skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Novel Deployment of Elpasolites as a Dual Neutron/Gamma-Ray Directional Detector

Thesis/Dissertation ·
DOI:https://doi.org/10.2172/1243097· OSTI ID:1243097
 [1]
  1. Univ. of Nevada, Las Vegas, NV (United States)

At a time when upholding national security has never been more important, there exists a need for the advancement of radiation detection technologies. Neutron and photon detectors are essential to fulfilling mission areas including detection and localization of missing, stolen or smuggled radiological or nuclear materials, quantification of the effects of a radiological or nuclear event, and supporting nonproliferation efforts. The aim of this study was to evaluate a new radiation detector based on the scintillation elpasolite compound Cs2LiYCl6:Ce (CLYC) for simultaneous measurements of neutron and photon flux and the localization of radiation sources. Previous studies performed on the CLYC scintillator indicate its potential for thermal neutron and gamma-ray measurements. This study is dedicated to the novel application of the CLYC as a dual neutron / photon detector and as part of a directional detection system. Both computational modeling and an experimental study were carried out within this research project. As part of the computational study, the response of a CLYC scintillator detector to gamma rays induced by thermal neutron interaction with Cl and 7Li nuclei was investigated using the MCNP6 code. In addition, arrays of three and four CLYC detectors were modeled in order to evaluate the directional detection of both a thermal neutron source and a gamma-ray source. It was shown that little or no quality of source direction determination would be lost when three detectors were used in the array compared to four detectors. In the experimental study, the photon spectroscopy capabilities of the CLYC detectors were evaluated. A gamma-ray energy resolution of 4.9% was measured for the 662-keV peak of 137Cs and 3.6% for the 1.33-MeV peak of 60Co. Using a thermal neutron source, the pulse shape discrimination analysis was successfully performed for the CLYC detector signal waveforms. Thermal neutrons and gamma rays were separated with an exceptional figure of merit (FOM) of 2.3. An array of three CLYC detectors was assembled for the purpose of directional neutron / gamma-ray detection. The intrinsic peak efficiency of CLYC detectors was evaluated. The three-CLYC detector array was deployed for directional measurements with a single gamma-ray 137Cs source, two gamma-ray sources of 137Cs and 60Co isotopes and a thermal neutron source designed using a 239PuBe neutron source supplied with a polyethylene moderator. Measurements were carried out using sources located in the longitude and latitude planes over the angles from 0° to 360°. The measured data were processed through a maximum likelihood estimation algorithm providing a possible direction for which the radioactive source in each case was positioned. The estimated directions were close if not exact matches for the actual directions to the radioactive source. The largest discrepancy in direction produced by the algorithm was approximately 11%. However, it was hypothesized that this percent error can be decreased by homogenizing the directional detection system to consist of scintillators of the same size and quality, identical photomultiplier tubes and identical aluminum housings. The feasibility of this hypothesis to decrease the percent error was confirmed by the zero percent error achieved in the directional measurements produced in the computational study utilizing a homogenous directional detection system. The results of computational and experimental studies completed within this research project provide means to propose the array of three CLYC scintillators as an efficient dual neutron / gamma-ray directional detector.

Research Organization:
Nevada Test Site and National Security Technologies, LLC, Las Vegas, NV (United States)
Sponsoring Organization:
USDOE National Nuclear Security Administration (NNSA)
DOE Contract Number:
AC52-06NA25946
OSTI ID:
1243097
Report Number(s):
DOE/NV/25946-2256
Country of Publication:
United States
Language:
English

Similar Records

Conceptual Ideas for New Nondestructive UF6 Cylinder Assay Techniques
Technical Report · Wed May 02 00:00:00 EDT 2012 · OSTI ID:1243097

TI-BASED ELPASOLITES FOR RADIATION DETECTION
Technical Report · Mon Jan 13 00:00:00 EST 2020 · OSTI ID:1243097

Remote Radiation Sensing Using Aerial and Ground Platforms
Conference · Wed Jul 01 00:00:00 EDT 2020 · OSTI ID:1243097