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ABSTRACT

Computational fluid dynamics (CFD) has been widely studied and used in the scientific
community and  in  the  industry.  Various  models  were  proposed to  solve  problems in
different areas. However, all models deviate from reality. Uncertainty quantification (UQ)
process evaluates the overall uncertainties associated with the prediction of quantities of
interest. In particular it studies the propagation of input uncertainties to the outputs of the
models so that confidence intervals can be provided for the simulation results. In the
present  work,  a  non-intrusive  quadrature-based  uncertainty  quantification  (QBUQ)
approach is proposed. The probability distribution function (PDF) of the system response
can be then reconstructed using extended quadrature method of moments (EQMOM) and
extended  conditional  quadrature  method  of  moments  (ECQMOM).  The  report  first
explains  the  theory  of  QBUQ  approach,  including  methods  to  generate  samples  for
problems with single or multiple uncertain input parameters,  low order statistics,  and
required number of samples. Then methods for univariate PDF reconstruction (EQMOM)
and multivariate PDF reconstruction (ECQMOM) are explained. The implementation of
QBUQ approach into the open-source CFD code MFIX is discussed next. At last, QBUQ
approach is  demonstrated  in  several  applications.  The method is  first  applied  to  two
examples: a developing flow in a channel with uncertain viscosity, and an oblique shock
problem  with  uncertain  upstream  Mach  number.  The  error  in  the  prediction  of  the
moment response is studied as a function of the number of samples, and the accuracy of
the moments required to reconstruct the PDF of the system response is discussed. The
QBUQ  approach  is  then  demonstrated  by  considering  a  bubbling  fluidized  bed  as
example  application.  The  mean  particle  size  is  assumed  to  be  the  uncertain  input
parameter. The system is simulated with a standard two-fluid model with kinetic theory
closures for the particulate phase implemented into MFIX. The effect of uncertainty on
the disperse-phase volume fraction,  on the phase velocities and on the pressure drop
inside the fluidized bed are examined, and the reconstructed PDFs are provided for the
three quantities studied. Then the approach is applied to a bubbling fluidized bed with
two  uncertain  parameters,  particle-particle  and  particle-wall  restitution  coefficients.
Contour plots of the mean and standard deviation of solid volume fraction, solid phase
velocities and gas pressure are provided. The PDFs of the response are reconstructed
using  EQMOM with  appropriate  kernel  density  functions.  The simulation  results  are
compared  to  experimental  data  provided  by  the  2013  NETL small-scale  challenge
problem.  Lastly,  the  proposed procedure  is  demonstrated  by considering  a  riser  of  a
circulating fluidized bed as an example application. The mean particle size is considered
to be the uncertain input parameter. Contour plots of the mean and standard deviation of
solid  volume fraction,  solid  phase  velocities,  and  granular  temperature  are  provided.
Mean values and confidence intervals of the quantities of interest are compared to the
experiment  results.  The  univariate  and  bivariate  PDF  reconstructions  of  the  system
response are performed using EQMOM and ECQMOM.
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1. EXECUTIVE SUMMARY

Eulerian  multiphase  models  have  been  extensively  studied  and  developed  by  the  scientific
community because they offer a flexible tool for real-world engineering applications, such as the
simulation of combustors, gasifiers, and, in general, fluidized systems, which are widely used in
the  energy  industry.  Many  commercial  (FLUENT,  CFX,  Star-CD)  and  open-source
computational codes (MFIX) implement these models, which have become an important tool in
industrial  operations.  Euler-Euler  models,  or  two  fluid  models  (TFM)  treat  each  phase  as
continua, and use closure models to account for interactions between phases [1,2].

Independently from the form of the equations of a model, all models present a strongly non-
linear relation between the input parameters and the outputs of the simulation. The model outputs
are influenced by input parameters, related to the geometry specification and the definition of the
parameters required by the models. The input parameters are affected by uncertainty introduced
by factors such as difficulties in experiment  measurements,  and assumptions made to derive
models and their closures. Uncertainty quantification (UQ) studies the propagation of uncertainty
in input parameters to simulation outputs, and provides confidence intervals for computational
predictions.  UQ  approaches  can  be  either  intrusive  or  non-intrusive.  Intrusive  approach
introduces  the  uncertainty  into  the  computational  model  by  reformulating  the  governing
equations, which are only solved once, and therefore the approach is computationally efficient.
However,  for  complex  systems  such  as  multiphase  flows,  it  requires  a  large  amount  of
modifications to the original computational codes,  which makes it  difficult  to implement the
approach into multiphase computational fluid dynamics (CFD) simulations. On the contrary, by
using  the  original  models  directly,  non-intrusive  approaches  are  usually  considered  for
complicated  practical  systems.  For  non-intrusive  approaches,  sampling  strategy  is  the  key
element because the CFD simulation is performed once for each sample, and the computational
cost of the approaches scales with the number of samples. For problems with a large amount of
uncertain  input  parameters,  Monte  Carlo  based  random  sampling  strategies  are  usually
considered because the convergence of the methods is independent of the number of random
input parameters. However, the slow convergence of high order moments with respect to the
number of samples limits the applications of the methods to computationally intense problems
[3]. For problems with a moderate number of uncertain input parameters, by using deterministic
sampling strategies such as quadrature-based sampling strategy, the number of samples required
and hence the computational cost can be reduced significantly [4].

Many UQ approaches, including polynomial chaos (PC) methods, moment methods, and Monte
Carlo  methods  have  been  applied  to  large  number  of  single  phase  CFD  simulations  [3-6],
including compressible flows [7-14], incompressible flows [15-20], non-isothermal flows [15,21-
25], and flows with reactions  [26-31]. However, applications of UQ approaches to multiphase
CFD simulations are very limited. Although applications of UQ to flows in porous media are
reported in literature [32-34], for more complex systems such as gas-solid flows, few works can
be found [35-39]. 

The  objectives  of  this  project  are  to  develop  a  non-intrusive  quadrature-based  uncertainty
quantification (QBUQ) approach, and to apply it to multiphase gas-solid flow simulations. The
QBUQ approach, first proposed by Yoon et al. [40,41], samples the space of the distribution of
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the  uncertain  parameters  using  Gaussian  quadrature  formulae  [42] or  conditional  quadrature
method of moments (CQMOM) [43]. A CFD simulation is performed for each sample, and the
moments  of  the  system  response  are  directly  estimated  from  the  simulation  results  using
quadrature  formulae  [40,41].  These  moments  are  then  used  to  calculate  the  statistics  of  the
quantities of interest and to reconstruct the probability distribution function (PDF) of the system
response using the extended quadrature method of moments (EQMOM)  [44,45] and extended
conditional quadrature method of moments (ECQMOM). The proposed QBUQ approach with
reconstruction of the PDF of the system response is first tested on a set of simplified CFD test
cases including a developed channel flow and an oblique shock problem. Then programming
language Python is used to implement the QBUQ algorithm into MFIX. Two separate modules
are developed to automatically process input and output data, and the source code is released
online.  The developed QBUQ procedure is first applied to a bubbling fluidized bed with one
uncertain input parameter. The effect of the uncertain parameter is studied for the quantities of
interest,  and  univariate  PDF reconstruction  is  performed  for  the  system response.  Then  the
QBUQ procedure is applied to the NETL small scale challenge problem (SSCP-1) [46] with two
independent uncertain input parameters.  Besides contour  plots  of the statistics of the system
response and the reconstructed PDFs of the outputs,  the simulation results are compared to the
experimental  data  as  well.  The  developed  UQ  procedure  is  lastly  applied  to  a  riser  of  a
circulating  fluidized  bed.  The  propagation  of  uncertainty  in  particle  diameter  to  simulation
outputs is studied.  The simulation results are compared to the experimental data provided in
Tartan and Gidaspow [47]. Not only univariate PDF reconstruction is performed for each system
response  using  EQMOM  [44,45],  but  the  joint  PDF  of  solid  axial  and  radial  velocities  is
reconstructed using 4-node Gaussian ECQMOM as well.

Overall, in this project it was found that the QBUQ approach is a useful tool for studying gas-
particle flows such as fluidized beds and risers. In particular, with the QBUQ tools developed in
this project, it is possible to determine which design parameters most affect the flow behavior
during scale up of energy systems based on gas-particle flows (e.g., coal and biomass reactors,
chemical-looping systems, among many examples). Such tools should be especially useful for
energy system design engineers who rely on computational models such as MFIX and other
multiphase computational fluid dynamics codes. In future work, the uncertainty quantification
tools developed in this project can be extended to other multiphase flows such as gas-liquid and
slurry flows. Indeed, the methodology followed here can be extended to any multiphase flow
model, and will offer vital information about the sensitivity of their solutions to variations in
model parameters.

6
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2. LIST OF ACRONYMS

CFD computational fluid dynamics
CQMOM conditional quadrature method of moments
EQMOM extended quadrature method of moments
ECQMOM extended conditional quadrature method of moments
PC polynomial chaos
PDF probability distribution function
QBUQ quadrature-based uncertainty quantification
SSCP small scale challenge problem
TFM two fluid model
UQ uncertainty quantification

3. ACCOMPLISHMENTS

For purposes  of  reference,  the work breakdown is  reported in Fig. 1 in  accordance to  what
contained in the Project Management Plan. This serves as a summary of the tasks performed
during the project.

