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Executive Summary: 
The purpose of the proposed work focused on development of chemistry representation 
within the Spectral Element (SE) dynamical core as implemented in the Community 
Earth System Model (CESM).  More specifically, a main focus was on the ability of SE 
to accurately represent tracer transport. The proposed approach was to incrementally 
increase the complexity of the problem, starting from specified two-dimensional flow and 
tracers to simulations using specified dynamics and full chemistry.  As demonstrated 
below, we have successfully studied all aspects of the proposed work, although only part 
of the work has been published in the refereed literature so far.  Furthermore, because the 
SE dynamical core has been found to have several deficiencies that are still being 
investigated for solution, not all proposed tasks were finalized. In addition to the tests for 
SE performance, in an effort to decrease the computational burden of interactive 
chemistry, especially in the case of a large number of chemical species and chemical 
reactions, development on a faster chemical solver and implementation on GPUs has 
been implemented in CESM under the leadership of John Drake (U. Tennessee).   
 
Project activities: 
 
1) Using simple chemistry schemes to test dynamical cores 
 
Under this activity, the main hypothesis is to identify metrics that can be used to 
quantitatively identify the performance of a dynamical core against another one; in 
particular, we looked for metrics to quantify the performance of the newly developed 
Spectral Element dynamical core against the existing Finite Volume dynamical core.  For 
that purpose, we participated in a large intercomparison (results published in Lauritzen et 
al., 2014; this publication is provided as part of this report) where mixing characteristics 
were discussed.  It was found that SE was significantly less diffusive than FV. While 
useful, we found that this was not a sufficient powerful test of the dynamical core 
performance, especially in the light of its application to tracer transport and atmospheric 
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chemistry.  Therefore, we developed a toy chemistry, with 3 interrelated tracers, designed 
to represent strong nonlinearities that are present in the real atmosphere (in this case, 
mimicking stratosphere chemistry and more specifically chlorine chemistry).  We found 
(results published in Lauritzen et al., 2015 this publication is provided as part of this 
report) that the SE dynamical core exhibited a strong Gibbs (i.e. oscillatory) phenomenon 
that led to strong chemical nonlinearities and associated unphysical behavior (Figure 
below is Figure 3 from Lauritzen et al. 2015).  In all those figures, the field, if perfectly 
conserved, should be constant and therefore all green.  Instead, we find that non-
conservation leads to nonlinearities (associated with the toy chemistry we specifically 
designed) that are much more pronounced in SE than FV dynamical cores. 
 

 
 
This has led to the identification of specific issues in the SE dynamical tracer advection 
algorithm that are being investigated and should lead to improvements to the SE 
dynamical core. Note that this toy chemistry test will become an integral part to further 
intercomparison of dynamical cores (P. Lauritzen, personal communication). 
 
2) Implementation of specified dynamics in the SE dynamical core 
 
One major aspect of chemistry modeling is its comparison to observations, especially 
during field campaigns, ground-based or aircraft-based.  In both cases, it is critical to 
have an accurate representation of the meteorology and atmospheric state at the time and 
location of the observations.  For that purpose, climate models such as CESM are run in a 
mode in which meteorological analyses (such as generated by NASA’s GEOS-5 forecast 
system) are used to constrain the meteorology.  This is usually referred to as Specified 
Dynamics (SD).  While this has been available in the FV dynamical core for several years 
(Lamarque et al., GMD, 2012), there was no implementation of such SD in the SE 
dynamical core.  We have therefore implemented a new nudging approach, in which only 
temperature and horizontal wind components are relaxed towards the observations.  In 
particular, a force proportional to the difference between the model-value velocity and 
the meteorological winds is added to the right hand side of the Navier-Stokes equation. 
And additional tendency for temperature is added that is proportional to the difference 
between the model-value temperature and the meteorological temperature. We also nudge 
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the horizontal velocities to compensate for differences in pressure between model and 
analysis.  An interesting outcome of this approach has been the very high level of mass 
conservation achieved in SE without having to rely on a pressure fixer as in the case of 
the implementation of specified dynamics in the FV dynamical core (Lamarque et al., 
GMD, 2012).  Application of our new implementation in both dynamical cores show very 
limited differences in highly sensitive quantities such as precipitation (see figures below). 
Both simulations are performed at approximately 2 degrees of horizontal resolution, 
using CAM4 physics and GEOS-5 meteorological analysis.  Results are shown for 
January 2013 (monthly averaged precipitation, in meter of accumulated water per second) 
 
Using FV 
 

 
 
Using SE 
 

 
 
These results are clear indications that the implementation of SD (in the form of nudging) 
in the SE performs very similarly to the equivalent FV implementation, with the presence 
of more defined filaments, indicative of the less diffusive nature of the SE dynamical 
core (as identified in Lauritzen et al., 2014). 
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3) Application of SE to baroclinic waves 
 
From the results of Activity #2, we have convinced ourselves that, regardless of the 
caveats identified in activity #1, the SD version of the SE dynamical core provides a 
representation of the atmospheric state that is equivalent to the one simulated by the FV 
dynamical core under the same meteorological conditions.  In the present activity, we 
relax the constraint associated with the use of SD to the specific case of baroclinic waves 
(Polvani and Esler, JGR, 2007).  In this case, the model is initialized with an unstable 
temperature and wind profiles, then run in an adiabatic configuration to let the 
perturbation grow and reach within approximately 7 days the size and characteristics of a 
fully developed mid-latitudes frontal system.  This test is used to identify the degree of 
mixing and overall transport characteristics since a fully validated solution is available 
from Polvani and Esler.  Working with L. Polvani to accurately represent the initial 
conditions in the FV and SE dynamical cores, we have performed a collection of 
simulations (varying horizontal and vertical resolutions) to quantify, for the standard 
configurations of those dynamical cores, the degree of accuracy against the reference 
simulations (which was obtained using the spectral dynamical core (also known as the 
Eulerian dynamical core in CESM).  
 
Using FV (for the specific case of 1/4-degree, 30 levels), the surface temperature after 7 
days exhibit a fully developed, perfectly symmetrical (wave 6) pattern. 

 
 
Using the SE dynamical in similar horizontal resolution and same vertical resolution, we 
find that, while the simulation is overall very similar in nature to the FV results (and 
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reference simulation, the latter being not shown), there is also an element of noise in the 
simulated temperature distribution that is not dissimilar in nature to what was found in 
Activity #1.  More specifically, there is a non-negligible level of noise present in the area 
identified by the arrow.  While this might seem innocuous, it is nevertheless an indication 
that the SE dynamical core is generating features that are not part of the physical solution. 
 

 
 
Note that we have verified that these features are not associated with the 
regridding/interpolation necessary to provide the SE results on a standard latitude-
longitude grid.  Again, the results point to some deficiency in the SE dynamical core that 
will require further investigation.  We plan to further our analysis and submit our results 
to a refereed journal within the next year. 
 
4) Application of SE to full chemistry simulations under SD framework 
 
In the next step of comparing the performance of the SE dynamical core against the FV 
dynamical core, we have used the SD version (activity #2) with full tropospheric and 
stratospheric chemistry (as defined in Lamarque et al., GMD, 2012).  The reason to focus 
on SD in the present activity is that there is little documentation of the quality of 
simulation of the present-day climate using SE in configurations with horizontal 
resolutions in the range of 1 to 2 degrees.  Therefore, in order to avoid trying to represent 
chemistry in a climatologically different (from FV) atmospheric state, we have decided to 
focus our analysis on simulations we perform using the SD approach in both dynamical 
cores.  Using the MERRA reanalysis products for the year 2006, we have performed 2 
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simulations: one with the FV dynamical core, one with the SE dynamical core, 
everything else being the same, including the chemistry and the emissions. After one full 
year of simulation (with a model spanning from the surface to approximately 40 km, at a 
horizontal resolution of 1.9x2.5 degrees or equivalent, 56 levels and full tropospheric and 
stratospheric chemistry) we find a very similar distribution of ozone throughout the 
model domain.  It is critical to focus on ozone because of its central role in atmospheric 
chemistry.  If some chemical species are significantly different between two simulations, 
then it will very likely show in ozone difference plots (shown below as filled contours is 
for SE, line contours for FV). 
 

 
What we find above is a very reasonable simulation of ozone with SE (note that FV is our 
standard dynamical and performance of ozone simulations has been analyzed in 
numerous simulations, e.g. Lamarque et al., GMD, 2012).  Somewhat surprisingly, the 
SE simulation seems to bring more ozone into the troposphere as a result of stratosphere-
troposphere exchange.  This is somewhat counterintuitive since the SE dynamical core is 
less diffusive by nature (see Lauritzen et al., 2014).  This is however a result of a stronger 
stratospheric residual circulation in the case of SE, as a result of stronger (explicitly 
resolved, i.e. not parameterized) waves originating from the troposphere.  Indeed, since 
our use of SD is only in terms of a relaxation, there will be differences in the wind and 
temperature distributions between SE and FV such that parameterizations such as the 
gravity wave drag and resolved waves dissipation will be influenced (which both force 
the stratospheric residual circulation).  It is however important to note that the differences 
seen in the figure above are within ozone observations uncertainty and so those 
observations cannot be used to identify a setup that performs better than the other.  We 
plan additional simulations and more in-depth analysis along campaign flights and 
ground-based measurements to further our understanding of differences (or lack thereof) 
between SE and FV. 
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5) New chemistry solver and GPU implementation 
 
Solving for chemical equations in a configuration such as used in Activity #4 (approx.. 
150 chemical species and more than 300 chemical reactions) represent a non-trivial 
portion of the computational cost of running such a model.  Therefore, the proposal 
contained a significant portion of its research associated with 1) identifying new chemical 
solvers and 2) optimizing such solver for GPU accelerators.  In particular, it was found 
that Rosenbrock-type solvers were very good candidates.  In particular, ROS2 and RO3 
were particularly identified as they can readily re-use the present framework (based on an 
iterative Euler method) and therefore enabled a much more seamless implementation in 
CESM.  It was found that the ROS2 solver, when run in the same configuration as the 
standard solver (1.9x2.5 degrees, 26 levels CAM4 physics, FV dynamical core with 
prescribed sea-surface temperatures), leads to a significant decrease in surface ozone 
during summer, thereby slightly improving the existing positive bias, especially present 
in the Northeastern United States.  In the present implementation of ROS2 (without 
recoding specific to GPUs), no computational improvement is found when chemical 
equations using ROS2 are solved on GPUs.  Further exploration will focus on using 
explicit parallelization instead of relying on compiler directives.  More details are 
available in the expanded report. 
 
