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ABSTRACT
This work presents a detailed formulation of reaction and diffusion dynamics of molecules in 

confined pores such as mesoporous silica and zeolites. A general reaction-diffusion model and discrete 

Monte Carlo simulations are presented. Both transient and steady state behavior is covered. Failure of 

previous mean-field models for these systems is explained and discussed. A coarse-grained, generalized

hydrodynamic model is developed that accurately captures the interplay between reaction and restricted

transport in these systems. This method incorporates the non-uniform chemical diffusion behavior 

present in finite pores with multi-component diffusion. Two methods of calculating these diffusion 

values are developed: a random walk based approach and a driven diffusion model based on an 

extension of Fick's law.

The effects of reaction, diffusion, pore length, and catalytic site distribution are investigated. In 

addition to strictly single file motion, quasi-single file diffusion is incorporated into the model to match

a range of experimental systems. The connection between these experimental systems and model 

parameters is made through Langevin dynamics modeling of particles in confined pores. 
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CHAPTER 1. GENERAL INTRODUCTION

1 Introduction

Dynamics of particles within confined systems has been of interest with recent focuses on 

mesoscale structures such as mesoporous silica, nanotubes, and zeolites. The dynamics of motion

within these particles is strongly affected by the confined nature of the systems. As these 

dynamics form an important part of the behavior in catalytic system, an accurate treatment of 

them is important to understanding system behavior. Experimental studies are limited in their 

ability to determine the composition within the pore. A theoretical approach can address this. It 

can also model actual experiments to help explain results by giving a better understanding of the 

small scale motion involved.

The pores in these types of systems often have widths with a diameter on the order of the size

of one or two molecules. The narrowness of the pore can result in a single file motion which 

prevents molecules from passing. The limitations of this motion make simple diffusional analysis

difficult and so the behavior is not well understood. Simple theoretical treatments such as a 

mean-field approximation of the steady state concentrations fail dramatically in this case because

they do not retain the single file restriction that is a critical component of the system.

The majority of this thesis is the development of a theory and simulation model of the 

reaction-diffusion behavior in confined pores. Both a kinetic Monte Carlo (KMC) simulation 

framework and a hydrodynamic theory are discussed. A generalized hydrodynamic (g-hydro) 

model for reaction and diffusion was created to address shortcoming in mean field type 

approaches. The g-hydro model utilizes KMC diffusion data to accurately model transport 

throughout the pore. The transient and steady state behavior predicted by the g-hydro model was 

validated by comparison with KMC simulations. Both models are general to a wide range of 

cases, but include parameters that can be tailored to specific systems. While the single file 

behavior is of key interest, this work also addresses the case where molecules have a limited 

ability to pass each other. 

As a strong motivation for this work is existing experimental studies of catalysis in pores, it 

valuable to connect the general parameters in KMC and g-hydro to specific experimental 
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systems. In particular, catalytic yields have been shown to depend on pore sizes. This is due to a 

relaxation of the single file nature of the system which alters the dynamic. A Langevin dynamics 

study was performed to connect the degree of passing with the size of the pore as well as the size

and shape of the molecules. This allows an important connection between the general model 

described here and actual experimental systems.

This work was performed at the Ames Laboratory under contract number DE-AC02-

07CH11358 with the U. S. Department of Energy. The document number assigned to this thesis 

is IS-T 3106.

2 Thesis Organization

The remainder of this chapter outlines the layout of the thesis, describes how the chapters are

connected, and explains my role in the work in the chapters taken from published papers. 

Chapters not published elsewhere are predominantly my work except where noted otherwise.

Chapter 2 is a paper[1] published in The Journal of Chemical Physics which discusses the 

initial work of developing the discrete and continuum model of a reaction, A→B, in linear 

nanopores. It presents results for both steady state and transient behavior in pores with different 

configurations of catalytic sites. My role was creation of the discrete simulation model and 

generation of results as well as the the early development of the hydrodynamic model. This 

chapter lays out the basic system description and initial modeling, both of which are expanded on

later.

