequences (Marsaglia

et al. 1990). Several simple tests of its quality are shown in Appendix A.

3.3 Rayleigh-Taylor instability

The Rayleigh-Taylor instability (RTI) is an instability that occurs at the interface of

two fluids of di↵erent densities. A typical RTI configuration is a light fluid supporting a

heavy one in the gravity field or a light fluid accelerating towards a heavy one. Theory

predicts that the evolution of RTI for two incompressible immiscible fluids includes two

phases. In the first phase, linear stability theories predict that small amplitude pertur-

bations at the interface grow exponentially (Chandrasekhar 1955). When the amplitude

becomes comparable to its wavelength, the perturbations become asymmetric with the

asymmetry increasing with the Atwood number A = (⇢2�⇢1)/(⇢2+⇢1) (Dimonte et al.

2004), where ⇢1 and ⇢2 are the densities of light and heavy fluids, respectively. In the

second phase, the flow grows in a self-similar way without any memory of its initial

conditions. Ristorcelli & Clark (2004) and Cook et al. (2004) found out that the growth

rate can be described by the following equation

dh

dt
= 2(↵Agh)1/2. (3.4)

Here h is the mixing thickness and it means the height of the mixing region. Conven-

tionally, the light fluid that penetrates the heavy one is called bubbles while the heavy

fluid that penetrates the light one is called spikes. ↵ is a dimensionless parameter, g is
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the acceleration, and t is the time. The solution to Equation (3.4) at late times is

h(t) = ↵Agt

2
. (3.5)

Multiple experiments with di↵erent techniques have been carried out to measure ↵.

Read (1984) and Youngs (1989) used solid fuel rocket motors to accelerate a light fluid

downward to a heavy fluid with its initial perturbations being random rather than

a single wavelength. Andrews & Spalding (1990) inverted a narrow tank with light

fluid on top to create an unstable stratified system. By manually removing a plate as

separation, Dalziel (1993) mixed two layers of fluid with heavy one on top. Pacitto et al.

(2000) approached the initial perturbation by stabilizing and destabilizing the interface

of two magnetic fluids with a magnetic field. Ramaprabhu & Andrews (2004) used

water of di↵erent temperatures flowing through a channel with splitter for the set-up.

From these experiments, ↵ is found in the range 0.03 < ↵ < 0.07 (Cook & Youngs

2009). Compared with experiments, simulations of RTI have an obvious advantage

on the initial perturbation set-up, which is usually categorized into single-mode and

multimode. In detail, simulations usually use perturbations with wavelengths much

smaller than h so that the exponential growth in Equation (3.4) won’t contaminate

the self-similar growth. Besides, simulations can expand their domains such that the

boundary influence is negligible. But the calculation turns costly since the large length-

scale change it has to cover. Dimonte et al. (2004) summarized the range of ↵ from

simulation results: 0.02 < ↵ < 0.08.

In this section I present RTI simulation using ODT for the purpose of testing ODT.

The initial set-up is similar to that used in Dimonte et al. (2004) but transferred to

a grid of mass with reversed acceleration. As shown in Figure 3.3, a layer of idea gas

of density ⇢2 = 3g/cm3 (shaded area) accelerates towards a layer of gas of density

⇢1 = 1g/cm3 with an acceleration g = 2 cm/s2. The simulation domain has increased

by a factor of three with 1500 grid points included to avoid possible boundary influence.

3D simulations usually perturb the interface by di↵erent modes, which involves the

di�culty on band-limiting of initial condition. Several simulations indicate that there is

a sensitive relation between the initial condition and results (Cook & Dimotakis 2001;

Glimm et al. 2001; Dimonte et al. 2004). ODT uses a sharp interface instead and the

initial development of eddies is obtained by eddy sampling. Considering a trial eddy
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Figure 3.3: Initial density profile of RTI simulation. A layer of idea gas of density
⇢1 = 1g/cm2 supports a layer of idea gas of density ⇢2 = 3g/cm3 against an acceleration
field g = 2 cm/s2. A sharp interface is implemented without any initial perturbation.
The simulation regions of densities are set with unequal sizes in order to match the
corresponding set-up in Eulerian coordinates that are used in 3D DNS studies.

across the interface, the energy conservation implies that
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(3.6)

The terms in each bracket on the left hand side of the equation are the kinetic energy,

potential energy, and thermal energy, respectively. u is the velocity vector, m is the

mass or column depth, y is the length, R is the gas constant, T is the temperature, µ is
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the molar mass of the chosen ideal gas (hydrogen and helium), and p is the pressure. The

mapped quantities are represented by a subscript for convenience and uf = u+cK(m).

The integration interval is the trial eddy range [m0,m0+ lm]. Similar to Equation (2.5),

the solution is

ci =
27

4lm

0

@�ui,K + sgn(ui,K)

vuut1

3

 
3X

i=1

u

2
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27lm
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and

ui,K ⌘ 1

l

2
m

Z
ufK(m)dm. (3.9)

A factor of 1/3 inside the square root indicates isotropic redistribution of turbulent

energy. The eddy rate distribution therefore is

� =
C

l
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vuut
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u
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27lm
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⌫

2

l

2
. (3.10)

It is worth noting that l is the corresponding spatial length of lm. The formulation

of Equation (3.10) is generalized to compressible fluid with an adiabatic triplet map

assumption. Another approach with Boussinesq approximation is similar to Equa-

tion (2.11) and is used in Gonzalez-Juez et al. (2013)

With properly chosen C and Z parameters, any eddy trial across the interface is

likely to be accepted owing to the highly unstable configuration. Sometimes an unphys-

ically large eddy can occur. ODT introduces a large-eddy-suppression mechanism to

avoid these eddies of sizes exceeding the mixing thickness. In general there are three

methods in publications to date. The first method introduces one more free parameter

� to explicitly constrain the eddy turnover time scale ⌧ = C/(l2�), namely �⌧ < t,

where t is the given elapsed time (Kerstein & Dreeben 2000). The second method adds

another way to evaluate the eddy rate distribution to Equation (3.10) by replacing each

velocity profile with a linear profile (Kerstein et al. 2001). Each linear profile has a

slope that is equal to the median value of the corresponding velocity gradient magni-

tude within the eddy region. The final eddy rate is chosen as the smaller value of these



24

two evaluated eddy rates. This method eliminates the case when more than half of the

eddy region has a flat velocity profile. The third method doesn’t introduce any new

parameter or new evaluation method. In detail, it equally divides the eddy interval into

three subintervals: [m0,m0+ l/3], [m0+ l/3,m0+2l/3], and [m0+2l/3,m0+ l] (Ashurst

& Kerstein 2005). Then it evaluates an eddy rate within each subinterval according

to Equation (3.10) but replaces the viscous penalty term with the one calculated from

the overall interval [m0,m0 + l]. If any of these three rates is zero, the eddy trial is

suppressed. The overall eddy rate otherwise is calculated and accepted. This method

rejects eddy trials with their unstable regions concentrated within one or two subinter-

vals. Thus their eddy lengths should be reduced to sizes that encompass the actually

turbulent region. Compared with the first two methods, the last one is most robust and

with least arbitrary, so it is adopted in this dissertation.

Three di↵usion processes are included and they can be written as follows:
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= ⇢
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✓
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where Yi is the molar fraction of isotope i, T is the thermal di↵usivity, Y is the molar

di↵usion coe�cient, and ⌫ is the kinematic viscosity. The numerical solution to these

equations will be discussed in Section 3.5. Combining with the ideal gas equation of

state

P =
⇢RT

µ

, (3.14)

all the properties can be solved as a function of time.

The density profile of a chosen single realization is shown in Figure 3.4. Each vertical

discontinuous line in color represents an instantaneous mapping event. The turbulent re-

gion initiates from the interface shortly after the simulation starts and develops into two

fluids as the sizes of bubbles and spikes grow. Because each realization is independent,

multiple realizations calculation can be easily parallelized using MPI. Figure 3.5 shows

the averaged mixing thickness of 1024-realization simulations (represented by dots). The
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Figure 3.4: Density evolution of RTI. Evolution of a single realization profile demon-
strates the instantaneous mapping events as discontinuous lines in color. The turbulence
initiates quickly around the interface after the simulation starts. Bubbles and spikes
develop as the turbulent cascade structure forms.

results are compared with those of FLASH (Calder et al. 2002) which are represented

by triangles. The bubbles are in blue color while the spikes are in red color. A vertical

dashed line at t = 5 s marks the early developing phase with a rapidly changing slope.

Similar to Calder et al. (2002), h is measured by comparing the density deviation from

the initial profile by more than 1%. Overall, ODT results show a nice linear relationship

between h and Agt

2. A particular set of parameters, i.e., C = 5 ⇥ 10�4 and Z = 0.5,

is chosen to fit the results of FLASH with an emphasis particularly on spike height. In

detail, ODT results are ↵b = 0.016 for the bubbles and ↵s = 0.028 for the spikes, while

FLASH results are ↵b = 0.024 and ↵s = 0.030. If the first five seconds are neglected,
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Figure 3.5: Mixing thickness of RTI. The results are obtained by averaging over the
density profiles of 1024 realizations. Bubbles and spikes heights are computed by mea-
suring the density deviation from the initial profile by more than 1%. A set of parameter
(C,Z) = (5⇥ 10�4

, 0.5) is chosen to fit the spikes heights of FLASH, i.e., ↵s = 0.026 if
the first 5 s (vertical dashed line) that involves rapid slope changing is neglected.

ODT yields ↵b = 0.014 and ↵s = 0.026, while Flash yields ↵b = 0.021 and ↵s = 0.026.

There is no special reason for this choice of C and Z since another set of parameter can

fit the bubble height equally well. A noticeable di↵erence is that ↵ for the bubbles in

ODT is smaller than that in FLASH. As mentioned in Section 3.1, the sampling statis-

tics are implemented by transforming everything back to an Eulerian coordinate. So the

masses of two idea gases have a ratio 3:1 in the initial configuration to match the equal

volume set-up of 3D simulation (Calder et al. 2002). In the Eulerian coordinate, this

sampling mechanism indicates an almost equal development of bubbles and spikes. But

in the Lagrangian coordinate, eddy lengths of bubbles are bigger than those of spikes.
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Large-eddy-suppression mechanism tends to accept eddy trials with smaller eddy sizes,

which indicates that more eddy trials accepted for spikes than bubbles. As a result, the

development of spikes is faster than that of bubbles.

The purpose of this application is to test the configuration in the Lagrangian co-

ordinate, so the choice of C and Z is decided to match a DNS result. Gonzalez-Juez

et al. (2013) did a survey in the parameter space for non-reactive RTI using Boussinesq

approximation and found that 0.02  ↵  0.08 for di↵erent sets of C and Z. And a

particular set of parameters can fit the DNS result ↵ = 0.03 very well. Because param-

eters are not configuration independent, e.g., a change in the size of simulation domain

will result in changes in the parameters, it is not necessary to compare parameters for

di↵erent configurations. In conclusion, the test shows that ODT on a Lagrangian grid

is capable of simulating RTI in good agreement with DNS results.

3.4 Equation of state

The equation of state, or EOS, of an ideal gas is adequate for the RTI problem. But

when it comes to neutron stars, a stellar EOS must be included to the calculations. In

ODT, the Helmholtz EOS (Timmes & Swesty 2000) is adopted because of its accuracy

and speed for our applications in the rest of this dissertation. The Helmholtz EOS

chooses Helmholtz free energy F (⇢, T ) for thermodynamic consistency. F (⇢, T ) and its

eight partial derivatives are tabulated with the density ⇢ ranging from 10�12 g/cm3 to

1015 g/cm3, and with the temperature T ranging from 103K to 1013K in the package on

Frank Timmes’ webpage (Timmes 2015b). A biquintic Hermite polynomial is used as the

interpolating function to gain the continuity of the pressure, entropy, and internal energy

derivatives, although the interpolation scheme is independent of the chosen function.