Summary 
 
We have successfully studied numerous aspects of the performance of the Spectral 
Element dynamical core (as implemented in CESM).  In particular, we have focused on 
its ability to accurately represent tracer transport.  We have found that, although SE 
performs very well in terms of mixing, there were significant issues associated with its 
representation of over and undershoot (Gibbs phenomenon, thereby leading to non-
conservation of tracer mass) that, in the present version, seriously hindered its 
performance under the nonlinear chemistry test we devised.  This issue has led to further 
research in SE (led my M. Taylor, Sandia National Labs) and will be released in 
subsequent versions of the SE dynamical core.  In addition, the baroclinic wave test has 
led to the identification of local instabilities, similar in nature to the non-conservation 
issue mentioned above.  The successful development and application of a specified 
dynamics framework in SE has shown that such configuration leads to a simulation of 
tropospheric and stratospheric chemical states very similar to the results using the 
standard Finite Volume dynamical core.  Therefore, even though local conditions might 
not be accurately represented (as shown in Activity 1), this did not translate in major 
impacts on ozone, at least not in the broad measures applied here. Finally, the study of a 
new chemical solver has shown very good potential and will be studied further.  We are 
expecting that all developments introduced in CESM in the course of this research will be 
implemented in upcoming CESM releases. Several publications are in preparation and 
will be submitted within the next year.  Due to lack of time, we have not been able to 
develop the proposed work on the representation of sub-grid processes. 
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Published papers under this proposal  
 
Lauritzen, P.H., P.A.Ullrich, C. Jablonowski, P.A. Bosler, D. Calhoun, A.J. Conley, T. 
Enomoto, L. Dong, S. Dubey, O. Guba, A.B. Hansen, E. Kaas, J. Kent, J.-F. Lamarque, 
M.J. Prather, D. Reinert, V.V. Shashkin, W.C. Skamarock, B. Sørensen, M.A. Taylor, 
and M.A. Tolstykh, A standard test case suite for two-dimensional linear transport on the 
sphere: results from a collection of state-of-the-art schemes. Geosci. Mod. Dev., 7, 105-
145, doi:10.5194/gmd-7-105-2014, 2014. 
Lauritzen, P. H., A. J. Conley, J.-F. Lamarque, F. Vitt, and M. A. Taylor,  The terminator 
‘toy’-chemistry test: A simple tool to assess errors in transport schemes. Geo. Mod. Dev., 
8, 1299-1313, doi:10.5194/gmd-8-1299-2015, 2015. 
 
Both publications are publically available at http://www.geoscientific-model-
development.net/index.html. 
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Final Report for “Chemistry in CESM-‐SE:  Evaluation,

 Performance and Optimization” 

(UCAR Subaward No. Z12-93537 to University of Tennessee - Knoxville) 

Principle Investigator:  Jean-François Lamarque, NCAR 

Subproject Lead:  John B. Drake, UTK 

Graduate Research Assistant:  Jian Sun, UTK 

Faculty Advisor:  Joshua S. Fu, UTK 

 

Background of the Project 

Earth system modeling requires close coupling between dynamical processes and 

chemical, biological and physical feedbacks. Chemistry is an essential component of 

climate as it defines the distribution of radiatively active chemical species, black carbon 

and nitrogen/sulfur depositions and cloud‐aerosol interactions. The uncertainty in the 

aerosol indirect effect(s) from anthropogenic emissions since pre-industrial times is quite 

large, and a significant fraction of this uncertainty is related to our incomplete knowledge 

and understanding of secondary organic aerosol formation processes. In particular, recent 

research has indicated a potentially strong interaction between pollution plumes and 

formation of secondary organic aerosols during the complex oxidation of biogenic non-‐

methane hydrocarbons. All this points to the specific need for a well-‐tested and highly 

computationally	  efficient chemistry in Earth System models.  

 

As the models have grown in complexity, the computational requirements necessary to 

produce decadal to century simulations have also increased. With each increment in high 

performance computing power and the coinciding requirement for increased algorithmic 

parallelism, the question must be asked whether alternative numerical methods offer 

improved simulations and better computational efficiency. Future CESM models may be 

used at high resolution to address long-term implications of the changes in the chemical 

atmosphere on equilibrium climate, decadal to century climate transients as well as global 

teleconnections of depositions, particulates, aerosols with cloud feedbacks and the impact 

of global changes on regional and local air quality and ecosystem. Anticipating that 
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coupled atmospheric chemistry will play a larger role in future climate simulations and 

that global models will be important for addressing future air quality as well as global 

warming concerns, this project addressed the following questions: 

• Does a higher order numerical time integration (e.g. Rosenbrock 2nd or 3rd order) 

offer improved chemistry modeling and is the improvement relevant for climate 

simulations? 

• Is a higher order numerical time integration more computationally efficient than 

the first order Backward Euler method currently implemented in the Community 

Earth System Model (CESM)? 

• Can the auxiliary computational power of GPU's be exploited for higher 

throughput in global atmospheric chemical simulations? 

 

These questions are being addressed in the context of modifications to the CESM code 

made available to developers and users at the National Center for Atmospheric Research. 

This Earth System Model has been the subject of rapid development and the Atmospheric 

Model Working Group (AMWG) has endorsed changes to the dynamical core that 

significantly expand the scientific capability of the model. In particular, the adoption of 

the Spectral Element dynamical core in CAM-SE has opened a path towards higher 

resolution with excellent computational performance. This high spatial resolution comes 

with the potential for non-uniform, regionally focused grids at local resolutions that rival 

mesoscale capabilities of WRF and CMAQ. Once the dynamics are understood and 

validated in the context of climate simulations, it will be important to have options for 

simulating atmospheric chemistry in the system. More flexibility in chemical solvers with 

higher accuracy and adaptive time stepping will be useful. 

 

Training the next generation researchers in computational science and high-end parallel 

climate simulations is an important part of this subproject carried out as a subcontract at 

University of Tennessee. We have had the good fortune to have access to expertise in 

parallel computing and climate science at the Oak Ridge National Laboratory (ORNL) 

and the Climate Change Science Institute (CCSI) as well as the advanced computing 

platforms at this DOE laboratory. A graduate research assistant and student (Jian Sun) 
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working under the direction of Dr. Drake and Dr. Fu is responsible for the bulk of our 

results. In addition, three undergraduate summer students with internships at ORNL 

explored algorithmic and computational aspects of the coupling between atmospheric 

dynamics and chemistry. 

 

This university subproject of the DOE SciDAC Project “Chemistry in CESM-‐SE: 

Evaluation, Performance and Optimization” has enjoyed the direction and advice of 

Principal Investigator, Dr. Jean-Francois Lemarque. We also gratefully acknowledge 

DOE's support and flexibility in granting a no-cost extension for our part of the project. 

Availability and recruitment of students with the required science/mathematics/computer 

interest and skill set is difficult. We were fortunate that University of Tennessee graduate 

student Jian Sun joined the project and his involvement allowed us to move forward. 

Indeed, there was never much justification for our part of the project unless we also 

trained a new researcher. We have sought to stay strongly aligned with the DOE Office of 

Biological and Environmental Research (BER) Earth System Modeling program whose 

goal is to “improve the accuracy and skill of climate models by implementing enhanced 

ESM components, such as improved parameterizations for clouds, aerosols and 

chemistry...”. 

 

Methodology 

To develop and test a new numerical method in the CESM requires several preliminary 

steps. Our methodology tests formulation and implementation in contexts of ever 

increasing complexity culminating in decadal climate simulations with the full CAM-

Chem.   Because the CESM is a community project and adoption of new methods is 

subject to discussion among the NCAR scientists and CESM working groups, we are 

limited in this project to making available the necessary information supporting the 

decision making. 

 

The algorithmic formulations for the Rosenbrock methods were first tested on simple stiff 

chemistry problems using MATLAB. Properties of the time integration method, 

accuracy, stability and suitability for stochastic equations, were explored in this simple 
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setting. In this way we learned the practical importance of L-stability1 in the ROS-2 and 

ROS-3 higher-order methods. Accuracy of second and third order were also verified on 

test problems. The FORTRAN95 implementation in the CESM closely follows the 

simple test setting to ensure correctness of the coding. Further testing of stability and 

accuracy were conducted using standard CAM-Chem configurations and comparing the 

results of short integrations to the default first order implicit Euler method. 

 

Performance and optimization for Graphics Processing Units (GPU's) were studied in the 

context of the full CAM-Chem and to a limited extent using fixed meteorology. In this 

way a number of options were tested with the use of our implementation and added 

insight gained into the behavior of the method in atmospheric chemical simulation. GPU 

computational performance was compared in full simulations and also restricting 

performance monitors and timings to the routines we have modified.  (Pat Worley of 

ORNL was very helpful in advising how to characterize and monitor the performance. 

Rick Archibald and Kate Evans of ORNL were also instrumental in guiding the GPU 

optimization work.) 

 

Finally, the chemical performance of the modified simulation was assessed using the 

Atmospheric Model Working Groups diagnostic package. This package has been 

extended by the Chemistry Climate Working Group (CCWG) to provide a 

comprehensive look at Ozone and Methane related fields in particular. 

 

We present our results and conclusions in three sections. The first section is a draft 

journal article addressing and summarizing the chemical performance of the modified 

CAM-Chem. That is followed by details of numerical performance and properties of the 

Rosenbrock solver.  In the final section, the computational performance is discussed 

along with details of the GPU implementation in CESM. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  A numerical method is A-stable if there is no restriction on time step size in solving the equation u' = λu, where Re(λ) 
< 0.  It is strongly A-stable if the stability function, un+1=R(un) , has |R(-∞)| < 1.  The method is L-stable if it is A-stable 
and in addition |R(∞)| = 0.  Thus L-stability is stronger than A-stability and implies that the solution goes to zero with 
large time steps. 
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Section 1 

 

Impact on surface ozone concentration over US by using a high order 

chemical solver in CAM-Chem 
 

Introduction 

Atmospheric chemistry is growing in importance for global climate simulation because of 

the close coupling of transport, physical, chemical and biological processes. The 

interactions among chemical reaction, climate evolution, anthropogenic emissions and 

land use provide a dynamical perspective that changes global and regional air quality 

prediction. Among the atmospheric chemical constituents, the tropospheric ozone is a 

critical pollutant that can significantly affect ecosystems, agriculture production and 

public health. However, ozone is not directly emitted and its complex photolysis reaction 

mechanism makes its global simulation a challenge. Significant bias in the prediction of 

ozone concentration exists zonally and seasonally for both single model output (Zeng et 

al., 2008; Lamarque et al., 2012; Val Martin et al., 2015) and multi-model ensemble 

mean results (Stevenson et al., 2006; Stevenson et al., 2013; Young et al., 2013). There 

are also inconsistencies between the ozone concentration estimates from global climate 

models and its seasonal cycle (Fiore et al., 2014). Optimizing the dry deposition scheme 

based on the land use change has significantly improved the simulation of summertime 

surface ozone concentration over US (Val Martin et al., 2015). However, further efforts 

are required to reduce the remaining bias. 

 

Few studies have investigated the numerical chemical solver itself in the performance of 

global climate-chemistry models. Shampine et al. (Shampine, 1982) studied initial value 

problems for stiff systems of ordinary differential equations (ODEs) and proposed an 

approach to automatically select between an explicit Runge-Kutta formula or Rosenbrock 

formulas at every time step. This showed that the Rosenbrock method was competitive 

with the backward differentiation formulas (BDF) in some circumstances. Sandu et al. 