Next, chapter 3 is modified from a paper[2] published in American Chemical Society 

Catalysis. The original paper is divided roughly into two sections. One section addresses the 

single file model described above with extensions to a multistage conversion model A→B→C. It

also gives a more detailed description of the time evolution of the concentration profile. My role 

in this part was the development of the model and simulation results used in the paper as well as 

the selection of cases for comparison between the hydrodynamic and kinetic Monte Carlo 

models. The second part involved polymerization reactions within a confined pore. This part has 

been omitted from the thesis as I was not involved in that work. 

A modification of the model to include passing is presented in chapter 4, which was 
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published[3] in the Materials Research Society Proceedings. It also expands the comparison of 

catalytic site distribution. My role was again the Monte Carlo simulation and modeling work 

within the paper.

Chapter 5 is a paper[4] published in Physical Review Letters which adapts the hydrodynamic

model to a generalized hydrodynamic model. This new model incorporates the non uniform 

tracer diffusion coefficients generated from the kinetic Monte Carlo simulations. My role in this 

work was the development and running of the random walk simulation used to generate the 

diffusion coefficients that are central to the generalized model.

An alternate approach for calculating diffusion coefficients is given in Chapter 6. This driven

diffusion model utilizes Fick's law and concentration gradients to produce diffusion coefficients 

instead of the random walk based approach developed in the previous chapter.

Chapter 7 is a paper[5] published in The Journal of Chemical Physics that expands on the 

basic pore model to include the effect of varying the interaction of the pore with the product, 

adding reversible reactions, and creating enhanced reactivity. My role in this was generating the 

kinetic Monte Carlo data needed for the diffusion coefficients. In addition, it involved addressing

a number of subtle behaviors that manifest with the change in model.

The initial Langevin dynamics treatment of passing is given in chapter 8. This work 

quantifies passing behavior within the pore by modeling in more detail the motion that leads to 

passing. From this, a connection is formed between the local, small scale dynamics of a pair of 

particles and the passing rates used in the previous studies. This is an early step in linking the 

generic simulations above with specific systems by applying some physical meaning to the 

passing rates. This work treats particles as circles and spheres as a simplified way of analyzing 

the behavior shown in the Langevin dynamics method.

Expanding on the case of circles and spheres, chapter 9 addresses the more general case 

where particles are no longer restricted to spheres and circles. This breaks the rotational 

symmetry, adding in Langevin rotations not present in the earlier work. A general method is 

given and results are presented for dimers and spheres.

The two appendices included are work related to dynamics and structure. Appendix I is a 
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paper[6] published in Multiscale Modeling and Simulation. It lays out a comprehensive 

treatment of boundary conditions on vicinal Si surfaces. The model development and simulation 

in the work was done by me. 

Appendix II investigates the structure of amorphous silicon ring systems. These systems are 

similar to the mesoporous Si particles containing pores. A system of modeling and counting ring 

correlations was developed which could yield insight into mechanical properties of such systems.
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CHAPTER 2. CATALYTIC CONVERSION REACTIONS
MEDIATED BY SINGLE-FILE DIFFUSION IN LINEAR

NANOPORES: HYDRODYNAMIC VERSUS STOCHASTIC
BEHAVIOR

David M. Ackerman,1,2 Jing Wang,1,3 Joseph H. Wendel,1 Da-Jiang Liu,1 Marek Pruski,1 

and James W. Evans1,3,4

A paper published in The Journal of Chemical Physics

1Ames Laboratory – USDOE, and Departments of 2Chemistry, 3Mathematics, 

and 4Physics & Astronomy, Iowa State University, Ames Iowa 50011

Abstract

We analyze the spatiotemporal behavior of species concentrations in a diffusion-mediated 

conversion reaction which occurs at catalytic sites within linear pores of nanometer diameter. 

