
	 1	

Final Report for “Chemistry in CESM-‐SE: Evaluation, Performance
and Optimization”

PI: Jean-François Lamarque (NCAR)

DOE Award number: DE-SC0006747

Team members: Andrew Conley and Francis Vitt (NCAR), John Drake
and Jian Sun (U. Tennessee)

Collaborators: Peter Lauritzen (NCAR), Mark Taylor (Sandia National
Laboratory), Lorenzo Polvani (Columbia University), Joshua Fu (U.
Tennessee)

Executive Summary:
The purpose of the proposed work focused on development of chemistry representation
within the Spectral Element (SE) dynamical core as implemented in the Community
Earth System Model (CESM). More specifically, a main focus was on the ability of SE
to accurately represent tracer transport. The proposed approach was to incrementally
increase the complexity of the problem, starting from specified two-dimensional flow and
tracers to simulations using specified dynamics and full chemistry. As demonstrated
below, we have successfully studied all aspects of the proposed work, although only part
of the work has been published in the refereed literature so far. Furthermore, because the
SE dynamical core has been found to have several deficiencies that are still being
investigated for solution, not all proposed tasks were finalized. In addition to the tests for
SE performance, in an effort to decrease the computational burden of interactive
chemistry, especially in the case of a large number of chemical species and chemical
reactions, development on a faster chemical solver and implementation on GPUs has
been implemented in CESM under the leadership of John Drake (U. Tennessee).

Project activities:

1) Using simple chemistry schemes to test dynamical cores

Under this activity, the main hypothesis is to identify metrics that can be used to
quantitatively identify the performance of a dynamical core against another one; in
particular, we looked for metrics to quantify the performance of the newly developed
Spectral Element dynamical core against the existing Finite Volume dynamical core. For
that purpose, we participated in a large intercomparison (results published in Lauritzen et
al., 2014; this publication is provided as part of this report) where mixing characteristics
were discussed. It was found that SE was significantly less diffusive than FV. While
useful, we found that this was not a sufficient powerful test of the dynamical core
performance, especially in the light of its application to tracer transport and atmospheric

	 2	

chemistry. Therefore, we developed a toy chemistry, with 3 interrelated tracers, designed
to represent strong nonlinearities that are present in the real atmosphere (in this case,
mimicking stratosphere chemistry and more specifically chlorine chemistry). We found
(results published in Lauritzen et al., 2015 this publication is provided as part of this
report) that the SE dynamical core exhibited a strong Gibbs (i.e. oscillatory) phenomenon
that led to strong chemical nonlinearities and associated unphysical behavior (Figure
below is Figure 3 from Lauritzen et al. 2015). In all those figures, the field, if perfectly
conserved, should be constant and therefore all green. Instead, we find that non-
conservation leads to nonlinearities (associated with the toy chemistry we specifically
designed) that are much more pronounced in SE than FV dynamical cores.

This has led to the identification of specific issues in the SE dynamical tracer advection
algorithm that are being investigated and should lead to improvements to the SE
dynamical core. Note that this toy chemistry test will become an integral part to further
intercomparison of dynamical cores (P. Lauritzen, personal communication).

2) Implementation of specified dynamics in the SE dynamical core

One major aspect of chemistry modeling is its comparison to observations, especially
during field campaigns, ground-based or aircraft-based. In both cases, it is critical to
have an accurate representation of the meteorology and atmospheric state at the time and
location of the observations. For that purpose, climate models such as CESM are run in a
mode in which meteorological analyses (such as generated by NASA’s GEOS-5 forecast
system) are used to constrain the meteorology. This is usually referred to as Specified
Dynamics (SD). While this has been available in the FV dynamical core for several years
(Lamarque et al., GMD, 2012), there was no implementation of such SD in the SE
dynamical core. We have therefore implemented a new nudging approach, in which only
temperature and horizontal wind components are relaxed towards the observations. In
particular, a force proportional to the difference between the model-value velocity and
the meteorological winds is added to the right hand side of the Navier-Stokes equation.
And additional tendency for temperature is added that is proportional to the difference
between the model-value temperature and the meteorological temperature. We also nudge

	 3	

the horizontal velocities to compensate for differences in pressure between model and
analysis. An interesting outcome of this approach has been the very high level of mass
conservation achieved in SE without having to rely on a pressure fixer as in the case of
the implementation of specified dynamics in the FV dynamical core (Lamarque et al.,
GMD, 2012). Application of our new implementation in both dynamical cores show very
limited differences in highly sensitive quantities such as precipitation (see figures below).
Both simulations are performed at approximately 2 degrees of horizontal resolution,
using CAM4 physics and GEOS-5 meteorological analysis. Results are shown for
January 2013 (monthly averaged precipitation, in meter of accumulated water per second)

Using FV

Using SE

These results are clear indications that the implementation of SD (in the form of nudging)
in the SE performs very similarly to the equivalent FV implementation, with the presence
of more defined filaments, indicative of the less diffusive nature of the SE dynamical
core (as identified in Lauritzen et al., 2014).

	 4	

3) Application of SE to baroclinic waves

From the results of Activity #2, we have convinced ourselves that, regardless of the
caveats identified in activity #1, the SD version of the SE dynamical core provides a
representation of the atmospheric state that is equivalent to the one simulated by the FV
dynamical core under the same meteorological conditions. In the present activity, we
relax the constraint associated with the use of SD to the specific case of baroclinic waves
(Polvani and Esler, JGR, 2007). In this case, the model is initialized with an unstable
temperature and wind profiles, then run in an adiabatic configuration to let the
perturbation grow and reach within approximately 7 days the size and characteristics of a
fully developed mid-latitudes frontal system. This test is used to identify the degree of
mixing and overall transport characteristics since a fully validated solution is available
from Polvani and Esler. Working with L. Polvani to accurately represent the initial
conditions in the FV and SE dynamical cores, we have performed a collection of
simulations (varying horizontal and vertical resolutions) to quantify, for the standard
configurations of those dynamical cores, the degree of accuracy against the reference
simulations (which was obtained using the spectral dynamical core (also known as the
Eulerian dynamical core in CESM).

Using FV (for the specific case of 1/4-degree, 30 levels), the surface temperature after 7
days exhibit a fully developed, perfectly symmetrical (wave 6) pattern.

Using the SE dynamical in similar horizontal resolution and same vertical resolution, we
find that, while the simulation is overall very similar in nature to the FV results (and

	 5	

reference simulation, the latter being not shown), there is also an element of noise in the
simulated temperature distribution that is not dissimilar in nature to what was found in
Activity #1. More specifically, there is a non-negligible level of noise present in the area
identified by the arrow. While this might seem innocuous, it is nevertheless an indication
that the SE dynamical core is generating features that are not part of the physical solution.

Note that we have verified that these features are not associated with the
regridding/interpolation necessary to provide the SE results on a standard latitude-
longitude grid. Again, the results point to some deficiency in the SE dynamical core that
will require further investigation. We plan to further our analysis and submit our results
to a refereed journal within the next year.

4) Application of SE to full chemistry simulations under SD framework

In the next step of comparing the performance of the SE dynamical core against the FV
dynamical core, we have used the SD version (activity #2) with full tropospheric and
stratospheric chemistry (as defined in Lamarque et al., GMD, 2012). The reason to focus
on SD in the present activity is that there is little documentation of the quality of
simulation of the present-day climate using SE in configurations with horizontal
resolutions in the range of 1 to 2 degrees. Therefore, in order to avoid trying to represent
chemistry in a climatologically different (from FV) atmospheric state, we have decided to
focus our analysis on simulations we perform using the SD approach in both dynamical
cores. Using the MERRA reanalysis products for the year 2006, we have performed 2

	 6	

simulations: one with the FV dynamical core, one with the SE dynamical core,
everything else being the same, including the chemistry and the emissions. After one full
year of simulation (with a model spanning from the surface to approximately 40 km, at a
horizontal resolution of 1.9x2.5 degrees or equivalent, 56 levels and full tropospheric and
stratospheric chemistry) we find a very similar distribution of ozone throughout the
model domain. It is critical to focus on ozone because of its central role in atmospheric
chemistry. If some chemical species are significantly different between two simulations,
then it will very likely show in ozone difference plots (shown below as filled contours is
for SE, line contours for FV).

What we find above is a very reasonable simulation of ozone with SE (note that FV is our
standard dynamical and performance of ozone simulations has been analyzed in
numerous simulations, e.g. Lamarque et al., GMD, 2012). Somewhat surprisingly, the
SE simulation seems to bring more ozone into the troposphere as a result of stratosphere-
troposphere exchange. This is somewhat counterintuitive since the SE dynamical core is
less diffusive by nature (see Lauritzen et al., 2014). This is however a result of a stronger
stratospheric residual circulation in the case of SE, as a result of stronger (explicitly
resolved, i.e. not parameterized) waves originating from the troposphere. Indeed, since
our use of SD is only in terms of a relaxation, there will be differences in the wind and
temperature distributions between SE and FV such that parameterizations such as the
gravity wave drag and resolved waves dissipation will be influenced (which both force
the stratospheric residual circulation). It is however important to note that the differences
seen in the figure above are within ozone observations uncertainty and so those
observations cannot be used to identify a setup that performs better than the other. We
plan additional simulations and more in-depth analysis along campaign flights and
ground-based measurements to further our understanding of differences (or lack thereof)
between SE and FV.

	 7	

5) New chemistry solver and GPU implementation

Solving for chemical equations in a configuration such as used in Activity #4 (approx..
150 chemical species and more than 300 chemical reactions) represent a non-trivial
portion of the computational cost of running such a model. Therefore, the proposal
contained a significant portion of its research associated with 1) identifying new chemical
solvers and 2) optimizing such solver for GPU accelerators. In particular, it was found
that Rosenbrock-type solvers were very good candidates. In particular, ROS2 and RO3
were particularly identified as they can readily re-use the present framework (based on an
iterative Euler method) and therefore enabled a much more seamless implementation in
CESM. It was found that the ROS2 solver, when run in the same configuration as the
standard solver (1.9x2.5 degrees, 26 levels CAM4 physics, FV dynamical core with
prescribed sea-surface temperatures), leads to a significant decrease in surface ozone
during summer, thereby slightly improving the existing positive bias, especially present
in the Northeastern United States. In the present implementation of ROS2 (without
recoding specific to GPUs), no computational improvement is found when chemical
equations using ROS2 are solved on GPUs. Further exploration will focus on using
explicit parallelization instead of relying on compiler directives. More details are
available in the expanded report.