(Sandu et al., 1997) tested a set of box-model atmospheric chemistry problems (TMK 
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model, CBM-IV model, AL model, a NASA HSRP/AESA stratospheric model and an 

aqueous model) using different solvers including Rosenbrock, VODE, TWOSTEP, 

SEULEX and EBI. The benchmark problems covered a wide range of photolytic, 

homogeneous (gas-phase, liquid-phase) and heterogeneous (gas-liquid) reactions. The 

results showed that the Rosenbrock solvers were competitive and cost-effective from low 

to moderate accuracy. Verwer et al. (Verwer et al., 1999) applied a second-order, L-stable 

Rosenbrock method (ROS-2) to the three-dimension atmospheric reaction and transport 

problem including photochemistry, advection and diffusion. Three chemistry models 

(RIVM, CBM-IV and WET) and the Rosenbrock method were selected as excellent 

candidates for global air quality modeling with large time steps on the order of minutes. 

Blom and Verwer (Blom and Verwer, 2000) examined different operator splitting 

methods for the atmospheric transport-chemistry problems and the test results revealed 

that the Rosenbrock W-method, split at the linear algebra level, was a better option than 

Strang operator splitting or source splitting. The W-method avoided the artificial stiff 

transients during the chemistry computation and boundary condition issues for integration 

in time, though its implementation was complex. Long et al. (Long et al., 2013) 

developed a coupled chemistry and climate system model by linking the modal aerosol 

version of the NCAR Community Atmosphere Model (modal-CAM; v3.6.33) and the 

Max Planck Institute for Chemistry’s Module Efficiently Calculating the Chemistry of 

the Atmosphere (MECCA; v2.5) to investigate the multiphase process in the atmosphere. 

Three solvers from the Rosenbrock family, namely ROS-2, ROS-3 and RODAS-3, were 

examined and the benchmark inter-comparison showed good agreement for ozone and 

OH radical prediction. 

 

From the literature we conclude that the numerical solvers from the Rosenbrock family 

provide good alternatives for full atmospheric chemistry and climate simulation. These 

methods have already been incorporated into some regional models such as Weather 

Research and Forecasting model coupled with Chemistry (WRF-Chem) and Community 

Multi-scale Air Quality Model (CMAQ) (Linford et al., 2009; Sarwar et al., 2013). But 

their use in the global models is very limited. In this study, the global climate model we 

use is the Community Earth System Model (CESM) with online chemistry activated 
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(CAM-Chem). Currently the chemical solver is the implicit Euler method that gives 

unconditionally stability but only first order accuracy in time. This could be part of the 

reason for poor ozone performance in previous work. To bridge the gap between the need 

for better ozone estimates from a scientific perspective and the limitations of a low order 

accuracy solver in the current CAM-Chem, the ROS-2 method was implemented to 

replace the original chemical solver.  Its second order accuracy was tested to see whether 

there is any benefit for the global climate and chemistry simulation. The mathematical 

formula of ROS-2 method and its implementation in CAM-Chem is described in the 

methodology section. The prediction of surface ozone concentration over the continental 

US between the ROS-2 solver and the original first order implicit solver are compared, as 

well as their computational efficiencies with varying numbers of processors on a 

massively parallel supercomputer. Finally, we discuss the major differences we have 

observed, and make some recommendations. 

 

Methodology 

(1) CAM-Chem 

The state-of-the-art global climate model, Community Earth System Model (CESM 

version 1.2.2), is used in this study. It consists of four components:  atmosphere, land 

surface, ocean and sea ice. CAM-Chem refers to the implementation of atmospheric 

chemistry in CESM. The chemistry is fully coupled with the radiative absorption 

processes of the Community Atmosphere Model, the atmospheric component of CESM 

(CAM4, (Neale et al., 2013)). The chemistry mechanism in the current CAM-Chem 

version is simplified from the Tropospheric Model for Ozone and Related chemical 

Tracers (MOZART-4) (Emmons et al., 2010) and its representation of atmospheric 

chemistry has been widely evaluated by our previous work (Lamarque et al., 2012; Gao 

et al., 2013). In total the chemical mechanism includes 212 reactions, with 40 photolysis 

reactions and 172 gas phase reactions. There are 103 gas phase species, with 8 species 

(CH4, N2O, CO, Rn, Pb, H2, HCN and CH3CN) solved explicitly by the first-order 

(forward) Euler method and rest 95 species solved implicitly by a backwards Euler 

method with a Newton-Raphson iterative method for quick convergence. These 95 

species include all the chemically active species such as ozone and OH radicals, which 
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contribute most to the stiffness of the system. In this study the ROS-2 solver will be 

developed to replace the implicit solver. The finite-volume (FV) dynamical core (Neale et 

al., 2010) is used with a horizontal resolution of 0.9 degree (latitude) by 1.25 degree 

(longitude) and 26 vertical layers top to approximately 3hPa. 

 

(2) ROS-2 solver description 

In the state-of-the-art CAM-Chem version, a process split, operator splitting approach is 

used and the atmospheric chemical reactions are integrated by the stiff ODE solver 

separately from other dynamics and physics processes models. Each control volume 

behaves like a box model. The equations for chemical species conservation and reaction 

in the atmosphere take the autonomous system form: 
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where I is an N x N identity matrix; h is the time step size; A is the Jacobian matrix 
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The ROS-2 solver is A-stable if and only if 4
1≥γ . Further, by choosing 2

11±=γ  this 

scheme becomes L-stable, namely 0)( =∞R , which is good for simulating some 

chemical species with a short life span in the atmosphere. An obvious advantage during 

the implementation of ROS-2 solver is that it does not require the re-evaluation of the 

Jacobian matrix at each stage as in a Newton iteration, and thus can utilize the same LU 

factorization result. Since updating the Jacobian matrix and conducting the LU 

factorization are the most time consuming operation, this benefit should speed up the 

chemistry update and save much computation time (Daescu et al., 2000). In this work, the 

time step size for ROS-2 solver is fixed at 180 seconds and more discussion about the 

choice of time step will be presented later. 

 

(3) Code implementation procedure 

In our simulation configuration, the global atmospheric domain in CAM-Chem is divided 

into different chunks with several atmospheric columns in each chunk and 26 vertical 

levels in each column. For every level, the chemistry is computed independently like a 

box model at each time step and then returns the latest solutions to the main program for 

the physics and transport processes. The algorithmic procedure of the ROS-2 solver for 

updating the chemistry from time nt  to 1+nt  is: 

a. Calculate the independent forcing term, which is treated as invariant part based on the 

original 1st order implicit solver design. 

b. Calculate the linear and non-linear components of Jacobian matrix. CAM-Chem uses 

the same chemical preprocessor as MOZART-4 (Lamarque et al., 2012), which reads the 
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specific chemical mechanism input file and converts it into Fortran code to provide the 

input for the calculation of linear and non-linear parts. For the TROP_MOZART 

mechanism, there are 722 non-zero matrix entries inside the Jacobian matrix and they are 

computed explicitly and exactly. Its sparsity pattern reveals a classic "arrow matrix" 

ordering with the arrow pointing up that can cause severe fill-in issue (Wang and Ziavras, 

2004), as shown in the left panel of Figure 1. Therefore, a permutation operator is 

performed before doing the LU factorization and the Jacobian matrix is flipped over to 

point down, seen in the right panel of Figure 1. The LU factorization starts with the 

nearly diagonal part of the matrix and all fill occurs down the right hand side column 

where there are already a lot of nonzero entries. 

c. Conduct the LU factorization for the Jacobian matrix. As shown above, the system is 

very sparse with about 90% zero matrix entries. Thus in the current version of CAM-

Chem, the LU factorization is customized by knowing exactly the non-zeros of Jacobian 

matrix. There are a total of 824 non-zero matrix entries after doing the LU factorization. 

d. Calculate the right hand side source term F. 

e. Solve for the first-stage solution vector 1k  with explicitly programmed steps of 

reduction. 

f. Update source term F for the second stage with intermediate approximation 1hkyn + . 

g. Solve for the second-stage solution vector 2k  using the same LU factorization result 

from the first stage. 

h. Update species mixing ratio vector from ny  to 1+ny  for the next time step. 
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Figure 1. The sparsity pattern of Jacobian matrix for the TROP_MOZART mechanism 

before (left panel) and after (right panel) permutation. 

 

Results 

(1) 1st order implicit solver vs. ROS-2 solver at time step 180 seconds 

In order to save the data storage space and I/O time, only monthly average ozone 

concentrations are output from 2001 to 2004 as present case. Thus, we can only calculate 

the annual mean ozone concentration instead of the daily maximum 8-hr concentration 

(MDA8) from the National Ambient Air Quality Standards (NAAQS). The output from 

both solvers at time step size equal to 180 seconds is first used for comparison. Figure 

2(a) shows the difference of the four year averaged annual mean surface ozone 

concentration between ROS-2 and 1st order implicit solvers over the continental US. 

ROS-2 solver provides a prediction of widely reduced surface ozone concentration that 

ranges from -0.75 ppb (one grid at Illinois) to -0.15 ppb (one grid at Oregon). By 

averaging the whole corresponding grids for each state, Washington has the smallest 

negative difference (-0.17 ppb) while Indiana has the largest negative difference (-0.70 

ppb). Though ROS-2 solver provides a lower estimate of annual mean ozone 

concentration over the whole 49 continental states than the original 1st order implicit 

solver, the Student’s t-test indicates that the difference of four year averaged annual mean 

ozone concentration between these two solvers is not statistically significant over any 

continental state at significance level 05.0=α . We then compare the difference of four 
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year averaged monthly mean surface ozone concentration between these two solvers 

during the summer season (June-August, JJA), when the photolysis reaction is the most 

active in a year. As plotted in Figure 2(b), it clearly presents a wider range than the 

annual difference, from -1.52 ppb (one grid at Illinois) to -0.09 ppb (one grid at 

Washington). Meanwhile, Washington has the smallest negative difference (-0.14 ppb) 

while Indiana has the largest negative difference (-1.41 ppb) at the state level. ROS-2 

solver shows a lower prediction of summertime mean ozone concentration over the whole 

continental US than the original 1st order implicit solver, similar to that for the annual 

mean ozone concentration. Nevertheless, the Student’s t-test suggests that the negative 

differences at 18 states are tested to be statistically significant, ranging from -1.41 ppb 

(Indiana) to -0.54 ppb (Wyoming). We further evaluate both model results with the 

ground-level observation data obtained from the Air Quality System (AQS) at U.S. EPA. 

For the four year averaged annual mean surface ozone concentration difference between 

model and monitor data, Figure 3(a) shows that both solvers are likely to produce more 

than 20 ppb overestimate in the Southeast and Central region, and along the west coast. 

ROS-2 solver reduces the bias in Indiana and Ohio, but the benefit of its second order 

accuracy is less visible due to the small statistically insignificant difference between these 

two solvers, as described above. The difference of four year averaged summertime mean 

surface ozone concentration between simulation and AQS observation data is depicted in 

Figure 3(b). The bias is amplified and could even be larger than 30 ppb, especially over 

the Eastern US. The overestimate of ozone concentration at Eastern US is well known 

from the previous literature about global climate-chemistry models (Murazaki and Hess, 

2006; Reidmiller et al., 2009; Lapina et al., 2014), and potential reasons included coarse 

global resolution that fails to represent the steep topographic gradients in mixing depths 

(Fiore et al., 2009) and disproportionate sensitivity of models at the high ozone 

concentration level (Hollaway et al., 2012). The spatial distribution of surface ozone 

concentration for ROS-2 solver shows a reduction of ozone bias in the Southeast region 

(i.e., North Carolina), Central region (i.e., Indiana), Upper Midwest region (i.e., Iowa) 

and Northeast region (i.e., New York State). In addition, most of these reductions are 

statistically significant at 05.0=α , over the Middle West, Central and Southeast regions. 
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These results reveal that ROS-2 solver reduces the overestimate of surface ozone 

concentration to some extent, especially during the summer season. 