Figure 1: Work breakdown

Achievements A quadrature-based UQ procedure with reconstruction of the PDF of the system
response is developed. The algorithm is implemented into MFIX by developing separate modules
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to automatically process input and output data. The developed UQ procedure is applied to two
single  phase  CFD  simulations  including  a  developed  channel  flow  and  an  oblique  shock
problem, two bubbling fluidized beds, and a riser in circulating fluidized bed.

Training and professional development A graduate student (Xiaofei Hu) has been working
full-time on the project. 

Dissemination of results A journal article was published in Powder Technology describing the
theory of the developed UQ procedure and the application to the bubbling fluidized bed.  The
applications of the UQ procedure to two bubbling fluidized beds and the riser flow simulation
were presented at three international conferences.

3.1 TECHNICAL PROGRESS

In this  section,  first  the theory of QBUQ is described. The sampling strategies are based on
Gaussian quadrature formulae [42] or CQMOM [43], depending on the number of the uncertain
input parameters. The set of the moments of the system response is evaluated directly from the
simulation results of each sample using quadrature formulae [40,41]. Then low order statistics,
such as mean, variance, skewness, and kurtosis of the system response can be calculated. The set
of moments can also be used to reconstruct the PDF of the system response. Univariate and
bivariate PDF reconstruction methods, EQMOM [45] and ECQMOM, are explained. Next, the
implementation  of  the  QBUQ procedure  in  MFIX is  discussed.  Then  the  developed  QBUQ
approach is applied to two single phase CFD simulations including a developed channel flow and
an oblique shock problem, two bubbling fluidized beds, and a riser of circulating fluidized bed.
The propagation of uncertainty in input parameters to simulation outputs is studied.

3.1.1 Quadrature-based uncertainty quantification approach

The foundation of the quadrature-based uncertainty quantification approach consists in the direct
evaluation of the moments of the system response by means of Gaussian quadrature formulae
[40,41]. To illustrate the procedure, we consider a probability space   defined by a
sample space , a sigma-algebra , and a probability measure  on . We then define a set
of  independent random variables , being  a random event. The -th order moment of a
random process  is defined as

(1)

where   depends  on  the  probability  measure  .  The  quadrature  weights  and  nodes  of
Gaussian quadrature formulae are  found with different  methods based on the number of the
random variables. For the univariate problem,   is sampled using a one-dimensional Gaussian
quadrature  formula  [42];  for  multiple  random  variables,  quadrature  weights  and  nodes  are
obtained by sampling  using CQMOM [43].

3.1.1.1 QBUQ for one random variable

In this section, we discuss the case with one random variable ( ), considering  as the
weight function. The integral shown in Eq. 1 is approximated by an M-node Gaussian quadrature
formula:
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(2)

where   and   are the quadrature weights and nodes respectively. If the PDF of the random
variable can be treated as a classical weight function, quadrature weights and nodes can be easily
obtained  using  existing  quadrature  rules,  which  means   are  the  roots  of  the  orthogonal
polynomials associated to the weight function, and   can be calculated accordingly  [48]. For
example, the Gauss-Hermite quadrature rule can be used for a random variable with Gaussian
distribution,  while,  if   is  uniformly distributed,  the Gauss-Legendre quadrature rule can be
applied. Next we illustrate how to deal with the case of uniformly distributed random variable.

Uniformly distributed random variable

The case of a uniformly distributed random variable  leads to consider a distribution in the form

(3)

In such a case, Eq. 2 leads to

(4)

which can be calculated using a Gauss-Legendre quadrature formula, since the weight function
 is  assumed  to  be  the  unit  function.  In  order  to  use  the  well-known  Gauss-Legendre

quadrature, it is necessary to transform the interval  into , leading to

(5)

Combining Eqs. 4 and 5, we obtain the final result

(6)

where  are roots of the Legendre orthogonal polynomials, defined by the recurrence relation

(7)

Non-classical weight functions

If the weight function  cannot be considered as one of the classical weight functions, or only
the moments with respect to   from zeroth order to order 2M – 1 are known, the quadrature
weights and nodes can be determined by solving an eigenvalue problem  [42,48].  The monic
orthogonal polynomials associated with the weight function are defined by a recurrence relation:

9
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(8)

where the coefficients  and  can be computed from the moments using Wheeler's algorithm
[48,49]. A symmetric tridiagonal matrix, named the Jacobi matrix, can then be constructed (Eq.
9) using the coefficients of the recurrence relation,

(9)

whose  eigenvalues  are  the  quadrature  nodes  of  the  M-node  Gaussian  quadrature  formulae
[42,48], and the corresponding quadrature weights can be computed as

(10)
where  is the first component of the eigenvector  of , and 

with  being the integration interval.

3.1.1.2 QBUQ for multiple random variables

For  multiple  random variables  ( ),  the  space   is  sampled  using  a  moment-inversion
procedure called conditional quadrature method of moments (CQMOM), proposed by Yuan and
Fox [43]. The foundation of the method is to compute the conditional moments from the pure
moments by solving a linear system, and to  use Wheeler's  algorithm to find the conditional
weights and nodes from the conditional moments. In this way, a multi-dimensional problem is
decomposed  into  several  one-dimensional  moment-inversion  problems,  which  can  be  easily
solved.  In  this  section,  we  use  a  bivariate  problem ( )  as  an  example  to
illustrate the method, while the details of the approach for a higher number of variables can be
found in the literature [43].

The joint PDF of the uncertain parameters  and  can be written as in Eq. 11 using the chain
rule of conditional probability:

(11)
where  is the conditional PDF of  given a fixed value of , and  is the marginal
PDF of . The -th order conditional moments obtained from the conditional PDF are defined as

(12)

Then the pure moments of order   of the joint PDF of the uncertain parameters can be
expressed as:

(13)
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These pure moments are assumed to be known to sample the space of the uncertain parameters
so that quadrature weights and nodes can be obtained.

The space of the first parameter  can be sampled with an -node one-dimensional Gaussian
quadrature formula,  as discussed in Section  3.1.1.1 [42,48].  The quadrature weights   and
nodes   are  obtained  from the  pure  moments   with   using  the
adaptive Wheeler algorithm proposed in  [43]. Then, an  -point distribution representation of
the marginal PDF  can be written as

(14)

The next step is to compute the conditional moments  with  for
each  to determine conditional quadrature weights  and nodes . From here on, for
sake of simplicity, let   denote the conditional moments. By substituting Eq.
14 into Eq. 13, the pure moments can be expressed as

(15)

A Vandermonde  linear  system  [49] is  generated  by  Eq.  15,  which  relates  the  conditional
moments to the pure moments:

(16)

where the coefficient matrices are

(17)

This linear system can be solved using the procedure proposed by Rybicki  [49] to obtain the
conditional moments, which can be inverted to compute the conditional quadrature weights 
and nodes  for each value of  by means of the adaptive Wheeler algorithm [43]. With the
conditional quadrature weights and nodes, a quadrature representation of the joint PDF 
can be constructed:

(18)
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The -th order moment of the system response in Eq. 1 can then be computed as:

(19)

It  is  worth  noticing  that  the  adaptive  Wheeler  algorithm  [43] is  applied  to  automatically
determine  the  actual  number  of  quadrature  point   and   used  in  each  direction  of  the
parameter space. The algorithm uses two parameters (  and  ) to control the distance
between any two nodes and the ratio of the smallest to the largest weights respectively. The 
ensures any two nodes are further than a user-defined limit  so that the Vandermonde matrix
shown in Eq. 16 is well defined. The  controls the minimum values of the weight ratios in
order to avoid highly skewed nodes. In CQMOM, the user has to provide only the maximum
number of quadrature nodes to be used in each direction, as an upper bound for the quadrature
algorithm, which will determine the optimal number of nodes automatically, in order to properly
represent the PDF.

3.1.1.3 Low order statistics

Once the moments about the origin   are defined, it is possible to evaluate the conventional
statistics of the response by converting them into central moments

(20)

being  the mean. The variance is then given by

(21)

while the skewness  and the kurtosis  are, respectively,

(22)

(23)

3.1.1.4 Required number of samples

The number of samples required to determine the moments of order n of the system response can
be established exactly if a polynomial representation of the system response exists. In order to
show this result [40], we first briefly introduce concepts of the polynomial chaos theory, where
the system response is represented as

(24)

where  is a basis of orthogonal polynomials which would correspond to the measure of the
input variable (i.e. Hermite polynomials for Gaussian distributions). The coefficients  in Eq. 24
can be found by projecting the response against each basis function, as

(25)
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with

(26)

If we consider a one-dimensional problem in the space of random variables, the approximated
moment of the system response can be then written, using the polynomial chaos approximation
of the response itself as

(27)

Replacing integrals with quadrature formulae, Eq. 27 becomes

(28)

If we now consider the univariate system response   belonging to a polynomial space of
polynomials of order less than , sufficient condition to compute the -th order moment of the 
-th order polynomial chaos approximation of  exactly is to use a number of samples given by

(29)

This result can be extended to the case of a multivariate response  , function of  N random
variables,  each  belonging  to  the  space  of  polynomials  of  degree  lower  or  equal  to  q,  and
represented by a PC expansion of order  .  Sufficient condition to calculated the  -th order
moment of the response, is then to use a number of sample given by

(30)

It is worth noticing that both Eq. 29 and 30 represent bounds to the number of samples, not the
optimal value of the number of samples required to achieve the desired accuracy, which could
indeed be lower.