Summary

We have successfully studied numerous aspects of the performance of the Spectral
Element dynamical core (as implemented in CESM). In particular, we have focused on
its ability to accurately represent tracer transport. We have found that, although SE
performs very well in terms of mixing, there were significant issues associated with its
representation of over and undershoot (Gibbs phenomenon, thereby leading to non-
conservation of tracer mass) that, in the present version, seriously hindered its
performance under the nonlinear chemistry test we devised. This issue has led to further
research in SE (led my M. Taylor, Sandia National Labs) and will be released in
subsequent versions of the SE dynamical core. In addition, the baroclinic wave test has
led to the identification of local instabilities, similar in nature to the non-conservation
issue mentioned above. The successful development and application of a specified
dynamics framework in SE has shown that such configuration leads to a simulation of
tropospheric and stratospheric chemical states very similar to the results using the
standard Finite Volume dynamical core. Therefore, even though local conditions might
not be accurately represented (as shown in Activity 1), this did not translate in major
impacts on ozone, at least not in the broad measures applied here. Finally, the study of a
new chemical solver has shown very good potential and will be studied further. We are
expecting that all developments introduced in CESM in the course of this research will be
implemented in upcoming CESM releases. Several publications are in preparation and
will be submitted within the next year. Due to lack of time, we have not been able to
develop the proposed work on the representation of sub-grid processes.

	 8	

Published papers under this proposal

Lauritzen, P.H., P.A.Ullrich, C. Jablonowski, P.A. Bosler, D. Calhoun, A.J. Conley, T.
Enomoto, L. Dong, S. Dubey, O. Guba, A.B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque,
M.J. Prather, D. Reinert, V.V. Shashkin, W.C. Skamarock, B. Sørensen, M.A. Taylor,
and M.A. Tolstykh, A standard test case suite for two-dimensional linear transport on the
sphere: results from a collection of state-of-the-art schemes. Geosci. Mod. Dev., 7, 105-
145, doi:10.5194/gmd-7-105-2014, 2014.
Lauritzen, P. H., A. J. Conley, J.-F. Lamarque, F. Vitt, and M. A. Taylor, The terminator
‘toy’-chemistry test: A simple tool to assess errors in transport schemes. Geo. Mod. Dev.,
8, 1299-1313, doi:10.5194/gmd-8-1299-2015, 2015.

Both publications are publically available at http://www.geoscientific-model-
development.net/index.html.

	 9	

Final Report for “Chemistry in CESM-‐SE: Evaluation,

 Performance and Optimization”

(UCAR Subaward No. Z12-93537 to University of Tennessee - Knoxville)

Principle Investigator: Jean-François Lamarque, NCAR

Subproject Lead: John B. Drake, UTK

Graduate Research Assistant: Jian Sun, UTK

Faculty Advisor: Joshua S. Fu, UTK

Background of the Project

Earth system modeling requires close coupling between dynamical processes and

chemical, biological and physical feedbacks. Chemistry is an essential component of

climate as it defines the distribution of radiatively active chemical species, black carbon

and nitrogen/sulfur depositions and cloud‐aerosol interactions. The uncertainty in the

aerosol indirect effect(s) from anthropogenic emissions since pre-industrial times is quite

large, and a significant fraction of this uncertainty is related to our incomplete knowledge

and understanding of secondary organic aerosol formation processes. In particular, recent

research has indicated a potentially strong interaction between pollution plumes and

formation of secondary organic aerosols during the complex oxidation of biogenic non-‐

methane hydrocarbons. All this points to the specific need for a well-‐tested and highly

computationally	 efficient chemistry in Earth System models.

As the models have grown in complexity, the computational requirements necessary to

produce decadal to century simulations have also increased. With each increment in high

performance computing power and the coinciding requirement for increased algorithmic

parallelism, the question must be asked whether alternative numerical methods offer

improved simulations and better computational efficiency. Future CESM models may be

used at high resolution to address long-term implications of the changes in the chemical

atmosphere on equilibrium climate, decadal to century climate transients as well as global

teleconnections of depositions, particulates, aerosols with cloud feedbacks and the impact

of global changes on regional and local air quality and ecosystem. Anticipating that

	 10	

coupled atmospheric chemistry will play a larger role in future climate simulations and

that global models will be important for addressing future air quality as well as global

warming concerns, this project addressed the following questions:

• Does a higher order numerical time integration (e.g. Rosenbrock 2nd or 3rd order)

offer improved chemistry modeling and is the improvement relevant for climate

simulations?

• Is a higher order numerical time integration more computationally efficient than

the first order Backward Euler method currently implemented in the Community

Earth System Model (CESM)?

• Can the auxiliary computational power of GPU's be exploited for higher

throughput in global atmospheric chemical simulations?

These questions are being addressed in the context of modifications to the CESM code

made available to developers and users at the National Center for Atmospheric Research.

This Earth System Model has been the subject of rapid development and the Atmospheric

Model Working Group (AMWG) has endorsed changes to the dynamical core that

significantly expand the scientific capability of the model. In particular, the adoption of

the Spectral Element dynamical core in CAM-SE has opened a path towards higher

resolution with excellent computational performance. This high spatial resolution comes

with the potential for non-uniform, regionally focused grids at local resolutions that rival

mesoscale capabilities of WRF and CMAQ. Once the dynamics are understood and

validated in the context of climate simulations, it will be important to have options for

simulating atmospheric chemistry in the system. More flexibility in chemical solvers with

higher accuracy and adaptive time stepping will be useful.

Training the next generation researchers in computational science and high-end parallel

climate simulations is an important part of this subproject carried out as a subcontract at

University of Tennessee. We have had the good fortune to have access to expertise in

parallel computing and climate science at the Oak Ridge National Laboratory (ORNL)

and the Climate Change Science Institute (CCSI) as well as the advanced computing

platforms at this DOE laboratory. A graduate research assistant and student (Jian Sun)

	 11	

working under the direction of Dr. Drake and Dr. Fu is responsible for the bulk of our

results. In addition, three undergraduate summer students with internships at ORNL

explored algorithmic and computational aspects of the coupling between atmospheric

dynamics and chemistry.

This university subproject of the DOE SciDAC Project “Chemistry in CESM-‐SE:

Evaluation, Performance and Optimization” has enjoyed the direction and advice of

Principal Investigator, Dr. Jean-Francois Lemarque. We also gratefully acknowledge

DOE's support and flexibility in granting a no-cost extension for our part of the project.

Availability and recruitment of students with the required science/mathematics/computer

interest and skill set is difficult. We were fortunate that University of Tennessee graduate

student Jian Sun joined the project and his involvement allowed us to move forward.

Indeed, there was never much justification for our part of the project unless we also

trained a new researcher. We have sought to stay strongly aligned with the DOE Office of

Biological and Environmental Research (BER) Earth System Modeling program whose

goal is to “improve the accuracy and skill of climate models by implementing enhanced

ESM components, such as improved parameterizations for clouds, aerosols and

chemistry...”.

Methodology

To develop and test a new numerical method in the CESM requires several preliminary

steps. Our methodology tests formulation and implementation in contexts of ever

increasing complexity culminating in decadal climate simulations with the full CAM-

Chem. Because the CESM is a community project and adoption of new methods is

subject to discussion among the NCAR scientists and CESM working groups, we are

limited in this project to making available the necessary information supporting the

decision making.

The algorithmic formulations for the Rosenbrock methods were first tested on simple stiff

chemistry problems using MATLAB. Properties of the time integration method,

accuracy, stability and suitability for stochastic equations, were explored in this simple

	 12	

setting. In this way we learned the practical importance of L-stability1 in the ROS-2 and

ROS-3 higher-order methods. Accuracy of second and third order were also verified on

test problems. The FORTRAN95 implementation in the CESM closely follows the

simple test setting to ensure correctness of the coding. Further testing of stability and

accuracy were conducted using standard CAM-Chem configurations and comparing the

results of short integrations to the default first order implicit Euler method.

Performance and optimization for Graphics Processing Units (GPU's) were studied in the

context of the full CAM-Chem and to a limited extent using fixed meteorology. In this

way a number of options were tested with the use of our implementation and added

insight gained into the behavior of the method in atmospheric chemical simulation. GPU

computational performance was compared in full simulations and also restricting

performance monitors and timings to the routines we have modified. (Pat Worley of

ORNL was very helpful in advising how to characterize and monitor the performance.

Rick Archibald and Kate Evans of ORNL were also instrumental in guiding the GPU

optimization work.)

Finally, the chemical performance of the modified simulation was assessed using the

Atmospheric Model Working Groups diagnostic package. This package has been

extended by the Chemistry Climate Working Group (CCWG) to provide a

comprehensive look at Ozone and Methane related fields in particular.

We present our results and conclusions in three sections. The first section is a draft

journal article addressing and summarizing the chemical performance of the modified

CAM-Chem. That is followed by details of numerical performance and properties of the

Rosenbrock solver. In the final section, the computational performance is discussed

along with details of the GPU implementation in CESM.

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 A numerical method is A-stable if there is no restriction on time step size in solving the equation u' = λu, where Re(λ)
< 0. It is strongly A-stable if the stability function, un+1=R(un) , has |R(-∞)| < 1. The method is L-stable if it is A-stable
and in addition |R(∞)| = 0. Thus L-stability is stronger than A-stability and implies that the solution goes to zero with
large time steps.

	

	 13	

Section 1

Impact on surface ozone concentration over US by using a high order

chemical solver in CAM-Chem

Introduction

Atmospheric chemistry is growing in importance for global climate simulation because of

the close coupling of transport, physical, chemical and biological processes. The

interactions among chemical reaction, climate evolution, anthropogenic emissions and

land use provide a dynamical perspective that changes global and regional air quality

prediction. Among the atmospheric chemical constituents, the tropospheric ozone is a

critical pollutant that can significantly affect ecosystems, agriculture production and

public health. However, ozone is not directly emitted and its complex photolysis reaction

mechanism makes its global simulation a challenge. Significant bias in the prediction of

ozone concentration exists zonally and seasonally for both single model output (Zeng et

al., 2008; Lamarque et al., 2012; Val Martin et al., 2015) and multi-model ensemble

mean results (Stevenson et al., 2006; Stevenson et al., 2013; Young et al., 2013). There

are also inconsistencies between the ozone concentration estimates from global climate

models and its seasonal cycle (Fiore et al., 2014). Optimizing the dry deposition scheme

based on the land use change has significantly improved the simulation of summertime

surface ozone concentration over US (Val Martin et al., 2015). However, further efforts

are required to reduce the remaining bias.

Few studies have investigated the numerical chemical solver itself in the performance of

global climate-chemistry models. Shampine et al. (Shampine, 1982) studied initial value

problems for stiff systems of ordinary differential equations (ODEs) and proposed an

approach to automatically select between an explicit Runge-Kutta formula or Rosenbrock

formulas at every time step. This showed that the Rosenbrock method was competitive

with the backward differentiation formulas (BDF) in some circumstances. Sandu et al.