 

 

    

      
                               (a)                                                                      (b) 

Figure 2. Difference of four year averaged (a) annual and (b) summertime mean surface 

ozone concentration between ROS-2 and 1st order implicit solvers at 180 seconds time 

step. 

 

   

                           
                                                                     (a) 

   

                           
                                                                     (b) 
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Figure 3. Four year averaged (a) annual and (b) summertime mean surface ozone 

concentration bias between simulation (left panel: first order implicit solver at 180 

seconds time step; right panel: ROS-2 solver) and AQS observation data. 

 

(2) 1st order implicit solver at time step 1800 seconds vs. ROS-2 solver at time step 180 

seconds 

The output from the original 1st order implicit solver with 1800 seconds time step by 

default (ORI_1800s) is also used to compare with the ROS-2 solver results at time step 

size equal to 180 seconds. The difference of four year averaged annual mean surface 

ozone concentration between ROS-2 and ORI_1800s solvers, as shown in Figure 4(a), 

indicates a range from -1.2 ppb (one grid at Pennsylvania) to -0.26 ppb (one grid at 

Washington). The largest and smallest negative differences of the state-level surface 

ozone concentration occur at New Jersey (-1.18 ppb) and Oregon (-0.31 ppb), 

respectively. Overall, ROS-2 solver again provides a widely lower estimate of surface 

ozone concentration over the whole continental states. However, the Student’s t-test 

suggests that the difference between these two solvers is only statistically significant at 

Texas (-0.57 ppb) at 05.0=α . The difference of four year averaged summertime mean 

surface ozone concentration between the two solvers is also compared. According to 

Figure 4(b), the difference between ROS-2 and ORI_1800s solvers presents a wider 

range from -1.93 ppb (one grid at New Jersey) to -0.09 ppb (one grid at Texas). The 

difference of largest and smallest negative state-level surface ozone concentration is -1.92 

ppb (New Jersey) and -0.19 ppb (Washington), respectively. In this case, ROS-2 solver 

still produces a lower estimate of summertime ozone concentration over the whole 

continental US, similar to the annual mean result above. However, the Student’s t-test 

results suggest that the negative ozone concentration difference at 27 states is statistically 

significant at 05.0=α , ranging from -1.81 ppb (Indiana) to -0.47 ppb (Montana). 

Compared to the AQS observation data, the four year averaged annual mean surface 

ozone concentration bias (Figure 5(a)) between model and monitor results still gives 

more than 20 ppb overestimate at the Southeastern US and along the west coast. Though 

the ROS-2 solver provides lower prediction of surface ozone concentration at several 

states like Tennessee, Mississippi, Ohio and California, none of them are statistically 
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significant as discussed above. Figure 5(b) shows the difference of four year averaged 

summertime mean surface ozone concentration between simulation and AQS observation 

data. Clear reduction of ozone bias could be observed at the Southeast region (i.e., North 

Carolina), Central region (i.e., Illinois), Upper Midwest region (i.e., Iowa) and West 

region (i.e., California). Moreover, most of these reductions are statistically significant, 

illustrating that ROS-2 solver could again improve the model bias from the original 

ORI_1800s solver. 

 

     

       
                                  (a)                                                                       (b) 

Figure 4. Difference of four year averaged (a) annual and (b) summertime mean surface 

ozone concentration between ROS-2 and ORI_1800s solver. 
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                                                                      (b) 

Figure 5. Four year averaged (a) annual and (b) summertime mean surface ozone 

concentration bias between simulation (left panel: ORI_1800s solver; right panel: ROS-2 

solver) and AQS observation data. 

 

(3) Computational efficiency 

The ROS-2 solver utilizes the same Jacobian matrix and LU factorization structure for 

the two stages calculation, which should speed up the computation rate compared to the 

original first order implicit solver that needs to evaluate the Jacobian matrix and conduct 

the LU factorization during each iteration. Using the default simulation period setting (5 

days), Figure 6 summarizes the global statistics of total summed/maximum/minimum 

wallclock time consumed over all the processors under the request of different number of 

nodes. The Titan supercomputer at Oak Ridge National Lab (ORNL) is used for 

performance test, which has a hybrid-architecture Cray XK7 system with 18,688 compute 

nodes and a theoretical peak performance exceeding 27 petaflops. The total 

computational nodes for the CAM simulation are determined by the following equation: 

                        
16

__ ATMNTHRDSATMNTASKSnodesofNumber ∗
=                    (6) 

Where variables “NTASKS_ATM” and “NTHRDS_ATM” are used to set the number of 

MPI tasks and the number of OpenMP threads per task, respectively. The product of 

these two variables specifies the total computational processors for the atmospheric 

component of CESM. The factor of 16 refers to the fact that there are 16 processors per 

node based on the Titan Supercomputer architecture. Considering the total summed 

wallclock time using 3 nodes, the original first order implicit solver at time step size 

equal to 180 seconds (ORI_180s) requires about 69 hours for a 5-day atmospheric 

chemistry simulation. The computational time could reduce to about 62 hours when the 

node number increases to 384. The ROS-2 solver is faster than the ORI_180s solver with 

an average factor of 1.85. When the number of nodes is smaller than 48 nodes, more 

computational benefit of ROS-2 solver can be observed. Figure 6(a) also shows that 

running the ORI_1800s solver is not simply 10 times faster than the ROS-2 solver with 

180 seconds, but only about a factor of 3.69. Figure 6(b) shows that the maximum 
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wallclock time for the ORI_180s solver is about 5300 seconds corresponding to 3 nodes, 

but it drops dramatically with the increase of nodes. In this case, the maximum time of 

ROS-2 solver is about 1.89 times lower than that of the ORI_180s solver, but 2.58 times 

higher than that of the ORI_1800s solver. For the minimum wallclock time shown in 

Figure 6(c), similar trend and amplitude can be observed compared to Figure 6(b). The 

minimum time measurement for ROS-2 solver is about 1.81 times lower than that of the 

ORI_180s solver, but 4.07 times higher than that of the ORI_1800s solver. 

 

 
(a) 

 
(b) 
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(c) 

Figure 6. Global statistic summary of (a) total summed, (b) maximum and (c) minimum 

wallclock time consumed over all the processors under the request of different number of 

nodes on Titan supercomputer for ROS-2, ORI_180s and ORI-1800s solver, respectively. 

 

Discussion 

According to our analysis, the ROS-2 solver improves the ozone concentration 

performance of CAM-Chem, especially for the summer season. To further confirm the 

benefit of using ROS-2 solver in the real atmospheric chemistry simulation, we compare 

the difference of surface ozone concentration between ORI_180s and ORI_1800s solver. 

Figure 7(a) shows that the largest and smallest difference of four year averaged annual 

mean surface ozone concentration between ORI_180s and ORI_1800s solvers is -0.54 

ppb (one grid at New Jersey) and -0.05 ppb (one grid at Alabama). The corresponding 

largest and smallest state-level difference occur at New Jersey (-0.53 ppb) and Alabama 

(-0.08 ppb), respectively. Though ORI_180s solver gives a widely lower estimate of 

surface ozone concentration, the Student’s t-test suggests that the difference of annual 

mean state-level ozone concentration between these two solvers is not statistically 

significant at 05.0=α , similar to that for ROS-2 solver. Considering the four year 

averaged summertime mean surface ozone concentration (Figure 7(b)), the highest 

difference between ORI_180s and ORI_1800s solver is about 0.23 ppb (one grid at 

Georgia) and the lowest one is about -0.61 ppb (one grid at New Jersey). The 
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corresponding highest and lowest state-level differences appear at Alabama (0.14 ppb) 

and New Jersey (-0.59 ppb), respectively. However, unlike the result for ROS-2 solver, 

the Student’s t-test indicates that the summertime mean surface ozone concentration 

difference between ORI_180s and ORI_1800s solver is still statistically insignificant over 

the whole continental US at 05.0=α . As stated before, the summertime mean surface 

ozone concentration is strongly overestimated by the current version of CAM-Chem. By 

keeping the same 1st order implicit solver but using the 180 seconds rather than 1800 

seconds time step, it seems to reduce the prediction bias nationwide except at 5 states 

(Alabama: 0.14 ppb, Mississippi: 0.10 ppb, Georgia: 0.12 ppb, South Carolina: 0.03 ppb 

and Louisiana: 0.13 ppb), but neither the positive nor negative difference is statistically 

significant. Therefore, it is difficult to conclude that by simply refining the time step size, 

we can obtain obvious improvement of surface ozone concentration performance from 

the original 1st order implicit solver. In comparison, ROS-2 solver is likely to reduce the 

summertime mean surface ozone concentration bias over more than 18 continental states, 

as described in the previous section. This again reflects the fact that it is necessary to 

adopt the chemical solver with higher order accuracy, like ROS-2 solver here, in order to 

get a better estimate of surface ozone concentration, especially for the summer season. 

 

   

       
Figure 7. Difference of four year averaged (a) annual and (b) summertime mean surface 

ozone concentration between the ORI_180s and ORI_1800s solver. 

 

The computational efficiency of different solvers with different time step sizes shows that 

the ORI_180s solver will cost about 6.9 times more computational hours than the 

ORI_1800s solver, but its improvement of surface ozone concentration representation is 

less visible. On the other hand, though the original implicit solver is optimally vectorized 
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to solve the chemical reaction quite efficiently, the ROS-2 solver is still tested to be 1.85 

times faster than the ORI_180s solver. Compared to the ORI_1800s solver, ROS-2 solver 

uses one tenth of the time step but is only slowed by a factor of 3.72, which is explained 

by the fact that ROS-2 solver avoids the evaluation of Jacobian matrix and LU 

factorization during each Newton iteration that are believed to consume 90% of the total 

computation time for the chemistry update (Daescu et al., 2000). Moreover, the ratio of 

maximum and minimum wallclock time for the ORI_180s and ORI_1800s solver is about 

1.07 and 1.71, respectively. The ratio for the ROS-2 solver is about 1.03, indicating that 

the ROS-2 solver may provide a better work loading balance among the processors as 

well. 