An electron-position EOS table is accurately constructed based on the Helmholtz free

energy and its derivatives, and the part of ions and photons are calculated analytically

because of their simplicity. Practically speaking, the EOS yields most of the other

thermodynamic quantities once (⇢, T ) are given.

In the application of ODT, the pair (⇢, T ), however, is not always given. In fact,

neither of them is known in the assumed adiabatic mapping process and the isobaric

process that involves nuclear reactions. Besides, our choice of uniform mass grid and
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hydrostatic equilibrium assumption guarantees that the pressure is always explicit

P =
X

i

mig, (3.15)

where i is the grid number starting from the top. So most of our applications combine

one of (⇢, T ) with P . Considering the adiabatic process, the specific entropy and the

pressure (s, P ) are known before and after a mapping. The thermodynamic potential

corresponding to (s, P ) is the specific enthalpy h, defined as

dh = Tds+
1

⇢

dP. (3.16)

It would be ideal if a similar table of h(s, p) could be constructed and the other ther-

modynamic quantities can be quickly obtained with thermodynamic consistency by a

given (s, P ) pair. It is, however, not so easy to achieve because of the following two

reasons. First, there is no guarantee that a specific (s, P ) always corresponds to a valid

thermodynamic solution, which indicates that some mechanism must be included first

to determine the validity of the specific pair. In general, it is di�cult to accomplish.

Second, the Helmholtz EOS on the (⇢, T ) basis is a rectangular table, which makes it

convenient to locate a point with a fast one-line hash table look-up. On the contrary,

a table on the (s, P ) basis is unlikely to be rectangular, which indicates a more ex-

pensive search mechanism is required. Based on these considerations, we use a more

straightforward approach: the Newton-Raphson method.

The Newton-Raphson method is a powerful root-finding algorithm with a quadratic

converging rate (Press et al. 1993). The basic idea of 1D Newton-Raphson method can

be summarized as follows. Consider an equation of variable x,

f(x) = 0, (3.17)

with its solution x = x

⇤. Starting with a guess x = x0, the Taylor expansion shows that

f(x0 + �x) = f(x0) + f

0(x0)�x+ . . . . (3.18)

Keeping the Taylor series only to first order and setting f(x0 + �x) = 0, an expression

for �x ⌘ �x0 can be found

�x0 =
f(x0 + �x)� f(x0)

f

0(x0)
= � f(x0)

f

0(x0)
. (3.19)
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So a new x = x1 can be adjusted by

x1 = x0 + �x0 = x0 �
f(x0)

f

0(x0)
, (3.20)

which should be closer to the root x⇤. Repeat this process k times with

�xk = � f(xk)

f

0(xk)
, (3.21)

and

xk+1 = xk �
f(xk)

f

0(xk)
, (3.22)

until |xk+1�x

⇤| is small enough to fulfill a certain requirement. Then xk+1 is considered

as the numerical root of Equation (3.17).

In our ODT application, 1D Newton-Raphson method includes two cases: (P, T )

and (P, ⇢). Because P is always known according to Equation (3.15), replace x with T

and ⇢, respectively, to solve

f(⇢) = P (⇢, T ⇤)� P

⇤ = 0, (3.23)

and

f(T ) = P (T, ⇢⇤)� P

⇤ = 0. (3.24)

Here the given quantities are marked with ‘*’. The Helmholtz EOS provides properties
@P

@⇢

and
@P

@T

, so the iterations can be processed as

⇢k+1 = ⇢k �
�P (⇢k)
@P (⇢k)

@⇢

, (3.25)

and

Tk+1 = Tk �
�P (Tk)
@P (Tk)

@T

, (3.26)

where

�P (⇢k) ⌘ P (⇢k, T
⇤)� P

⇤
, (3.27)

�P (Tk) ⌘ P (Tk, ⇢
⇤)� P

⇤
, (3.28)

and k = 0, 1, 2, . . . .
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1D Newton-Raphson algorithm can be easily generalized to 2D case. In ODT, there

are also two cases that involve a 2D solver: (s, P ) and (h, P ). Here I derive for the

former first. Consider the following equations

f(⇢k, Tk) = s(⇢k, Tk)� s

⇤ = 0,

g(⇢k, Tk) = P (⇢k, Tk)� P

⇤ = 0.
(3.29)

Expand them around (⇢k, Tk) with (�⇢k, �Tk) to first order, then

f(⇢k + �⇢k, Tk + �Tk) = f(⇢k, Tk) +
@f(⇢k, Tk)

@⇢

�⇢k +
@f(⇢k, Tk)

@T

�Tk,

g(⇢k + �⇢k, Tk + �Tk) = g(⇢k, Tk) +
@g(⇢k, Tk)

@⇢

�⇢k +
@g(⇢k, Tk)

@T

�Tk.

(3.30)

By setting

f(⇢k + �⇢k, Tk + �Tk) = 0,

g(⇢k + �⇢k, Tk + �Tk) = 0,
(3.31)

and combining
@f

@⇢

=
@s

@⇢

,

@f

@T

=
@s

@T

,

@g

@⇢

=
@P

@⇢

,

@g

@⇢

=
@P

@⇢

, (3.32)

a matrix of (�⇢k, �Tk) is obtained as
0

BBB@

@s(⇢k, Tk)

@⇢

@s(⇢k, Tk)

@T

@P (⇢k, Tk)

@⇢

@P (⇢k, Tk)

@T

1

CCCA

 
�⇢k

�Tk

!
=

 
�s(⇢k, Tk)

�P (⇢k, Tk)

!
, (3.33)

where �s(⇢k, Tk) ⌘ s

⇤ � s(⇢k, Tk), �P (⇢k, Tk) ⌘ P

⇤ � P (⇢k, Tk). The solution is

�⇢k =

@P (⇢k, Tk)

@T

�s(⇢k, Tk)�
@s(⇢k, Tk)

@T

�P (⇢k, Tk)

@s(⇢k, Tk)

@⇢

@P (⇢k, Tk)

@T

� @P (⇢k, Tk)

@⇢

@s(⇢k, Tk)

@T

,

�Tk =

@s(⇢k, Tk)

@⇢

�P (⇢k, Tk)�
@P (⇢k, Tk)

@⇢

�s(⇢k, Tk)

@s(⇢k, Tk)

@⇢

@P (⇢k, Tk)

@T

� @P (⇢k, Tk)

@⇢

@s(⇢k, Tk)

@T

.

(3.34)

Similar to Equation (3.26), the iteration pattern is

⇢k+1 = ⇢k + �⇢k,

Tk+1 = Tk + �Tk.

(3.35)
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When we need to solve for (h, P ), most of the derivations are the same but with

h replaced by s. Because the Helmholtz EOS doesn’t include properties related to h

explicitly,
@h

@⇢

and
@h

@T

need some extra e↵ort. According to the definition,

h = e+
P

⇢

, (3.36)

where e is the specific internal energy. Take the partial derivatives of the equation above

with respect to ⇢ and T separately, then

@h

@⇢

=
@e

@⇢

+
1

⇢

@P

@⇢

� P

⇢

2
,

@h

@T

=
@e

@T

+
1

⇢

@P

@T

.

(3.37)

Now the equations for (h, P ) corresponding to Equation (3.34) can be written as

follows:

�⇢k =

@P (⇢k, Tk)

@T

�h(⇢k, Tk)�
✓
@e(⇢k, Tk)

@T

+
1

⇢k

@P (⇢k, Tk)

@T

◆
�P (⇢k, Tk)

✓
@e(⇢k, Tk)

@⇢

@P (⇢k, Tk)

@T

� @P (⇢k, Tk)

@⇢

@e(⇢k, Tk)

@T

◆
� P (⇢k, Tk)

⇢

2
k

@P (⇢k, Tk)

@T

,

�Tk =

✓
@e(⇢k, Tk)

@⇢

+
1

⇢k

@P (⇢k, Tk)

@⇢

� P (⇢k, Tk)

⇢

2
k

◆
�P (⇢k, Tk)�

@P (⇢k, Tk)

@⇢

�h(⇢k, Tk)

✓
@e(⇢k, Tk)

@⇢

@P (⇢k, Tk)

@T

� @P (⇢k, Tk)

@⇢

@e(⇢k, Tk)

@T

◆
� P (⇢k, Tk)

⇢

2
k

@P (⇢k, Tk)

@T

.

(3.38)

Here �h(⇢k, Tk) ⌘ h

⇤ � e(⇢k, Tk) �
P (⇢k, Tk)

⇢k
, where the definition of h (Equation

3.36) has been substituted. Since the internal energy and its derivatives can be drawn

directly from the EOS, and h

⇤ can be derived from isobaric process (see Section 4.3),

the information in Equation (3.38) is completed.

It is worth noting that multidimensional Newton-Raphson method cannot guarantee

convergence to a root (Press et al. 1993). For (h, P ), the root finding usually fails if the

step (�⇢, �T ) is too big and the initial guess (⇢0, T0) is not su�ciently good. Because

(h, P ) is designated for heat generated during nuclear reactions, which is usually small

owing to the constraint on time step, a search in nearby region with reduced step

(�⇢0, �T 0) turns out to be e�cient and accurate. In detail,

(�⇢0k, �T
0
k) = !(�⇢k, �Tk), (3.39)
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Figure 3.6: Relative errors of T given (P, ⇢) and iterations number.

where

! =

8
>>><

>>>:

1 if r  0.2,

0.2

r

if r > 0.2,
(3.40)

with r as the maximum value of

✓
�⇢k

⇢k
,

�Tk

Tk

◆
. Therefore, the iteration pattern is

⇢k+1 = ⇢k + !�⇢k,

Tk+1 = Tk + !�Tk.

(3.41)

The tests for the four cases of the EOS solver are shown in Figures 3.6 to 3.9.

Each figure shows the absolute value of relative di↵erences with blue color on the left
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Figure 3.7: Relative errors of ⇢ given (P, T ) and iterations number.

axis, and the number of iterations used to find the root during the process with red

color on the right axis. Each panel in the figure corresponds to temperatures 107K,

108K, and 108K, respectively. These temperatures are chosen to cover the range in

which nuclear reactions are mostly active during an XRB. The densities range from

101 g/cm3 to 107 g/cm3 on a logarithmic scale. Usually a density range from 104 g/cm3

to 107 g/cm3 is su�cient for XRBs, here small density range is added to include the

surface expansion during a PRE burst. The figures are plotted with respect to (⇢, T )

because this pair yields a nice rectangular table. If one of the pair is the root, like T

in Figure 3.6 or ⇢ in Figure 3.7, the given pair, (P, ⇢) or (P, T ), is first calculated for

each (⇢, T ) in the table. Then use the corresponding solver to obtain T or ⇢ by an

initial guess of T0 = 103K or ⇢0 = 0.1 g/cm3. Finally, we compare the root with the

known grid point to obtain the relative di↵erence. The same method applies to (P, s)
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Figure 3.8: Relative errors of (⇢, T ) given (P, s) and iterations number.

in Figure 3.8 and (P, h) in Figure 3.9, but with the relative error as the maximum one

of the pair. The initial guess of T and ⇢ is chosen outside the rectangular table of the

figure to demonstrate the global convergence for a bad initial guess. The first three

cases Figures 3.6 to 3.8 shows overall good performance: errors below 10�8 (even below

10�16 at the discontinuing points), and number of iterations within 20. Each iteration

costs the standard computing time of a call to the Helmholtz EOS. For (P, s) pairs, it

takes more than 30 iterations for more than half of the table owing to the complexity

of 2D solvers. For (P, h) pairs, global convergence fails often, which indicates that a

good initial guess is required for the validity of the solver. Empirically speaking, a

guess within 15% guarantees an e�cient convergence as shown in Figure 3.9. This also

implies that a good guess can reduce the number of iterations in (P, s) pairs greatly.