(Sandu et al., 1997) tested a set of box-model atmospheric chemistry problems (TMK

	 14	

model, CBM-IV model, AL model, a NASA HSRP/AESA stratospheric model and an

aqueous model) using different solvers including Rosenbrock, VODE, TWOSTEP,

SEULEX and EBI. The benchmark problems covered a wide range of photolytic,

homogeneous (gas-phase, liquid-phase) and heterogeneous (gas-liquid) reactions. The

results showed that the Rosenbrock solvers were competitive and cost-effective from low

to moderate accuracy. Verwer et al. (Verwer et al., 1999) applied a second-order, L-stable

Rosenbrock method (ROS-2) to the three-dimension atmospheric reaction and transport

problem including photochemistry, advection and diffusion. Three chemistry models

(RIVM, CBM-IV and WET) and the Rosenbrock method were selected as excellent

candidates for global air quality modeling with large time steps on the order of minutes.

Blom and Verwer (Blom and Verwer, 2000) examined different operator splitting

methods for the atmospheric transport-chemistry problems and the test results revealed

that the Rosenbrock W-method, split at the linear algebra level, was a better option than

Strang operator splitting or source splitting. The W-method avoided the artificial stiff

transients during the chemistry computation and boundary condition issues for integration

in time, though its implementation was complex. Long et al. (Long et al., 2013)

developed a coupled chemistry and climate system model by linking the modal aerosol

version of the NCAR Community Atmosphere Model (modal-CAM; v3.6.33) and the

Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of

the Atmosphere (MECCA; v2.5) to investigate the multiphase process in the atmosphere.

Three solvers from the Rosenbrock family, namely ROS-2, ROS-3 and RODAS-3, were

examined and the benchmark inter-comparison showed good agreement for ozone and

OH radical prediction.

From the literature we conclude that the numerical solvers from the Rosenbrock family

provide good alternatives for full atmospheric chemistry and climate simulation. These

methods have already been incorporated into some regional models such as Weather

Research and Forecasting model coupled with Chemistry (WRF-Chem) and Community

Multi-scale Air Quality Model (CMAQ) (Linford et al., 2009; Sarwar et al., 2013). But

their use in the global models is very limited. In this study, the global climate model we

use is the Community Earth System Model (CESM) with online chemistry activated

	 15	

(CAM-Chem). Currently the chemical solver is the implicit Euler method that gives

unconditionally stability but only first order accuracy in time. This could be part of the

reason for poor ozone performance in previous work. To bridge the gap between the need

for better ozone estimates from a scientific perspective and the limitations of a low order

accuracy solver in the current CAM-Chem, the ROS-2 method was implemented to

replace the original chemical solver. Its second order accuracy was tested to see whether

there is any benefit for the global climate and chemistry simulation. The mathematical

formula of ROS-2 method and its implementation in CAM-Chem is described in the

methodology section. The prediction of surface ozone concentration over the continental

US between the ROS-2 solver and the original first order implicit solver are compared, as

well as their computational efficiencies with varying numbers of processors on a

massively parallel supercomputer. Finally, we discuss the major differences we have

observed, and make some recommendations.

Methodology

(1) CAM-Chem

The state-of-the-art global climate model, Community Earth System Model (CESM

version 1.2.2), is used in this study. It consists of four components: atmosphere, land

surface, ocean and sea ice. CAM-Chem refers to the implementation of atmospheric

chemistry in CESM. The chemistry is fully coupled with the radiative absorption

processes of the Community Atmosphere Model, the atmospheric component of CESM

(CAM4, (Neale et al., 2013)). The chemistry mechanism in the current CAM-Chem

version is simplified from the Tropospheric Model for Ozone and Related chemical

Tracers (MOZART-4) (Emmons et al., 2010) and its representation of atmospheric

chemistry has been widely evaluated by our previous work (Lamarque et al., 2012; Gao

et al., 2013). In total the chemical mechanism includes 212 reactions, with 40 photolysis

reactions and 172 gas phase reactions. There are 103 gas phase species, with 8 species

(CH4, N2O, CO, Rn, Pb, H2, HCN and CH3CN) solved explicitly by the first-order

(forward) Euler method and rest 95 species solved implicitly by a backwards Euler

method with a Newton-Raphson iterative method for quick convergence. These 95

species include all the chemically active species such as ozone and OH radicals, which

	 16	

contribute most to the stiffness of the system. In this study the ROS-2 solver will be

developed to replace the implicit solver. The finite-volume (FV) dynamical core (Neale et

al., 2010) is used with a horizontal resolution of 0.9 degree (latitude) by 1.25 degree

(longitude) and 26 vertical layers top to approximately 3hPa.

(2) ROS-2 solver description

In the state-of-the-art CAM-Chem version, a process split, operator splitting approach is

used and the atmospheric chemical reactions are integrated by the stiff ODE solver

separately from other dynamics and physics processes models. Each control volume

behaves like a box model. The equations for chemical species conservation and reaction

in the atmosphere take the autonomous system form:

)()()()(yIyLyPyF
Dt
Dy

+−==

(1)

where T
Nyyyy),...,,(21= is the vector of volume mixing ratios for N species at given

latitude, longitude and vertical level; the source term)(yF represents the atmospheric

chemical reactions. It can be further decomposed into three components: production

)(yP , loss)(yL and independent forcing)(yI terms.)(yP and)(yL are mainly

calculated by the species mixing ratios, reaction rates and rain washout rates, while)(yI

is evaluated based on the external in-situ forcing. The two-stage, linear-implicit

Rosenbrock scheme for the ODE above can be written as (Verwer et al. 1999):

)()(1
nyFkAhI =− γ

(2)

 112 2)()(khkyFkAhI n −+=− γ

(3)

 22
1

12
31 hkhkyy nn ++=+

(4)

	 17	

where I is an N x N identity matrix; h is the time step size; A is the Jacobian matrix

y
yFA

∂

∂
=

)(
 at time t = nt ; 1+ny and ny are the species mixing ratios vectors at time t =

1+nt and nt , respectively. Vectors 1k and 2k are the intermediate solutions at each

stage. Parameter γ is a constant and appears in the stability function with αhz = for

problem yy α=' as:

2

22
2
1

)1(

)2()21(1)(
z

zzzR
γ

γγγ

−

+−+−+
=

(5)

The ROS-2 solver is A-stable if and only if 4
1≥γ . Further, by choosing 2

11±=γ this

scheme becomes L-stable, namely 0)(=∞R , which is good for simulating some

chemical species with a short life span in the atmosphere. An obvious advantage during

the implementation of ROS-2 solver is that it does not require the re-evaluation of the

Jacobian matrix at each stage as in a Newton iteration, and thus can utilize the same LU

factorization result. Since updating the Jacobian matrix and conducting the LU

factorization are the most time consuming operation, this benefit should speed up the

chemistry update and save much computation time (Daescu et al., 2000). In this work, the

time step size for ROS-2 solver is fixed at 180 seconds and more discussion about the

choice of time step will be presented later.

(3) Code implementation procedure

In our simulation configuration, the global atmospheric domain in CAM-Chem is divided

into different chunks with several atmospheric columns in each chunk and 26 vertical

levels in each column. For every level, the chemistry is computed independently like a

box model at each time step and then returns the latest solutions to the main program for

the physics and transport processes. The algorithmic procedure of the ROS-2 solver for

updating the chemistry from time nt to 1+nt is:

a. Calculate the independent forcing term, which is treated as invariant part based on the

original 1st order implicit solver design.

b. Calculate the linear and non-linear components of Jacobian matrix. CAM-Chem uses

the same chemical preprocessor as MOZART-4 (Lamarque et al., 2012), which reads the

	 18	

specific chemical mechanism input file and converts it into Fortran code to provide the

input for the calculation of linear and non-linear parts. For the TROP_MOZART

mechanism, there are 722 non-zero matrix entries inside the Jacobian matrix and they are

computed explicitly and exactly. Its sparsity pattern reveals a classic "arrow matrix"

ordering with the arrow pointing up that can cause severe fill-in issue (Wang and Ziavras,

2004), as shown in the left panel of Figure 1. Therefore, a permutation operator is

performed before doing the LU factorization and the Jacobian matrix is flipped over to

point down, seen in the right panel of Figure 1. The LU factorization starts with the

nearly diagonal part of the matrix and all fill occurs down the right hand side column

where there are already a lot of nonzero entries.

c. Conduct the LU factorization for the Jacobian matrix. As shown above, the system is

very sparse with about 90% zero matrix entries. Thus in the current version of CAM-

Chem, the LU factorization is customized by knowing exactly the non-zeros of Jacobian

matrix. There are a total of 824 non-zero matrix entries after doing the LU factorization.

d. Calculate the right hand side source term F.

e. Solve for the first-stage solution vector 1k with explicitly programmed steps of

reduction.

f. Update source term F for the second stage with intermediate approximation 1hkyn + .

g. Solve for the second-stage solution vector 2k using the same LU factorization result

from the first stage.

h. Update species mixing ratio vector from ny to 1+ny for the next time step.

	 19	

Figure 1. The sparsity pattern of Jacobian matrix for the TROP_MOZART mechanism

before (left panel) and after (right panel) permutation.

Results

(1) 1st order implicit solver vs. ROS-2 solver at time step 180 seconds

In order to save the data storage space and I/O time, only monthly average ozone

concentrations are output from 2001 to 2004 as present case. Thus, we can only calculate

the annual mean ozone concentration instead of the daily maximum 8-hr concentration

(MDA8) from the National Ambient Air Quality Standards (NAAQS). The output from

both solvers at time step size equal to 180 seconds is first used for comparison. Figure

2(a) shows the difference of the four year averaged annual mean surface ozone

concentration between ROS-2 and 1st order implicit solvers over the continental US.