 

It’s worth noting that the previous literature claimed that ROS-2 solve was able to work 

under relatively large time step size of 10 and 15 minutes (Verwer et al., 1999; Blom and 

Verwer, 2000). However, those studies were either working on a simple chemical 

mechanism or a benchmark simulation without considering the influence of advection 

and diffusion. Furthermore, they agreed on the necessity to form a better conditioned 

system, resolve the initial transients sufficiently accurately and handling the non-linear 

chemistry in the real atmosphere might lead to a more restricted time step size 

(Shampine, 1982; Sandu et al., 1997; Verwer et al., 1999; Blom and Verwer, 2000). In 

this work, we are conducting the real atmospheric chemistry simulation with more than 

100 chemical species and 200 reactions. It does behave like a box model in the view of 

grid level but it is still coupled with other processes sequentially such as physics and 

dynamics. This could create discontinuous input for the chemical solver that leads to the 

necessity of finer time step such as the 180 seconds used here for ROS-2 solver. Another 

potential reason for us to use a fine time step is that the concepts of A-stability and L-

stability are defined for an idealized linear system. The real atmospheric chemistry 

system is non-linear and can be very stiff with the existence of fast reacting species. Thus 

a small time step is recommended to make the chemical reaction system valid for 

“linearization” and avoid impacting the quality of the numerical integration.  
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We also implemented an adaptive time step method that uses 180, 360 and 450 seconds 

for the first three months simulation, respectively. Then it is kept at 600 seconds for the 

duration.  The program runs smoothly before it blows up after about one and a half year 

simulation. The accumulation of errors from using relatively larger time step may be the 

cause but it still remains undetermined. The adaptive method at least gives an option for 

us to choose different time steps. Either initializing the run with 180 seconds for more 

months or using 450 seconds instead of 600 seconds after the initial transient is resolved 

may help provide a longer simulation period. Shampine (1982) suggests heuristic a 

method to detect trouble using the ROS-3 solver in conjunction with ROS-2. When the 

two methods disagree indicating a larger error, the time step size is decreased. We also 

experimented with this strategy but came to no conclusion when used in the full 

atmospheric chemical climate simulation.   

 

Conclusion 

This work, to the authors’ knowledge, is the first to implement the ROS-2 solver in 

CAM-Chem to evaluate its impact on surface ozone concentration prediction over the 

US. Compared to the original 1st order implicit solver with 180 and 1800 seconds time 

step, respectively, ROS-2 solver is likely to provide consistently nationwide lower annual 

mean surface ozone concentration, as shown in Figure 2(a) and Figure 4(a). But based on 

the Student’s t-test they are not statistically significant at 05.0=α . For the summertime 

the story is different, ROS-2 solver similarly presents a widely lower estimate of the 

mean surface ozone concentration over the whole continental US states than the 1st order 

implicit solver with different time step sizes. But the prediction of ozone concentration 

reduction at more than 18 continental states is tested to be statistically significant. 

Compared to the AQS observation data, more than 20 ppb overestimate of annual mean 

surface ozone concentration over continental US can be observed, and bias could be 

larger for the summertime mean result, which is a well-known issue in previous work. 

ROS-2 solver is likely to reduce both the annual and summertime mean bias, but only the 

latter reduction is statistically significant and has stronger amplitude (reach up to 2 ppb 

for one state). This implies that the ROS-2 solver may help improve the performance of 

surface ozone concentration over continental US, especially during the summer season. 
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In addition, the computational efficiencies of ROS-2, ORI_180s and ORI_1800s solvers 

are also analyzed. When using the same time step size, the ROS-2 solver is generally 1.85 

times faster than the ORI_180s solver. Compared to the ORI_1800s solver using 1800 

seconds time step, ROS-2 solver is only slowed by a factor of 3.72, due to the fact that 

ROS-2 solver utilizes the same Jacobian matrix and LU factorization structure during the 

two-stage update and the avoided re-evaluation helps save much computation time. The 

global statistics summary of total summed wallclock time over the whole processors also 

indicates that by increasing the number of computation nodes, more benefit is observed 

for the ORI_180s and ROS-2 solvers than the ORI_1800s solver that uses much coarser 

time step. Hence, high spatial resolution atmospheric simulations will benefit from the 

speed up of chemistry with fine time step size. 

 

In the future work, the other solvers from Rosenbrock family (i.e., ROS-3 and ROS-4) 

may be implemented as well to see whether even higher order of accuracy can help 

further reduce the current bias for surface ozone concentration prediction over continental 

US, as ROS-2 solver is proven to be effective here. The stability of ROS-2 solver for 

long-term simulation and its impact on the climate variables such as precipitation and 

temperature are also worth investigating. Either NVIDIA CUDA or OpenACC can be 

used as a programming model on advanced high performance computing platforms to 

harness the power of the GPU. More comments on the strategy to manage the data 

movement between host and GPU device will be given in a later section. 
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Section 2 

 

Testing the Rosenbrock Solver and Details of the CAM-Chem Implementation 

 

The chemistry update is called after the calculation of dynamics in CAM-Chem. The 

main chemistry program is gas_phase_chemdr and implicit solver is called in the 

subroutine imp_sol. The chemical reaction takes the form as: 

                                                              )(cF
dt
dc

=                                                             (7) 

In the 1st order implicit solver, the Newton-Raphson method is used to update the 

solution. Discrete the time dimension from nt  to 1+nt , and move all the terms to the left 

hand side: 
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The Jacobian matrix is calculated as 
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following equation to compute the vector cΔ : 

                                                          )(1
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In the CAM-Chem Fortran code, the independent forcing term is first calculated (in the 

subroutine indprd) as part of F(c), since it is not updated during the iteration. Then the 

Jacobian matrix J1 is calculated (in the subroutine linmat and nlnmat) using the initial 

conditions and the non-zero entries in it are computed exactly by knowing explicitly 

where they are and what formula they take. The LU factorization is conducted (in the 

subroutine lu_fac) after generating the Jacobian matrix and the rest production and loss 

terms are later calculated (in the subroutine imp_prod_loss) to form the whole F(c) terms. 

Thus the G(cn) can be computed and the backward elimination (in the subroutine lu_slv) 

is applied to Eq. (9) to solve for the vector cΔ . This vector is used to update the solution 

from initial condition and then the new solution is inserted back to update the Jacobian 

matrix, right hand side term F(c) and LU factorization as mentioned above. The iteration 

will end either the iteration number exceeds the maximum limit or cΔ  is smaller than the 

desired tolerance. 
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For the second-order Rosenbrock method, the Jacobian matrix is calculated as 

c
cFJ

∂
∂

=
)(

2  and then it is inserted into the two-stage equations below: 

                                                     )()( 12
ncFktJI =Δ−γ                                                 (10) 

                                             1122 2)()( ktkcFktJI n −Δ+=Δ−γ                                      (11) 

In the CAM-Chem Fortran code, the independent forcing term is again first calculated (in 

the subroutine indprd) as part of F(c). Since J2 has similar structure as J1, in the 

subroutine nlnmat_finit of mo_nln_matrix.F90, we first multiply the factor tΔ− γ  of the 

whole matrix entries and replace 
tΔ

−
1  with 1._r8 to account for the diagonal identity 

matrix. Thus the ROS-2 system 
2tJI Δ−γ  is formed. The LU factorization is conducted 

(in the subroutine lu_fac) after generating the Jacobian matrix. For the original code, the 

iter_invariant equals to ind_prd + 
t

solution 
Δ

; For the Rosenbrock method, we change the 

iter_invariant into ind_prd . The rest production and loss terms are later calculated (in the 

subroutine imp_prod_loss) and the whole F(c) terms are formed as 

loss - prod +iant iter_invar , instead of loss) - prod +riant (iter_inva - 
t

solution
Δ

. Thus the 

G(cn) can be computed and the backward elimination (in the subroutine lu_slv) is applied 

to Eq. (3) to solve for the vector k1. After obtaining k1, we calculate the intermediate 

solution tkcn Δ+ 1  and call the subroutine imp_prod_loss again to form the new right hand 

side term in Eq. 5. Since the ROS-2 system is kept the same, we call the subroutine lu_slv 

again to solve for the vector k2. Thus, the solution for the next time step is computed and 

no iteration is required as the Newton method. 

 

After modifying the CAM-Chem code, see Appendix for details, we use a module 

“perf_mod” provided by CAM-Chem utilities to examine the performance. The functions 

“t_startf” and “t_stopf” are used to measure the computation time of areas that we are 

interested. The performance of ROS-2 solver and its comparison to the original 1st order 

implicit solver are described in section 1. 
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The second order Rosenbrock method can be easily extended to a third order method 

(ROS-3).  Shampine and Reichelt (1997) suggests that by combining the two methods an 

error estimate can be made and this can be used to control the step size. We refer to the 

third order method with error estimate as ROS23s following Shampine’s nomenclature. 

The details of the method are as follows, and it solves the two-stage equations below: 

                                                      )()( 012
ncFFktJI ==Δ−γ                                         (12) 

                                                           )
2
1( 11 tkcFF n Δ+=                                                (13) 
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where γ  differs from the ROS-2 value and is instead 
22

1
+

. The error estimate requires 

an evaluation using the factored Jacobian and F2 at next time step ( )( 22 tkcFF n Δ+= ), 

                                       )(2)()( 011223232 FkFkeFktJI −−−−=Δ−γ                            (15) 

where 2623 +=e .  The error estimate is given by 

                                                    )2(
6 321 kkkterror +−
Δ

≈                                             (16) 

To illustrate the methods a simple test problem is informative. We solve the differential 

equation system with periodic solution c1 = sin(t) and c2 = cos(t).  For each method, a 

time interval of 0 to 20 is used and 100 steps of the method are taken. The difference in 

accuracy between the second order and the third order method is immediately evident, 

compare Figures 8(a) and 8(c). The ROS-2 method shows the steady decay of the 

solution in phase space (Figure 8(b)) which illustrates the A-stability of the method but 

also indicates the damping that occurs with large time steps.  ROS-3 with the same step 

size (Figure 8(d)) shows no visible decay of the solution.  The error estimate provided by 

the ROS23s method (Figure 8(e)) pleasantly displays a periodic behavior.  
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(Figure 8a) 

 
(Figure 8b) 
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(Figure 8c) 

 
(Figure 8d) 
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(Figure 8e) 

Figure 8(a-e). Comparison of the ROS-2 and ROS-3 methods on a simple test problem.  

Accuracy of the ROS-3 solution c, d and e are noticeably improved over ROS-2 with the 

same time step size.  The c1 and c2 solutions are shown in blue and green respectively. 

 

While the accuracy of the third order method is an advantage, we are also interested in 

stability and computational efficiency. Both methods are A-stable allowing large time 

steps as appropriate for stiff differential equations. Additionally, they are both L-stable 

(Shampine, 1997) though the simple tests included here do not illustrate that property. 

The ROS-3 comes at no extra cost of the ROS-2 and the function evaluation required for 

the error estimate becomes the F0 of the following time step. Since only one evaluation 

of the Jacobian and LU-factorization of the Jacobian is required, the Rosenbrock methods 

have a significant computational advantage over any Newton based nonlinear iterations 

including the first order backward Euler method. But more realistic chemical simulations 

with stiffness not manifested in simple test problems is required to tell the whole story. 
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With a large time step and low accuracy, the Rosenbrock methods exhibit a damping of 

the solution, which eventually leads to an improper steady state solution for the test 

problem.  This raises the question of the behavior of the method when noise is present in 

the solution and the ordinary differential equation is considered stochastic. For chemical 

equation simulations there are several sources of noise in the system not the least of 

which arises from chaotic or turbulent transport of the air parcel containing the chemical 

species. Turner et al. (2004) discussed methods that also applied to sparse, poorly 

sampled chemical reactions. 