Diffusion within the pores is subject to a strict single-file (no passing) constraint. Both transient 

and steady-state behavior is precisely characterized by Kinetic Monte Carlo simulations of a 

spatially discrete lattice-gas model for this reaction-diffusion process considering various 

distributions of catalytic sites. Exact hierarchical master equations can also be developed for this 

model. Their analysis, after application of a mean-field type truncation approximations, produces

discrete reaction-diffusion type equations (mf-RDE). For slowly varying concentrations, we 

further develop coarse-grained continuum hydrodynamic reaction-diffusion equations (h-RDE) 

incorporating a precise treatment of single-file diffusion in this multi-species system. The h-RDE

successfully describe non-trivial aspects of transient behavior, in contrast to the mf-RDE, and 

also correctly capture unreactive steady-state behavior in the pore interior. However, steady-state 

reactivity, which is localized near the pore ends when those regions are catalytic, is controlled by

fluctuations not incorporated into the hydrodynamic treatment. The mf-RDE partly capture these 

fluctuation effects, but cannot describe scaling behavior of the reactivity.
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1 Introduction

Diffusion-mediated reaction processes have traditionally been modeled with mean-field 

reaction-diffusion equations (RDE) [1,2]. These RDE include a conventional treatment of 

chemical kinetics which ignores spatial correlations between reactants, and also a simple 

description of diffusion typically with constant Fickian diffusion coefficients. This approach has 

been effectively applied to heterogeneous catalysis on extended surfaces, where reactant species 

reside at a periodic array of adsorption sites on the nanoscale, and complex spatial concentration 

patterns can develop on the micron scale [3]. Actually, for such catalytic surface reactions, it has 

been recognized that mean-field kinetics has limitations due to non-random reactant 

distributions. However, there has been less appreciation of the complexity of diffusion in mixed 

reactant adlayers. This complexity arises even in simple lattice-gas reaction models with no 

interactions between reactants on different adsorption sites (but exclusion of multiple occupancy 

of sites) [4]. There are further complications in the treatment of diffusion in these mixed systems 

when one accounts for interactions between reactants [5].

In contrast, the non-trivial nature of diffusion is well-recognized for transport and possible 

reaction in so-called single-file systems. Such mesoporous (or more accurately nanoporous) 

systems are realized by materials incorporating arrays of linear pores which are sufficiently 

narrow that molecules cannot pass each other inside the pores. This no-passing feature results in 

anomalous tracer diffusion [6-8]. To assess the interplay between such anomalous transport and 

reaction, there have been several studies of a basic conversion reaction model and its variants [9-

15]. In this basic model, the reactant, A, adsorbs at the end of pore, converts to product, B, at 

catalytic sites within the pore, and both reactants and products can exit the pore.

In an early study considering possibly reversible conversion reactions, Tsikoyiannis and Wei 

[9] developed hierarchical rate equations for a general class of lattice-gas (LG) models. They 

analyzed behavior for the canonical irreversible reaction model A→B with all sites catalytic by 

Kinetic Monte Carlo (KMC) simulation and compared results against predictions from first-order

mean-field and second-order pair truncation approximations of the hierarchy [9]. The model was 

revisited by Okino et al. [10] who refined the pair or doublet truncation approximation and 

analyzed behavior of the reversible A↔B as well as irreversible A→B conversion reaction. 
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Kärger and coworkers [11-13] examined model behavior via KMC simulation and included the 

possibility of attractive interactions between participating molecules. Finally, Nedea et al. 

[14,15], also considered behavior of the canonical irreversible reaction model A→B without 

interactions, exploiting both KMC simulation and truncation of hierarchical rate equations. They 

further considered behavior for different distributions of catalytic sites within the pore, and also 

analyzed non-trivial limiting behavior for rapid diffusion (but with finite exchange rates at the 

pore ends). These studies have focused primarily on elucidating steady-state reactivity.