ROS-2 solver provides a prediction of widely reduced surface ozone concentration that

ranges from -0.75 ppb (one grid at Illinois) to -0.15 ppb (one grid at Oregon). By

averaging the whole corresponding grids for each state, Washington has the smallest

negative difference (-0.17 ppb) while Indiana has the largest negative difference (-0.70

ppb). Though ROS-2 solver provides a lower estimate of annual mean ozone

concentration over the whole 49 continental states than the original 1st order implicit

solver, the Student’s t-test indicates that the difference of four year averaged annual mean

ozone concentration between these two solvers is not statistically significant over any

continental state at significance level 05.0=α . We then compare the difference of four

	 20	

year averaged monthly mean surface ozone concentration between these two solvers

during the summer season (June-August, JJA), when the photolysis reaction is the most

active in a year. As plotted in Figure 2(b), it clearly presents a wider range than the

annual difference, from -1.52 ppb (one grid at Illinois) to -0.09 ppb (one grid at

Washington). Meanwhile, Washington has the smallest negative difference (-0.14 ppb)

while Indiana has the largest negative difference (-1.41 ppb) at the state level. ROS-2

solver shows a lower prediction of summertime mean ozone concentration over the whole

continental US than the original 1st order implicit solver, similar to that for the annual

mean ozone concentration. Nevertheless, the Student’s t-test suggests that the negative

differences at 18 states are tested to be statistically significant, ranging from -1.41 ppb

(Indiana) to -0.54 ppb (Wyoming). We further evaluate both model results with the

ground-level observation data obtained from the Air Quality System (AQS) at U.S. EPA.

For the four year averaged annual mean surface ozone concentration difference between

model and monitor data, Figure 3(a) shows that both solvers are likely to produce more

than 20 ppb overestimate in the Southeast and Central region, and along the west coast.

ROS-2 solver reduces the bias in Indiana and Ohio, but the benefit of its second order

accuracy is less visible due to the small statistically insignificant difference between these

two solvers, as described above. The difference of four year averaged summertime mean

surface ozone concentration between simulation and AQS observation data is depicted in

Figure 3(b). The bias is amplified and could even be larger than 30 ppb, especially over

the Eastern US. The overestimate of ozone concentration at Eastern US is well known

from the previous literature about global climate-chemistry models (Murazaki and Hess,

2006; Reidmiller et al., 2009; Lapina et al., 2014), and potential reasons included coarse

global resolution that fails to represent the steep topographic gradients in mixing depths

(Fiore et al., 2009) and disproportionate sensitivity of models at the high ozone

concentration level (Hollaway et al., 2012). The spatial distribution of surface ozone

concentration for ROS-2 solver shows a reduction of ozone bias in the Southeast region

(i.e., North Carolina), Central region (i.e., Indiana), Upper Midwest region (i.e., Iowa)

and Northeast region (i.e., New York State). In addition, most of these reductions are

statistically significant at 05.0=α , over the Middle West, Central and Southeast regions.

	 21	

These results reveal that ROS-2 solver reduces the overestimate of surface ozone

concentration to some extent, especially during the summer season.

 (a) (b)

Figure 2. Difference of four year averaged (a) annual and (b) summertime mean surface

ozone concentration between ROS-2 and 1st order implicit solvers at 180 seconds time

step.

 (a)

 (b)

	 22	

Figure 3. Four year averaged (a) annual and (b) summertime mean surface ozone

concentration bias between simulation (left panel: first order implicit solver at 180

seconds time step; right panel: ROS-2 solver) and AQS observation data.

(2) 1st order implicit solver at time step 1800 seconds vs. ROS-2 solver at time step 180

seconds

The output from the original 1st order implicit solver with 1800 seconds time step by

default (ORI_1800s) is also used to compare with the ROS-2 solver results at time step

size equal to 180 seconds. The difference of four year averaged annual mean surface

ozone concentration between ROS-2 and ORI_1800s solvers, as shown in Figure 4(a),

indicates a range from -1.2 ppb (one grid at Pennsylvania) to -0.26 ppb (one grid at

Washington). The largest and smallest negative differences of the state-level surface

ozone concentration occur at New Jersey (-1.18 ppb) and Oregon (-0.31 ppb),

respectively. Overall, ROS-2 solver again provides a widely lower estimate of surface

ozone concentration over the whole continental states. However, the Student’s t-test

suggests that the difference between these two solvers is only statistically significant at

Texas (-0.57 ppb) at 05.0=α . The difference of four year averaged summertime mean

surface ozone concentration between the two solvers is also compared. According to

Figure 4(b), the difference between ROS-2 and ORI_1800s solvers presents a wider

range from -1.93 ppb (one grid at New Jersey) to -0.09 ppb (one grid at Texas). The

difference of largest and smallest negative state-level surface ozone concentration is -1.92

ppb (New Jersey) and -0.19 ppb (Washington), respectively. In this case, ROS-2 solver

still produces a lower estimate of summertime ozone concentration over the whole

continental US, similar to the annual mean result above. However, the Student’s t-test

results suggest that the negative ozone concentration difference at 27 states is statistically

significant at 05.0=α , ranging from -1.81 ppb (Indiana) to -0.47 ppb (Montana).

Compared to the AQS observation data, the four year averaged annual mean surface

ozone concentration bias (Figure 5(a)) between model and monitor results still gives

more than 20 ppb overestimate at the Southeastern US and along the west coast. Though

the ROS-2 solver provides lower prediction of surface ozone concentration at several

states like Tennessee, Mississippi, Ohio and California, none of them are statistically

	 23	

significant as discussed above. Figure 5(b) shows the difference of four year averaged

summertime mean surface ozone concentration between simulation and AQS observation

data. Clear reduction of ozone bias could be observed at the Southeast region (i.e., North

Carolina), Central region (i.e., Illinois), Upper Midwest region (i.e., Iowa) and West

region (i.e., California). Moreover, most of these reductions are statistically significant,

illustrating that ROS-2 solver could again improve the model bias from the original

ORI_1800s solver.

 (a) (b)

Figure 4. Difference of four year averaged (a) annual and (b) summertime mean surface

ozone concentration between ROS-2 and ORI_1800s solver.

 (a)

	 24	

 (b)

Figure 5. Four year averaged (a) annual and (b) summertime mean surface ozone

concentration bias between simulation (left panel: ORI_1800s solver; right panel: ROS-2

solver) and AQS observation data.

(3) Computational efficiency

The ROS-2 solver utilizes the same Jacobian matrix and LU factorization structure for

the two stages calculation, which should speed up the computation rate compared to the

original first order implicit solver that needs to evaluate the Jacobian matrix and conduct

the LU factorization during each iteration. Using the default simulation period setting (5

days), Figure 6 summarizes the global statistics of total summed/maximum/minimum

wallclock time consumed over all the processors under the request of different number of

nodes. The Titan supercomputer at Oak Ridge National Lab (ORNL) is used for

performance test, which has a hybrid-architecture Cray XK7 system with 18,688 compute

nodes and a theoretical peak performance exceeding 27 petaflops. The total

computational nodes for the CAM simulation are determined by the following equation:

16

__ ATMNTHRDSATMNTASKSnodesofNumber ∗
= (6)

Where variables “NTASKS_ATM” and “NTHRDS_ATM” are used to set the number of

MPI tasks and the number of OpenMP threads per task, respectively. The product of

these two variables specifies the total computational processors for the atmospheric

component of CESM. The factor of 16 refers to the fact that there are 16 processors per

node based on the Titan Supercomputer architecture. Considering the total summed

wallclock time using 3 nodes, the original first order implicit solver at time step size

equal to 180 seconds (ORI_180s) requires about 69 hours for a 5-day atmospheric

chemistry simulation. The computational time could reduce to about 62 hours when the

node number increases to 384. The ROS-2 solver is faster than the ORI_180s solver with

an average factor of 1.85. When the number of nodes is smaller than 48 nodes, more

computational benefit of ROS-2 solver can be observed. Figure 6(a) also shows that

running the ORI_1800s solver is not simply 10 times faster than the ROS-2 solver with

180 seconds, but only about a factor of 3.69. Figure 6(b) shows that the maximum

	 25	

wallclock time for the ORI_180s solver is about 5300 seconds corresponding to 3 nodes,

but it drops dramatically with the increase of nodes. In this case, the maximum time of

ROS-2 solver is about 1.89 times lower than that of the ORI_180s solver, but 2.58 times

higher than that of the ORI_1800s solver. For the minimum wallclock time shown in

Figure 6(c), similar trend and amplitude can be observed compared to Figure 6(b). The

minimum time measurement for ROS-2 solver is about 1.81 times lower than that of the

ORI_180s solver, but 4.07 times higher than that of the ORI_1800s solver.

(a)

(b)

	 26	

(c)

Figure 6. Global statistic summary of (a) total summed, (b) maximum and (c) minimum

wallclock time consumed over all the processors under the request of different number of

nodes on Titan supercomputer for ROS-2, ORI_180s and ORI-1800s solver, respectively.

Discussion

According to our analysis, the ROS-2 solver improves the ozone concentration

performance of CAM-Chem, especially for the summer season. To further confirm the

benefit of using ROS-2 solver in the real atmospheric chemistry simulation, we compare

the difference of surface ozone concentration between ORI_180s and ORI_1800s solver.

Figure 7(a) shows that the largest and smallest difference of four year averaged annual

mean surface ozone concentration between ORI_180s and ORI_1800s solvers is -0.54

ppb (one grid at New Jersey) and -0.05 ppb (one grid at Alabama). The corresponding

largest and smallest state-level difference occur at New Jersey (-0.53 ppb) and Alabama

(-0.08 ppb), respectively. Though ORI_180s solver gives a widely lower estimate of

surface ozone concentration, the Student’s t-test suggests that the difference of annual

mean state-level ozone concentration between these two solvers is not statistically

significant at 05.0=α , similar to that for ROS-2 solver. Considering the four year

averaged summertime mean surface ozone concentration (Figure 7(b)), the highest

difference between ORI_180s and ORI_1800s solver is about 0.23 ppb (one grid at

Georgia) and the lowest one is about -0.61 ppb (one grid at New Jersey). The

	 27	

corresponding highest and lowest state-level differences appear at Alabama (0.14 ppb)

and New Jersey (-0.59 ppb), respectively. However, unlike the result for ROS-2 solver,

the Student’s t-test indicates that the summertime mean surface ozone concentration

difference between ORI_180s and ORI_1800s solver is still statistically insignificant over

the whole continental US at 05.0=α . As stated before, the summertime mean surface

ozone concentration is strongly overestimated by the current version of CAM-Chem. By

keeping the same 1st order implicit solver but using the 180 seconds rather than 1800

seconds time step, it seems to reduce the prediction bias nationwide except at 5 states

(Alabama: 0.14 ppb, Mississippi: 0.10 ppb, Georgia: 0.12 ppb, South Carolina: 0.03 ppb

and Louisiana: 0.13 ppb), but neither the positive nor negative difference is statistically

significant. Therefore, it is difficult to conclude that by simply refining the time step size,

we can obtain obvious improvement of surface ozone concentration performance from

the original 1st order implicit solver. In comparison, ROS-2 solver is likely to reduce the

summertime mean surface ozone concentration bias over more than 18 continental states,

as described in the previous section. This again reflects the fact that it is necessary to

adopt the chemical solver with higher order accuracy, like ROS-2 solver here, in order to

get a better estimate of surface ozone concentration, especially for the summer season.