 

In general, the Rosenbrock schemes have favorable properties for integrating stochastic 

differential equations as described in the text (Artemiev and Averina, 1997). A particular 

test case is given in Burrage et al. (Burrage et al., 2007) for equations with both a position 

like component and a velocity or reaction component that arises from the oscillatory 

second order equation: 

                                                  )()()()( 2
2

2

txs
dt
dxxsxF

dt
xd

ξεη +−=                                 

(17) 

where the last term represents noise and η  represents damping. This can be modeled with 

a pair of first order equations for position x and velocity v as: 

                                                                      v
dt
dx

=                                                                

(18) 

                                                
dt
dWxsxFvxs

dt
dv )()()(2 εη ++−=                                     

(19) 

where the W is a Wiener process. This equation has a stationary probability density of 

                                    P∞(x,v) = N exp(−gx
2 / 2KT − v2 / 2KT )                     (20) 

where KTηε 22 =  and for a test case we take gxxF −=)(  and s(x) = 1, Burrage et al. 

(2007) give the steady state properties of the stochastic solution to the system. The 

stationary density should satisfy, 
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t→∞
lim x2 =

KT
g    and   

t→∞
lim v2 = KT                                      (21) 

The disagreement of the numerical solution with these ideal statistics indicates the 

suitability of the method for modeling stochastic phenomena. For chemical reactions, we 

would like these equilibrium statistics to show little effect from the numerical method 

itself and to be independent of the damping factor. Otherwise, the error in the mean will 

contribute to a systematic bias in the chemical simulations. Using this harmonic oscillator 

problem with damping factor eta, we have studied the error in the mean for the ROS-2 

method for comparison with the other numerical methods studied in Burrage et al. 

(Burrage et al., 2007).  Figure 9 shows a reasonable response of the stochastic error to 

damping.  The ROS-2 scheme response is not as uniform as the modified leapfrog or 

implicit midpoint rule studied by Burrage, but compares well overall.  We conclude that 

the Rosenbrock mehods can be used without significant inherent drift in stochastic 

simulations or bias in atmospheric chemical simulations. 

 

 
Figure 9. The error in the mean of the position x and velocity v in the first order system 

as a function of the damping factor eta. The damping factor determines the size of epsilon 
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that multiplies the noise term.  Green and blue lines show the error in mean x and v 

solutions with g=1. 

Section 3 

 

Optimizing Computational Performance for GPU 

 

Due to the fast development of current global model, the computation intensity grows 

rapidly with finer resolution and more sophisticated dynamics, chemistry and physics 

mechanism. So stronger computation capability is necessary for the future climate study. 

Instead of requiring more CPU (Central Processing Unit) processors that are less likely to 

be achieved on small cluster, involving GPU (Graphics Processing Unit) is more 

attracting as it contains many more Arithmetic Logic Units (ALU) than CPU and can do 

more repetitive work like mathematics calculation. Nevertheless, the data movement 

between host and device through the PCI bus is much slower than the computation on 

GPU, which becomes a bottleneck of its application when there are large amount of data 

movement. Solving PDE and linear algebra on the GPU is discussed by Krüger and 

Westermann (http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter44.html). 

Since forming the Jacobian matrix and conducting LU factorization and reduction will be 

responsible for most of total computation time, the way to optimize the ROS-2 method 

for GPU in our work is through minimizing data movement and maximizing the amount 

computation that can be done on GPU. Currently, we copy the previous time step solution 

from CPU to GPU, put the Jacobian matrix evaluation, right hand side forcing term 

update and implicit linear algebra solution all on the GPU and transfer the latest time step 

solution back to CPU. In this way, we believe the minimum communication is achieved 

between CPU and GPU. 

 

In addition, the GPU optimization work above only focuses on the chemistry update at 

different vertical levels and columns, but given chunk. In CAM-Chem, when the grid 

resolution is chosen, each grid can be treated as a column along the vertical direction. 

The chunk number is determined by the number of columns and number of 

computational nodes. Thus given a fixed number of nodes, the finer grid resolution will 
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lead to more columns in one chunk and more intensive computation is expected. When 

each node receives the work from one chunk with several columns, it then assigns to the 

processors in this very node later for computation. Based on this architecture, if not 

limited by the GPU memory, we can try to send the data from different chunks together 

to GPU for computation simultaneously. When the grid resolution becomes finer, the 

computation will become much more intensive and we expect to see more benefits from 

using GPU. 

 

Moreover, the NVIDIA CUDA is usually used as a computing platform to harness the 

power of the GPU but it requires experienced GPU programming skill and the whole 

code structure will be changed. Recently, a programming standard, named OpenACC (for 

Open Accelerators), is developed for parallel computing developed by Cray, CAPS, 

Nvidia and PGI. The standard is designed to simplify parallel programming of 

heterogeneous CPU/GPU systems. Like OpenMP, the programmer can annotate C, C++ 

and Fortran source code to identify the areas that should be accelerated using compiler 

directives and additional functions. Hence we introduce the application of OpenACC into 

our ROS-2 solver, where the areas that should be accelerated on GPU must be identified 

by using compiler directives and additional functions. A big benefit of OpenACC is that 

it maintains the original code structure and users who don’t need GPU can simply ignore 

these additional directives by turning off the OpenACC flags during the configuration 

and compilation process, which makes it an option rather than a forced version if we 

program by CUDA. Currently some OpenACC directives have been added in our Fortran 

code but we encounter some errors during execution. After debugging these problems, we 

would like to examine the performance of GPU vs. CPU based on our current 

configuration. 

 

 

References 
Artemiev, S.S. and Averina, T.A.. 1997. Numerical Analysis of Systems of Ordinary 

and Stochastic Differential Equations, VSP. 



	   41	  

Blom, J.G. and Verwer, J.G.. 2000. A comparison of integration methods for atmospheric 

transport-chemistry problems. Journal of Computational and Applied Mathematics, 126: 

381-396. Doi:10.1016/S0377-0427(99)00366-0. 

Burrage, K., Ian, L. and Grant, L.. 2007. Numerical Methods for Second-Order 

Stochastic Differential Equations, SIAM J. Sci. Comput., 29(1): 245-264. Doi: 

10.1137/050646032. 

Daescu, D., Carmichael G.R. and Sandu A.. 2000. Adjoint implementation of rosenbrock 

methods applied to variational data assimilation problems. Journal of Computational 

Physics, 165: 496-510. Doi:10.1006/jcph.2000.6622. 

Emmons, L.K., Walters, S., Hess, P.G., Lamarque, J.F., Pfister, G.G., Fillmore, D., 

Granier, C., Guenther, A., Kinnison, D., Laepple, T., Orlando, J., Tie, X., Tyndall, G., 

Wiedinmyer, C., Baughcum, S.L. and Kloster, S.. 2010. Description and evaluation of the 

Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model 

Dev., 3: 43-67. Doi:10.5194/gmd-3-43-2010. 

Fiore, A.M., Dentener, F.J., Wild, O., Cuvelier, C., Schultz, M.G., Hess, P., Textor, C., 

Schulz, M., Doherty, R.M., Horowitz, L.W., MacKenzie, I.A., Sanderson, M.G., 

Shindell, D.T., Stevenson, D.S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., 

Bergmann, D., Bey, I., Carmichael, G., Collins, W.J., Duncan, B.N., Faluvegi, G., 

Folberth, G., Gauss, 

M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I.S.A., Jacob, D.J., Jonson, J.E., 

Kaminski, J.W., Keating, T.J., Lupu, A., Marmer, E., Montanaro, V., Park, R.J., Pitari, 

G., Pringle, K.J., Pyle, J.A., Schroeder, S., Vivanco, M.G., Wind, P., Wojcik, G., Wu, S. 

and Zuber A.. 2009. Multimodel estimates of intercontinental source-receptor 

relationships for ozone pollution. Journal of Geophysical Research, 114: D04301. Doi: 

10.1029/2008JD010816. 

Fiore, A.M., Oberman, J.T., Lin, M.Y., Zhang, L., Clifton, O.E., Jacob, D.J., Naik, V., 

Horowitz, L.W., Pinto, J.P. and Milly, G.P.. 2014. Estimating North American 

background ozone in U.S. surface air with two independent global models: Variability, 

uncertainties, and recommendations. Atmospheric Environment, 96: 284-300. Doi: 

10.1016/j.atmosenv.2014.07.045. 



	   42	  

Gao, Y., Fu, J.S., Drake, J.B., Lamarque, J.F. and Liu, Y.. 2013. The impact of emission 

and climate change on ozone in the United States under representative concentration 

pathways (RCPs). Atmos. Chem. Phys., 13: 9607-9621. Doi: 10.5194/acp-13-9607-2013. 

Hollaway, M.J., Arnold, S.R., Challinor, A.J. and Emberson, L.D.. 2012. Intercontinental 

trans-boundary contributions to ozone-induced crop yield losses in the Northern 

Hemisphere. Biogeosciences, 9(1): 271-292. Doi: 10.5194/bg-9-271-2012. 

Lamarque, J.F., Emmons, L.K., Hess, P.G., Kinnison, D.E., Tilmes, S., Vitt, F., Heald, 

C.L., Holland, E.A., Lauritzen, P.H., Neu, J., Orlando, J.J., Rasch, P.J. and Tyndall, G.K.. 

2012. CAM-chem: Description and evaluation of interactive atmospheric chemistry in the 

Community Earth System Model. Geosci. Model Dev., 5: 369-411. Doi: 10.5194/gmd-5-

369-2012. 

Lapina, K., Henze, D.K., Milford, J.B., Huang, M., Lin, M.Y., Fiore, A.M., Carmichael, 

G., Pfister, G.G. and Bowman K.. 2014. Assessment of source contributions to seasonal 

vegetative exposure to ozone in the U.S.. Journal of Geophysical Research Atmos., 119: 

324-340. Doi:10.1002/2013JD020905. 

Linford, J.C., Michalakes, J., Vachharajani, M. and Sandu, A.. 2009. Multi-core 

acceleration of chemical kinetics for simulation and prediction. Proceedings of the 

Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, 

Association for Computing Machinery, New York, NY, 7: 1-11. Doi: 

10.1145/1654059.1654067. 

Long, M.S., Keene, W.C., Easter, R., Sander, R., Kerkweg, A., Erickson, D., Liu, X. and 

Ghan, S.. 2013. Implementation of the chemistry module MECCA (v2.5) in the modal 

aerosol version of the Community Atmosphere Model component (v3.6.33) of the 

Community Earth System Model. Geosci. Model Dev., 6: 255-262. Doi:10.5194/gmd-6-

255-2013. 

Murazaki, K., and Hess, P.. 2006. How does climate change contribute to surface ozone 

change over the United States? Journal of Geophysical Research, 111:	   D05301. 

Doi:10.1029/2005JD005873. 

Neale, R.B., Richter, J.H., Park, S., Conley, A.J., Lauritzen, P.H., Gettelman, A., 

Williamson, D.L., Rasch, P.J., Vavrus, S.J., Taylor, M.A., Collins, W.D., Zhang, M.H. 



	   43	  

and Lin, S.J.. 2010. Description of the NCAR Community Atmosphere Model (CAM 

4.0). NCAR/TN-485+STR. pp13. 