While the anomalous aspects of tracer diffusion in single-file systems are well characterized, 

the behavior of chemical diffusion, which is of particular relevance for reaction-diffusion 

phenomena, is less completely characterized. It has been recognized that Onsager’s classic 

theory of transport can be applied to assess chemical diffusion fluxes in multi-species systems 

with and without single-file constraints [16,17]. Also, some of the above studies of single-file 

conversion reactions have described the corresponding discrete RDE, but only based on 

approximate mean-field treatments [9,14]. However, what has not been exploited is the existence

of exact results for diffusion fluxes in multi-species lattice-gas models with site exclusion and 

species-independent hop rates and interactions [18]. One can apply these results to single-file 

systems. One goal here is to use these exact results to assess the consequences of single-file 

diffusion for the transient behavior in conversion reactions, a relatively unexplored issue. We 

will also analyze behavior for various distributions of catalytic sites within the pore. In addition, 

regarding steady-state behavior, we will assess fundamental scaling behavior of quantities related

to reactivity as a function of key model parameters.

In Sec.2, we specify in detail the single-file conversion reaction model, the associated 

hierarchical rate equations and mean-field-type RDE (mf-RDE), and discuss basic model 

properties. Then, in Sec.3, we formulate a treatment for the “hydrodynamic regime” where the 

evolution of slowly varying species concentrations might be described by continuum 

hydrodynamic RDE (h-RDE). Both steady-state and transient behavior is described in Sec.4 for a

“canonical” conversion reaction model where all sites within the pore are catalytic. Behavior 

where either the peripheral or the central sites are catalytic is described in Sec.5. Finally, we offer

some comments on more general models, and present conclusions in Sec.6.
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2 Reaction-Diffusion Model: Prescription and Basic Properties

The model considered in this study was developed previously to describe the diffusion-

mediated catalytic conversion of a reactant to a product (A→B) inside linear pores which are 

sufficiently narrow as to allow only single-file diffusion [9-15]. To treat the spatial aspects of this

process, the model incorporates the feature that both reactants and products inside the pore reside

at the sites of a linear lattice. The introduction of a discrete spatial structure should not affect the 

basic aspects of model behavior, at least for concentration profiles varying smoothly over several

lattice constants. Such LG modeling also greatly facilitates both analytic investigation and 

simulation. The key mechanistic steps in the model are: adsorption of “external” (ext) reactant 

species A at terminal sites (t) of the pore provided that these sites are unoccupied or empty, E; 

subsequent diffusion of A within the pore by hopping to nearest-neighbor (NN) empty sites; 

conversion reaction A→B at catalytic sites (c) within the pore. The product, B, also undergoes 

diffusion by hopping to NN empty sites, and both the reactant and product undergo desorption 

from terminal sites (t) of the pore. Thus, to summarize, the mechanistic steps of the reaction are:

A(ext) + Et→At (adsorption); An + En+1↔En + An+1 (diffusion); At → A(ext) + Et (desorption) 

Ac → Bc (reaction); Bn + En+1 ↔ En + Bn+1 (diffusion); Bt → B(ext) + Et (desorption)

where we label the sites in the pore by n=1, 2,…, L (for pore length L). Thus, the terminal sites t 

are n=1 and n=L. The catalytic sites may constitute all sites or various subsets of sites within the 

pore, as described below. Total reactivity (i.e., the total production rate of B), RB
tot, is simply 

proportional to the total amount of A within the catalytic regions of the pore. The system 

geometry and these mechanistic steps are also illustrated in Fig.1.

Figure 1: Schematic of a catalytic conversion reaction A→B in a single-file system. Catalytic
sites (c) are located near the pore ends in this illustration. The configuration shown represents

the transient regime. See Sec.5.