Figure 7. Difference of four year averaged (a) annual and (b) summertime mean surface

ozone concentration between the ORI_180s and ORI_1800s solver.

The computational efficiency of different solvers with different time step sizes shows that

the ORI_180s solver will cost about 6.9 times more computational hours than the

ORI_1800s solver, but its improvement of surface ozone concentration representation is

less visible. On the other hand, though the original implicit solver is optimally vectorized

	 28	

to solve the chemical reaction quite efficiently, the ROS-2 solver is still tested to be 1.85

times faster than the ORI_180s solver. Compared to the ORI_1800s solver, ROS-2 solver

uses one tenth of the time step but is only slowed by a factor of 3.72, which is explained

by the fact that ROS-2 solver avoids the evaluation of Jacobian matrix and LU

factorization during each Newton iteration that are believed to consume 90% of the total

computation time for the chemistry update (Daescu et al., 2000). Moreover, the ratio of

maximum and minimum wallclock time for the ORI_180s and ORI_1800s solver is about

1.07 and 1.71, respectively. The ratio for the ROS-2 solver is about 1.03, indicating that

the ROS-2 solver may provide a better work loading balance among the processors as

well.

It’s worth noting that the previous literature claimed that ROS-2 solve was able to work

under relatively large time step size of 10 and 15 minutes (Verwer et al., 1999; Blom and

Verwer, 2000). However, those studies were either working on a simple chemical

mechanism or a benchmark simulation without considering the influence of advection

and diffusion. Furthermore, they agreed on the necessity to form a better conditioned

system, resolve the initial transients sufficiently accurately and handling the non-linear

chemistry in the real atmosphere might lead to a more restricted time step size

(Shampine, 1982; Sandu et al., 1997; Verwer et al., 1999; Blom and Verwer, 2000). In

this work, we are conducting the real atmospheric chemistry simulation with more than

100 chemical species and 200 reactions. It does behave like a box model in the view of

grid level but it is still coupled with other processes sequentially such as physics and

dynamics. This could create discontinuous input for the chemical solver that leads to the

necessity of finer time step such as the 180 seconds used here for ROS-2 solver. Another

potential reason for us to use a fine time step is that the concepts of A-stability and L-

stability are defined for an idealized linear system. The real atmospheric chemistry

system is non-linear and can be very stiff with the existence of fast reacting species. Thus

a small time step is recommended to make the chemical reaction system valid for

“linearization” and avoid impacting the quality of the numerical integration.

	 29	

We also implemented an adaptive time step method that uses 180, 360 and 450 seconds

for the first three months simulation, respectively. Then it is kept at 600 seconds for the

duration. The program runs smoothly before it blows up after about one and a half year

simulation. The accumulation of errors from using relatively larger time step may be the

cause but it still remains undetermined. The adaptive method at least gives an option for

us to choose different time steps. Either initializing the run with 180 seconds for more

months or using 450 seconds instead of 600 seconds after the initial transient is resolved

may help provide a longer simulation period. Shampine (1982) suggests heuristic a

method to detect trouble using the ROS-3 solver in conjunction with ROS-2. When the

two methods disagree indicating a larger error, the time step size is decreased. We also

experimented with this strategy but came to no conclusion when used in the full

atmospheric chemical climate simulation.

Conclusion

This work, to the authors’ knowledge, is the first to implement the ROS-2 solver in

CAM-Chem to evaluate its impact on surface ozone concentration prediction over the

US. Compared to the original 1st order implicit solver with 180 and 1800 seconds time

step, respectively, ROS-2 solver is likely to provide consistently nationwide lower annual

mean surface ozone concentration, as shown in Figure 2(a) and Figure 4(a). But based on

the Student’s t-test they are not statistically significant at 05.0=α . For the summertime

the story is different, ROS-2 solver similarly presents a widely lower estimate of the

mean surface ozone concentration over the whole continental US states than the 1st order

implicit solver with different time step sizes. But the prediction of ozone concentration

reduction at more than 18 continental states is tested to be statistically significant.

Compared to the AQS observation data, more than 20 ppb overestimate of annual mean

surface ozone concentration over continental US can be observed, and bias could be

larger for the summertime mean result, which is a well-known issue in previous work.

ROS-2 solver is likely to reduce both the annual and summertime mean bias, but only the

latter reduction is statistically significant and has stronger amplitude (reach up to 2 ppb

for one state). This implies that the ROS-2 solver may help improve the performance of

surface ozone concentration over continental US, especially during the summer season.

	 30	

In addition, the computational efficiencies of ROS-2, ORI_180s and ORI_1800s solvers

are also analyzed. When using the same time step size, the ROS-2 solver is generally 1.85

times faster than the ORI_180s solver. Compared to the ORI_1800s solver using 1800

seconds time step, ROS-2 solver is only slowed by a factor of 3.72, due to the fact that

ROS-2 solver utilizes the same Jacobian matrix and LU factorization structure during the

two-stage update and the avoided re-evaluation helps save much computation time. The

global statistics summary of total summed wallclock time over the whole processors also

indicates that by increasing the number of computation nodes, more benefit is observed

for the ORI_180s and ROS-2 solvers than the ORI_1800s solver that uses much coarser

time step. Hence, high spatial resolution atmospheric simulations will benefit from the

speed up of chemistry with fine time step size.

In the future work, the other solvers from Rosenbrock family (i.e., ROS-3 and ROS-4)

may be implemented as well to see whether even higher order of accuracy can help

further reduce the current bias for surface ozone concentration prediction over continental

US, as ROS-2 solver is proven to be effective here. The stability of ROS-2 solver for

long-term simulation and its impact on the climate variables such as precipitation and

temperature are also worth investigating. Either NVIDIA CUDA or OpenACC can be

used as a programming model on advanced high performance computing platforms to

harness the power of the GPU. More comments on the strategy to manage the data

movement between host and GPU device will be given in a later section.

	 31	

Section 2

Testing the Rosenbrock Solver and Details of the CAM-Chem Implementation

The chemistry update is called after the calculation of dynamics in CAM-Chem. The

main chemistry program is gas_phase_chemdr and implicit solver is called in the

subroutine imp_sol. The chemical reaction takes the form as:

)(cF
dt
dc

= (7)

In the 1st order implicit solver, the Newton-Raphson method is used to update the

solution. Discrete the time dimension from nt to 1+nt , and move all the terms to the left

hand side:

 0)()(
1

1 =−
Δ

−
Δ

=
+

+ n
nn

n cF
t
c

t
ccG (8)

The Jacobian matrix is calculated as
c
F

tc
cGJ

∂
∂

−
Δ

=
∂

∂
=

1)(
1 and then it is inserted into the

following equation to compute the vector cΔ :

)(1
ncGcJ =Δ− (9)

In the CAM-Chem Fortran code, the independent forcing term is first calculated (in the

subroutine indprd) as part of F(c), since it is not updated during the iteration. Then the

Jacobian matrix J1 is calculated (in the subroutine linmat and nlnmat) using the initial

conditions and the non-zero entries in it are computed exactly by knowing explicitly

where they are and what formula they take. The LU factorization is conducted (in the

subroutine lu_fac) after generating the Jacobian matrix and the rest production and loss

terms are later calculated (in the subroutine imp_prod_loss) to form the whole F(c) terms.

Thus the G(cn) can be computed and the backward elimination (in the subroutine lu_slv)

is applied to Eq. (9) to solve for the vector cΔ . This vector is used to update the solution

from initial condition and then the new solution is inserted back to update the Jacobian

matrix, right hand side term F(c) and LU factorization as mentioned above. The iteration

will end either the iteration number exceeds the maximum limit or cΔ is smaller than the

desired tolerance.

	 32	

For the second-order Rosenbrock method, the Jacobian matrix is calculated as

c
cFJ

∂
∂

=
)(

2 and then it is inserted into the two-stage equations below:

)()(12
ncFktJI =Δ−γ (10)

 1122 2)()(ktkcFktJI n −Δ+=Δ−γ (11)

In the CAM-Chem Fortran code, the independent forcing term is again first calculated (in

the subroutine indprd) as part of F(c). Since J2 has similar structure as J1, in the

subroutine nlnmat_finit of mo_nln_matrix.F90, we first multiply the factor tΔ− γ of the

whole matrix entries and replace
tΔ

−
1 with 1._r8 to account for the diagonal identity

matrix. Thus the ROS-2 system
2tJI Δ−γ is formed. The LU factorization is conducted

(in the subroutine lu_fac) after generating the Jacobian matrix. For the original code, the

iter_invariant equals to ind_prd +
t

solution
Δ

; For the Rosenbrock method, we change the

iter_invariant into ind_prd . The rest production and loss terms are later calculated (in the

subroutine imp_prod_loss) and the whole F(c) terms are formed as

loss - prod +iant iter_invar , instead of loss) - prod +riant (iter_inva -
t

solution
Δ

. Thus the

G(cn) can be computed and the backward elimination (in the subroutine lu_slv) is applied

to Eq. (3) to solve for the vector k1. After obtaining k1, we calculate the intermediate

solution tkcn Δ+ 1 and call the subroutine imp_prod_loss again to form the new right hand

side term in Eq. 5. Since the ROS-2 system is kept the same, we call the subroutine lu_slv

again to solve for the vector k2. Thus, the solution for the next time step is computed and

no iteration is required as the Newton method.

After modifying the CAM-Chem code, see Appendix for details, we use a module

“perf_mod” provided by CAM-Chem utilities to examine the performance. The functions

“t_startf” and “t_stopf” are used to measure the computation time of areas that we are

interested. The performance of ROS-2 solver and its comparison to the original 1st order

implicit solver are described in section 1.

	 33	

The second order Rosenbrock method can be easily extended to a third order method

(ROS-3). Shampine and Reichelt (1997) suggests that by combining the two methods an

error estimate can be made and this can be used to control the step size. We refer to the

third order method with error estimate as ROS23s following Shampine’s nomenclature.