3.1.2 Reconstruction of the PDF of the system response

The set of moments of the model response to the uncertain input parameters can be used to
reconstruct  an  approximated  PDF  of  the  values  of  the  response.  For  univariate  PDF
reconstruction,  EQMOM with  different  kernel  density  functions  can  be  used  [44,45],  while
ECQMOM can be applied to reconstruct the joint PDF of quantities of interest.

3.1.2.1 Univariate PDF reconstruction

EQMOM is used to perform univariate PDF reconstruction. The basic idea of the method is to
write the PDF of the system response  as a weighted sum of  non-negative kernel density
functions [44,45]:

(31)

13



Final report                          Award Number: DE-FE0006946

where   and  are the quadrature weights and abscissae used in EQMOM, and  is a
kernel density function related to the parameter , which is selected based on the nature of the 
distribution that needs to be reconstructed, especially based on the support of the distribution. If

 is defined in a bounded interval ,   can be set equal to a beta distribution, while if  is
defined  on  a  semi-infinite  interval  ,  the  gamma  distribution  represents  an  adequate
choice.  The case of a system response defined on the whole real  set  can be treated using a
Gaussian distribution to define the kernel density function. The set of   moments of the
system response are used to solve for  unknowns, including the spread parameter  ,  
quadrature weights , and  quadrature nodes  with . It is worth recalling that
the parameter   is shared by all   kernel density functions, in order to simplify the solution
procedure that allows its value to be determined. In the rest of this section, the algorithm for
EQMOM using different kernel density functions are discussed.

Beta EQMOM

The beta kernel function is defined as Eq. 32 for  [45],

(32)

where , , and  is the beta function defined as 

The distribution of the system response can be then represented as

(33)

The -th order integer moments of  can be written in a recursion form:

(34)

and . Thus the integer moments of the distribution function  can be expressed as

(35)

with

(36)

A lower triangular system can be defined to find  by rewriting these moments as
(37)

where the non-negative coefficients   depend only on  , and  . The matrix
form of the system is , where  is a lower triangular matrix. The quadrature
weights   and nodes   can be found from the first   moments   using the
moment-inversion algorithm, Wheeler algorithm [43,50]. The parameter  is found using an 

14
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iterative  procedure  described  in  Section  “The  algorithm  to  solve  for  ”  below.  The  scalar
function  defined  to  reflect  the  difference  between  the  original  moment   and  the
approximated moment  for beta EQMOM is

(38)

A transformation  and  a  normalization  process  are  required  in  order  to  extend  the  approach
presented above to the general bounded interval . For such a purpose, let ,
where  with the distribution shown in Eq. 32. Then the normalized distribution for  in
bounded interval  is

(39)

Gamma EQMOM

A gamma distribution is selected as the kernel function for  [45]:

(40)

where . Using Eq. 40, the approximated PDF of  can be expressed as

(41)

The  -th order integer moment of the kernel density function  is

(42)

As a consequence, the integer moments of  can be written as

(43)

where

(44)

The lower triangular system of equations used to find  is defined as:

(45)

where  and  is a homogeneous polynomial of order . The parameter
 is then determined by solving the system in Eq. 45 iteratively with the algorithm described in

Section “The algorithm to solve for ” below. The scalar function for gamma EQMOM is

15
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(46)

For cases where  instead of , a linear change of variables is applied so that the
approach  is  extended  to  the  general  interval.  This  is  achieved  by letting  ,  where

 with  PDF in  Eq.  41.  The final  generalized  PDF for   on  the  semi-infinite  interval
 is

(47)

Gaussian EQMOM

For , a Gaussian distribution is selected as the kernel density function [44]:

(48)

And the approximated PDF of  can be written as

(49)

The  -th  order  integer  moment  of  the  kernel  density   can  be  calculated  from the
moment generation function:

(50)

where the moment generation function $  for Gaussian distribution is defined as

(51)

The first five integer moments of the kernel density function ( ) are shown in Eq. 52.

(52)

Therefore, the integer moments of  can be written as a lower triangular system:

(53)

where  and  is a homogeneous polynomial of order . For , the
lower triangular system is

16
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(54)

By solving the system in Eq.  53 iteratively using the algorithm in section “The algorithm to
solve for ”, the parameter  is determined. The scalar function for Gaussian EQMOM is

(55)

The algorithm to solve for 

The following algorithm is used to solve the lower triangular systems shown in Eqs. 37, 45, and
53.

1. Guess the value of ;
2. Compute the moments  from the lower triangular system ;
3. Use the adaptive Wheeler algorithm to find weights  and abscissae  from ;
4. Compute  using weights and abscissae found in the last step;
5. Compute the scalar function ;
6. If , guess a new  and iterate from step 1.

3.1.2.2 Multivariate PDF reconstruction

The idea of using ECQMOM for multivariate PDF reconstruction is to combine EQMOM with
CQMOM so that  a  multivariate  reconstruction  problem can be  transformed into  a  series  of
univariate  reconstruction  problems.  For  the  sake  of  simplicity  and  clarity,  a  4-node  ( )
Gaussian ECQMOM, which is a bivariate extension of 2-node Gaussian EQMOM combined
with CQMOM, is illustrated as a demonstration of the method. The same methodology can be
extended to more nodes for each variable, more variables, and other kernel density functions.

The bivariate moments of the system response  are defined as

(56)

which can be directly approximated using the QBUQ procedure. A 4-node bivariate Gaussian
distribution is then defined as

(57)

where the Gaussian kernel density function  is

(58)

The subscript of  indicates the conditioning order, and here it is  conditioned on .
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The function  in Eq. 57 is defined to have the properties shown below,

(59)

A choice for  is a linear function , where  and  and be calculated as

(60)

and

(61)

with  ,  ,  ,  ,  and

. It is worth noting that  is well defined if the standard deviation in

the  direction  is nonzero, and in fact,  is the conditional expected value of  given
.

The reconstruction in the   direction is a univariate reconstruction problem, in which known
integer moments set  is used to compute nodes and corresponding
weights using Gaussian EQMOM described in Section 3.1.2.1 and in literature [44,51]. The next
step  is  to  reconstruct  the  PDF in  the   direction.  To  simplify  the  notation,  the  following
definition is introduced,

(62)

where Gaussian integer moments up to order of  are involved, which are known functions of
 and .

Define , then the integer moments of  in Eq. 57 can be expressed as

(63)

With the conditional moments of  given  defined as

(64)

a binomial expansion for integer  can be written as

(65)

The unique solution to Eq. 65 when  and  is , and likewise the solution for
the equation with  and  is  using properties of  in Eq. 59. In order to
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determine , , and , Eq. 65 needs to be solved to obtain  for , which is
straightforward by solving the following linear systems sequentially (Eq. 66 to Eq. 68):

(66)

(67)

(68)

Once the set of conditional moments   for   is obtained, univariate
Gaussian EQMOM can be applied again to determine , , and .

When the univariate moments  with 1-D Gaussian EQMOM are used to find , , , ,
and , two cases can be possible: a non-degenerate case with  and a degenerate case
with . The above procedure is suitable for the non-degenerate case. For the degenerate
case,  the  univariate  moments   are  Gaussian,  and the  -node  Gaussian  ECQMOM
degenerates to a 2-node Gaussian ECQMOM because only one node is used to represent the PDF
of the first direction.

For the degenerate case, a 2-node bivariate Gaussian distribution is defined as

(69)

The integer moments of  can be expressed as

(70)

where

(71)

, , and the conditional moments are defined as
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(72)

with , , and  by definition. The conditional moments , , and
 can be found from Eq. 70 for  and :

(73)

where  the  moments   can  be  calculated  from Eq.  71 with  .  With  the  moment  set
, 1-D Gaussian EQMOM can be used to determine , , and  for .

With the above procedure, the 2-D Gaussian ECQMOM is complete for both non-degenerate and
degenerate cases.

3.1.3 Implementation of the quadrature-based UQ approach into MFIX

Two  separate  modules  based  on  the  Python  programming  language  and  shell  scripts  are
developed to implement the QBUQ approach into MFIX, including a pre-processing module and
a post-processing module. The overall framework of the implementation is shown in Fig. 2.

20

Figure 2: Framework of implementing the UQ procedure into MFIX.
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For  pre-processing  of  the  input  data,  with  modules  to  generate  samples  using  Gaussian
quadrature fomulae or CQMOM  [45], lists of weights and nodes are provided for generating
MFIX input files. The flow chart of this part is shown in Fig. 3. 

Then a  module  can automatically  generate  MFIX input  files  using  the  list  provided by the
previous part. Users need to provide a basic MFIX input file “mfix.dat” first,  then the script
searches for the parameters that need to change and replaces the value with values in the list. The
modified files are stored in separate folders which are the run directories for MFIX. Fig. 4 shows
the flow chart of this part.

21

Figure 3: Flow chart to generate weights and nodes for uncertain parameters.
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For post-processing of the output data, a shell script is first used to extract time-averaged data.
Users need to provide a basic MFIX post-processing input file with parameters used in the MFIX
post-processing script. Then the script enters each folder containing simulation results for each
sample,  searches  and  replaces  the  'run_name'  with  corresponding  name,  and  extracts  data
accordingly.  Once time-averaged results  are extracted,  a module can be used to estimate the
moments of quantities of interest, with which four parameters that decide the shape of the output
distribution curve, mean, variance, skewness, and kurtosis can be calculated, and the PDF of the
system response can be reconstructed using EQMOM [44,45]. Fig. 5 shows the flow chart of this
part.