Rates for the various processes described above will be denoted by WA
ads = Wads for 
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adsorption of A, WK
des for desorption of species K = A or B; WK

diff for hopping of species K to 

NN empty sites, and Wrx for A→B conversion. An exact analytical description of such stochastic 

Markov processes is provided by the master equation for the evolution of probabilities of various

configurations for the entire system [19]. Often this are written in hierarchical form. Here, we 

use <Kn> to denote the probability or ensemble averaged concentration for species K at site n, 

<KnEn+1> for the probability that K is at site n and for site n+1 to be empty (E), etc.. Then, the 

lowest order-equations describe the probabilities that individual sites are occupied by various 

species. When all sites are catalytic, one has that

d/dt <A1> = Wads<E1> - WA
des<A1> -Wrx<A1> - JA

1>2, (1a)

d/dt <B1> = - WB
des<B1> +Wrx<A1> - JB

1>2, (1b)

d/dt <An> = -Wrx<An> - JA
n>n+1 + JA

n-1>n, for 1<n<L, and (1c)

d/dt <Bn> = +Wrx<An> - JB
n>n+1 + JB

n-1>n,  for 1<n<L, (1d)

and similar equations for the terminal site n=L to those for n=1. In these equations, 

JK
n>n+1 = WK

diff [<KnEn+1> - <EnKn+1>], (2)

denotes the net diffusive flux of K = A or B from n to n+1 (i.e., the difference between the flux 

from n to n+1 and that from n+1 to n). The total reactivity is given by RB
tot = Wrx Σn=c<An>, 

where the sum is over all catalytic sites (i.e., over the entire pore in the above example).

These equations (1) are coupled to probabilities for various configurations of pairs of sites. 

Equations for pair probabilities couple to those for various triples, etc., thus generating a 

hierarchy. Pair, triplet, etc., probabilities are not trivially related to single-site probabilities due to

the presence of spatial correlations. In these models, correlations derive from the interplay of 

adsorption-desorption and diffusion with reaction. Implementing a simple mean-field (MF) 

factorization approximation, <KnEn+1> ≈ <Kn><En+1>, etc., produces a closed set of discrete mf-

RDE’s for single site concentrations, <An> and <Bn> noting that <An> + <Bn> + <En> =1. 

A more accurate pair approximation retains pair quantities like <KnEn+1>, but factorizes 

triplet quantities, e.g., <KnMn+1Nn+2> ≈ <KnMn+1><Mn+1Nn+2>/<Mn+1>, with K, M, N = A, B, or E. 
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This generates a closed set of equations for single site quantities, <An> and <Bn>, together with 

the pair quantities, <AnAn+1>, <AnBn+1>, <BnAn+1>, and <BnBn+1>. See, e.g., [9,10,14]. Note that 

there exist various exact relations determined by conservation of probability, i.e., <AnBn+1> + 

<AnAn+1> + <AnEn+1> = <An>, allowing one to determine <AnEn+1> from the set of the six 

selected quantities above. Higher-order approximations are also possible retaining probabilities 

of configurations of strings of n>2 sites, although the gain in accuracy with increasing order, n, 

may be slow [20].

A precise determination of model behavior is obtained by standard KMC simulation 

implementing processes with probabilities proportional to their rates. More specialized 

simulation algorithms may be applied to assess behavior in limiting regimes [15].

Following previous studies [10,12,14,15], to reduce the number of parameters in the model 

and also to induce some special features of model behavior, we will primarily consider the case 

where desorption rates and diffusion rates for both species are equal, i.e., WK
des = Wdes and WK

diff 

= Wdiff, for K = A and B. There is an important consequence of this rate choice. Suppose one does

not discriminate between the identity of particles, but only considers whether sites are empty, E, 

or filled, X=A+B (i.e., if one just considers the total concentration at various sites). Then, the 

dynamics corresponds to a pure adsorption-desorption-diffusion process for particles X with no 

reaction. Correspondingly, from (1), one obtains the exact equations

d/dt <X1> = Wads<E1> - Wdes<X1> - JX
1>2, (3a)

d/dt <Xn> = - JX
n>n+1 + JX

n-1>n, and (3b)

d/dt <XL> = Wads<EL> - Wdes<XL> + JX
L-1>L, (3c)

where JK
n>n+1 = Wdiff [<XnEn+1> - <EnXn+1>] = Wdiff [<Xn> - <Xn+1>]. (4)