Generally speaking, the relative error reduces when the number of iterations increases
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Figure 3.9: Relative errors of (⇢, T ) given (P, h) and iterations number.

regardless of the specific structure of the function. This anticorrelation can be observed

in these figures, especially in the 1D cases.

3.5 Di↵usion

As mentioned in Section 3.3, there are three microscopic di↵usion processes included

in ODT in this dissertation: thermal di↵usion, molar di↵usion (or mass di↵usion),

and momentum di↵usion. Their corresponding transport properties are the thermal

di↵usivity T , molar di↵usivity Y , and momentum di↵usivity (or kinematic viscosity)

⌫, respectively. On a coordinate of column depth m, the di↵usion equation has the form

as
@X

@t

= ⇢

@

@m

(⇢
@X

@m

), (3.42)
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where X is the di↵using property, and  is the corresponding di↵usivity. There are

two numerical solvers implemented in ODT for this equation, and they are discussed

in detail in this section. First, it is helpful to explain the notation of variables on a

computer grid. For any variable X, Xi
j is a zone-centered value in zone number j at

time step i, Xj� is the average of Xj and Xj�1 that represents the value at the interface

of Zone j and j � 1, and Xj+ is the average of Xj and Xj+1 that represents the value

at the interface of Zone j and j + 1. The averaging method is usually the arithmetic

mean. dX represents the spacing di↵erence of X (or �X).

The first solver uses simple explicit time integration with forward di↵erences. Set

all the quantities on the RHS at time step i, then Equation (3.42) can be written as

dXj

dt
=

⇢

i
j

dmj

"✓
⇢

dX

dm

◆

j+

�
✓
⇢

dX

dm

◆

j�

#i
. (3.43)

Set the di↵erence on the LHS as a di↵erence with respect to time, then

X

i+1
j �X

i
j

dt
=

⇢

i
j

dmj

⇣
⇢

dm

⌘

j+
(Xj+1 �Xj)�

⇣
⇢

dm

⌘

j�
(Xj �Xj�1)

�i
. (3.44)

Solving for Xi+1
j , we have

X

i+1
j = X

i
j +

⇢

i
jdt

dmj

⇣
⇢

dm

⌘

j+
(Xj+1 �Xj)�

⇣
⇢

dm

⌘

j�
(Xj �Xj�1)

�i
. (3.45)

In this way, all the Xj ’s at the next time step can be obtained by known quantities at

the current time step. This method is straightforward and accurate. One drawback is

that the time step is constrained by the Courant-Friedrichs-Lewy (CFL) time (Courant

et al. 1928)

tcfl =
dm2

2(⇢2)max
. (3.46)

Here the subscript ‘max’ indicates the maximum of  and ⇢ of all three di↵usion pro-

cesses. This time parameter sets the maximum time step so that the information has

enough time to propagate through grids. If the time step goes beyond tcfl, the solver will

yield incorrect solutions and even crash the code. This solver has been used to resolve

di↵usion processes in the RTI simulation (Section 3.3) because tcfl is in an acceptable

range. In the stellar environment, , especially in the case of thermal di↵usivity, is
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too big to hold this condition, which makes this method way too expensive to use. So

another e�cient solver with decent accuracy is in demand.

The second solver uses implicit time integration with forward di↵erences. It was

adopted from KEPLER code (Weaver et al. 1978a) and it has been modified to cope

with more boundary conditions. For the stellar problems, thermal di↵usivity is heavily

emphasized because it is usually many orders of magnitude higher than the other two.

So I use thermal di↵usion as an example to explain this solver.

At the interfaces of Zone j, two flux terms are

Fj� = �(⇢k)j�
Tj�1 � Tj

dmj�
, (3.47)

and

Fj+ = �(⇢k)j+
Tj � Tj+1

dmj+
, (3.48)

where k is the thermal conductivity. According to the energy conservation, the change

of temperature is related to the total flux by

@Tj

@t

=
1

(cpdm)j
(Fj+ � Fj�) , (3.49)

where cp is the specific heat capacity at constant pressure. It is chosen over the heat

capacity at constant volume because of Equation (3.15). For the time step, the implicit

solver sets the LHS of Equation (3.49) the same as Equation (3.44), but sets the terms

on the RHS at time step i+ 1 instead, namely,

T

i+1
j � T

i
j

dt
=

"
1

(cpdm)j
(Fj+ � Fj�)

#i+1

. (3.50)

Combining Equations (3.47) and (3.48), it can be written as

T

i+1
j � T

i
j

dt
=

"
(⇢k)j+

(cpdm)j dmj+
(Tj+1 � Tj)�

(⇢k)j�
(cpdm)j dmj�

(Tj � Tj�1)

#i+1

. (3.51)

It is worth noting that this equation can be simplified to Equation (3.44) by using the

definition

T ⌘ k

cp⇢
, (3.52)
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approximations (cp)j± ⇡ (cp)j and ⇢j± ⇡ ⇢j . To solve this equation, first define

↵j =

"
(⇢k)j�

(cpdm)j dmj�
dt

#i+1

, (3.53)

�j =

"
(⇢k)j+

(cpdm)j dmj+
dt

#i+1

, (3.54)

and

�j = 1 + ↵j + �j , (3.55)

then Equation (3.51) can be written as

T

i+1
j � T

i
j = �j

⇣
T

i+1
j+1 � T

i+1
j

⌘
�↵j

⇣
T

i+1
j � T

i+1
j�1

⌘
= ↵jT

i+1
j�1 � (↵j + �j)T

i+1
j + �jT

i+1
j+1 .

(3.56)

Sorting it by time step, we have

T

i
j = �↵jT

i+1
j�1 + �jT

i+1
j � �jT

i+1
j+1 . (3.57)

If the simulation grid (marked from number 1 to N) is isolated, there is no heat flux

across boundaries, namely, F1� = 0 and FN+ = 0. Then ↵1 = 0, �1 = 1 + �1 ,and

�N = 0. So Equation (3.57) has a nice matrix form,

0

BBBBBBBBBBBBB@

�1 ��1 0

�↵2 �2 ��2

...

�↵j �j ��j

...

�↵N�1 �N�1 ��N�1

0 �↵N �N

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

T

i+1
1

T

i+1
2

...

T

i+1
j

...

T

i+1
N�1

T

i+1
N

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

T

i
1

T

i
2

...

T

i
j

...

T

i
N�1

T

i
N

1

CCCCCCCCCCCCCA

,

(3.58)

and it can be solved by Gaussian elimination (Press et al. 1993) in the following way.
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First, eliminate the ↵ terms, then

0

BBBBBBBBBBBBB@

d1 ��1 0

0 d2 ��2

...

0 dj ��j

...

0 dN�1 ��N�1

0 0 dN

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

T

i+1
1

T

i+1
2

...

T

i+1
j

...

T

i+1
N�1

T

i+1
N

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

t1

t2

...

tj

...

tN�1

tN

1

CCCCCCCCCCCCCA

, (3.59)

where dj = �j � �j�1
↵j

dj�1
, d1 = �1, and tj = T

i
j +

↵j

dj�1
tj�1, t1 = T

i
1. Divide d terms

on both sides and set ej =
1

dj
, then

0

BBBBBBBBBBBBB@

1 ��1e1 0

0 1 ��2e2

...

0 1 ��jej

...

0 1 ��N�1eN�1

0 0 1

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

T

i+1
1

T

i+1
2

...

T

i+1
j

...

T

i+1
N�1

T

i+1
N

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

f1

f2

...

fj

...

fN�1

fN

1

CCCCCCCCCCCCCA

,

(3.60)

where fj = tjej . Define hj = �jej , then

0

BBBBBBBBBBBBB@

1 �h1 0

0 1 �h2

...

0 1 �hj

...

0 1 �hN�1

0 0 1

1

CCCCCCCCCCCCCA

0

BBBBBBBBBBBBB@

T

i+1
1

T

i+1
2

...

T

i+1
j

...

T

i+1
N�1

T

i+1
N

1

CCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBB@

f1

f2

...

fj

...

fN�1

fN

1

CCCCCCCCCCCCCA

. (3.61)

Finally, the solution is given by

T

i+1
j = hjT

i+1
j+1 + fj , (3.62)
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with T

i+1
N = fN .

The solution above is obtained for an isolated grid, which is usually unphysical for

a star. At the top boundary, a simple atmosphere model that sets T0 = 0 has the same

matrix form as Equation (3.58) by using ↵1 6= 0 and �1 = 1 + ↵1 + �1. At the bottom

boundary, consider a constant flux FN+ = Fb in Equation (3.51),

T

i+1
N � T

i
N

dt
=

1

(cpdm)N
[Fb � FN�]

i+1 =


Fb

(cpdm)N
� ↵N

dt
(TN � TN�1)

�i+1

. (3.63)

Define

Tb =


FbAb

(cpdm)N
dt

�i+1

, (3.64)

then the matrix form is retained by replacing T

i
N by T

i
N + Tb,

T

i
N + Tb = �↵NT

i+1
N�1 + (1 + ↵N )T i+1

N = �↵NT

i+1
N�1 + �NT

i+1
N . (3.65)

To compare these two solvers, a simple test that di↵uses a step-function profile with-

out di↵usion across the boundary is discussed in this paragraph. The initial configura-

tion is set up by filling half of an isolated grid with di↵using property, i.e., temperature,

molar fraction, or velocity, leaving the other half of the grid empty. The grid spans from

0 to 1 with a uniform resolution equal to 0.01. The transport properties and densities

are set to unity for simplicity. For the explicit solver, the time step is set to the CFL

time (Equation 3.46), and the number of time steps is set to 5000. For the implicit

solver, the test runs five cases, in which the time steps increase by a factor of 1, 10, 100,

1000, and 5000, respectively. The results are compared at the same ending time, so the

numbers of time steps are 5000, 500, 50, 5, and 1, respectively. The absolute values of

relative errors are shown in Figure 3.10. When the time step is comparable (blue and

red curves), the results of these two methods match well with the biggest relative error

around 10�3. As the time step increases, the biggest relative error increases from 10�3

to 0.2. Even when the time step increases by 5000 and only one time step is calculated

(the black curve), the implicit solver is still stable. All the curves show symmetry with

respect to a line at the mass equal to 0.5. This is because the symmetry is, in fact,

with respect to the center point of each curve and the relative errors has been taken

absolute values. Both solvers demonstrate good conservation of the di↵using property

with a relative error less than 10�13.
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Figure 3.10: Comparison of two di↵usion solvers. The test is set up with a step-function
profile di↵using on an isolated grid. The time step is set as the CFL time for the explicit
solver, while the time steps are varied by five di↵erent factors (1, 10, 100, 1000, and
5000) for the implicit solver. The relative errors are calculated at the same ending time
for both solvers, which indicates that the numbers of steps for the implicit solver are
5000, 500, 50, 5, and 1, respectively.

After a discussion of the numerical solvers, I briefly introduce the transport prop-

erties used in ODT in the rest of this section with a focus on the thermal di↵usivity

owing to its dominant magnitude. The routine is adopted from Frank Timmes’ work

(Timmes 2000). In detail, the thermal conductivity is calculated in two parts,

k = krad + kcond =
4acT 3

⇢

(
1

rad
+

1

cond
), (3.66)

where c is the speed of light, a is a constant and a = 4�/c, rad and cond are the radiative

and conductive opacities, respectively. In the case of radiative opacity, Iben (1975) and

Christy (1966) are used for all processes other than electron scattering. Weaver et al.
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(1978b) is used for the Compton opacity, which includes a cuto↵ for frequencies less

than the plasma frequency. The conductive opacity is calculated by the following two

parts. In the non-degenerate regime, analytic fits from Iben (1975) are used, whereas

in the degenerate regime, Yakovlev & Urpin (1980) is used.