The details of the method are as follows, and it solves the two-stage equations below:

)()(012
ncFFktJI ==Δ−γ (12)

)
2
1(11 tkcFF n Δ+= (13)

11122))((kFkktJI −=−Δ−γ

(14)

where γ differs from the ROS-2 value and is instead
22

1
+

. The error estimate requires

an evaluation using the factored Jacobian and F2 at next time step ()(22 tkcFF n Δ+=),

)(2)()(011223232 FkFkeFktJI −−−−=Δ−γ (15)

where 2623 +=e . The error estimate is given by

)2(
6 321 kkkterror +−
Δ

≈ (16)

To illustrate the methods a simple test problem is informative. We solve the differential

equation system with periodic solution c1 = sin(t) and c2 = cos(t). For each method, a

time interval of 0 to 20 is used and 100 steps of the method are taken. The difference in

accuracy between the second order and the third order method is immediately evident,

compare Figures 8(a) and 8(c). The ROS-2 method shows the steady decay of the

solution in phase space (Figure 8(b)) which illustrates the A-stability of the method but

also indicates the damping that occurs with large time steps. ROS-3 with the same step

size (Figure 8(d)) shows no visible decay of the solution. The error estimate provided by

the ROS23s method (Figure 8(e)) pleasantly displays a periodic behavior.

	 34	

(Figure 8a)

(Figure 8b)

	 35	

(Figure 8c)

(Figure 8d)

	 36	

(Figure 8e)

Figure 8(a-e). Comparison of the ROS-2 and ROS-3 methods on a simple test problem.

Accuracy of the ROS-3 solution c, d and e are noticeably improved over ROS-2 with the

same time step size. The c1 and c2 solutions are shown in blue and green respectively.

While the accuracy of the third order method is an advantage, we are also interested in

stability and computational efficiency. Both methods are A-stable allowing large time

steps as appropriate for stiff differential equations. Additionally, they are both L-stable

(Shampine, 1997) though the simple tests included here do not illustrate that property.

The ROS-3 comes at no extra cost of the ROS-2 and the function evaluation required for

the error estimate becomes the F0 of the following time step. Since only one evaluation

of the Jacobian and LU-factorization of the Jacobian is required, the Rosenbrock methods

have a significant computational advantage over any Newton based nonlinear iterations

including the first order backward Euler method. But more realistic chemical simulations

with stiffness not manifested in simple test problems is required to tell the whole story.

	 37	

With a large time step and low accuracy, the Rosenbrock methods exhibit a damping of

the solution, which eventually leads to an improper steady state solution for the test

problem. This raises the question of the behavior of the method when noise is present in

the solution and the ordinary differential equation is considered stochastic. For chemical

equation simulations there are several sources of noise in the system not the least of

which arises from chaotic or turbulent transport of the air parcel containing the chemical

species. Turner et al. (2004) discussed methods that also applied to sparse, poorly

sampled chemical reactions.

In general, the Rosenbrock schemes have favorable properties for integrating stochastic

differential equations as described in the text (Artemiev and Averina, 1997). A particular

test case is given in Burrage et al. (Burrage et al., 2007) for equations with both a position

like component and a velocity or reaction component that arises from the oscillatory

second order equation:

)()()()(2
2

2

txs
dt
dxxsxF

dt
xd

ξεη +−=

(17)

where the last term represents noise and η represents damping. This can be modeled with

a pair of first order equations for position x and velocity v as:

 v
dt
dx

=

(18)

dt
dWxsxFvxs

dt
dv)()()(2 εη ++−=

(19)

where the W is a Wiener process. This equation has a stationary probability density of

 P∞(x,v) = N exp(−gx
2 / 2KT − v2 / 2KT) (20)

where KTηε 22 = and for a test case we take gxxF −=)(and s(x) = 1, Burrage et al.

(2007) give the steady state properties of the stochastic solution to the system. The

stationary density should satisfy,

	 38	

t→∞
lim x2 =

KT
g and

t→∞
lim v2 = KT (21)

The disagreement of the numerical solution with these ideal statistics indicates the

suitability of the method for modeling stochastic phenomena. For chemical reactions, we

would like these equilibrium statistics to show little effect from the numerical method

itself and to be independent of the damping factor. Otherwise, the error in the mean will

contribute to a systematic bias in the chemical simulations. Using this harmonic oscillator

problem with damping factor eta, we have studied the error in the mean for the ROS-2

method for comparison with the other numerical methods studied in Burrage et al.

(Burrage et al., 2007). Figure 9 shows a reasonable response of the stochastic error to

damping. The ROS-2 scheme response is not as uniform as the modified leapfrog or

implicit midpoint rule studied by Burrage, but compares well overall. We conclude that

the Rosenbrock mehods can be used without significant inherent drift in stochastic

simulations or bias in atmospheric chemical simulations.

Figure 9. The error in the mean of the position x and velocity v in the first order system

as a function of the damping factor eta. The damping factor determines the size of epsilon

	 39	

that multiplies the noise term. Green and blue lines show the error in mean x and v

solutions with g=1.

Section 3

Optimizing Computational Performance for GPU

Due to the fast development of current global model, the computation intensity grows

rapidly with finer resolution and more sophisticated dynamics, chemistry and physics

mechanism. So stronger computation capability is necessary for the future climate study.

Instead of requiring more CPU (Central Processing Unit) processors that are less likely to

be achieved on small cluster, involving GPU (Graphics Processing Unit) is more

attracting as it contains many more Arithmetic Logic Units (ALU) than CPU and can do

more repetitive work like mathematics calculation. Nevertheless, the data movement

between host and device through the PCI bus is much slower than the computation on

GPU, which becomes a bottleneck of its application when there are large amount of data

movement. Solving PDE and linear algebra on the GPU is discussed by Krüger and

Westermann (http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter44.html).

Since forming the Jacobian matrix and conducting LU factorization and reduction will be

responsible for most of total computation time, the way to optimize the ROS-2 method

for GPU in our work is through minimizing data movement and maximizing the amount

computation that can be done on GPU. Currently, we copy the previous time step solution

from CPU to GPU, put the Jacobian matrix evaluation, right hand side forcing term

update and implicit linear algebra solution all on the GPU and transfer the latest time step

solution back to CPU. In this way, we believe the minimum communication is achieved

between CPU and GPU.

In addition, the GPU optimization work above only focuses on the chemistry update at

different vertical levels and columns, but given chunk. In CAM-Chem, when the grid

resolution is chosen, each grid can be treated as a column along the vertical direction.

The chunk number is determined by the number of columns and number of

computational nodes. Thus given a fixed number of nodes, the finer grid resolution will

	 40	

lead to more columns in one chunk and more intensive computation is expected. When

each node receives the work from one chunk with several columns, it then assigns to the

processors in this very node later for computation. Based on this architecture, if not

limited by the GPU memory, we can try to send the data from different chunks together

to GPU for computation simultaneously. When the grid resolution becomes finer, the

computation will become much more intensive and we expect to see more benefits from

using GPU.

Moreover, the NVIDIA CUDA is usually used as a computing platform to harness the

power of the GPU but it requires experienced GPU programming skill and the whole

code structure will be changed. Recently, a programming standard, named OpenACC (for

Open Accelerators), is developed for parallel computing developed by Cray, CAPS,

Nvidia and PGI. The standard is designed to simplify parallel programming of

heterogeneous CPU/GPU systems. Like OpenMP, the programmer can annotate C, C++

and Fortran source code to identify the areas that should be accelerated using compiler

directives and additional functions. Hence we introduce the application of OpenACC into

our ROS-2 solver, where the areas that should be accelerated on GPU must be identified

by using compiler directives and additional functions. A big benefit of OpenACC is that

it maintains the original code structure and users who don’t need GPU can simply ignore

these additional directives by turning off the OpenACC flags during the configuration

and compilation process, which makes it an option rather than a forced version if we

program by CUDA. Currently some OpenACC directives have been added in our Fortran

code but we encounter some errors during execution. After debugging these problems, we

would like to examine the performance of GPU vs. CPU based on our current

configuration.

References
Artemiev, S.S. and Averina, T.A.. 1997. Numerical Analysis of Systems of Ordinary

and Stochastic Differential Equations, VSP.

	 41	

Blom, J.G. and Verwer, J.G.. 2000. A comparison of integration methods for atmospheric

transport-chemistry problems. Journal of Computational and Applied Mathematics, 126:

381-396. Doi:10.1016/S0377-0427(99)00366-0.

Burrage, K., Ian, L. and Grant, L.. 2007. Numerical Methods for Second-Order

Stochastic Differential Equations, SIAM J. Sci. Comput., 29(1): 245-264. Doi:

10.1137/050646032.

Daescu, D., Carmichael G.R. and Sandu A.. 2000. Adjoint implementation of rosenbrock

methods applied to variational data assimilation problems. Journal of Computational

Physics, 165: 496-510. Doi:10.1006/jcph.2000.6622.

Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D.,

Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G.,

Wiedinmyer, C., Baughcum, S.L. and Kloster, S.. 2010. Description and evaluation of the

Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model

Dev., 3: 43-67. Doi:10.5194/gmd-3-43-2010.

Fiore, A.M., Dentener, F.J., Wild, O., Cuvelier, C., Schultz, M.G., Hess, P., Textor, C.,

Schulz, M., Doherty, R.M., Horowitz, L.W., MacKenzie, I.A., Sanderson, M.G.,

Shindell, D.T., Stevenson, D.S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C.,

Bergmann, D., Bey, I., Carmichael, G., Collins, W.J., Duncan, B.N., Faluvegi, G.,

Folberth, G., Gauss,

M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I.S.A., Jacob, D.J., Jonson, J.E.,

Kaminski, J.W., Keating, T.J., Lupu, A., Marmer, E., Montanaro, V., Park, R.J., Pitari,

G., Pringle, K.J., Pyle, J.A., Schroeder, S., Vivanco, M.G., Wind, P., Wojcik, G., Wu, S.

and Zuber A.. 2009. Multimodel estimates of intercontinental source-receptor

relationships for ozone pollution. Journal of Geophysical Research, 114: D04301. Doi:

10.1029/2008JD010816.

Fiore, A.M., Oberman, J.T., Lin, M.Y., Zhang, L., Clifton, O.E., Jacob, D.J., Naik, V.,

Horowitz, L.W., Pinto, J.P. and Milly, G.P.. 2014. Estimating North American

background ozone in U.S. surface air with two independent global models: Variability,

uncertainties, and recommendations. Atmospheric Environment, 96: 284-300. Doi:

10.1016/j.atmosenv.2014.07.045.

	 42	

Gao, Y., Fu, J.S., Drake, J.B., Lamarque, J.F. and Liu, Y.. 2013. The impact of emission

and climate change on ozone in the United States under representative concentration

pathways (RCPs). Atmos. Chem. Phys., 13: 9607-9621. Doi: 10.5194/acp-13-9607-2013.

Hollaway, M.J., Arnold, S.R., Challinor, A.J. and Emberson, L.D.. 2012. Intercontinental

trans-boundary contributions to ozone-induced crop yield losses in the Northern

Hemisphere. Biogeosciences, 9(1): 271-292. Doi: 10.5194/bg-9-271-2012.