The exact relation corresponding to the last equality in (4) expressing JK
n>n+1 in terms of 

single-site quantities amounts to an exact reduction of a many (X) particle problem to a single-

particle problem. This feature was first noted by Kutner for an infinite lattice [21]. Extension of 

this reduction to semi-infinite and finite lattices has also been recognized previously [14,22]. 

Thus, the evolution of <Xn> is described exactly by standard discrete diffusion equations (3b), 
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augmented by adsorption and desorption terms at the end sites in (3a,b). The equations are closed

noting that <En> = 1 - <Xn>.

It is thus straightforward to visualize the evolution of the total concentration starting from an 

empty pore. The total concentration will first build up near the ends of the pore, then spread by 

diffusion to the interior, and finally achieve a spatially uniform steady-state. Since there is no 

reaction in the dynamics of particles X, the steady-state corresponds to a conventional grand 

canonical equilibrium state with activity z = Wads/Wdes [23]. Furthermore, since there are no 

interactions between particles X in this model, they are randomly distributed (i.e., there are no 

spatial correlations) in this trivial equilibrium state. The equilibrium concentration at each site 

satisfies <Xn>eq = Xeq = z/(1+z) = Wads/(Wads+Wdes) (cf. [9,15]). As an aside, we note that while 

the equilibrium steady-state is free of spatial correlations just considering the distribution of 

filled sites, X, such correlations do develop during filling of the pore. Remarkably, an exact 

closed set of equations can be obtained for pair probabilities, <XnXn+m>, or associated 

correlations, as these decouple from triplet correlations [24]. Likewise, an exact closed set of 

equations can be obtained for the triplet correlations which decouple from the quartet 

correlations, etc. The nature of this decoupling is analogous to that described for (4).

In our analyses below, we will choose Wads + Wdes =1 which sets the time-scale. We will 

present results only for: (i) Wads = 0.2, Wdes = 0.8 [low loading]; (ii) Wads = 0.8 (or 0.9), Wdes = 0.2

(or 0.1) [high loading]. Single-file effects are stronger for high loading. Parameters Wrx and Wdiff 

will either have suitably-selected fixed values when comparing predictions of various treatments,

or will be systematically varied in scaling studies. Note that well-defined limiting behavior is 

found in the regimes where: (a) Wads+Wdes (with fixed z = Wads/Wdes) far exceeds Wrx and Wdiff 

[12], so that reaction is not limited by adsorption and desorption at the ends at the pore; (b) Wdiff 

far exceeds all other parameters. In contrast to typical reaction-diffusion systems where 

concentrations become uniform in this limit, non-trivial behavior is found in this single-file 

system [15]; (c) Wdiff is far smaller than other parameters, so then only the terminal sites have a 

non-zero population of A in the steady-state [25].
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3 Hydrodynamic Regime and Reaction-Diffusion Equations

In discrete LG reaction-diffusion systems, it is common to consider behavior in the 

“hydrodynamic regime” of substantial diffusion (on the time scale of other adsorption-desorption

and reaction processes) and slowly varying particle concentrations (on the length scale of lattice 

constants) [4,5,26]. Within this framework, one might describe behavior by continuum 

hydrodynamic reaction-diffusion equations (h-RDE) after coarse-graining the discrete spatial 

variable to a continuous variable. Specifically, for linear lattices, one sets x = na, where n is the 

lattice site label and “a” is the lattice constant. (As an aside, it is often convenient to set a=1 in 

the following.) Then, species concentrations per unit length become functions of a continuous 

variable K(x=na) ≈ a-1 <Kn>, where we leave implicit the t-dependence. To develop h-RDE, one 

needs an appropriate description of collective or chemical diffusion in this multi-species lattice-

gas system [4,5,16,17,26] incorporating the single-file nature of diffusion. 