3.6 A simple burst model with three isotopes

After a long run of code building, ODT is finally ready for a simple XRB model with

a basic 3-isotope burning process. This model is designated to investigate a hypothesis

Alexander Heger had in his KEPLER models for hydrogen-helium bursts (Woosley et al.

2004). The general picture is that after a layer of hydrogen and helium accreted, carbon

are produced through triple-↵ reactions. Because of the presence of hydrogen, carbon is

quickly burned into nitrogen in the CNO cycle. Thus a layer of nitrogen can be formed

for a brief time separating the hydrogen and newly produced carbon. This separation

can lead to an instability due to the heat accumulation in the carbon layer below. If the

energy of turnover is big enough to penetrate the nitrogen layer, the mixing of carbon

and hydrogen layers generates a lot of energy that is enough to power the subsequent

reactions and eventually trigger an XRB.

The environment of the model is a thin shell (⇠ 10m) of accreted material on the

surface of a neutron star of a typical 1.4M� and 106 cm radius. So the plane parallel

assumption is valid. The initial set-up is shown in Figure 3.11. The simulation domain

is divided into two parts (indicated by the vertical dashed line) which are filled by

hydrogen and carbon, respectively. The mass fraction is represented by the blue axis

on the left. An error function is applied to smooth the abundance profiles near the

separation line in order to provide the initial mixing and avoid discontinuity of other

profiles. The hydrogen part is arranged with a very small domain so that the mixing

near the surface of the star can be examined. Since the mixing is hopefully triggered by

the heat generated from the nuclear burning, density and temperature profiles are set

to a stable configuration in terms of entropy. The logarithmic axis for these quantities

is on the right in the red color. In detail, a temperature T = 5.83⇥108K is set at depth

m = 8.18⇥107 g/cm2. Both of the values are taken from a KEPLER model. According

to Equation (3.15), pressure can be obtained from the column depth and the physical
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Figure 3.11: Initial set-up of the 3-isotope model. The abundance of hydrogen and
carbon is associated to the left blue axis, while the density, temperature, and specific
entropy are associated to the right red axis. A stable configuration in terms of entropy
is set up by varying entropy with a factor determined by the distance between a grid
point and a reference point (indicated by the vertical dashed line). An error function
is applied to smooth the profiles near the interface and avoid any discontinuity in the
properties.

state at this depth can be determined by the EOS in the case of (P, T ) pair. Here the

temperature is chosen prior to the density, because the nuclear reaction rate is more

sensitive to temperature. The EOS yields the specific entropy at this depth, then an

entropy reference point is obtained and we build a stable entropy profile around it. If

a grid point at a di↵erent depth moves quickly to this point, the materials inside go

through an adiabatic process and end up with the same pressure. Assume the density is

close to that of the reference point too, the EOS yields the entropy for this grid point in

the case of (P, ⇢) pair. Reverse the previous adiabatic process, the physical state of the

grid point at its original depth is also determined in the case of (P, s) pair. Vary this
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entropy by a percentage factor with respect to its distance from the reference point, so

a stable configuration with decreasing entropy gradient is obtained. The other profiles

can be calculated by the EOS with the new entropy and known pressure. Multiple tests

have been carried out with the percentage factor ranging from a few percent to 50%.

And the most stable case (50%) is shown in Figure 3.11.

Due to the limited nuclear networks, helium is not included in the model. Hence

there is only one reaction involved: 12C(p, �)13N. The di↵erential equations of abun-

dance are
dYH
dt

= ��YHYC, (3.67)

and
dYC
dt

= ��YHYC, (3.68)

where Y is again the molar fraction, and � is the reaction rate from Caughlan & Fowler

(1988). Because of the mass conservation,

YC + YH = 1, (3.69)

the abundance can be solved analytically.

The di�culty, however, lies in the small molecular di↵usivity. At the nuclear burning

time scale, the mixing due to microscopic molecular di↵usion is too small to be con-

sidered, and the assumed adiabatic mappings don’t allow any mixing between zones.

It results in isolated zones for a uniform grid. In other words, the fuels burn out in

the mixed zones and the abundance stays the same thereafter. Theoretically speaking,

it is possible to resolve this issue by switching to the adaptive-mesh method for the

implementation of a map in which the mixing can be achieved by zone splitting and

merging. Such mixing, however, would be purely numerical and hence be artificial. A

compromising solution is adding a subgrid model to support the triplet maps on turbu-

lent mixing. And the mechanism from Clement (1993) is adopted. The general idea is

to model the turbulent viscosity as

⌫turb = !�Gq
1/2

, (3.70)

where ! is a dimensionless parameter of order unity, �G is the grid scale, and q is the

turbulent kinetic energy. Then the other two turbulent transport properties can be
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Figure 3.12: Evolution of the nitrogen mass fraction profile. The color represents the
mass fraction. It is the result of a single realization calculation with C = 1.0 and Z = 0.
The viscous penalty term is ignored since the viscosity is comparatively small in the
environment.

obtained by

T =
⌫

Pr
, (3.71)

and

Y =
⌫

Sc
. (3.72)

Here Pr and Sc are the turbulent Prandtl and Schmidt numbers, respectively. Both of

them are assumed to be 1/3. The Richardson’s criterion is applied to switch the subgrid

model on and o↵. The definition of the Richardson number at the zone interface is

Ri =
N

2

(
du

dz
)2
, (3.73)
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Figure 3.13: Evolution of the specific entropy (s) profile. The color represents the
logarithmic value of the specific entropy. It is the result of a single realization calculation
with C = 1.0 and Z = 0.

where N is the Brunt-Väisälä frequency, u is the velocity, and z is the spatial distance.

The critical value of Ri is approximately 1/4 (Miles 1961). If Ri � 1/4, the system is

considered stable; If Ri < 1/4, di↵usion with turbulent di↵usivities is allowed across the

zone interface.

The results of a single realization with a parameter set (C,Z) = (1.0, 0) are shown

in Figures 3.12 to 3.14. Here Z = 0 is because the viscous e↵ect is negligible compared

with the other energy terms. Eddy events initiate shortly after the simulation starts

around the reference point as the stable entropy gradient is reserved in the mixed fuel

region (see Figure 3.13). Then the mixing region quickly expands in both directions

and a layer of nitrogen starts to appear as expected (see Figure 3.12). But the layer is
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Figure 3.14: Evolution of the velocity (u) profile. The color represents the logarithmic
value of the velocity. It is the result of a single realization calculation with C = 1.0 and
Z = 0. Isotropic assumption is applied.

not restricted to a narrow band. The hydrogen left in the mixing region keeps di↵using

to lower carbon layer, which causes the nitrogen layer continuously eating the carbon

layer. From Figure 3.14, it is clear that the di↵using front is powered by the turbulent

di↵usion introduced by the subgrid model instead of eddy events. In other words, the

Richardson number in this region is small owing to the large velocity gradients. This

process decays as hydrogen depletes and the energy dissipates to larger area. Di↵erent

set-ups have been carried out, e.g., various stable entropy configurations (by changing

the percentage factors), various initial mixing regions (by changing the widths of the

error function), and various realizations (by changing the sequences of random numbers),

but this feature of expanding nitrogen layer remains the same. As a result, the layer
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of nitrogen doesn’t separate the hydrogen and carbon layers completely but expands

according to the Richardson’s criterion. The energy cannot build up in an explosive

way but increases gradually as the layer expands. Although the result is not completely

as predicted, the test shows that ODT is ready for XRBs simulations once a nuclear

network is implemented.



Chapter 4

Pure Helium Bursts Simulations

Using ODT

In this chapter, I present the pure helium bursts simulations. I start with an intro-

duction to a nuclear network that approximates the ↵-chain reactions using 19 isotopes.

Then I show the initial configuration and formulation of the ODT models. A test of

the nuclear burning process without any turbulent motion is discussed next to check all

the pieces of physics included except the mixing mechanisms. The rest of the chapter

focuses on the comparison and discussion of simulation results such as the light curves,

turbulent motions, and abundance with a particular focus on the turbulent motions

caused by di↵erent mixing mechanisms.

4.1 Nuclear network

Theoretically speaking, PRE bursts are usually caused by pure helium bursts or

hydrogen-poor bursts. There are two reasons for the neutron star atmosphere to be

hydrogen-poor. First, the hydrogen-rich layer above is ejected during the bright burst

(Sugimoto et al. 1984; Ebisuzaki & Nakamura 1988). Second, the mass donor is a

helium-rich white dwarf. A typical example is the ultracompact binary system 4U

1820-30 which has a short orbital period of 11.4 minutes (Stella et al. 1987).

A 19-isotope nuclear network that focuses on the ↵-chain reactions is included in

ODT for the application of simulating PRE bursts. The subroutine is adopted from

49
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4He

3He 14N
1H

12C 16O

27Al 31P 35Cl 39K 43Sc 47V 51Mn 55Co

20Ne 24Mg 28Si 32S 36Ar 40Ca 44Ti 48Cr 52Fe 56Ni

54Fen p
(α,γ)(αα,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ) (α,γ)

(p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p) (p,γ)(α,p)

19 isotope network

Figure 4.1: 19-isotope nuclear network. The explicit 19 isotopes are connected by the
red arrows while the implicit 8 isotopes are connected by the blue arrows. The latter
are included by assuming that the abundance is in steady state with the neighboring
nuclei. The protons in the upper right corner come from photodisintegration. Courtesy
of Frank Timmes.

Frank Timmes’ website (Timmes 2015a) and the details are described in Weaver et al.

(1978b). The 19 isotopes covered in this network (1H, 3He,4He, 12C, 14N, 16O, 20Ne,
24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 54Fe, 56Ni, protons from photodisintegra-

tion, and neutrons) are shown in Figure 4.1 and the reactions are indicated by the red

arrows. 8 isotopes connected by the blue arrows (27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn,

and 55Co) are included implicitly by assuming that the abundance is in steady state

with neighboring nuclei.

The general idea of this nuclear network is described as follows (see Timmes 1999).

On a Lagrangian grid, the general continuity equation for isotope i is

dYi
dt

+r · (YiVi) = Ṙi, (4.1)

where Yi = Xi/Ai is the molar abundance, Vi is the mass di↵usion velocity, and Ṙi is

the total reaction rate. For binary reactions of the form i(j, k)l, the reaction rates can

be written as

Ṙi =
X

j,k

YlYk�kj(l)� YiYj�jk(i), (4.2)

with �kj and �jk being the reverse and forward reaction rates respectively. And they

are related to the relative velocity v and reaction cross section � by

�kj = ⇢hNAv�ik,l, (4.3)

and

�jk = ⇢hNAv�ii,j , (4.4)
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where NA is the Avogadro’s constant. For triple-↵ reaction, some modifications need

to be made for coe�cients,

Ṙ4He = 3Y12C�(12C!4He) �
3

3!
Y

3
4He�(4He!12C). (4.5)

The nuclear reaction rates (�) are calculated according to Woosley et al. (1975);

Holmes et al. (1976); Woosley et al. (1978); Caughlan & Fowler (1988). In a neutral

plasma, nuclei are surrounded by electron clouds, which reduces the e↵ective charges of

nuclei in the Coulomb interaction and decreases the Coulomb barrier of nuclear reac-

tions. Thus the reaction rates should be enhanced by a multiplier called the screening

factor. For weak screening, the network calculates the factors based on Graboske et al.

(1973). For strong screening, Alastuey & Jancovici (1978) is used and plasma parame-

ters are calculated based on Itoh et al. (1979).

Because the nuclear burning time scale is much shorter than that of mass di↵usion,

the velocity term in Equation (4.1) can be neglected. Therefore the equation is modified

to the standard form

Ẏ = Ṙ = f(Y ), (4.6)

which constitutes a reaction network. To solve this set of ordinary di↵erential equations,

an implicit time integration solver is preferred because it is sti↵ in that the abundance

of at least one isotope evolves much faster than the others. Practically speaking, the

variable-order Bader-Deuflhard method combined with the linear algebra package MA28

(Du↵ et al. 1986) are used for accuracy and overall e�ciency.