Neale, R.B., Richter, J., Park,  S., Lauritzen, P.H., Vavrus, S.J., Rasch, P.J. and Zhang, 

M.H.. 2013. The Mean Climate of the Community Atmosphere Model (CAM4) in Forced 

SST and Fully Coupled Experiments. Journal of Climate, 26: 5150-5168. Doi: 

10.1175/JCLI-D-12-00236.1. 

Reidmiller, D.R., Fiore, A.M., Jaffe, D.A., Bergmann, D., Cuvelier, C., Dentener, F.J., 

Duncan, B.N., Folberth, G., Gauss, M., Gong, S., Hess, P., Jonson, J.E., Keating, T., 

Lupu, A., Marmer, E., Park, R., Schultz, M.G., Shindell, D.T., Szopa, S., Vivanco, M.G., 

Wild, O., and Zuber, A.. 2009. The influence of foreign vs. North American emissions on 

surface ozone in the US. Atmos. Chem. Phys., 9: 5027-5042. doi:10.5194/acp-9-5027-

2009. 

Sandu, A., Verwer, J.G., Van Loon, M., Carmichael, G.R., Potra, F.A., Dabdub, D. and 

Seinfeld, J.H.. 1997. Benchmarking stiff ode solvers for atmospheric chemistry 

problems-I. Implicit vs explicit. Atmospheric Environment, 31(19): 3151-3166. 

Doi:10.1016/S1352-2310(97)00059-9. 

Sarwar, G., Godowitch, J., Henderson, B.H., Fahey, K., Pouliot, G., Hutzell, W.T., 

Mathur, R., Kang, D., Goliff, W.S. and Stockwell, W.R.. 2013. A comparison of 

atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry 

Mechanisms. Atmos. Chem. Phys., 13: 9695-9712. Doi:10.5194/acp-13-9695-2013. 

Shampine, L.F. 1982. Implementation of Rosenbrock Methods. Transactions on 

Mathematical Software (TOMS), Association for Computing Machinery, New York, NY, 

8(2): 93-113. Doi: 10.1145/355993.355994. 

Shampine, L.F. and Reichelt, M.W.. 1997. The MATLAB ODE Suite, SIAM J. Sci 

Comput., 18(1): 1-22. Doi: 10.1137/S1064827594276424. 

Stevenson, D.S., Dentener, F.J., Schultz, M.G., Ellingsen, K., van Noije, T.P.C., Wild, 

O., Zeng, G., Amann, M., Atherton, C.S., Bell, N., Bergmann, D.J., Bey, I., Butler, T., 

Cofala, J., Collins, W.J., Derwent, R.G., Doherty, R.M., Drevet, J., Eskes, H.J., Fiore, 

A.M., Gauss, M., Hauglustaine, D.A., Horowitz, L.W., Isaksen, I.S.A., Krol, M.C., 

Lamarque, J.-F., Lawrence, M.G., Montanaro, V., Müller, J.-F., Pitari, G., Prather, M.J., 

Pyle, J.A., Rast, S., Rodriguez, J.M., Sanderson, M.G., Savage, N.H., Shindell, D.T., 



	   44	  

Strahan, S.E., Sudo, K. and Szopa, S.. 2006. Multimodel ensemble simulations of 

present-day and near-future tropospheric ozone. J. Geophys. Res., 111: D08301. Doi: 

10.1029/2005JD006338. 

Stevenson, D.S., Young, P.J., Naik, V., Lamarque, J.-F., Shindell, D.T., Voulgarakis, A., 

Skeie, R.B., Dalsoren, S.B., Myhre, G., Berntsen, T.K., Folberth, G.A., Rumbold, S.T., 

Collins, W.J., MacKenzie, I.A., Doherty, R.M., Zeng, G., van Noije, T.P.C., Strunk, A., 

Bergmann, D., Cameron-Smith, P., Plummer, D.A., Strode, S.A., Horowitz, L., Lee, 

Y.H., Szopa, S., Sudo, K., Nagashima, T., Josse, B., Cionni, I., Righi, M., Eyring, V., 

Conley, A., Bowman, K.W., Wild, O. and Archibald, A.. 2013. Tropospheric ozone 

changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and 

Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13: 3063-3085. 

Doi:10.5194/acp-13-3063-2013. 

Turner, T.E., Schnell, S. and Burrage, K.. 2004. Stochasitc approaches for modelling in 

vivo reactions. Computational Biology and Chemistry, 28: 165-178. Doi: 

10.1016/j.compbiolchem.2004.05.001. 

Val Martin, M., Heald, C.L., Lamarque, J.-F., Tilmes, S., Emmons, L.K., and Schichtel, 

B.A.. 2015. How emissions, climate, and land use change will impact mid-century air 

quality over the United States: a focus on effects at national parks. Atmos. Chem. Phys., 

15: 2805-2823. Doi:10.5194/acp-15-2805-2015. 

Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.. 1999. A second-order rosenbrock 

method applied to photochemical dispersion problems. SIAM J. Sci. Comput., 20(4): 

1456–1480. Doi:10.1137/S1064827597326651. 

Wang, X. and Ziavras, S.G.. 2004. Parallel LU factorization of sparse matrices on FPGA-

based configurable computing engines. Concurrency Computat.: Pract. Exper., 16: 319–

343. Doi: 10.1002/cpe.748. 

Young, P.J., Archibald, A.T., Bowman, K.W., Lamarque, J.-F., Naik, V., Stevenson, 

D.S., Tilmes, S., Voulgarakis, A., Wild, O., Bergmann, D., Cameron-Smith, P., Cionni, 

I., Collins, W.J., Dalsøren, S.B., Doherty, R.M., Eyring, V., Faluvegi, G., Horowitz, 

L.W., Josse, B., Lee, Y.H., MacKenzie, I.A., Nagashima, T., Plummer, D.A., Righi, M., 

Rumbold, S.T., Skeie, R.B., Shindell, D.T., Strode, S.A., Sudo, K., Szopa, S., and Zeng, 

G.. 2013. Pre-industrial to end 21st century projections of tropospheric ozone from the 



	   45	  

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. 

Chem. Phys., 13: 2063-2090. doi:10.5194/acp-13-2063-2013. 

Zeng, G., Pyle, J.A. and Young, P.J.. 2008. Impact of climate change on tropospheric 

ozone and its global budgets. Atmos. Chem. Phys., 8: 369-387. Doi:10.5194/acp-8-369-

2008. 

 

 

Appendix 

 

Modified code in CAM-Chem for ROS-2 

 

a. subroutine “nlnmat_finit” in “mo_nln_matrix.F90” 

============================================ 

subroutine nlnmat_finit( mat, lmat, dt ) 

      use chem_mods, only : gas_pcnst, rxntot, nzcnt 

      implicit none 

!---------------------------------------------- 

! ... dummy arguments 

!---------------------------------------------- 

      real(r8), intent(in) :: dt 

      real(r8), intent(in) :: lmat(nzcnt) 

      real(r8), intent(inout) :: mat(nzcnt) 

!---------------------------------------------- 

! ... local variables 

!---------------------------------------------- 

      real(r8), parameter :: gamma_coeff = 1._r8+1._r8/sqrt(2._r8) 

!---------------------------------------------- 

! ... complete matrix entries implicit species 

!---------------------------------------------- 

         mat( 1) = lmat( 1) 

         mat( 2) = lmat( 2) 
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         mat( 3) = lmat( 3) 

         mat( 4) = lmat( 4) 

         mat( 5) = lmat( 5) 

         mat( 6) = lmat( 6) 

         mat( 7) = lmat( 7) 

         mat( 8) = lmat( 8) 

         mat( 9) = lmat( 9) 

…… 

         mat(:) = -1._r8*gamma_coeff*dt*mat(:) 

         mat( 1) = mat( 1) + 1._r8 

         mat( 2) = mat( 2) + 1._r8 

         mat( 3) = mat( 3) + 1._r8 

         mat( 4) = mat( 4) + 1._r8 

         mat( 5) = mat( 5) + 1._r8 

         mat( 7) = mat( 7) + 1._r8 

         mat( 8) = mat( 8) + 1._r8 

         mat( 10) = mat( 10) + 1._r8 

         mat( 11) = mat( 11) + 1._r8 

         mat( 12) = mat( 12) + 1._r8 

         mat( 13) = mat( 13) + 1._r8 

         mat( 14) = mat( 14) + 1._r8 

         mat( 15) = mat( 15) + 1._r8 

         mat( 16) = mat( 16) + 1._r8 

         mat( 17) = mat( 17) + 1._r8 

         mat( 18) = mat( 18) + 1._r8 

         mat( 19) = mat( 19) + 1._r8 

         mat( 21) = mat( 21) + 1._r8 

         mat( 24) = mat( 24) + 1._r8 

         mat( 27) = mat( 27) + 1._r8 

         mat( 30) = mat( 30) + 1._r8 

         mat( 34) = mat( 34) + 1._r8 
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         mat( 36) = mat( 36) + 1._r8 

         mat( 41) = mat( 41) + 1._r8 

         mat( 44) = mat( 44) + 1._r8 

         mat( 49) = mat( 49) + 1._r8 

         mat( 52) = mat( 52) + 1._r8 

         mat( 56) = mat( 56) + 1._r8 

         mat( 59) = mat( 59) + 1._r8 

         mat( 63) = mat( 63) + 1._r8 

         mat( 70) = mat( 70) + 1._r8 

         mat( 75) = mat( 75) + 1._r8 

         mat( 80) = mat( 80) + 1._r8 

         mat( 84) = mat( 84) + 1._r8 

         mat( 89) = mat( 89) + 1._r8 

         mat( 96) = mat( 96) + 1._r8 

         mat( 101) = mat( 101) + 1._r8 

         mat( 106) = mat( 106) + 1._r8 

         mat( 113) = mat( 113) + 1._r8 

         mat( 116) = mat( 116) + 1._r8 

         mat( 121) = mat( 121) + 1._r8 

         mat( 126) = mat( 126) + 1._r8 

         mat( 131) = mat( 131) + 1._r8 

         mat( 136) = mat( 136) + 1._r8 

         mat( 140) = mat( 140) + 1._r8 

         mat( 146) = mat( 146) + 1._r8 

         mat( 152) = mat( 152) + 1._r8 

         mat( 157) = mat( 157) + 1._r8 

         mat( 163) = mat( 163) + 1._r8 

         mat( 168) = mat( 168) + 1._r8 

         mat( 171) = mat( 171) + 1._r8 

         mat( 176) = mat( 176) + 1._r8 

         mat( 183) = mat( 183) + 1._r8 



	   48	  

         mat( 190) = mat( 190) + 1._r8 

         mat( 195) = mat( 195) + 1._r8 

         mat( 203) = mat( 203) + 1._r8 

         mat( 208) = mat( 208) + 1._r8 

         mat( 215) = mat( 215) + 1._r8 

         mat( 219) = mat( 219) + 1._r8 

         mat( 225) = mat( 225) + 1._r8 

         mat( 233) = mat( 233) + 1._r8 

         mat( 241) = mat( 241) + 1._r8 

         mat( 246) = mat( 246) + 1._r8 

         mat( 250) = mat( 250) + 1._r8 

         mat( 260) = mat( 260) + 1._r8 

         mat( 271) = mat( 271) + 1._r8 

         mat( 279) = mat( 279) + 1._r8 

         mat( 287) = mat( 287) + 1._r8 

         mat( 292) = mat( 292) + 1._r8 

         mat( 306) = mat( 306) + 1._r8 

         mat( 321) = mat( 321) + 1._r8 

         mat( 331) = mat( 331) + 1._r8 

         mat( 342) = mat( 342) + 1._r8 

         mat( 352) = mat( 352) + 1._r8 

         mat( 370) = mat( 370) + 1._r8 

         mat( 383) = mat( 383) + 1._r8 

         mat( 392) = mat( 392) + 1._r8 

         mat( 404) = mat( 404) + 1._r8 

         mat( 414) = mat( 414) + 1._r8 

         mat( 420) = mat( 420) + 1._r8 

         mat( 430) = mat( 430) + 1._r8 

         mat( 438) = mat( 438) + 1._r8 

         mat( 451) = mat( 451) + 1._r8 

         mat( 464) = mat( 464) + 1._r8 
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         mat( 482) = mat( 482) + 1._r8 