Lamarque, J.F., Emmons, L.K., Hess, P.G., Kinnison, D.E., Tilmes, S., Vitt, F., Heald,

C.L., Holland, E.A., Lauritzen, P.H., Neu, J., Orlando, J.J., Rasch, P.J. and Tyndall, G.K..

2012. CAM-chem: Description and evaluation of interactive atmospheric chemistry in the

Community Earth System Model. Geosci. Model Dev., 5: 369-411. Doi: 10.5194/gmd-5-

369-2012.

Lapina, K., Henze, D.K., Milford, J.B., Huang, M., Lin, M.Y., Fiore, A.M., Carmichael,

G., Pfister, G.G. and Bowman K.. 2014. Assessment of source contributions to seasonal

vegetative exposure to ozone in the U.S.. Journal of Geophysical Research Atmos., 119:

324-340. Doi:10.1002/2013JD020905.

Linford, J.C., Michalakes, J., Vachharajani, M. and Sandu, A.. 2009. Multi-core

acceleration of chemical kinetics for simulation and prediction. Proceedings of the

Conference on High Performance Computing Networking, Storage and Analysis, SC ’09,

Association for Computing Machinery, New York, NY, 7: 1-11. Doi:

10.1145/1654059.1654067.

Long, M.S., Keene, W.C., Easter, R., Sander, R., Kerkweg, A., Erickson, D., Liu, X. and

Ghan, S.. 2013. Implementation of the chemistry module MECCA (v2.5) in the modal

aerosol version of the Community Atmosphere Model component (v3.6.33) of the

Community Earth System Model. Geosci. Model Dev., 6: 255-262. Doi:10.5194/gmd-6-

255-2013.

Murazaki, K., and Hess, P.. 2006. How does climate change contribute to surface ozone

change over the United States? Journal of Geophysical Research, 111:	 D05301.

Doi:10.1029/2005JD005873.

Neale, R.B., Richter, J.H., Park, S., Conley, A.J., Lauritzen, P.H., Gettelman, A.,

Williamson, D.L., Rasch, P.J., Vavrus, S.J., Taylor, M.A., Collins, W.D., Zhang, M.H.

	 43	

and Lin, S.J.. 2010. Description of the NCAR Community Atmosphere Model (CAM

4.0). NCAR/TN-485+STR. pp13.

Neale, R.B., Richter, J., Park, S., Lauritzen, P.H., Vavrus, S.J., Rasch, P.J. and Zhang,

M.H.. 2013. The Mean Climate of the Community Atmosphere Model (CAM4) in Forced

SST and Fully Coupled Experiments. Journal of Climate, 26: 5150-5168. Doi:

10.1175/JCLI-D-12-00236.1.

Reidmiller, D.R., Fiore, A.M., Jaffe, D.A., Bergmann, D., Cuvelier, C., Dentener, F.J.,

Duncan, B.N., Folberth, G., Gauss, M., Gong, S., Hess, P., Jonson, J.E., Keating, T.,

Lupu, A., Marmer, E., Park, R., Schultz, M.G., Shindell, D.T., Szopa, S., Vivanco, M.G.,

Wild, O., and Zuber, A.. 2009. The influence of foreign vs. North American emissions on

surface ozone in the US. Atmos. Chem. Phys., 9: 5027-5042. doi:10.5194/acp-9-5027-

2009.

Sandu, A., Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub, D. and

Seinfeld, J.H.. 1997. Benchmarking stiff ode solvers for atmospheric chemistry

problems-I. Implicit vs explicit. Atmospheric Environment, 31(19): 3151-3166.

Doi:10.1016/S1352-2310(97)00059-9.

Sarwar, G., Godowitch, J., Henderson, B.H., Fahey, K., Pouliot, G., Hutzell, W.T.,

Mathur, R., Kang, D., Goliff, W.S. and Stockwell, W.R.. 2013. A comparison of

atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry

Mechanisms. Atmos. Chem. Phys., 13: 9695-9712. Doi:10.5194/acp-13-9695-2013.

Shampine, L.F. 1982. Implementation of Rosenbrock Methods. Transactions on

Mathematical Software (TOMS), Association for Computing Machinery, New York, NY,

8(2): 93-113. Doi: 10.1145/355993.355994.

Shampine, L.F. and Reichelt, M.W.. 1997. The MATLAB ODE Suite, SIAM J. Sci

Comput., 18(1): 1-22. Doi: 10.1137/S1064827594276424.

Stevenson, D.S., Dentener, F.J., Schultz, M.G., Ellingsen, K., van Noije, T.P.C., Wild,

O., Zeng, G., Amann, M., Atherton, C.S., Bell, N., Bergmann, D.J., Bey, I., Butler, T.,

Cofala, J., Collins, W.J., Derwent, R.G., Doherty, R.M., Drevet, J., Eskes, H.J., Fiore,

A.M., Gauss, M., Hauglustaine, D.A., Horowitz, L.W., Isaksen, I.S.A., Krol, M.C.,

Lamarque, J.-F., Lawrence, M.G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M.J.,

Pyle, J.A., Rast, S., Rodriguez, J.M., Sanderson, M.G., Savage, N.H., Shindell, D.T.,

	 44	

Strahan, S.E., Sudo, K. and Szopa, S.. 2006. Multimodel ensemble simulations of

present-day and near-future tropospheric ozone. J. Geophys. Res., 111: D08301. Doi:

10.1029/2005JD006338.

Stevenson, D.S., Young, P.J., Naik, V., Lamarque, J.-F., Shindell, D.T., Voulgarakis, A.,

Skeie, R.B., Dalsoren, S.B., Myhre, G., Berntsen, T.K., Folberth, G.A., Rumbold, S.T.,

Collins, W.J., MacKenzie, I.A., Doherty, R.M., Zeng, G., van Noije, T.P.C., Strunk, A.,

Bergmann, D., Cameron-Smith, P., Plummer, D.A., Strode, S.A., Horowitz, L., Lee,

Y.H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V.,

Conley, A., Bowman, K.W., Wild, O. and Archibald, A.. 2013. Tropospheric ozone

changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and

Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13: 3063-3085.

Doi:10.5194/acp-13-3063-2013.

Turner, T.E., Schnell, S. and Burrage, K.. 2004. Stochasitc approaches for modelling in

vivo reactions. Computational Biology and Chemistry, 28: 165-178. Doi:

10.1016/j.compbiolchem.2004.05.001.

Val Martin, M., Heald, C.L., Lamarque, J.-F., Tilmes, S., Emmons, L.K., and Schichtel,

B.A.. 2015. How emissions, climate, and land use change will impact mid-century air

quality over the United States: a focus on effects at national parks. Atmos. Chem. Phys.,

15: 2805-2823. Doi:10.5194/acp-15-2805-2015.

Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.. 1999. A second-order rosenbrock

method applied to photochemical dispersion problems. SIAM J. Sci. Comput., 20(4):

1456–1480. Doi:10.1137/S1064827597326651.

Wang, X. and Ziavras, S.G.. 2004. Parallel LU factorization of sparse matrices on FPGA-

based configurable computing engines. Concurrency Computat.: Pract. Exper., 16: 319–

343. Doi: 10.1002/cpe.748.

Young, P.J., Archibald, A.T., Bowman, K.W., Lamarque, J.-F., Naik, V., Stevenson,

D.S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni,

I., Collins, W.J., Dalsøren, S.B., Doherty, R.M., Eyring, V., Faluvegi, G., Horowitz,

L.W., Josse, B., Lee, Y.H., MacKenzie, I.A., Nagashima, T., Plummer, D.A., Righi, M.,

Rumbold, S.T., Skeie, R.B., Shindell, D.T., Strode, S.A., Sudo, K., Szopa, S., and Zeng,

G.. 2013. Pre-industrial to end 21st century projections of tropospheric ozone from the

	 45	

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos.

Chem. Phys., 13: 2063-2090. doi:10.5194/acp-13-2063-2013.

Zeng, G., Pyle, J.A. and Young, P.J.. 2008. Impact of climate change on tropospheric

ozone and its global budgets. Atmos. Chem. Phys., 8: 369-387. Doi:10.5194/acp-8-369-

2008.

Appendix

Modified code in CAM-Chem for ROS-2

a. subroutine “nlnmat_finit” in “mo_nln_matrix.F90”

==

subroutine nlnmat_finit(mat, lmat, dt)

 use chem_mods, only : gas_pcnst, rxntot, nzcnt

 implicit none

!--

! ... dummy arguments

!--

 real(r8), intent(in) :: dt

 real(r8), intent(in) :: lmat(nzcnt)

 real(r8), intent(inout) :: mat(nzcnt)

!--

! ... local variables

!--

 real(r8), parameter :: gamma_coeff = 1._r8+1._r8/sqrt(2._r8)

!--

! ... complete matrix entries implicit species

!--

 mat(1) = lmat(1)

 mat(2) = lmat(2)

	 46	

 mat(3) = lmat(3)

 mat(4) = lmat(4)

 mat(5) = lmat(5)

 mat(6) = lmat(6)

 mat(7) = lmat(7)

 mat(8) = lmat(8)

 mat(9) = lmat(9)