22

Figure 4: Flow chart to generate MFIX input 
files for each node.
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The python source code implementing the QBUQ procedure described in this section is released
under the GNU General Public License Version 3 and can be downloaded from the Git repository
https://bitbucket.org/albertop/qbuq.

3.1.4 Applications of QBUQ to CFD simulations

The developed QBUQ approach is applied to two single phase CFD simulations including a
developed channel flow and an oblique shock problem, two bubbling fluidized beds, and a riser
of circulating fluidized bed. The propagation of uncertainty in input parameters to simulation
outputs is studied. 

3.1.4.1 Developing channel flow

The development of the flow in a channel considered in [15] with uncertain viscosity was chosen
as the first example application of the QBUQ approach introduced in the previous sections. The

23

Figure 5: Flow chart to post-process the data.

https://bitbucket.org/albertop/qbuq
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channel under examination is schematically represented in Fig.  6. In the simulations, the ratio
between the length of the channel and the distance between the two parallel walls was L/D = 6,
and the mean Reynolds number  was used. A uniform velocity profile is assumed at
the inlet of the channel, while fully developed flow is imposed at the outlet. No-slip boundary
conditions are applied at the channel walls. The open-source package OpenFOAM [52-54] was
used  to  perform the  simulations.  A computational  grid  of   cells  was  used,  since  it
ensures grid independence. The solution was assumed to be converged when the residuals of all
variables were below . A uniform distribution of the constant viscosity of the flow
was assumed. The mean viscosity   was supposed to be 1, and the standard deviation of the
viscosity  was  .  Thus  the  flow  viscosity  assumed  values  in  the  interval  .  The
procedure illustrated in  Section  3.1.1 was then used to  compute the moments of the system
response, after producing the samples.

Convergence of the moments

The convergence of the moments of the streamwise fluid velocity is studied here, by considering
the absolute value of the difference between the value of each moment computed with a given
number of samples, and the value of the same moment computed with 1000 samples, which is
assumed to be exact.

(74)
Seven sets of samples were considered, respectively with 3, 5, 10, 20, 40, 80 and 100 samples.
The absolute errors for the moments of the axial component of the fluid velocity are reported in
Tables 1, 2, and 3. All the set of samples ensure exact prediction of the zero-order moment, since
its value is guaranteed to be exact by the quadrature representation. Additionally, we observe that
twenty samples are sufficient to calculate the five moments with an accuracy higher than ,
moments of order 5 to 9 are predicted with an absolute error of magnitude  . It is worth
noticing  that  using  a  significantly  higher  number  of  samples  does  not  lead  to  a  significant
reduction of the error affecting the highest order moments considered in this example.

24

Figure 6: Schematic representation of the channel.
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Samples

3 0

5 0

10 0

20 0

40 0

80 0

100 0

Table 1: Absolute error for m0, m1, m2, and m3.

Samples

3

5

10

20

40

80

100

Table 2: Absolute error for m4, m5, and m6.

Samples

3

5

10

20

40

80

100

Table 3: Absolute error for m7, m8, and m9.

Fig. 7 shows the filled contour plots of the velocity mean, showing a peak axial velocity of 1.5
m/s. The variance, skewness, and kurtosis of each velocity component are also reported in the
figure.
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure  7:  Contour  plots  of  mean,  variance,  skewness,  and  kurtosis  of  the  two  velocity
components: (a)-(d) spanwise, (e)-(h) streamwise. Two locations designated are the points where
EQMOM is used to reconstruct the PDF of the system response.
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Reconstructed distribution

The  distribution  of  the  axial  velocity  is  reconstructed  using  EQMOM. Two sets  of  data  at
different  locations  were  used  to  perform  the  reconstruction,  one  on  the  channel  centerline
(Location 1), and the other near the wall (Location 2). The approximate distributions, reported in 
Fig.  8 display two different  profiles.  The axial  velocity  at  the  Location  1  presents  a  nearly
uniform distribution, showing that the uniform distribution provided as input is propagated to the
system response without significant changes. However, the axial velocity distribution at Location
2 strongly deviates from uniform distribution.

The reconstructed distribution using EQMOM is also compared with the one obtained from 1000
samples by dividing the whole set of samples in 10 bins.  Each bin is formed by a constant
number of samples , equal for each bin, and the limiting values of each bin are determined
to enforce this assumption, defining the bin width . The weight attributed to each bin  is
calculated  by  summing  the  quadrature  weights  of  the  samples  contained  in  the  bin.  The
frequency of each bin is reported in the histograms, in which the height of each bar is computed
as

(75)

The approximate distributions  show good agreement  with the histograms reconstructed from
1000 samples  for  all  the  considered  conditions,  which  indicates  four  nodes  are  sufficient  to
reconstruct the axial velocity distribution for this case.

(a) central line (Location 1) (b) near wall (Location 2)

Figure 8: Reconstructed distribution of the axial velocity.

Polynomial chaos expansion

The Polynomial chaos (PC) expansion of the axial velocity is determined here to compare with
the QBUQ results. The system response can be expressed as in Eq. 76 [15],

(76)
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where   is a basis of orthogonal polynomials corresponding to the input distribution, in this
case for example Legendre polynomials for uniform distributions. The coefficients   can be
calculated as Eq. 77 by projecting the response against each basis function [40,41].

(77)

Following [15], a third order ( ) PC expansion of the axial velocity is reported here, and the
four coefficients ,  ,  , and  are shown in Fig.  9. Once the polynomial chaos expansion
function is obtained, the mean value of the system response is known, which is the value of the
first polynomial chaos coefficient . Compared the mean values of the axial velocity obtained
by QBUQ procedure and PC expansion, shown in Fig. 7(e) and Fig. 9(a), the two contour plots
show great agreement. The largest absolute value of this differences has magnitude equal to 
, indicating quadrature-based UQ procedure is consistent with the PC expansion approach.

(a) (b) (c) (d) 

Figure 9: Contour plots of polynomial chaos expansion coefficients of the axial velocity.

3.1.4.2 Oblique shock problem 

The second example application of the QBUQ approach is a compressible flow with an uncertain
Mach number  over  an  inclined  surface  with  an  angle   with  respect  to  the  horizontal.  The
problem is schematically represented in Fig.  10. In the simulations, the flow was fed with a
uniform inlet. A shock discontinuity is formed with an angle   with respect to the horizontal,
which can be expressed by Eq.  78, related to the inlet Mach number, the ratio of the specific
heats , and the angle .

(78)
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The case was simulated considering a computational grid of  cells which ensured grid
independence with the rhoCentralFoam solver provided with open-source package OpenFOAM
[53,54]. A uniform distribution of the upstream Mach number was assumed. The mean Mach
number was 3, and the standard deviation was 0.3. Thus the upstream Mach number was in the
interval . The method described in Section 3.1.1 was applied to calculate the moments of
the system response based on the samples obtained from the numerical simulations.

Low-order statistics of the system response

The low-order statistics of the streamwise velocity are presented in this section. The moments
computed with 20 samples are compared to the same moments computed with 100 samples,
which are assumed exact in this case. The filled contour plots of the mean and variance of the
horizontal  velocity component  are reported in  Fig.  11.  As expected,  a  shock discontinuity is
observed with an  angle with  respect  to  horizontal.  This  angle is  not  a  defined value,  but  it
belongs to a range because of the uncertainty of the Mach number.

(a) (b) 

Figure 11: Mean and variance of the horizontal velocity component. Three locations designated
are the points where EQMOM is used to reconstruct the PDF of the system response.

29

Figure 10: Schematic representation of the oblique shock 
problem.
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The interval containing the shock can be calculated analytically from Eq. 78, while the interval
predicted by QBUQ is determined by measuring the angular width of the horizontal velocity
variance across the shock. Table 4 shows the angle range calculated from the analytical solution
and measured in the UQ procedure, indicating that the estimation of the shock angle with the UQ
procedure matches the analytical value with an error on the order of 0.1 degrees.

2.7 34.78 34.32
3.3 30.27 30.50

Table 4: Shock angles.

Fig. 12 shows the absolute error of the mean and variance of the horizontal velocity component.
Because of the shock discontinuity, the absolute errors in this region are in magnitude of ,
while in other regions the absolute errors are nearly zero.

(a) (b)

Figure 12: Absolute error of (a) mean and (b) variance of the horizontal velocity component.

Reconstructed distribution

The reconstructed distribution of the horizontal velocity component is studied in this section.
Three sets of data at different locations were used to perform the reconstruction, one below the
shock (Location 1), and two in the shock region (Locations 2 and 3). Approximate distributions
are reported in Figs. 13 and 14. The uniform distribution provided as input is maintained nearly
unchanged for the distribution of the horizontal velocity at Location 1, while distributions of the
horizontal velocity at  Locations 2 and 3 significantly differ from the uniform. Distributions of
the horizontal velocity in the shock region display step function profiles because of the shock
discontinuity.

The effect of the number of EQMOM nodes on the reconstructed distribution was considered.
The approximate  distribution of  the horizontal  velocity below the  shock region shows good
consistency  with  the  histogram,  and  increasing  the  number  of  EQMOM  nodes  does  not
significantly influence the quality of the reconstruction. The approximate distributions shown in
Fig.  14 presents  some  oscillations,  which  is  expected  because  of  the  steep  discontinuity
presented by the values of the distribution that is being reconstructed. The reconstruction of the
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distribution in the shock region improves when the number of EQMOM nodes increases, because
this leads to a reduction of the oscillatory behavior. However, increasing the number of EQMOM
nodes requires higher order moments to be computed, whose accuracy decreases with the order
due  to  truncation  errors.  Considering  both  the  calculation  accuracy  and  the  shape  of  the
approximate distributions, four nodes are adequate to reconstruct the PDF of horizontal velocity.