4.2 Initial configuration

The initial configuration of our XRB simulation is linearly mapped from the top

thin layer of a KEPLER model of burster 4U 1820-30 built by Laurens Keek. The

environment is a thin shell of accreted material without hydrogen on the surface of a

neutron star of a typical 1.4M� and 106 cm radius. The accretion rate is 3⇥10�9
M�/yr

or 1.89 ⇥ 1017 g/s (10% Eddington accretion rate) and the bottom heating from the

neutron star crust is set as 0.45MeV per nucleus. The latter is higher than 0.1–0.15MeV

per nucleus usually taken to reduce the recurrence time to ⇠ 3.5 hours. The detailed

configuration is summarized in Figure 4.2. All the prominent abundance is marked
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Figure 4.2: Initial set-up of the pure helium burst model. All the prominent abundance
is marked by color curves and the values are shown on the left blue axis. The density
and temperature are represented by red dots and crosses with their values shown on the
right red axis, respectively. The simulation domain is the top thin layer of a KEPLER
model built by Laurens Keek.

by color curves on the left axis on a logarithmic scale. As shown by the black curve,

most of the simulation region is filled with helium. The temperature and density are

marked by crosses and dots on the right axis on a logarithmic scale, respectively. The

temperature is above 108K except around the surface region, which indicates that the

triple-↵ reaction is ongoing and the heat is accumulating for the later runaway.

The simulation domain of ODT is chosen from the surface of the star to a depth at

y = 9⇥109 g/cm2. At the top boundary, a similar atmosphere model is applied in which

the top zone is in touch with a vacuum above. A flux-limited di↵usion (FLD) model

(Levermore & Pomraning 1981) is adopted to reduce the flux near the surface during
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the expansion when it becomes optically thin to avoid the causality problem (Turner

& Stone 2001). At the bottom boundary, a constant flux of 7.58⇥ 1021 erg s�1 cm�2 is

applied. This value is interpolated from the flux of the KEPLER model at the same

depth. According to tests, small variation of this quantity does not change the burst

structure and the light curve because the burst energy mainly comes from the nuclear

reactions. But the burst initiation time is influenced by the variation because it provides

the heat to trigger the runaway. Another concern of this choice of boundary condition is

that it can introduce a flux feed back once the heat generated from the runaway reaches

the bottom boundary. So the simulation domain is chosen large enough to eliminate

this e↵ect.

4.3 Formulation

The formulation of eddy sampling is similar to that in Section 3.3. The energy

conservation during an eddy trial indicates
✓
1

2

Z
uf

2dm+

Z
gyfdm+

Z
efdm

◆
�
✓
1

2

Z
u2dm+

Z
gydm+

Z
edm

◆

=

Z
p(

1

⇢f
� 1

⇢

)dm,

(4.7)

where the three terms in the brackets on the left hand side are again the kinetic energy,

potential energy, and thermal energy, respectively, the term on the right hand side is

the work done to the eddy region. The only di↵erence from Equation (3.6) is that the

specific thermal energy is represented by e instead as there is no analytic expression in

this case. The heat generated from nuclear burning is not included in this process for

simplicity and to save computing time. Combining the velocity modification

uf = u+ cK(m), (4.8)

we can solve for c and find a same result as Equation (3.7)

ci =
27

4lm

0

@�ui,K + sgn(ui,K)

vuut1

3

 
3X

i=1

u

2
i,K � 8

27lm
�E

!1

A
, (4.9)

The di↵erence is that the term �E has the expression

�E = g

Z
(yf � y)dm+

Z
(ef � e)dm�

Z
p

✓
1

⇢f
� 1

⇢

◆
dm. (4.10)
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Because the viscous penalty is negligible, i.e., Z = 0, the eddy rate distribution is

� =
C

l

3

vuut
3X

i=1

u

2
i,K � 8

27lm
�E. (4.11)

So only one free parameter C is considered in this application.

In the absence of rotation and magnetic fields, the momentum conservation along

the radial direction (represented by the subscript ‘2’) indicates

du2
dt

= �1

⇢

@P

@r

� GM

r

2
+ ⇢

@

@m

✓
⇢⌫

@u2

@m

◆
. (4.12)

The first two terms on the right hand side of Equation (4.12) are cancelled due to

hydrostatic equilibrium condition,

@P

@r

= �GM

r

2
⇢. (4.13)

Therefore Equation (4.12) can be simplified as

@u2

@t

= ⇢

@

@m

✓
⇢⌫

@u2

@m

◆
, (4.14)

where the material derivative has been replaced by partial derivative because of the

Lagrangian coordinate. The simplified equation has the same format as the momentum

di↵usion equations in the other two directions, so the momentum conservation can be

summarized as
@ui

@t

= ⇢

@

@m

✓
⇢⌫

@ui

@m

◆
, i = 1, 2, 3. (4.15)

For energy conservation, we consider the change of enthalpy instead of internal energy

due to the isobaric process in each cell (Equation 3.15). According to Equation (3.16),

the change of enthalpy only comes from the heat term Tds. In other words, we can

write the energy conservation equation as

dh

dt
= � @L

@m

+ ✏, (4.16)

where L is the heat flow (luminosity), and ✏ is the local nuclear energy generation rate

per unit mass. Here the viscous dissipation is neglected owing to small stellar viscosity.

The heat flow is computed according to the thermal di↵usion process

@T

@t

= ⇢

@

@m

✓
⇢T

@T

@m

◆
, (4.17)
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where T is the thermal di↵usivity. It is the dominant di↵usivity among all the di↵usiv-

ities and its calculation is discussed in detail in Section 3.5. Compared with the fitting

formulae used in the KEPLER model, the only di↵erence lies in the part of conductive

opacity in the degenerate regime. In ODT models, Yakovlev & Urpin (1980) is used for

calculating the conductive opacity at high density. But in the KEPLER model, Iben

(1975) is used instead. Because we are more interested in the opacity near the surface

where electrons are not degenerate, this di↵erence is not playing an important role in

the results. The calculation of ✏ involves another di↵usion process

@Yi

@t

= ⇢

@

@m

✓
⇢Y

@Yi

@m

◆
, (4.18)

where Yi is the molar fraction of isotope i, and Y is the molar di↵usion coe�cient. Once

dh is obtained, the EOS can solve the state with the known pair (h, P ) as discussed in

Section 3.5.

4.4 Nuclear network comparison

Since the nuclear reactions are crucial in the development of the burst, it is necessary

to compare the two nuclear networks used in these two models first. Overall, there are

two parts needed to compare in detail: the screening factors and the reaction rates. The

formulae for screening factors used in the KEPLER model are exactly the same as the

ones discussed in Section 4.1. And the di↵erence of the networks comes only from the

calculation of the reaction rate of 12C(↵, �)16O. The original KEPELER model uses

relatively new rate (Buchmann 1996) and yields a faster burning process. So the easiest

way to eliminate this di↵erence is to switch the KEPLER model to the built-in old rate

for reaction 12C(↵, �)16O and modify it by a factor of 1.7 to match the one used in

ODT. To test this modification, one simulation has been run for each model without

any turbulent motion. In other words, turbulent motion has been isolated in this test

for both models.

The comparison results are shown in Figures 4.3 to 4.5. The colors in Figure 4.3

shows the nuclear energy generation rate per unit mass on a logarithmic scale for both

models with ODT on the top and KEPLER on the bottom. The y-axis is the column

depth, and the x-axis is the time since the initial configuration. There is a time o↵set
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Figure 4.3: Nuclear energy generation rates comparison without turbulent motion. The
top panel shows the result of the ODT model, while the bottom panel shows the re-
sult of the KEPLER model. The colors represent the energy generation rate (✏) on a
logarithmic scale. The horizontal time axis of the ODT model has shifted slightly at
✏ = 1017 erg g�1 s�1 to match the burning process of the KEPLER model.

because the bottom heating varies at m = 9⇥ 108 g/cm2 in the KEPLER model. Tests

show that small variation of heating at this depth doesn’t a↵ect the overall burning

process in Figure 4.3 because it is dominated by the energy generated from the reactions.

The initiation point of the runaway, however, is sensitive to the heating at the bottom.

To match the time axes of the burning processes, one of the axes has shifted so that

✏ reaches 1017 erg g�1 s�1 at the same time. Both bursts initiate at time around 59 s

due to the burning of helium, and reach a peak energy generation rate at time around

61 s due to the burning of carbon and following isotopes. For a better comparison,

Figure 4.4 and Figure 4.5 show the abundance comparisons of the two models at time
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Figure 4.4: Abundance comparison at 55 s without turbulent motion. The isotopes are
selected from the ones with mass fraction above 10�4. The dashed curves are from the
KEPLER model, while the curves are from the ODT model. At 55 s, triple-↵ reaction
dominates and the heat is accumulating for later initiation.

55 s and 65 s, respectively. The x-axis is the column depth, and the y-axis is the mass

fraction. During these 10 seconds, most of the reactions take place and most of the heat

is generated. The dashed curves are from the KEPLER model while the curves are from

the ODT model. The isotopes in the figures are selected from the ones that have mass

fraction above 10�4 and are represented by di↵erent colors. It is clear from Figure 4.5

that after most of the reactions, the variations of abundance between these two models

are still very small.

All the comparisons conclude that these two models produce very similar results

despite the obvious resolution di↵erence and the deviations caused by mapping from

the initial configuration of the KEPLER model. It is a test not only for the nuclear



58

Figure 4.5: Abundance comparison at 65 s without turbulent motion. The isotopes are
selected the same way as in Figure 4.4. At 65 s, most of the reactions in Figure 4.1 have
taken place. But the di↵erences in the abundance of all the isotopes are still very small.

networks, but also the di↵usion processes that involves the calculation of opacities.

Since we have isolated the turbulent motion so far, the discussion of the results in the

following sections will mainly focus on the mixing mechanisms.

4.5 Light curves

Since there is only one free parameter, C in Equation (4.11), in the ODT models,

a survey of this parameter is carried out first. The light curves in the local frame of

the star with di↵erent C parameters are shown in Figure 4.6. The vertical axes are the

luminosities and the horizontal axes are the times since the initial configuration. The

top panel shows the light curves from 58 s to 80 s. The bottom two panels zoom in to
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Figure 4.6: Light curves of the ODT models with di↵erent C parameters. The top panel
shows the overall features of all the light curves. The bottom two panels zoom in to
time intervals [59.7, 60.4] and [65.3, 65.6], respectively, to compare the luminosities in
detail. The figure serves as a quick survey of the C parameter and C = 10�3 is chosen
for the simulation of statistical analysis.

time intervals [59.7, 60.4] and [65.3, 65.6], respectively, to compare the luminosities in

detail. Each color curve corresponds to a one-realization simulation with a C parameter.