Before addressing this major challenge, we comment on the much simpler task of describing 

the behavior of the coarse-grained total particle concentration per unit length, X(x=na) ≈ a-1 

<Xn>, in the hydrodynamic regime. As noted in Sec.2, the dynamics of this concentration profile 

is described by a reaction-free discrete diffusion equation. If JX denotes the corresponding 

diffusion flux, then in the hydrodynamic regime, one has that 

∂/∂t X(x) = -∂/∂x JX with JX = -DX ∂/∂x X(x) and DX = a2Wdiff . (5)

The feature that the chemical diffusion coefficient, DX, is independent of concentration is 

well known for this single-component problem [21]. Thus, the single-file nature of the system 

does not reveal itself when considering chemical diffusion for a single species X. Equation (5) is 

augmented with the appropriate Robin boundary conditions ±JX = aWads(Xm -X) - aWdesX at the 

pore ends, a relation derived from a steady-state form of (1a). Here, Xm = 1/a is the maximum 

concentration per unit length.

For the case where all sites are catalytic, the h-RDE in our conversion reaction model for 

individual species concentrations, A(x) for A, and B(x) for B (leaving implicit the t-dependence),

have the form

∂/∂t A(x) = -Wrx A(x) -∂/∂x JA and ∂/∂t B(x) = +Wrx A(x) -∂/∂x JB. (6)
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where X(x) = A(x)+B(x). If sites within the pore are catalytic only in specific (e.g., peripheral) 

regions, then the reaction terms appear only for those locations. Description of the diffusion 

fluxes, JA and JB, for species A and B, respectively, is non-trivial in mixed lattice-gases even in 

the absence of interactions beyond site exclusion. The appropriate Robin boundary conditions for

(6) at the pore ends have the form ±JA = aWads(Xm -X) - aWdesA, and ±JB = -aWdesB.

Onsager’s transport theory ensures that the diffusive flux of A has the form [4,5,16,17,26]

JA = - DA,A ∂/∂x A(x) - DA,B ∂/∂x B(x), (7)

where in general the diffusion coefficients DA,K depend on species concentrations. Thus, the flux 

JA is induced by gradients in both <A> and <B>. A similar expression applies for the flux, JB, of 

B. The four diffusion coefficients, DK,K´, with K, K´ = A or B, can be conveniently collected into 

a 2x2 diffusion tensor D. Onsager’s theory [16,17,26] further shows that this tensor involves both

a thermodynamic “inverse compressibility” factor and a kinetic “conductivity” factor [27].

3.A. Exact hydrodynamic diffusion fluxes

As indicated above, there is a general appreciation that in principle the components of D can 

be determined using the statistical mechanical formulation of Onsager theory. However, what has

not been exploited is the existence of an exact result for the case of a multi-species lattice-gas 

with no interactions beyond site exclusion and for equal hop rates, Wdiff [4,18,26]. For one-

dimensional (1D) systems with single-file diffusion, one has the simple and intuitive exact form

JA = -DX [A(x)X(x)-1] ∂/∂x X(x),  JB = -DX [B(x)X(x)-1] ∂/∂x X(x). (8)

In obtaining (8) from more general results [18,26], we have exploited the feature that the 

tracer diffusion coefficient vanishes for 1D single-file systems. See Appendix A.