……

 mat(:) = -1._r8*gamma_coeff*dt*mat(:)

 mat(1) = mat(1) + 1._r8

 mat(2) = mat(2) + 1._r8

 mat(3) = mat(3) + 1._r8

 mat(4) = mat(4) + 1._r8

 mat(5) = mat(5) + 1._r8

 mat(7) = mat(7) + 1._r8

 mat(8) = mat(8) + 1._r8

 mat(10) = mat(10) + 1._r8

 mat(11) = mat(11) + 1._r8

 mat(12) = mat(12) + 1._r8

 mat(13) = mat(13) + 1._r8

 mat(14) = mat(14) + 1._r8

 mat(15) = mat(15) + 1._r8

 mat(16) = mat(16) + 1._r8

 mat(17) = mat(17) + 1._r8

 mat(18) = mat(18) + 1._r8

 mat(19) = mat(19) + 1._r8

 mat(21) = mat(21) + 1._r8

 mat(24) = mat(24) + 1._r8

 mat(27) = mat(27) + 1._r8

 mat(30) = mat(30) + 1._r8

 mat(34) = mat(34) + 1._r8

	 47	

 mat(36) = mat(36) + 1._r8

 mat(41) = mat(41) + 1._r8

 mat(44) = mat(44) + 1._r8

 mat(49) = mat(49) + 1._r8

 mat(52) = mat(52) + 1._r8

 mat(56) = mat(56) + 1._r8

 mat(59) = mat(59) + 1._r8

 mat(63) = mat(63) + 1._r8

 mat(70) = mat(70) + 1._r8

 mat(75) = mat(75) + 1._r8

 mat(80) = mat(80) + 1._r8

 mat(84) = mat(84) + 1._r8

 mat(89) = mat(89) + 1._r8

 mat(96) = mat(96) + 1._r8

 mat(101) = mat(101) + 1._r8

 mat(106) = mat(106) + 1._r8

 mat(113) = mat(113) + 1._r8

 mat(116) = mat(116) + 1._r8

 mat(121) = mat(121) + 1._r8

 mat(126) = mat(126) + 1._r8

 mat(131) = mat(131) + 1._r8

 mat(136) = mat(136) + 1._r8

 mat(140) = mat(140) + 1._r8

 mat(146) = mat(146) + 1._r8

 mat(152) = mat(152) + 1._r8

 mat(157) = mat(157) + 1._r8

 mat(163) = mat(163) + 1._r8

 mat(168) = mat(168) + 1._r8

 mat(171) = mat(171) + 1._r8

 mat(176) = mat(176) + 1._r8

 mat(183) = mat(183) + 1._r8

	 48	

 mat(190) = mat(190) + 1._r8

 mat(195) = mat(195) + 1._r8

 mat(203) = mat(203) + 1._r8

 mat(208) = mat(208) + 1._r8

 mat(215) = mat(215) + 1._r8

 mat(219) = mat(219) + 1._r8

 mat(225) = mat(225) + 1._r8

 mat(233) = mat(233) + 1._r8

 mat(241) = mat(241) + 1._r8

 mat(246) = mat(246) + 1._r8

 mat(250) = mat(250) + 1._r8

 mat(260) = mat(260) + 1._r8

 mat(271) = mat(271) + 1._r8

 mat(279) = mat(279) + 1._r8

 mat(287) = mat(287) + 1._r8

 mat(292) = mat(292) + 1._r8

 mat(306) = mat(306) + 1._r8

 mat(321) = mat(321) + 1._r8

 mat(331) = mat(331) + 1._r8

 mat(342) = mat(342) + 1._r8

 mat(352) = mat(352) + 1._r8

 mat(370) = mat(370) + 1._r8

 mat(383) = mat(383) + 1._r8

 mat(392) = mat(392) + 1._r8

 mat(404) = mat(404) + 1._r8

 mat(414) = mat(414) + 1._r8

 mat(420) = mat(420) + 1._r8

 mat(430) = mat(430) + 1._r8

 mat(438) = mat(438) + 1._r8

 mat(451) = mat(451) + 1._r8

 mat(464) = mat(464) + 1._r8

	 49	

 mat(482) = mat(482) + 1._r8

 mat(501) = mat(501) + 1._r8

 mat(517) = mat(517) + 1._r8

 mat(558) = mat(558) + 1._r8

 mat(634) = mat(634) + 1._r8

 mat(685) = mat(685) + 1._r8

 mat(716) = mat(716) + 1._r8

 mat(746) = mat(746) + 1._r8

 mat(767) = mat(767) + 1._r8

 mat(801) = mat(801) + 1._r8

 mat(824) = mat(824) + 1._r8

end subroutine nlnmat_finit

===

b. subroutine “imp_sol” in “mo_imp_sol.F90”

===

subroutine imp_sol(base_sol, reaction_rates, het_rates, extfrc, delt, &

 xhnm, ncol, lchnk, ltrop)

 !---

 ! ... imp_sol advances the volumetric mixing ratio

 ! forward one time step via the fully implicit euler scheme.

 ! this source is meant for small l1 cache machines such as

 ! the intel pentium and itanium cpus

 !---

 use chem_mods, only : rxntot, extcnt, nzcnt, permute, cls_rxt_cnt

 use mo_tracname, only : solsym

 use ppgrid, only : pver

 use mo_lin_matrix, only : linmat

 use mo_nln_matrix, only : nlnmat

 use mo_lu_factor, only : lu_fac

 use mo_lu_solve, only : lu_slv

	 50	

 use mo_prod_loss, only : imp_prod_loss

 use mo_indprd, only : indprd

 use time_manager, only : get_nstep

 use cam_history, only : outfld

implicit none

 !---

 ! ... dummy args

 !---

 integer, intent(in) :: ncol ! columns in chunck

 integer, intent(in) :: lchnk ! chunk id

 real(r8), intent(in) :: delt ! time step (s)

 real(r8), intent(in) :: reaction_rates(ncol,pver,max(1,rxntot)), & ! rxt rates (1/cm^3/s)

 extfrc(ncol,pver,max(1,extcnt)), & ! external in-situ forcing (1/cm^3/s)

 het_rates(ncol,pver,max(1,gas_pcnst)) ! washout rates (1/s)

 real(r8), intent(inout) :: base_sol(ncol,pver,gas_pcnst) ! species mixing ratios (vmr)

 real(r8), intent(in) :: xhnm(ncol,pver)

 integer, intent(in) :: ltrop(ncol) ! chemistry troposphere boundary (index)

 !---

 ! ... local variables

 !---

 integer :: nr_iter, &

 lev, &

 i, &

 j, &

 k, l, &

 m

 real(r8) :: interval_done, dt, wrk, start, finish

 real(r8) :: max_delta(max(1,clscnt4))

 real(r8) :: sys_jac(max(1,nzcnt))

 real(r8) :: lin_jac(max(1,nzcnt))

 real(r8), dimension(max(1,clscnt4)) :: &

	 51	

 solution, &

 forcing, &

 iter_invariant, &

 prod, &

 loss, &

 prod_temp, &

 loss_temp, &

 forcing_temp

 real(r8) :: lrxt(max(1,rxntot))

 real(r8) :: lsol(max(1,gas_pcnst)),lsol_temp(max(1,gas_pcnst))

 real(r8) :: lhet(max(1,gas_pcnst))

 real(r8), dimension(ncol,pver,max(1,clscnt4)) :: &

 ind_prd

 real(r8), dimension(ncol,pver,max(1,clscnt4)) :: prod_out, loss_out

 prod_out(:,:,:) = 0._r8

 loss_out(:,:,:) = 0._r8

 solution(:) = 0._r8

 !---

 ! ... class independent forcing

 !---

 if(cls_rxt_cnt(1,4) > 0 .or. extcnt > 0) then

 call indprd(4, ind_prd, clscnt4, base_sol, extfrc, &

 reaction_rates, ncol)

 else

 do m = 1, max(1,clscnt4)

 ind_prd(:,:,m) = 0._r8

 end do

 end if

 level_loop : do lev = 1,pver

	 52	

 column_loop : do i = 1,ncol

 IF (lev <= ltrop(i)) CYCLE column_loop

 !---

 ! ... transfer from base to local work arrays

 !---

 do m = 1,rxntot

 lrxt(m) = reaction_rates(i,lev,m)

 end do

 if(gas_pcnst > 0) then

 do m = 1,gas_pcnst

 lhet(m) = het_rates(i,lev,m)

 end do

 end if

 !---

 ! ... time step loop

 !---

 dt = delt / 10._r8

 interval_done = 0._r8

 time_step_loop : do

 !---

 ! ... transfer from base to local work arrays

 !---

 do m = 1,gas_pcnst

 lsol(m) = base_sol(i,lev,m)

 end do

 !---

 ! ... transfer from base to class array

 !---

 do k = 1,clscnt4

 j = clsmap(k,4)

 m = permute(k,4)

	 53	

 solution(m) = lsol(j)

 end do

 !---

 ! ... set the iteration invariant part of the function f(y)

 !---

 if(cls_rxt_cnt(1,4) > 0 .or. extcnt > 0) then

 do m = 1,clscnt4

 iter_invariant(m) = ind_prd(i,lev,m)

 end do

 else

 do m = 1,clscnt4

 iter_invariant(m) = 0._r8

 end do

 end if

 !---

 ! ... the linear component

 !---

 call linmat(lin_jac, lsol, lrxt, lhet)

 !---

 ! ... the non-linear component

 ! ... form the Jacobian & Left hand side matrix as well

 !---

 call nlnmat(sys_jac, lsol, lrxt, lin_jac, dt)

 !---

 ! ... factor the "system" matrix

 !---

 call lu_fac(sys_jac)

	 54	

 !---

 ! ... form f(y) for the right hand side

 !---

 call imp_prod_loss(prod, loss, lsol, lrxt, lhet)

 do m = 1,clscnt4

 forcing(m) = (iter_invariant(m) + prod(m) - loss(m))

 end do

 !---

 ! ... solve for the first stage solution k1

 !---

 call lu_slv(sys_jac, forcing)

 do m = 1,clscnt4

 solution(m) = solution(m) + forcing(m)*dt

 end do

 do m = 1, clscnt4

 j = clsmap(m, 4)

 k = permute(m, 4)

 if (solution(k) < 0._r8) then

 solution(k) = 0._r8

 end if

 lsol(j) = solution(k)

 base_sol(i,lev,j) = lsol(j)

 end do

 call imp_prod_loss(prod_temp, loss_temp, lsol, lrxt, lhet)

	 55	

 do m = 1,clscnt4

 forcing_temp(m) = (iter_invariant(m) + prod_temp(m) - loss_temp(m)) -

2._r8*forcing(m)

 end do

 !---

 ! ... solve for the second stage solution k2

 ! ... use the same Jacobian matrix factorization from first stage

 !---

 call lu_slv(sys_jac, forcing_temp)

 !---

 ! ... solve for the mixing ratio at t(n+1)

 ! ... Un has been added dt*k1 from first stage to second stage

 ! ... only 0.5*dt*k1 is required

 !---

 do m = 1,clscnt4

 solution(m) = solution(m) + 0.5_r8*forcing(m)*dt +

0.5_r8*forcing_temp(m)*dt

 end do

 where(solution(:) < 0._r8)

 solution(:) = 0._r8

 endwhere

 !---

 ! ... transfer latest solution back to work array

 !---

 do k = 1,clscnt4

 j = clsmap(k,4)

 m = permute(k,4)

	 56	

 lsol(j) = solution(m)

 end do

 !---

 ! ... check for interval done

 !---

 interval_done = interval_done + dt

! write(iulog,'('' ROS: interval_done '',1p,e21.13)') interval_done

 if(abs(delt - interval_done) <= .0001_r8) then

 exit time_step_loop

 else

 !---

 ! ... transfer latest solution back to base array

 !---

 do m = 1,gas_pcnst

 base_sol(i,lev,m) = lsol(m)

 end do

 end if

 end do time_step_loop

 !---

 ! ... Transfer latest solution back to base array

 !---

 cls_loop: do k = 1,clscnt4

 j = clsmap(k,4)

 m = permute(k,4)

 base_sol(i,lev,j) = solution(m)

 end do cls_loop

……

==

	