(a) Location 1 (b) Location 1

Figure  13: Reconstructed distribution of the horizontal velocity below the shock region: (a) 4
EQMOM nodes, (b) 6 EQMOM nodes.
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(a) Location 2 (b) Location 2

(c) Location 3 (d) Location 3

Figure  14:  Reconstructed  distribution  of  the  horizontal  velocity  in  the  shock  region:  (a)  4
EQMOM nodes, (b) 5 EQMOM nodes, (c) 4 EQMOM nodes, (d) 6 EQMOM nodes.

Polynomial chaos expansion

The four PC expansion coefficients of the horizontal velocity , , , and  are shown in Fig.
15. By substituting these coefficients into Eq. 77, the horizontal velocity for each sample can be
recomputed and then the mean horizontal velocity can be obtained from the first coefficient .
Compared the mean horizontal velocity obtained by QBUQ procedure and PC expansion, shown
in Fig. 11(a) and Fig. 15(a), the two contour plots show good agreement. Although the number of
samples used in this case is not large (100 at most) and the shock discontinuity is formed, the
absolute difference is still acceptable, with magnitude .
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(a) (b) 

(c) (d) 

Figure 15: Contour plots of polynomial chaos expansion coefficients of the horizontal velocity.

3.1.4.3 Bubbling fluidized bed

In  this  section,  the  proposed  QBUQ  procedure  is  demonstrated  by  considering  a  bubbling
fluidized bed studied in Taghipour  et  al.  [55] as an example application.  A two-dimensional
bubbling fluidized bed is simulated, with scheme shown in Fig.  16. The column is 28 cm in
width, and 100 cm in height. Spherical glass beads with density 2500 kg/m3 and mean diameter
275 μm are fluidized by injecting the air uniformly from the bottom of the column at 0.38 m/s at
ambient conditions.
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The system is simulated with a standard two-fluid model  [1,2] with kinetic theory closures for
the particulate phase [56] implemented into MFIX. Wen and Yu [57] drag correlation is used to
describe the interaction between two phases. The computational domain is discretized by 44800 (

) cells, with the grid interval spacing being 0.25 cm. The adaptive time stepping of
MFIX is applied with starting time step being  s. The maximum number of iterations
per time step is set to 500, and the convergence criteria for residual components are .
The initial bed height is 0.4 m, and initial void fraction is 0.4. The inlet and outlet boundary
conditions are  constant  gas inflow,  and zero relative gas pressure,  respectively.  No-slip  wall
boundary  condition  is  applied  to  both  gas  and  solid  phases.  The  particle-particle  restitution
coefficient is set to 0.9 for all simulations in this work. The parameters and conditions used in the
simulations are summarized in Table 5.

The  influence  of  uncertain  particle  size  on  the  simulation  results  is  studied.  In  practice,  a
distribution  of  particle  size  exists  constantly.  In  this  bubbling  fluidized  bed,  a  uniform
distribution is assumed for the distribution of particle diameter. The mean particle diameter  is
275 μm, and the standard deviation is , which indicates the particle diameter is distributed
uniformly on the interval  . Using the pre-processing module illustrated in Section
3.1.3, 20 samples are generated.

34

Figure 16: Scheme of
the bubbling fluidized
bed.
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Properties Values
Gas density 1.225 kg/m3

Particle density 2500 kg/m3

Mean particle diameter 275 μm
Restitution coefficient 0.9
Initial bed height 0.4m
Initial void fraction 0.4
Superficial gas velocity 0.38 m/s
Inlet boundary condition constant gas inflow
Exit boundary condition zero relative gas pressure
Grid interval spacing 0.25 cm
Simulation time 90s
Starting time step  s
Maximum number of iterations 500
Convergence criteria

Table 5: Simulation parameters and conditions.

Three time-averaged quantities of interest are studied to evaluate the effects of uncertain particle
size on the simulation outputs, including solid volume fraction , gas pressure , and vertical
solid velocity . Moments of the quantities are computed directly using the Gaussian quadrature
formulae, mentioned in Section 3.1.1. Contour plots are plotted for moments up to fourth order,
and for statistics like mean and variance of the system response. The approximated PDFs of the
response are reconstructed at specific locations using EQMOM [45].

Solid volume fraction

Fig. 17 shows the contour plots of the mean and variance of the solid volume fraction , with
symmetrical profiles shown. The effect of uncertain particle size on the solid volume fraction 
focuses on the interface of the bed, in particular on locations near the wall. Contour plots of
moments up to fourth order of solid volume fraction are also reported in Fig. 18.
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(a) (b) 

Figure 17: Contour plots of (a) mean and (b) variance of the solid volume fraction.

(a) (b) (c) (d) 

Figure 18: Contour plots of moments of solid volume fraction from first order to fourth order:
(a) , (b) , (c) , (d) .

Four sets of data at varied locations are used to reconstruct the PDF of the system response, two
on the centerline (Locations 1 and 3), and two near the wall (Locations 2 and 4). Locations 1 and
2 are at height near the interface of the bed, while Locations 3 and 4 are in the fluidized bed. If
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not noted otherwise, the designated locations in all figures of this application are the same. Table
6 lists the coordinates of these four locations.

Location
Coordinates

x y
1 14.125 59.125
2 0.625 59.125
3 14.125 50.625
4 0.625 50.625

Table 6: Coordinates of the designated locations.

The reconstructed PDFs of solid volume fraction  at these four Locations are shown in Fig. 19.
At Locations 1 and 3, either low or high solid volume fraction is preferable. At Location 2, lower
solid volume fraction has larger probability because when near the wall at this height, particles
can barely reach this height, and are moving downward, which is shown in Fig.  23 later. At
Location 4, higher solid volume fraction has larger probability, which indicates particles tend to
accumulate at this location.

(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

Figure 19: Reconstructed PDFs of the solid volume fraction. Statistics of  at Locations 1 and 2
are given: , , ,  and  are mean, variance, skewness, and kurtosis, respectively.
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Gas pressure

Contour plots of the mean and variance of gas pressure are shown in Fig. 20, and moments of gas
pressure up to fourth order are shown in Fig. 21. The symmetrical profiles are observed as well.
The effect of uncertain particle size on gas pressure concentrates on the interface of the bed,
especially at locations near the wall, which is consistent with results of solid volume fraction.

(a) (b) 

Figure 20: Contour plots of (a) mean and (b) variance of the gas pressure.

(a) (b) (c) (d) 

Figure 21: Contour plots of moments of gas pressure from first order to fourth order: (a) , (b)
, (c) , (d) .
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Approximated PDFs of gas pressure are also reconstructed at the same locations, shown in Fig.
22.  For  Locations  1  and  2,  low  gas  pressure  is  preferred  because  at  this  height  particle
concentration is very low. At lower positions, such as Locations 3 and 4, though low gas pressure
still has large probability, the shape of the PDFs is broader.

(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4
Figure  22: Reconstructed PDFs of the gas pressure. Statistics of   at  Locations 1 and 2 are
given: , , ,  and  are mean, variance, skewness, and kurtosis, respectively.

Vertical solid velocity

Fig. 23 and Fig. 24 show the contour plots of mean and variance of vertical solid velocity, and
moments from first order to fourth order of , with symmetrical profiles observed. At locations
near the centerline of the reactor, particles are moving upward,  while near the wall  negative
vertical  velocities  are  observed,  which indicates  circulation  of  particles  is  formed inside the
reactor.  Again,  at  the  interface  of  the bed,  specifically near  the  wall,  uncertain  particle  size
influences the results the most.
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(a) (b) 

Figure 23: Contour plots of (a) mean and (b) variance of the vertical solid velocity.

(a) (b) (c) (d) 

Figure 24: Contour plots of moments of vertical solid velocity from first order to fourth order:
(a) , (b) , (c) , (d) .

The approximated PDFs of vertical solid velocity are reconstructed at the same locations, shown
in Fig. 25. At Location 1, particles tend to move downward. At Location 2, particles are going
downward, and low vertical velocity is preferable because no-slip wall boundary condition was
applied.  At  Location  3,  PDF with a  broad peak is  reconstructed,  and positive  vertical  solid
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velocity is preferred. At Location 4, particles have negative vertical velocity. Because of no-slip
wall boundary condition for the solid phase, lower vertical velocity has larger probability.

(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4
Figure 25: Reconstructed PDFs of the vertical solid velocity. Statistics of  at Locations 1 and 2
are given: , , ,  and  are mean, variance, skewness, and kurtosis, respectively.