The time resolution for each realization is small due to the small burning time step,

so the light curve is smooth even without statistical average. Because the variation

of luminosities from the mean values (see Figure 4.7) is not big, it is valid to use

one-realization simulation for a quick parameter survey. Overall, the light curves in

Figure 4.6 are very similar in that they all have a quick rising (within 1 s) in luminosity,

a plateau at the peak luminosity (about 3.4 ⇥ 1038 erg/s) and the duration is about

5 s, and a decay tail converged after 66 s. A careful comparison indicates that both

the slope of the rising luminosity around 60 s and the duration of the plateau increase
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Figure 4.7: Light curves comparison of the ODT model and the KEPLER model. The
top panel shows the overall features of the light curves of both models (ODT in blue and
KEPLER in red). The light curve of the ODT model is an average of 93 realizations with
C = 10�3. The bottom two panels zoom in to time intervals [59.7, 60.7] and [65.4, 66.4],
respectively, to compare the luminosities in detail. The yellow area around the blue
curve covers the variations between all the realizations.

when the C parameter increases. This increase becomes less and less sensitive as C

goes above 5⇥ 10�4. Because C controls the overall eddy rate, more eddy events occur

and the mean time for eddy sampling decreases as C increases, therefore the computing

becomes costly as C gets big. In order to save the computing time and also match the

light curve of the KEPLER model (see Figure 4.7), C = 10�3 is chosen for the following

multi-realization simulation. It is worth mentioning that the bigger the C parameter

is, the faster the turbulent di↵usion becomes. So the choice of C here means that the

models discussed in the rest of the chapter have a relatively fast turbulent di↵usion.
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In Figure 4.7, the blue curves represent the average light curve of an ODT simula-

tion of 93 realizations. Each realization is specified by a sequence of random numbers

generated by the generator with a specific seed (Section 3.2). The shaded yellow area

indicates the variations of all the realizations. The red curve is the light curve of the

KEPLER model. From the top panel, it is clear that both models have a sharp ris-

ing in surface luminosity with a similar time scale. And after reaching peak values

(3.3–3.4⇥ 1038 erg/s), both luminosities stay around their peak values for about 5–6 s,

during which the zones near the surface expand and lift up the photosphere above.

As the burning energy ceases, the luminosities decay with a longer time scale and the

photosphere radius shrinks back to its original size.

Despite the similarities, there are four noticeable di↵erences. First, there is a ⇠ 0.1 s

time o↵set during the rising of the curves (see bottom left panel). Because the time axes

are matched according to the time when ✏ = 1017 erg g�1 s�1 during the burst ignition,

this time o↵set comes from the di↵erences of heat propagation rate towards the surface.

During the burst, the heat is mainly driven by turbulent motion of large length scales, so

the mixing region in the KEPLER model expands faster at the beginning of the burst.

Second, the luminosity reaches a plateau in the ODT model around its peak but the one

in the KEPLER model has a dip. When the luminosity reaches the peak value in the

ODT model (around 63 s), the density of the top zone decreases to ⇠ 20 g/cm3, which

corresponds to an expansion equivalent to ⇠ 5% of the star radius. So plane parallel

assumption is no longer as valid as before and a deviation from the KEPLER model

occurs. Another contribution to this deviation is that the burning near the surface

is more energetic in the ODT model owing to the mixing of fuels in this region (see

discussion in Section 4.6). Third, the luminosity in the ODT model starts to drop

⇠ 0.5 s earlier than that in the KEPLER model, which leads to a ⇠ 0.6 s di↵erence in

the total duration of the peak. The cause is that more fuels are burned in the KEPLER

model during the expansion phase (see discussion in Section 4.6). Fourth, the tail of the

ODT model following the peak decays more slowly than that of the KEPLER model.

In this chapter, I focus mainly on the comparisons between theoretical models. The

comparison between these two models and observation is discussed in the future work

of Chapter 5.
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4.6 Turbulent motions and abundance

For a one-realization ODT simulation, the eddy cascade structure can be visualized

as a sequence of vertical lines with shorter lines following the longer ones if the time axis

is horizontal and the simulation domain is vertical, since each eddy event is instanta-

neous by assumption. Here I present the statistical average of the previous visualization

obtained from 93 realizations in the following method. Divide the turbulent region (from

58 s to 62 s, from star surface to a column depth m = 2 ⇥ 108 g/cm2) uniformly into

400⇥ 200 bins. Collect the vertical lines from all the realizations and count the number

of overlaps between lines and bins. After normalization to unity, the counted numbers

are plotted with colors in the top panel of Figure 4.8. The non-turbulent region where

radiative transfer dominates is represented by the blank space. The bottom panel shows

the mixing regions of the KEPLER model according to di↵erent stability criteria and

formulation (see Weaver et al. 1978a for details). Both plots show very similar mixing

features if only consider full convection (indicated by ‘conv’) in the KEPLER model.

Turbulent regions initiate at ⇠ 1.2⇥ 108 g/cm2 slightly after 59 s. After 0.5 s, they ex-

pand to zones near the surface and a depth ⇠ 1.7⇥ 108 g/cm2. Then the sizes of both

convective regions shrink to ⇠ 0.5⇥108 g/cm2 in column depth within 0.3 s. In the next

0.5 s, another expansion of the convective regions with smaller size takes place. And

most of the turbulent motions end around 61 s.

For a better comparison, the following analysis combines the nuclear energy gener-

ation rates and abundance, both of which are extracted from a typical one-realization

calculation as a representation of the ODT models. Figure 4.9 shows the comparison of

the nuclear energy generation rates with the ODT model on the top and the KEPLER

model on the bottom. Figures 4.10 to 4.15 are six snapshots of prominent abundance

from the surface to a depth at 5 ⇥ 108 g/cm2 at 59 s, 59.8 s, 60 s, 60.5 s, 62 s, and 70 s,

respectively. The reason of choosing these times is explained in the following discus-

sion. In all six figures, the abundance of six isotopes is represented by color curves

(the one-realization ODT model) and dashed color curves (the KEPLER model). Like

turbulent motions, both plots in Figure 4.9 have very similar structures and features.

Generally speaking, there are two peaks of energy generation rate ( > 1018 erg g�1 s�1)

around 59.8 s and 60.5 s, which correspond to Figure 4.11 and Figure 4.13, respectively.
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Figure 4.8: Mixing regions comparison. The top panel is the eddy events statistics of
ODT models (see text for detailed explanation). The bottom panel is the mixing regions
of the KEPLER model according to di↵erent stability criteria and formulation. Here
‘radi’ indicates radiative transfer, ‘neut’ indicates small amount of convection across
radiative zonal interface, ‘osht’ indicates overshoot mixing, ‘semi’ indicates semiconvec-
tion, ‘thal’ indicates thermohaline mixing, and ‘conv’ indicates full convection.

Between the two peaks, there is a valley point at around 60 s and the corresponding

abundance is shown in Figure 4.12.

Starting from 59 s (see Figure 4.10), helium burns continuously and all the abun-

dance evolves at the same pace in both models. After the convection kicks in at about

59.2 s, the abundance of helium and carbon starts to deviate in the mixing regions (see

Figure 4.11). The abundance in the KEPLER model is quickly smeared out for both he-

lium and carbon from 0–1.6⇥ 108 g/cm2, which is consistent with the convective region

in Figure 4.8. In the ODT model, the slope of helium abundance in the same region

indicates a slower propagation rate of convection towards the surface, which leads to
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Figure 4.9: Nuclear energy generation rates comparison with turbulent motion. The
top panel shows the result from the one-realization ODT model, while the bottom panel
shows the result from the KEPLER model. The colors represent the energy generation
rate on a logarithmic scale. The horizontal time axis of the ODT model has shifted
slightly at ✏ = 1017 erg g�1 s�1 to match the burning process of the KEPLER model.

a delayed rising of surface luminosity (Figure 4.7). And the di↵erences in helium and

carbon abundance indicate that the overall mixing is not as fast as that of the KE-

PLER model which uses a modified mixing length theory (Weaver et al. 1978a). In

other words, the turbulent di↵usivity is smaller in the ODT models during this process.

All the abundance below 2⇥108 g/cm2 stays the same because of the small microscopic

di↵usivities. Once the ignition triggered, not only the surface zones, but also the density

around the burning center keeps decreasing at a high rate due to expansion. Meanwhile,

the temperature keeps increasing at a high rate due to the heat generated. After a cer-

tain point (T ⇠ 109K), the EOS starts to reduce the increase rate of temperature so
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Figure 4.10: Prominent abundance at 59 s (before the first peak). The color curves
correspond to the ODT model while the dashed color curves correspond to the KEPLER
model.

Figure 4.11: Prominent abundance at 59.8 s (around the first peak). The color curves
correspond to the ODT model while the dashed color curves correspond to the KEPLER
model.
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Figure 4.12: Prominent abundance at 60 s (around the valley). The color curves cor-
respond to the ODT model while the dashed color curves correspond to the KEPLER
model.

Figure 4.13: Prominent abundance at 60.5 s (around the second peak). The color curves
correspond to the ODT model while the dashed color curves correspond to the KEPLER
model.
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Figure 4.14: Prominent abundance at 62 s (after the second peak). The color curves
correspond to the ODT model while the dashed color curves correspond to the KEPLER
model.

Figure 4.15: Prominent abundance at 70 s. The color curves correspond to the ODT
model while the dashed color curves correspond to the KEPLER model.
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much that the triple-↵ reaction rate starts to decrease from the peak value due to the

decrease of density. At 60 s, ✏ reaches the valley even though the temperature is still

increasing. It is worth mentioning that the convective region in Figure 4.8 also shrinks

to a local minimum owing to the coupling between mixing and burning. Since most

of the mixing occurs at locations where the entropy gradient with respect to radius is

decreasing, the two big turbulent regions correspond to the two ‘hot spots’ of nuclear

burning. After the first ‘hot spot’, carbon starts to accumulate especially right below

the mixing region (around 1.8 ⇥ 108 g/cm2 in Figure 4.12) where temperature is high

to burn helium fast and the microscopic di↵usion of abundance is small. As the tem-

perature keeps rising above 109K, the reaction 12C(↵, �)16O becomes more and more

violent and its reaction rate contributes dominantly to the overall energy generation

rate. Therefore ✏ increases again and the burning goes into the second ‘hot spot’. At

60.5 s when the temperature reaches its peak (⇠ 1.5 ⇥ 109K), the convective region

indicated by the plateau (see Figure 4.13) in the KEPLER model spans only from 0.5–

1.5 ⇥ 108 g/cm2. But the eddy events in the ODT model can reach ⇠ 0.1 ⇥ 108 g/cm2

and bring down more helium from the top layers, which increases ✏ in the region near

the surface (0.1–0.2 ⇥ 108 g/cm2). More burning near the surface yields higher surface

luminosity, which also contributes to the deviation of light curves at the peak luminosity

(see Figure 4.7). In the convective region, the abundance di↵usion indicates again that

the turbulent di↵usivity is higher in the KEPLER model than that in the ODT model.

About 20% of helium is burned, but the mass fraction goes mostly to sulfur because

carbon cannot survive much at this temperature. After the temperature reaches 109K,

the time o↵set developed from the first ‘hot spot’ starts to influence the abundance of

heavier elements in the non-turbulent region below as the abundance changes once the

heat wave raises the zone temperature above a certain threshold. All turbulent mixing

ceases after 61 s because of the depletion of helium layer. But the nuclear burning is

still ongoing because of the high temperature. Figures 4.14 and 4.15 show the stable

burning in the following 1 s and 9 s, respectively. Here I focus on the region from the

surface to 108 g/cm2 where the abundance deviates mostly due to mixing di↵erences.

In the region from 0.2–1⇥ 108 g/cm2, more helium is left in the ODT model at 62 s. As

the temperature keeps decreasing during the cooling phase, more carbon can survive

at this depth. In deeper layers where temperature is still high, carbon burns quickly
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into heavier isotopes, so the di↵erences are shown in the abundance of sulfur, argon,

and calcium. At 70 s (Figure 4.15) when the expansion is over, about 10% more carbon

is produced at 0.5 ⇥ 108 g/cm2 in the ODT model. This number will slightly increase

during the rest of cooling phase. The survival of more carbon during the expansion

indicates that more fuels are burned in the KEPLER model, so the total expansion

duration is slightly longer, which is consistent with the longer peak duration in the light

curves comparison (Figure 4.7).

The importance of more carbon produced in XRBs is that carbon is considered the

fuels of the more energetic burst phenomena called superbursts (Cumming & Bildsten

2001). Superbursts were first observed in 2000 (Cornelisse et al. 2000). Comparing

with regular bursts, they usually have total energy ⇠ 1000 times more and last ⇠ 1000

times longer. Their ignition depths are of order 1012 g/cm2 where hydrogen and helium

are unable to survive. Carbon accumulation in the deep layers can either comes from

accretion, or from the products of regular bursts. Here I only discuss the latter. Some

previous KEPLER models by Alexander Heger and Laurens Keek show that the bursts

did not make enough carbon to ignite superbursts. So more carbon produced from the

ODT model can possibly make the accumulated carbon approach the ignition threshold

if the extra amount of carbon survives the descending.