         mat( 501) = mat( 501) + 1._r8 

         mat( 517) = mat( 517) + 1._r8 

         mat( 558) = mat( 558) + 1._r8 

         mat( 634) = mat( 634) + 1._r8 

         mat( 685) = mat( 685) + 1._r8 

         mat( 716) = mat( 716) + 1._r8 

         mat( 746) = mat( 746) + 1._r8 

         mat( 767) = mat( 767) + 1._r8 

         mat( 801) = mat( 801) + 1._r8 

         mat( 824) = mat( 824) + 1._r8 

end subroutine nlnmat_finit 

=========================================== 

 

b. subroutine “imp_sol” in “mo_imp_sol.F90” 

================================================= 

subroutine imp_sol( base_sol, reaction_rates, het_rates, extfrc, delt, & 

       xhnm, ncol, lchnk, ltrop ) 

    !----------------------------------------------------------------------- 

    ! ... imp_sol advances the volumetric mixing ratio 

    ! forward one time step via the fully implicit euler scheme. 

    ! this source is meant for small l1 cache machines such as 

    ! the intel pentium and itanium cpus 

    !----------------------------------------------------------------------- 

    use chem_mods, only : rxntot, extcnt, nzcnt, permute, cls_rxt_cnt 

    use mo_tracname, only : solsym 

    use ppgrid, only : pver 

    use mo_lin_matrix, only : linmat 

    use mo_nln_matrix, only : nlnmat 

    use mo_lu_factor, only : lu_fac 

    use mo_lu_solve, only : lu_slv 
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    use mo_prod_loss, only : imp_prod_loss 

    use mo_indprd, only : indprd 

    use time_manager, only : get_nstep 

    use cam_history, only : outfld 

implicit none 

    !----------------------------------------------------------------------- 

    ! ... dummy args 

    !----------------------------------------------------------------------- 

    integer, intent(in) :: ncol ! columns in chunck 

    integer, intent(in) :: lchnk ! chunk id 

    real(r8), intent(in) :: delt ! time step (s) 

    real(r8), intent(in) :: reaction_rates(ncol,pver,max(1,rxntot)), & ! rxt rates (1/cm^3/s) 

         extfrc(ncol,pver,max(1,extcnt)), & ! external in-situ forcing (1/cm^3/s) 

         het_rates(ncol,pver,max(1,gas_pcnst)) ! washout rates (1/s) 

    real(r8), intent(inout) :: base_sol(ncol,pver,gas_pcnst) ! species mixing ratios (vmr) 

    real(r8), intent(in) :: xhnm(ncol,pver) 

    integer, intent(in) :: ltrop(ncol) ! chemistry troposphere boundary (index) 

    !----------------------------------------------------------------------- 

    ! ... local variables 

    !----------------------------------------------------------------------- 

    integer :: nr_iter, & 

         lev, & 

         i, & 

         j, & 

         k, l, & 

         m 

    real(r8) :: interval_done, dt, wrk, start, finish 

    real(r8) :: max_delta(max(1,clscnt4)) 

    real(r8) :: sys_jac(max(1,nzcnt)) 

    real(r8) :: lin_jac(max(1,nzcnt)) 

    real(r8), dimension(max(1,clscnt4)) :: & 



	   51	  

         solution, & 

         forcing, & 

         iter_invariant, & 

         prod, & 

         loss, & 

         prod_temp, & 

         loss_temp, & 

         forcing_temp 

    real(r8) :: lrxt(max(1,rxntot)) 

    real(r8) :: lsol(max(1,gas_pcnst)),lsol_temp(max(1,gas_pcnst)) 

    real(r8) :: lhet(max(1,gas_pcnst)) 

    real(r8), dimension(ncol,pver,max(1,clscnt4)) :: & 

         ind_prd 

    real(r8), dimension(ncol,pver,max(1,clscnt4)) :: prod_out, loss_out 

    prod_out(:,:,:) = 0._r8 

    loss_out(:,:,:) = 0._r8 

    solution(:) = 0._r8 

 

    !----------------------------------------------------------------------- 

    ! ... class independent forcing 

    !----------------------------------------------------------------------- 

    if( cls_rxt_cnt(1,4) > 0 .or. extcnt > 0 ) then 

        call indprd( 4, ind_prd, clscnt4, base_sol, extfrc, & 

                     reaction_rates, ncol ) 

    else 

        do m = 1, max(1,clscnt4) 

           ind_prd(:,:,m) = 0._r8 

        end do 

    end if 

 

    level_loop : do lev = 1,pver 



	   52	  

       column_loop : do i = 1,ncol 

          IF (lev <= ltrop(i)) CYCLE column_loop 

          !----------------------------------------------------------------------- 

          ! ... transfer from base to local work arrays 

          !----------------------------------------------------------------------- 

          do m = 1,rxntot 

             lrxt(m) = reaction_rates(i,lev,m) 

          end do 

          if( gas_pcnst > 0 ) then 

             do m = 1,gas_pcnst 

                lhet(m) = het_rates(i,lev,m) 

             end do 

          end if 

          !----------------------------------------------------------------------- 

          ! ... time step loop 

          !----------------------------------------------------------------------- 

          dt = delt / 10._r8 

          interval_done = 0._r8 

          time_step_loop : do 

             !----------------------------------------------------------------------- 

             ! ... transfer from base to local work arrays 

             !----------------------------------------------------------------------- 

             do m = 1,gas_pcnst 

                lsol(m) = base_sol(i,lev,m) 

             end do 

             !----------------------------------------------------------------------- 

             ! ... transfer from base to class array 

             !----------------------------------------------------------------------- 

             do k = 1,clscnt4 

                j = clsmap(k,4) 

                m = permute(k,4) 
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                solution(m) = lsol(j) 

             end do 

 

             !----------------------------------------------------------------------- 

             ! ... set the iteration invariant part of the function f(y) 

             !----------------------------------------------------------------------- 

             if( cls_rxt_cnt(1,4) > 0 .or. extcnt > 0 ) then 

                do m = 1,clscnt4 

                   iter_invariant(m) = ind_prd(i,lev,m) 

                end do 

             else 

                do m = 1,clscnt4 

                   iter_invariant(m) = 0._r8 

                end do 

             end if 

 

             !----------------------------------------------------------------------- 

             ! ... the linear component 

             !----------------------------------------------------------------------- 

             call linmat( lin_jac, lsol, lrxt, lhet ) 

 

             !----------------------------------------------------------------------- 

             ! ... the non-linear component 

             ! ... form the Jacobian & Left hand side matrix as well 

             !----------------------------------------------------------------------- 

             call nlnmat( sys_jac, lsol, lrxt, lin_jac, dt ) 

 

             !----------------------------------------------------------------------- 

             ! ... factor the "system" matrix 

             !----------------------------------------------------------------------- 

             call lu_fac( sys_jac ) 
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             !----------------------------------------------------------------------- 

             ! ... form f(y) for the right hand side 

             !----------------------------------------------------------------------- 

             call imp_prod_loss( prod, loss, lsol, lrxt, lhet ) 

 

             do m = 1,clscnt4 

                forcing(m) = (iter_invariant(m) + prod(m) - loss(m)) 

             end do 

 

             !----------------------------------------------------------------------- 

             ! ... solve for the first stage solution k1 

             !----------------------------------------------------------------------- 

             call lu_slv( sys_jac, forcing ) 

 

             do m = 1,clscnt4 

                solution(m) = solution(m) + forcing(m)*dt 

             end do 

 

             do m = 1, clscnt4 

                j = clsmap(m, 4) 

                k = permute(m, 4) 

                if (solution(k) < 0._r8) then 

                    solution(k) = 0._r8 

                end if 

                lsol(j) = solution(k) 

                base_sol(i,lev,j) = lsol(j) 

             end do 

 

             call imp_prod_loss( prod_temp, loss_temp, lsol, lrxt, lhet ) 
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             do m = 1,clscnt4 

                forcing_temp(m) = (iter_invariant(m) + prod_temp(m) - loss_temp(m)) - 

2._r8*forcing(m) 

             end do 

 

             !----------------------------------------------------------------------- 

             ! ... solve for the second stage solution k2 

             ! ... use the same Jacobian matrix factorization from first stage 

             !----------------------------------------------------------------------- 

             call lu_slv( sys_jac, forcing_temp ) 

 

             !----------------------------------------------------------------------- 

             ! ... solve for the mixing ratio at t(n+1) 

             ! ... Un has been added dt*k1 from first stage to second stage 

             ! ... only 0.5*dt*k1 is required 

             !----------------------------------------------------------------------- 

             do m = 1,clscnt4 

                solution(m) = solution(m) + 0.5_r8*forcing(m)*dt + 

0.5_r8*forcing_temp(m)*dt 

             end do 

 

             where( solution(:) < 0._r8 ) 

                    solution(:) = 0._r8 

             endwhere 

 

             !----------------------------------------------------------------------- 

             ! ... transfer latest solution back to work array 

             !----------------------------------------------------------------------- 

             do k = 1,clscnt4 

                j = clsmap(k,4) 

                m = permute(k,4) 
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                lsol(j) = solution(m) 

             end do 

 

             !----------------------------------------------------------------------- 

             ! ... check for interval done 

             !----------------------------------------------------------------------- 

             interval_done = interval_done + dt 

!             write(iulog,'('' ROS: interval_done '',1p,e21.13)') interval_done 

             if( abs( delt - interval_done ) <= .0001_r8 ) then 

                exit time_step_loop 

             else 

             !----------------------------------------------------------------------- 

             ! ... transfer latest solution back to base array 

             !----------------------------------------------------------------------- 

                do m = 1,gas_pcnst 

                   base_sol(i,lev,m) = lsol(m) 

                end do 

             end if 

          end do time_step_loop 

 

          !----------------------------------------------------------------------- 

          ! ... Transfer latest solution back to base array 

          !----------------------------------------------------------------------- 

          cls_loop: do k = 1,clscnt4 

             j = clsmap(k,4) 

             m = permute(k,4) 

             base_sol(i,lev,j) = solution(m) 

          end do cls_loop 

…… 

==================================================== 

	  