3.1.4.4 NETL small scale challenge problem (SSCP-I)

The QBUQ approach is then applied to the simulation of a bubbling fluidized bed, based on 
case 1 of  the  2013 NETL small  scale  challenge problem (SSCP-I)  [46].  The effects  of  two
independent uncertain parameters, namely the particle-wall and the particle-particle restitution
coefficients, on the system response are studied. The experimental data of SSCP-I were obtained
in a 3 in × 9 in × 48 in bubbling fluidized bed with rectangular cross-section. Geldart D particles
with constant diameter and high sphericity were used in the experiments. In this case we perform
two-dimensional simulations of the experimental system, which we model as a rectangle having
width of 23 cm and height of 122 cm, as illustrated in Fig. 26. 
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The open source code MFIX is used to simulate the system. A two-fluid model [1,2] with kinetic
theory closures for solid phase  [56] is applied to describe the fluidized bed considered in this
application.  Syamlal and O'Brien  [58] drag correlation is  used to  account  for the interaction
between two phases.  A uniform grid with 46  ×  244 cells  is  used for all  simulations in  this
application. The gas is injected uniformly at the bottom of the reactor with superficial velocity
219 cm/s. The top of the reactor is at atmospheric conditions. The particles have a Sauter mean
diameter of 0.3256 cm and a density of 1.131 g/cm3. The initial bed height is 16.3 cm, with
packed bed void fraction equal to 0.4. The remaining simulation conditions are listed in Table 7.

42

Figure 26: Schematic 
representation of the 
bubbling fluidized bed 
in SSCP-I.
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Conditions Values
Particle-wall restitution coefficient (epw) [0.75, 0.95]

Particle-particle restitution coefficient (epp) [0.73, 0.92]

Specularity coefficient 0.045
Inlet boundary condition Constant gas velocity
Outlet boundary condition Zero relative gas pressure
Wall boundary condition for gas phase No-slip
Wall boundary condition for solid phase Johnson-Jackson [59]
Simulation time 90s
Initial time step  s
Convergence criteria
Table 7: MFIX simulation conditions.

As  mentioned  before,  two  independent  parameters  were  considered  as  uncertain  variables:
particle-wall restitution coefficient  and particle-particle restitution coefficient . The space
of  the uncertain  parameters  was sampled using  the CQMOM approach described in  Section
3.1.1. The pure moments that CQMOM requires as input are estimated based on the experimental
data provided by SSCP-I for these two parameters. A series of experiments were conducted to
measure  and  for the particle and wall materials used in the actual bubbling fluidized bed.
The range of  is 0.75 to 0.95, and  is between 0.73 to 0.92. The space of  was sampled
first  with  five  quadrature  nodes,  then  the  conditional  moments  with  respect  to   were
determined,  with  which  the  conditional  weights  and  nodes  were  computed.  In  total,  fifteen
samples are generated by CQMOM. Fig. 27(a) gives the locations of each sample, and Fig. 27(b)
shows the weights of each sample. The nodes with large weights concentrate in the region near
the mean values of the parameters.

(a) (b)

Figure 27: Samples generated by CQMOM: (a) locations and (b) weights of each sample.
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Once the space of the uncertain parameters was sampled, MFIX simulations were performed for
each sample.  Four time-averaged quantities are considered as system response: solid volume
fraction ( ),  gas pressure ( ),  solid-phase horizontal  velocity ( ),  and solid-phase vertical
velocity ( ). Low-order statistics, such as mean and standard deviation of the system response,
are computed and compared to experimental data. The approximated PDF of the response at
specific locations in the computational domain is reconstructed.

Low-order statistics

Fig.  28 shows the contour plots of mean and standard deviation of the solid volume fraction,
indicating a symmetric profile with respect to the vertical axis. The concentration of particles
decreases with increasing distance from the bottom of the reactor in the center of the bed, and
particles concentrate near the walls. The effect of uncertain particle-particle and particle-wall
restitution coefficients on the solid volume fraction mainly focuses on the interface of the bed,
especially  on  the  locations  near  the  wall,  and  also  at  the  center  of  the  fluidized  bed.  The
minimum  and  maximum  values  of  the  standard  deviation  of   are   and

, respectively.

(a) mean (b) standard deviation
Figure 28: Contour plots of (a) mean and (b) standard deviation of solid volume fraction.

The  designated  Locations 1  to  4  in  Fig.  28 are  where  the  PDF  of  the  system response  is
reconstructed. Locations 1 and 2 are in the fluidized bed, and at the same height the experimental
data are obtained. Locations 3 and 4 are near the interface of the bed. If not stated otherwise, the
designated locations in all figures of this application are the same. The coordinates of these four 
points are listed in Table 8.
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Location
Coordinates

x y
1 11.50 7.50
2 1.00 7.50
3 11.50 23.50
4 1.00 23.50

Table 8: Coordinates of the designated locations.

Fig.  29 reports the contour plots of mean and standard deviation of the gas pressure. The gas
pressure  reduces  to  zero  with  increasing  the  distance  from  the  bottom of  the  reactor.  The
uncertain parameters influence the gas pressure the most in the center of the bed. The minimum
and maximum values of the standard deviation of  are  Ba and  Ba,
respectively.

(a) mean (b) standard deviation
Figure 29: Contour plots of (a) mean and (b) standard deviation of gas pressure.

Fig.  30 and Fig.  31 show the contour plots  of the mean and standard deviation of the solid
horizontal and vertical velocity. Fig.  30(a) and Fig.  31(a) indicate circulations of particles are
formed. The effect of uncertain parameters focuses on the locations near the interface of the bed
and at the bottom of the bed for solid horizontal velocity, and on locations near the wall for solid
vertical velocity. The minimum and maximum value of the standard deviation of  are 0.0 cm/s
and 4.947 cm/s,  respectively,  while  the  same quantities of   are  0.0  cm/s  and 7.365 cm/s,
respectively.
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(a) mean (b) standard deviation
Figure 30: Contour plots of (a) mean and (b) standard deviation of solid horizontal velocity.

(a) mean (b) standard deviation
Figure 31: Contour plots of (a) mean and (b) standard deviation of solid vertical velocity.
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Comparison to experimental data

Based on the  results  for  the  mean and standard  deviation  of  the  system response,  the  95%
confidence interval of the simulation outputs can be calculated as

(79)

where  and S are the mean and the standard deviation of the system response, N is the number
of samples, and  is the value at which the probability of t-distribution with 
degrees  of  freedom is  0.025.  In this  work,  N is  15,  and   is  2.145.  Therefore,  the
simulation results can be compared to experimental data provided by SSCP-I [46], shown in Fig.
32.

(a) 

(b) (c) 

Figure  32: Simulated (a) gas pressure, (b) solid horizontal velocity, (c) solid vertical velocity
compared to experimental data.

Results  show  that  the  mean  values  of  the  simulation  results  are  in  fair  agreement  with
experimental data. Some of the experimental data give large 95% confidence intervals, especially
near the center of the bed, which may indicate that, besides particle-particle and particle-wall
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restitution  coefficients,  other  uncertain  parameters,  such  as  particle  size,  may  influence  the
simulation  results.  It  is  also  possible  that  the  uncertainty  in  the  experiments  due  to  the
measurement method causes large confidence intervals for experimental data.

Reconstruction of the PDF of the system response

Four locations are chosen to reconstruct the PDF of solid volume fraction, gas pressure, and solid
horizontal and vertical velocities using EQMOM described in Section 3.1.2 [44,45]. The PDF of
the solid volume fraction is reconstructed using two-node beta EQMOM because the support of
the distribution of the solid volume fraction is [0, 1]. Reconstruction results for Locations 1 to 4
are shown in Fig.  33. All  the reconstructed distributions show two peaks. However,  those at
Locations 1, 2, and 3 are very narrow, while the one at Location 4 is wider, indicating an actual
bimodal distribution. At Locations 1 and 2 inside the fluidized bed, the solid volume fraction is
high, while near the bed free surface (Locations 3 and 4), the peaks corresponds to low solid
volume fraction. For locations near the wall (Locations 2 and 4), a higher solid volume fraction
is preferred.

(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

Figure 33: Reconstructed distribution of the solid volume fraction at different locations.
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Fig. 34 shows the reconstruction results for Locations 1 to 4 for the gas pressure, obtained with
two-node  gamma EQMOM. All distributions present profiles with a bimodal distribution.  At
Locations 1 and 2 inside the bed, low gas pressure has high probability. The PDF at Location 2 is
narrower than the PDF of Location 1, which is consistent with the conclusion obtained from the
contour plot of the standard deviation of the gas pressure shown in Fig. 29(b) that at locations in
the center of the bed, the standard deviation of gas pressure is large.

(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

Figure 34: Reconstructed distribution of the gas pressure at different locations.

The PDF of the solid horizontal velocity is reconstructed using two-node Gaussian EQMOM
since  the  distribution  of  velocity  is  defined  on  the  whole  real  line.  Fig.  35 shows  the
reconstruction results for  Locations 1 to 4. For  Locations 1 and 3 at the center of the bed, the
peak of the distribution forms near zero velocity with a positive tail for  Location 1 (inside the
bed) and a negative tail for Location 3 (near interface of the bed). For Locations 2 and 4 near the
wall, a bimodal distribution is observed.
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(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

Figure 35: Reconstructed distribution of the solid horizontal velocity at different locations.

The PDF of the solid vertical velocity is reconstructed using Gaussian EQMOM. As shown in
Fig. 36, for Locations 1 to 3, two-node Gaussian EQMOM is used while for Location 4, only a
node reconstruction was performed because the PDF is Gaussian, and one node is sufficient to
reconstruct it accurately. At  Location 1, a broad peak with a shoulder is formed. Particles are
going  upward,  and  low  velocity  has  high  probability  at  this  location.  At  Location  2  when
particles are moving downward, a bimodal distribution is observed with high probability for high
velocity. At Locations 3 and 4 near the bed free surface, particles are moving downward.
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(a) Location 1 (b) Location 2

(c) Location 3 (d) Location 4

Figure 36: Reconstructed distribution of the solid vertical velocity at different locations.