4.7 Conclusion

In this chapter, I presented the first XRB simulation using ODT as the turbulent

mechanism. The models are built on the basis of a KEPLER model for pure helium

bursts with photospheric radius expansion. I compared the nuclear networks, light

curves, turbulent motions, and abundance in detail. The ODT model successfully pro-

duced a photospheric radius expansion burst triggered by the ↵-chain reactions. The

peak luminosity also well matched the Eddington luminosity (⇠ 3.5⇥ 1038 erg/s) with-

out hydrogen in the atmosphere. Comparing with the KEPLER model, the ODT model

showed good agreement on the luminosity rising and decay time scales, as well as total

burst duration. Particularly, I focused on the turbulent motions comparison between

the ODT mechanism and the mixing length theory used in KEPLER, and relate it to

the di↵erences found in the light curves and abundance. The mixing in the ODT model
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shows a comparatively slower turbulent di↵usion in terms of the propagation rate of

convection towards the surface and the turbulent di↵usivities within the mixing region.

Besides, mixing in ODT can expand further to the surface of the star where convection

is prohibited by the stability criteria in KEPLER. These di↵erences lead to the result

that more carbon is produced on the top layers of the star during the burst. As carbon

descends and accumulates to a certain threshold in the deeper layers, it triggers the

unstable burning that results in a much more energetic superburst.



Chapter 5

Summary and Future Work

The objective of this dissertation is to present simulations of the photospheric ra-

dius expansion bursts with a new hydrodynamic model, the one-dimensional turbulence

(ODT) model, which is applied to Type I X-ray bursts (XRBs) simulations also for

the first time. Since I almost started from scratch, a lot of the work was focused on

the development of this model. For a new model to be accepted, validation is of great

importance and necessity. So tests have been performed carefully after each step of the

development process. As discussed in Chapter 3, I started with building a basic ODT

model on a Lagrangian grid (Section 3.1). Then I tested the new configuration with the

simulations of the Rayleigh-Taylor instabilities (Section 3.3). The results showed that

the ODT model produced similar propagation rates of the mixing thickness as those of

3D direct numerical simulations. Next, I implemented the Helmholtz equation of state

(Section 3.4) for stellar environment and an implicit solver for di↵usion processes (Sec-

tion 3.5). The former replaced the ideal gas equation of state and the latter replaced an

explicit di↵usion solver to get rid of the limit of the Courant-Friedrichs-Lewy time. After

tests of these two pieces separately, a simulation of an XRB that involved three-isotope

burning was performed to test the compatibility of them to the basic ODT model. Fur-

thermore, I included a nuclear network with 19 isotopes and found that the burning

process was almost identical as that in the KEPLER model (Section 4.1). Finally, I

was confident to simulate a pure helium burst with the ODT model and compared the

results with the KEPLER model (Chapter 4). Both models showed good agreement on

the light curves and turbulent regions. More importantly, the mixing mechanism in the

71
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ODT model has a slower mixing process but the mixing expands further to the surface

region of the star, which causes more carbon produced after one burst. This result is

important in that more carbon will accumulate if it descends to deeper layers of the

star and it will become the fuels of superbursts.

There is still lots of work needed to be done in the future to improve the ODT

model. Because some of the discussion below includes results from KEPLER runs only,

I put them after the summary to maintain the focus of the dissertation on ODT.

In Chapter 4, the ODT model shows that more carbon is produced near the surface

of the star after one burst. Unfortunately this argument alone cannot guarantee that the

carbon abundance will increase in the deep layers. The question now is that how much of

these ashes can survive when they reach the depth of order 1012 g/cm2, since the actual

amount of carbon abundance at this depth determines the ignition of superbursts. The

original KEPLER model is built to study the ultracompact binary 4U 1820-30 which is

famous for its 176 day X-ray intensity modulation (Priedhorsky & Terrell 1984). And

regular XRBs are observed only in its low flux state. Currently, there is no modulation

obtained in the KEPLER model, so I consider low flux state only. It is assumed that

no carbon survives during the XRBs phase because of the high temperatures, whereas

a certain amount of carbon is produced in the stable burning phase when no XRB

takes place (Strohmayer & Brown 2002). This assumption is based on the calculation

of helium burning evolution in an accreting neutron star with a similar nuclear network

(Joss 1978). The only di↵erences are that two nuclear reactions, 12C+12C and 12C+16O,

are not included in the 19-isotope network (Section 4.1). But their contribution to

carbon consumption is negligible because of small nuclear reaction rates. After running

the KEPLER model for ⇠ 3000 bursts, the descending carbon reaches ⇠ 5.5⇥1011 g/cm2

with a mass fraction ⇠ 12%, which indicates that there is still fair amount of carbon

survives the unstable burning phase in the model. Besides, the argument of no carbon

product in the XRBs phase relies on the high temperatures during the bursts which the

extra carbon produced in the ODT model survives. Thus more carbon should possibly

accumulate in the deeper layers with the ODT mixing mechanism. It is, however, still

tempting to simulate the descending process in the ODT model until the ashes reach

the ignition depth.

Another improvement is near the surface of the star. I only performed comparisons of
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Figure 5.1: light curves comparison with observations. The light curves of the ODT
model and the KEPLER model are represented by the blue and red curves, respectively.
The observational data are represented by the black dots with error bars. General
relativistic correction has been applied to both models.

the light curves between two theoretical models in Chapter 4. Here I compare them with

observations in Figure 5.1. The observational data are provided by Duncan Galloway.

Luminosities are calculated by

L = 4⇡d2F, (5.1)

where d is the distance from the source to the observer, F is the flux received by the

observer. For a better match of peak luminosities, d is chosen as 7 kpc which is within the

region of 7.4± 0.4 kpc (Kuulkers et al. 2003). Because the gravity used in both models

is Newtonian, the time is dilated by a redshift factor of (1+ z), and the luminosities are

reduced also by (1+ z) when general relativistic correction is considered (Keek & Heger
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2011). Here z = 0.25835 for a neutron star of 1.4M� and 106 cm radius. Similar to

Figure 4.7, the light curves of the ODT model and the KEPLER model are represented

by the blue and red curves, respectively. The observational data are represented by

the black dots with error bars. Although a small d is chosen, the peak luminosities are

still higher in observation. The overall energies are approximately the same considering

the area below. There is an obvious deviation during the expansion phase between

the models and observations. Currently, I notice that the peak luminosities during

the expansions are sensitive to the choice of the surface resolution for both models.

Furthermore, tests with KEPLER models show that the light curves can have a much

better fit during the expansion if the resolution of surface zones is reduced by over 1000,

which also indicates that the expansion is stronger in the observation and it is consistent

with the apparent black-body radius (Kuulkers et al. 2003). So the best way to improve

the light curve of the ODT model is to resolve the surface area with finer zones.

To make the two points above possible, a non-uniform grid must be implemented in

ODT models. The current ODT model with a uniform Lagrangian grid is convenient

to use because it simplifies triplet maps into permutations of grid points. But it limits

the resolution as well as simulation domain. In Chapter 4, the resolution in the ODT

model is fixed by the top zone (⇠ 106 g/cm2) of the KEPLER model, which means that

900 zones are required to cover a simulation domain of 9⇥ 108 g/cm2. It leads to more

computing time even the domain corresponds only to the top layers of the KEPLER

model. So a non-uniform grid can greatly reduce the computing time. If the simulation

domain can expand to deeper layers of the star (reaching the crust), the crust heating

which is an important parameter of XRBs can be directly used as the bottom boundary

condition. The di�culty of this implementation lies in that an adaptive mesh should

also be included to make a non-uniform grid work. Current attempts in the application

of a non-uniform grid alone result in some instabilities in the EOS solver, especially with

(P, h) pair as input (Section 3.4) which requires a good initial guess for fast convergence.

Because it is easy to cause a sudden big change in the profiles if an eddy event with

di↵erent zone sizes occurs in a region where density gradient is big.

Finally, it is also required to simulate multiple bursts for studying the descending

process of ashes. The current ODT model can only resolve one burst event and the initial

configuration is based on a KEPLER model. The important parameter, accretion rate,
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is not playing an explicit role in the simulation. Besides, the interactions between bursts

also influence the abundance of ashes as they descend. It is possible to involve accretion

into the scheme by modifications of the abundance di↵usion with a di↵erent boundary

condition on the top.
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Böhm-Vitense, E. 1958, zap, 46, 108

Buchmann, L. 1996, apjl, 468, L127

Calder, A. C., Fryxell, B., Plewa, T., et al. 2002, The Astrophysical Journal Supplement

Series, 143, 201

Caughlan, G. R., & Fowler, W. A. 1988, Atomic Data and Nuclear Data Tables, 40, 283

Chandrasekhar, S. 1955, Mathematical Proceedings of the Cambridge Philosophical

Society, 51, 162

Chenevez, J., Altamirano, D., Galloway, D. K., et al. 2011, mnras, 410, 179

Christy, R. F. 1966, apj, 144, 108

Clark, G. W., Jernigan, J. G., Bradt, H., et al. 1976, apjl, 207, L105

Clement, M. J. 1993, apj, 406, 651

76



77

Cook, A. W., Cabot, W., & Miller, P. L. 2004, Journal of Fluid Mechanics, 511, 333

Cook, A. W., & Dimotakis, P. E. 2001, J. FLUID MECH, 443, 99

Cook, A. W., & Youngs, D. 2009, Scholarpedia, 4, 6092

Cornelisse, R., Heise, J., Kuulkers, E., Verbunt, F., & in’t Zand, J. J. M. 2000, aap,

357, L21

Cornelisse, R., in’t Zand, J. J. M., Verbunt, F., et al. 2003, aap, 405, 1033

Courant, R., Friedrichs, K., & Lewy, H. 1928, Mathematische Annalen, 100, 32

Cumming, A., & Bildsten, L. 2001, The Astrophysical Journal Letters, 559, L127

Curl, R. 1963, AlChE J., 9, 175

Dalziel, S. B. 1993, Dynamics of Atmospheres and Oceans, 20, 127

Dimonte, G., Youngs, D. L., Dimits, A., et al. 2004, Physics of Fluids, 16, 1668

Du↵, I. S., Erisman, A. M., & Reid, J. K. 1986, Direct Methods for Sparse Matrices

(New York, NY, USA: Oxford University Press, Inc.)