3.1.4.5 Riser flow simulation

The QBUQ approach is at last applied to a riser flow studied experimentally and computationally
by Tartan and Gidaspow [47]. A two-dimensional riser flow simulation was set up based on the
experiments conducted in the IIT circulating fluidized bed (CFB) reactor described in [47]. The
riser of IIT CFB possessed a diameter of 7.62 cm and a height of 699 cm. Geldart B particles
were used in the experiments. In this application, the simulations are performed in a 2-D channel
with width of 7.62 cm and height of 699 cm, discretized by 40 × 466 cells. The riser is initially
empty. The mixture of glass beads and air is injected uniformly from the bottom of the channel,
and exits from the top. MFIX (http://mfix.netl.doe.gov) is used to simulate the riser flow. The
simulation conditions and parameters are listed in Table  9. Two-fluid model  [1,2] with kinetic
theory closures for solid phase [56] implemented in MFIX [58] is used to solve the multiphase
flow in the riser. The influences of uncertain particle size on four time-averaged quantities of
interest are evaluated, including solid volume fraction  , solid radial velocity  , solid axial
velocity , and granular temperature . These quantities are time-averaged from 50 s to 90 s.
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Conditions Values

Gas density, kg/m3

Mean particle diameter, μm
Particle density, kg/m3

Particle-particle restitution coefficient
Particle-wall restitution coefficient
Specularity coefficient
Inlet superficial gas velocity, m/s
Inlet solid mass flux, kg/m2·s
Inlet solid volume fraction
Outlet boundary condition
Wall boundary condition of gas-phase
Wall boundary condition for solid-phase
Simulation time, s
Initial time step, s
Convergence criteria

1.184
530
2460
0.95
0.60
0.007
4.90
14.2
0.98
Zero relative gas pressure
No-slip
Johnson-Jackson [2]
90
1.0 × 10-4

1.0 × 10-3

Table 9: MFIX simulation parameters and conditions.

Descriptions of the uncertain parameter

In reality, particle size is not a single value, and a distribution of particle size always exists. In
this work, the effect of uncertain particle size on the simulation outputs is studied. The PDF of
particle  diameter  is  assumed  to  be  a  uniform distribution  with  mean value   and standard
deviation being 530  μm and 0.1 ,  respectively.  Hence the particle diameter   is  uniformly
distributed  on  the  interval  [477,583].  In  total  20  samples  are  generated  using  the  sampling
method for one uncertain parameter described in previous reports.

Mean and standard deviation of system response

For each sample, the MFIX simulation is performed once. The moments of the system response
are directly estimated using Gaussian quadrature formulae. Then the low order statistics such as
mean and standard deviation of the system response can be calculated.

Fig.  37 shows the contour plots of mean and standard deviation of the solid volume fraction.
Because of the large ratio of the height to the diameter of the riser, the riser is cut into four parts
at height of 175 cm, 350 cm, and 525 cm so that details of the contour plots can be displayed.
The contour plots in this section are all shown in this way if not stated otherwise. Core-annular
structure is  observed as expected,  though the annulus is  very thin.  The annulus is  relatively
dense, while the core is dilute. The concentration of the particles decreases with increasing the
distance from the bottom of the channel. The effect of uncertain particle size on the solid volume
fraction focuses on the bottom of the riser, the annulus, and some spots near the wall at very high
positions of the riser.
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(a) mean (b) standard deviation

Figure 37: Contour plots of (a) mean and (b) standard deviation of solid volume fraction.

The designated points in Fig.  37 are the locations where the reconstruction of the PDF of the
system response is performed, and at the same height,  the experimental results are obtained.
Location 1 is at the centerline, while  Location 2 is near the wall.  If not stated otherwise, all
designated points in all figures of this section have the same coordinates, listed in Table 10.

Location
Coordinates

x y
1 3.810 420.00
2 0.381 420.00

Table 10: Coordinates of the designated locations.

Fig. 38 gives the contour plots of mean and standard deviation of solid radial velocity. After the
initial mixing near the bottom of the riser, particles are moving towards the wall,  which can
explain the dilute core and dense annulus structure. With increasing the distance from the bottom
of the riser, the absolute value of the solid radial velocity increases, and particles are pushed from
one side of the riser to the other side. The influence of uncertain particle size on solid radial
velocity concentrates mainly on the upper part of the channel and slightly on the locations near
the inlet of the riser.
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(a) mean (b) standard deviation

Figure 38: Contour plots of (a) mean and (b) standard deviation of solid radial velocity.

Fig. 39 reports the contour plots of mean and standard deviation of solid axial velocity. Particles
are moving faster in the core than in the annulus. The thickness of low velocity region increases,
and the high velocity region starts to shift, with increasing the distance from the bottom of the
riser. The standard deviation is larger in the annulus than in the core, which indicates uncertain
particle size has more effect on solid axial velocity in the annulus than in the core.

(a) mean (b) standard deviation

Figure 39: Contour plots of (a) mean and (b) standard deviation of solid axial velocity.
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Contour plots of mean and standard deviation of granular temperature are shown in Fig. 40. The
granular temperature is low in the annulus, while it is high in the core. In the core, the solids
fluctuation is enhanced with increasing the distance from the bottom of the riser. The standard
deviation of granular temperature also presents  core-annular  structure,  with low value in the
annulus.  An interesting observation is  that while the fluctuation is enhanced in the core,  the
standard  deviation  decreases  with  increasing  the  distance  from the  bottom of  the  riser.  The
influence  of  uncertain  particle  size  on  the  granular  temperature  mainly focuses  on  the  core
region, especially on the lower part of the core.

(a) mean (b) standard deviation

Figure 40: Contour plots of (a) mean and (b) standard deviation of granular temperature.

Comparison to the experimental data

The simulation results are compared to the experimental data provided in the literature [47]. The
upper and lower values of the confidence intervals are mean values plus and minus standard
deviation, respectively. Results are presented in Fig. 41, which indicates that the mean value of
solid volume fraction has a good agreement with the experiment results, while fair agreements
are obtained comparing the mean values of solid axial velocity and granular temperature to the
experimental data. The shaded area in the figure represents the values between the upper and
lower  limits  of  the  confidence  interval  of  each  response.  With  the  confidence  intervals,  the
predicted simulation results can cover most of the experimental data except that in Fig.  41(b)
some experiment data near the walls are outside the shaded area but close to the lower limit of
the confidence interval of the predicted solid axial velocity, and in Fig. 41(c) upper values of the
error bars of two points exceed the upper boundary of the shaded area of granular temperature.
This observation demonstrates that with UQ analysis performed by method like QBUQ approach
to account for the uncertainty introduced by parameters like particle size, the reliability of the
simulation  results  is  improved,  and these  predicted  values  can  be  used  with  confidence  for
purpose of design and optimization.

55



Final report                          Award Number: DE-FE0006946

(a) solid volume fraction (b) solid axial velocity

(c) granular temperature

Figure  41:  Simulated  time-averaged  (a)  solid  volume  fraction,  (b)  solid  axial  velocity,  (c)
granular temperature compared to the experimental data.

PDF reconstruction of the system response

Two  locations  in  the  computational  domain,  designated  in  the  contour  plots,  are  used  to
reconstruct the PDF of system response. Univariate PDF reconstruction is performed for each
system response using EQMOM [44,45], and the joint PDF of solid axial and radial velocities is
reconstructed using 4-node Gaussian ECQMOM. Both of the methods are described in Section
3.1.2.

The  PDF  of  the  solid  volume  fraction  is  reconstructed  using  2-node  EQMOM  with  beta
distribution as the kernel density function, results shown in Fig. 42. For Location 1, which is at
the centerline, low solid volume fraction is preferred. For Location 2, which is near the wall, the
distribution is broad, and lower value has higher probability.
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(a) Location 1 (b) Location 2

Figure 42: Reconstructed distribution of the solid volume fraction at different locations.

Fig.  43 shows the reconstructed PDF of solid radial velocity using 2-node Gaussian EQMOM.
For  Location 1, the peak of the distribution shows up at near zero velocity, with negative low
velocity  slightly  preferred.  At  Location  2,  bimodal  distribution  is  presented,  with  negative
velocity having high probability.

(a) Location 1 (b) Location 2

Figure 43: Reconstructed distribution of the solid radial velocity at different locations.

Two-node Gaussian EQMOM is also used to reconstruct the PDF of solid axial velocity, results
presented in Fig. 44. Bimodal distribution is observed at both locations, yet when near the wall
(Location 2), the two peaks are completely separated. At the centerline (Location 1), low solid
axial  velocity  is  clearly  preferred,  while  near  the  wall  low  velocity  just  has  a  bit  larger
probability than high velocity.
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(a) Location 1 (b) Location 2

Figure 44: Reconstructed distribution of the solid axial velocity at different locations.

The distribution of granular temperature is reconstructed using 2-node EQMOM with gamma
distribution as the kernel. According to the results shown in Fig. 45, at both locations, two peaks
are formed. One sharp peak with high probability shows up at low granular temperature, while
the other broad peak with relatively low probability is formed at high granular temperature.

(a) Location 1 (b) Location 2

Figure 45: Reconstructed distribution of the granular temperature at different locations.

The  joint  PDF  of  solid  axial  and  radial  velocities  is  reconstructed  using  4-node  Gaussian
ECQMOM, results  shown in  Fig.  46.  At  the  centerline  (Location  1),  the  peak  with  highest
probability is formed at relatively low solid axial  velocity and negative solid radial  velocity,
which indicates particles tend to move upwards and towards the wall. At  Location 2, which is
near  the  wall,  low  solid  axial  velocity  and  negative  solid  radial  velocity  have  the  high
probability, which means most of the particles are slowly moving upwards towards the wall.
However, a relatively strong peak is formed at high axial and positive radial velocity, which
indicates some of the particles are moving fast upwards towards the center of the riser.
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(a) Location 1 (b) Location 2

Figure  46: Reconstructed joint distribution of the solid axial and radial velocities at different
locations.

3.1.5 Conclusions

The  objectives  of  the  project  are  to  develop  a  non-intrusive  quadrature-based  uncertainty
quantification (QBUQ) approach, and to apply it to multiphase gas-solid flow simulations. The
approach relies on Gaussian quadrature formulae and conditional quadrature method of moments
(CQMOM)  to  generate  a  set  of  samples  for  the  distribution  of  the  uncertain  parameters.
Simulations are performed for each sample, and the moments of the system response can be
evaluated directly using quadrature rules. With these moments, low order statistics such as mean,
variance, skewness, and kurtosis of the system response can be calculated so that confidence
intervals for the simulation results can be provided. Meanwhile, with the set of moments of the
system response, the probability distribution functions (PDFs) of the system response can be
reconstructed  using  extended  quadrature  method  of  moments  (EQMOM)  and  extended
conditional quadrature method of moments (ECQMOM). Thus the probability especially of the
rare events can be evaluated.

The QBUQ approach is first described in detail for two univariate cases in terms of the random
input  parameter  (a  developing  channel  flow  with  uncertain  viscosity  and  an  oblique  shock
problem with uncertain inlet Mach number). The approach significantly reduces the number of
samples required to predict the moments of a given order. In the developing channel flow, we
observe that twenty samples are sufficient to calculate moments of order 1 to 4 with an accuracy
higher than 10-8, moments of order 5 to 9 are predicted with an absolute error of magnitude 10 -8.
Using  a  significantly  higher  number  (like  1000)  of  samples  does  not  lead  to  a  significant
reduction of the error affecting the highest order moments. The approximate distributions of the
axial  velocity at  two different locations show great agreement with the histograms, and four
EQMOM nodes are sufficient to reconstruct the axial velocity distribution. In the oblique shock
problem, a  shock discontinuity is  observed with a  range of  angle with respect  to  horizontal
because of  the uncertain input  Mach number.  The estimation of the shock angle range with
QBUQ matches the analytical value with an error on the order of 0.1 degrees. The approximate
distributions of the horizontal velocity below the shock show good agreement with histograms.
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Satisfactory distributions of the horizontal velocity in the shock region are obtained, although
some oscillations are formed because of the steep discontinuities presented in the distributions
that are being reconstructed. The reconstruction of the distribution in the shock region improves
when the number of EQMOM nodes increases, but not significantly. Four nodes are adequate to
reconstruct the horizontal velocity distributions in this case.

The QBUQ approach with reconstruction of the PDF of the system response is then applied to a
bubbling  fluidized  bed.  The  distribution  of  the  uncertain  input  parameter  (particle  size)  is
assumed to be uniform distribution, and twenty samples are generated. The effects of uncertain
particle size on the solid volume fraction, gas pressure, and vertical solid velocity are studied.
Contour plots of mean, variance, and moments up to fourth order of the response indicate that the
influences of uncertain particle size concentrate on the interface of the bed,  in particular  on
locations near  the wall.  Approximated distributions of  the response are  reconstructed at  two
different locations.

Then the QBUQ approach is extended to a problem with multiple uncertain input parameters, a
bubbling fluidized bed with uncertain particle-wall  restitution coefficient and particle-particle
restitution coefficient. Contour plots of the mean and standard deviation of solid volume fraction,
gas pressure, and solid horizontal and vertical velocities are shown. Circulations of particles are
formed in  the  bed.  The  effect  of  uncertain  parameters  on  the  solid  volume fraction  mainly
focuses on the interface of the bed, especially on the locations near the wall,  and also at the
center of the fluidized bed. For gas pressure, the influence of uncertain parameters focuses on the
center of the bed. The uncertain parameters influence the solid horizontal velocity the most near
the interface of the bed and at the bottom of the bed, and affect the solid vertical velocity the
most near  the wall.  The mean value and 95% confidence interval  of the system response at
specific locations are compared to the values obtained from small-scale challenge problem. The
mean values of the simulation results are in fair agreement with experiment. The confidence
intervals obtained from the simulation results sometimes cannot cover the confidence intervals
provided by the experiment, which may be caused by uncertainty introduced by other parameters
besides the two parameters studied in this work. The measurement method may also result in
large  confidence  intervals  for  experimental  data.  The  PDF  of  the  system  response  is
reconstructed  at  four  different  locations  in  the  computational  domain  using  EQMOM  with
appropriate kernel density functions.

The last  test  case for  the QBUQ approach is  a  riser  flow simulation with particle  diameter
considered as the uncertain input parameter. In total 20 samples are generated. Contour plots of
the mean and standard deviation of time-averaged solid volume fraction, solid phase velocities,
and granular temperature are provided. Core-annular structure is observed as expected. For solid
volume fraction,  the effect  of  uncertain particle  size focuses on the bottom of  the riser,  the
annulus,  and some spots  near  the  wall  at  very high  positions  of  the  riser.  The influence  of
uncertain particle size on solid radial velocity concentrates mainly on the upper part of the riser
and slightly on the locations near the inlet of the riser. For solid axial velocity, the uncertain
parameter has more effect in the annulus than in the core. And for granular temperature, the
influence of uncertain particle size mainly focuses on the core region, especially on the lower
part of the core. The mean values and confidence intervals of the outputs at specific height of the
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riser are compared to the experimental data provided in the literature. Satisfactory agreement is
obtained between the mean values of the simulation results and the experiments. The confidence
intervals calculated by the QBUQ approach can cover most of the confidence intervals provided
by the experiments. The univariate PDF reconstructions are performed for each system response
at specific locations in the computational domain using EQMOM with different kernel density
functions.  The  joint  PDF  of  the  solid  axial  and  radial  velocities  at  the  same  locations  are
reconstructed  as  well  using  Gaussian  ECQMOM, which  is  a  combination  of  EQMOM and
CQMOM.

3.1.6 Future work

Study on uncertainty quantification in multiphase CFD simulations is at  its initial  level.  The
QBUQ approach proposed here is applied just to bubbling fluidized beds and riser flows. The
approach needs to be tested on other types of multiphase flows. Eventually, the goal is to provide
confidence  for  simulation  results  of  multiphase  CFD, which  is  a  very challenging task.  For
complex models like those for multiphase flows, intrusive UQ approach is hardly to implement.
Therefore, non-intrusive UQ approach is nearly the only choice. This leaves the problem to the
sampling approaches. Deterministic sampling approaches suffer from the curse of dimensionality
while random sampling approaches require too many samples. Reducing the number of samples
required for a given accuracy will be a long-term task. A compromising way is to study the most
influential  parameters first  to reduce the number of uncertain input  parameters,  which needs
proper  methods  to  decide  which  parameters  are  indeed  the  most  influential.  For  the  post-
processing of the UQ data, especially for the reconstruction of the PDF of the system response,
the proposed method EQMOM for  univariate  problem in this  thesis  has been extended to a
bivariate problem using Gaussian ECQMOM. This method can be extended to more variables
and other  kernel  density functions.  Comparisons  of  EQMOM and ECQMOM to  other  PDF
reconstruction approaches can also be studied in the future.
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4. PRODUCTS

A journal article is published in Powder Technology describing the theory of the developed UQ
procedure and the application to the  small scale challenge problem of NETL. Another journal
article summarizing the theoretical development and the example applications used to test the
procedure is under review. The applications of the UQ procedure to two bubbling fluidized beds
and the riser flow simulation are presented at three international conferences.

• Journal articles

X.  Hu,  A.  Passalacqua,  R.  O.  Fox,  2015.  Application  of  quadrature-based  uncertainty
quantification to the NETL small-scale challenge problem SSCP-I, Powder Technology, 272,
100-112.

X. Hu, A. Passalacqua,  P.  Vedula,  R. O. Fox, A quadrature-based uncertainty quantification
approach with reconstruction of the probability distribution function of the system response,
submitted to Computers & Fluids.

• Presentations

X. Hu, A. Passalacqua, R. O. Fox, A quadrature-based uncertainty quantification approach
with  reconstruction  of  the  probability  distribution  function  of  the  system  response  in
bubbling fluidized beds, 2013 AIChE Annual Meeting, San Francisco, CA.

X. Hu, A. Passalacqua, R. O. Fox, Validation of a quadrature-based uncertainty quantification
approach using NETL small scale challenge problem SSCP-I, ASME 2014 Verification and
Validation Symposium, Las Vegas, NV.

X. Hu, A. Passalacqua, R. O. Fox, A quadrature-based uncertainty quantification approach in
a multiphase gas-particle flow simulation in a riser, 2014 AIChE Annual Meeting, Atlanta,
GA.

5. IMPACT

• A journal article is published in Powder Technology (Impact factor: 2.269).
• Three presentations are given at the AIChE annual meeting 2013 and 2014, and the ASME 

2014 verification and validation symposium.
• The source code of the UQ package developed during the project has been released, and is 

being integrated into MFIX.
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