Ebisuzaki, T., & Nakamura, N. 1988, apj, 328, 251

Fryxell, B., Olson, K., Ricker, P., et al. 2000, apjs, 131, 273

Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D. 2008,

apjs, 179, 360

Glimm, J., Grove, J. W., Li, X. L., Oh, W., & Sharps, D. H. 2001, J. Comput. Phys.,

169, 652

Gonzalez-Juez, E., Kerstein, A., & Lignell, D. 2013, Geophysical & Astrophysical Fluid

Dynamics, 107, 506

Gonzalez-Juez, E., Kerstein, A. R., & Lignell, D. O. 2011, Journal of Fluid Mechanics,

677, 218

Graboske, H. C., Dewitt, H. E., Grossman, A. S., & Cooper, M. S. 1973, apj, 181, 457



78

Grindlay, J., & Heise, J. 1975, iaucirc, 2879, 1

Gursky, H., Schnopper, H., & Parsignault, D. 1975, apjl, 201, L127

Hansen, C. J., & van Horn, H. M. 1975, apj, 195, 735

Heger, A., Cumming, A., Galloway, D. K., & Woosley, S. E. 2007, apjl, 671, L141

Heger, A., Langer, N., & Woosley, S. E. 2000, apj, 528, 368

Ho↵man, J. A., Lewin, W. H. G., & Doty, J. 1977, apjl, 217, L23

Ho↵man, J. A., Marshall, H. L., & Lewin, W. H. G. 1978, nat, 271, 630

Holmes, J. A., Woosley, S. E., Fowler, W. A., & Zimmerman, B. A. 1976, Atomic Data

and Nuclear Data Tables, 18, 305

Iben, Jr., I. 1975, apj, 196, 525

in ’t Zand, J. 2011, ArXiv e-prints, arXiv:1102.3345

Itoh, N., Totsuji, H., Ichimaru, S., & Dewitt, H. E. 1979, apj, 234, 1079

James, F. 1990, Computer Physics Communications, 60, 329

Joss, P. C. 1978, apjl, 225, L123

Joss, P. C., & Melia, F. 1987, apj, 312, 700

Keek, L., & Heger, A. 2011, apj, 743, 189

Kelton, W. D., & Law, A. M. 2000, Simulation modeling and analysis (McGraw Hill

Boston)

Kerstein, A., & Wunsch, S. 2006, Boundary-Layer Meteorology, 118, 325

Kerstein, A. R. 1991, Journal of Fluid Mechanics, 231, 361

—. 1999, Journal of Fluid Mechanics, 392, 277

Kerstein, A. R., Ashurst, W. T., Wunsch, S., & Nilsen, V. 2001, Journal of Fluid

Mechanics, 447, 85



79

Kerstein, A. R., & Dreeben, T. D. 2000, Physics of Fluids, 12, 418

Knuth, D. E. 1997, The Art of Computer Programming, Volume 2 (3rd Ed.): Seminu-

merical Algorithms (Boston, MA, USA: Addison-Wesley Longman Publishing Co.,

Inc.)

Kuulkers, E., den Hartog, P. R., in’t Zand, J. J. M., et al. 2003, aap, 399, 663

Lattimer, J. M., & Prakash, M. 2001, apj, 550, 426

LeVeque, R., Steiner, O., Gautschy, A., & für Astrophysik und Astronomie, S. G. 1998,

Computational Methods for Astrophysical Fluid Flow: Saas-Fee Advanced Course

27. Lecture Notes 1997 Swiss Society for Astrophysics and Astronomy, Lecture notes

/ Saas-Fee Advanced Course (Springer)

Levermore, C. D., & Pomraning, G. C. 1981, apj, 248, 321

Lewin, W. H. G. 1976, iaucirc, 2918, 2

Lewin, W. H. G. 1977, in Annals of the New York Academy of Sciences, Vol. 302, Eighth

Texas Symposium on Relativistic Astrophysics, ed. M. D. Papagiannis, 210–227

Lewin, W. H. G., Clark, G., & Doty, J. 1976, iaucirc, 2922, 1

Lewin, W. H. G., & Joss, P. C. 1981, ssr, 28, 3

Lewin, W. H. G., Vacca, W. D., & Basinska, E. M. 1984, apjl, 277, L57

Lewin, W. H. G., van Paradijs, J., & Taam, R. E. 1993, ssr, 62, 223

Lin, D. J., Bayliss, A., & Taam, R. E. 2006, apj, 653, 545

Malone, C. M., Nonaka, A., Almgren, A. S., Bell, J. B., & Zingale, M. 2011, apj, 728,

118

Malone, C. M., Zingale, M., Nonaka, A., Almgren, A. S., & Bell, J. B. 2014, apj, 788,

115

Maraschi, L., & Cavaliere, A. 1977, in X-ray Binaries and Compact Objects, ed. K. A.

van der Hucht, 127–128



80

Marsaglia, G., Zaman, A., & Tsang, W. W. 1990, Statistics & Probability Letters, 9,

35

Miles, J. W. 1961, Journal of Fluid Mechanics, 10, 496

Pacitto, G., Flament, C., Bacri, J.-C., & Widom, M. 2000, Phys. Rev. E, 62, 7941

Paczynski, B. 1983, apj, 264, 282

Paczynski, B., & Proszynski, M. 1986, apj, 302, 519

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. 1993, Numerical

Recipes in FORTRAN; The Art of Scientific Computing, 2nd edn. (New York, NY,

USA: Cambridge University Press)

Priedhorsky, W., & Terrell, J. 1984, apjl, 284, L17

Ramaprabhu, P., & Andrews, M. J. 2004, Journal of Fluid Mechanics, 502, 233

Rappaport, S., Joss, P. C., & Webbink, R. F. 1982, apj, 254, 616

Read, K. 1984, Physica D: Nonlinear Phenomena, 12, 45

Ricks, A. J., Hewson, J. C., Kerstein, A. R., et al. 2010, Combustion Science and

Technology, 182, 60

Ristorcelli, J. R., & Clark, T. T. 2004, Journal of Fluid Mechanics, 507, 213

Schatz, H., Aprahamian, A., Barnard, V., et al. 2001, Phys. Rev. Lett., 86, 3471

Shaposhnikov, N., & Titarchuk, L. 2004, apjl, 606, L57

Spitkovsky, A., Levin, Y., & Ushomirsky, G. 2002, apj, 566, 1018

Stella, L., Priedhorsky, W., & White, N. E. 1987, apjl, 312, L17

Strohmayer, T., & Bildsten, L. 2006, in Cambridge Astrophysics Series, Vol. 39, Com-

pact Stellar X-Ray Sources, ed. W. Lewin & M. van der Klis (Cambridge, U.K.:

Cambridge University Press), 113–156

Strohmayer, T. E., & Brown, E. F. 2002, apj, 566, 1045



81

Sugimoto, D., Ebisuzaki, T., & Hanawa, T. 1984, pasj, 36, 839

Suzuki, M., Kawai, N., Tamagawa, T., et al. 2007, pasj, 59, 263

Swank, J. H., Becker, R. H., Boldt, E. A., et al. 1977, apjl, 212, L73

Swank, J. H., Becker, R. H., Pravdo, S. H., & Serlemitsos, P. J. 1976, iaucirc, 2963, 1

Taam, R. E., Woosley, S. E., Weaver, T. A., & Lamb, D. Q. 1993, pj, 413, 324

Tawara, Y., Hayakawa, S., & Kii, T. 1984a, pasj, 36, 845

Tawara, Y., Hirano, T., Kii, T., Matsuoka, M., & Murakami, T. 1984b, pasj, 36, 861

Timmes, F. X. 1999, The Astrophysical Journal Supplement Series, 124, 241

—. 2000, The Astrophysical Journal, 528, 913

—. 2015a, 19 isotope network, http://cococubed.asu.edu/code_pages/burn_

helium.shtml, accessed: 2015-09-30

—. 2015b, Helmholtz EOS, http://cococubed.asu.edu/code_pages/eos.shtml, ac-

cessed: 2015-09-30

Timmes, F. X., & Swesty, F. D. 2000, The Astrophysical Journal Supplement Series,

126, 501

Turner, N. J., & Stone, J. M. 2001, apjs, 135, 95

Weaver, T. A., Zimmerman, G. B., & Woosley, S. E. 1978a, apj, 225, 1021

—. 1978b, apj, 225, 1021

Woosley, S. E., Fowler, W. A., Holmes, J. A., & Zimmerman, B. A. 1978, Atomic Data

and Nuclear Data Tables, 22, 371

Woosley, S. E., & Taam, R. E. 1976, nat, 263, 101

Woosley, S. E., & Weaver, T. A. 1984, in American Institute of Physics Conference

Series, Vol. 115, American Institute of Physics Conference Series, ed. S. E. Woosley,

273–297

http://cococubed.asu.edu/code_pages/burn_helium.shtml
http://cococubed.asu.edu/code_pages/burn_helium.shtml
http://cococubed.asu.edu/code_pages/eos.shtml


82

Woosley, S. E., Heger, A., Cumming, A., et al. 2004, apjs, 151, 75

Woosley, S. E. Fowler, W. A., Holmes, J. A., & Zimmerman, B. A. 1975, Report

(California Institute of Technology) No. OAP-422

Yakovlev, D. G., & Urpin, V. A. 1980, sovast, 24, 303

Youngs, D. L. 1989, Physica D: Nonlinear Phenomena, 37, 270

Zingale, M., Timmes, F. X., Fryxell, B., et al. 2001, apjs, 133, 195



Appendix A

Tests of Random Number

Generator

The random number used in this dissertation is developed by Marsaglia et al. (1990).

The algorithm is based on a combination of lagged Fibonacci sequence (with 97 and

33) and an “arithmetic sequence”. It has a long period of 2144 and it can e�ciently

generate independently disjoint sequences, which is ideal for parallelization computing.

The generator has passed stringent tests according to James (1990). Here I present

some basic tests of this generator for the purpose of learning testing techniques and

checking my implementation.

The tests include two parts: the uniformity test and independence test. For unifor-

mity, a test of covering a 2D box with random numbers and a �

2 test have been carried

out for both one-sequence and two-sequence random numbers. For independence, a

correlation test is done for both one-sequence and two-sequence random numbers. Here

the two-sequence case is included to test the qualities between di↵erent sequences. Two

sequences of random numbers with length n = 100, 000 are used in these tests. The

seeds are randomly chosen as 12345 and 54321, respectively.

The uniformity test is done by plotting dots with pairs of random numbers as co-

ordinates in a 2D box. For one-sequence test, the sequence is equally divided into two

parts and each part serves as x or y coordinates. For two-sequence test, the x and y

coordinates come from the first halves of the two sequences, respectively. The results

83
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Figure A.1: Uniformity test of one-sequence random numbers. The seed to generate
this sequence is randomly chosen as 12345. It is divided equally into two parts and each
part is used as x or y coordinates to plot dots in the 2D box.

are shown in Figures A.1 and A.2. It is clear that the both boxes are covered almost

uniformly without any noticeable patterns.

The �2 test is done by dividing the range [0, 1] into m bins and summing the square

of deviations from the expected values in all the bins. The formula for �2 is

�

2 =

Pn=100000
i=1 (Ni �

n

m

)

n

m

, (A.1)

where Ni is the counted number in bin i, and n/m is the expected number in bin i

for a uniform distribution. Three m values are chosen for this test and the results are

summarized in Table A.1. The degree of freedom (DOF) is equal to m�1. The random

numbers for two-sequence case is obtained in a similar fashion as in the uniformity test.
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Figure A.2: Uniformity test of two-sequence random numbers. The seeds to generate
these two sequences are 12345 and 54321 respectively. The first half of the former is
used for x coordinates while the first half of the latter is used for y coordinates.

Compared with the �2 distribution table, most of the �2 values are in the trusted region

(10%–90%; Knuth 1997) except the case when DOF = 80 falling into “suspect” region

(95% < �

2
< 97.5%). Overall, the random number generator passes the �

2 test.

The correlation test is done by calculating correlation factor

⇢̂ =

Pn=100000
i=1 (Ui � U(n))(Ui+1 � U(n))

Pn=100000
i=1 (Ui � U(n))2

, (A.2)

where U represents a random number, and U(n) is the sample mean. Un+1 is set to U1.

Three cases are calculated and the results are summarized in Table A.2. The column

under “combination” is obtained by using both previous sequences. For n = 100, 000,

the probability of �2⇥ 10�3  ⇢̂  2⇥ 10�3 is about 95%. All three correlation factors
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One-sequence Two-sequence
DOF 60 80 100 60 80 100
�

2 68.16 103.50 117.88 57.71 82.15 111.53

Table A.1: �2 test results

are within this range, so the correlation test has passed.

Seed=12345 Seed=54321 Combination
⇢̂ 1.90⇥ 10�4 �6.66⇥ 10�4 1.10⇥ 10�3

Table A.2: Correlation test results.

In conclusion, the random number generator has passed both tests and it produces

independently disjoint sequence with good quality and fast speed.
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