There is an important consequence of the form (8) of the diffusion fluxes for the steady-states

of the h-RDE. From (8), it is clear that fluxes JA and JB vanish for states with uniform total 

concentration, X(x) = constant, irrespective of whether there are gradients in individual species 

concentrations. This reflects the lack of intermixing in single-file systems. Since the steady-state 

of the reaction model is characterized by constant X(x) = a-1 Xeq = a-1 Wads/(Wads+Wdes), JA and JB 
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must vanish for long times. Consequently, in this regime, concentrations interior to the pore 

change only due to reaction. As a result, any A is converted to B in regions with catalytic sites, so

that <A>=0 and <B> = Xeq in the steady-state in such regions. For example, if all sites are 

catalytic, then the steady-state is completely unreactive in the hydrodynamic picture. In the 

actual model with all sites catalytic, reactivity does actually persist near pore ends in the steady 

state, but only due to fluctuations absent in the hydrodynamic treatment. 

In the transient regime, as noted above, the evolution of <Xn> or X(x) is simply described by 

the non-reactive diffusion problem. A gradient develops as particles diffuse into the pore, and 

thus the diffusion fluxes JA and JB in (8) are non-zero and always in the direction towards the 

center of the pore. We will show that the correct description of diffusion in hydrodynamic RDE 

does capture key aspects of transient behavior. For such comparisons KMC simulation results, 

we utilize discrete hydrodynamic RDE which incorporate a discrete version of (8) as described in

Appendix B. 

3.B. Mean-field diffusion fluxes

In contrast to the above hydrodynamic treatment, a mean-field (MF) treatment of chemical 

diffusion fluxes yields the distinct form 

JA(MF) = -DX [1 - B(x)Xm
-1] ∂/∂x A(x) -DX [A(x)Xm

-1] ∂/∂x B(x), (9)

and an analogous expression applies for JB
MF. Again Xm=1/a is the maximum concentration per 

unit length. This previously utilized result [16,17,28] can be obtained from Onsager theory 

accounting for the known thermodynamics of a non-interacting lattice-gas, but also incorporating

a crude approximation for species conductivity [27]. However, it is instructive to note that an 

alternative simple kinetic derivation of the MF result (9) is also possible [14,29]: one simply 

applies the MF factorization to JA
n>n+1 and JB

n>n+1 in (1c,d) and recasts the results in terms of 

continuous derivatives for slowly varying concentrations. 

Clearly, this MF form of the diffusion fluxes which applies for any lattice dimension fails to 

capture the single-file nature of diffusion, and thus also fails to capture aspects of the correct 

hydrodynamic behavior. For example, the form (9) allows non-zero diffusion fluxes for constant 
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X, and this can produce artificially enhanced intermixing of A and B. Specifically, one has that

JK(MF) → -DX(1-Xeq) ∂/∂x K(x) when X → a-1 Xeq (steady-state) 
for K = A or B.

(10)

The MF form also allows diffusion of species away from the center of the pore. Severe 

failure can be anticipated in the regime of large Wdiff where the MF formulation predicts 

complete intermixing [14,15], but the actual single-file nature of diffusion prohibits such 

behavior.

For comparison with results of KMC simulation for both transient and steady-state behavior, 

we will implement the mf-RDE associated with the MF truncation approximation to (1). These 

constitute the natural discrete version of (9). See Appendix B. In addition, we will implement 

discrete mf-RDE associated with the pair approximation which might be regarded as providing a 

refined treatment of diffusion. (As an aside, it is non-trivial to extract continuum h-RDE for the 

pair-approximation [30].) We shall see that both the MF and pair approximations do capture 

some aspects of fluctuation effects near the end of the pore in contrast to the hydrodynamic 

treatment.

4 Canonical Model: All Sites Catalytic

4.A. Steady-state behavior

Fig. 2 shows a “typical” example of the evolution of concentration profiles towards the 

steady-state for the parameter choice Wads=0.2, Wdes=0.8, Wrx=1, Wdiff=1, and pore length L=30. 

Precise results of KMC simulations in Fig.2a are compared against those from various 

approximate analytic formulations in Fig.2b-d. The mean-field and pair approximation are quite 

effective in capturing behavior near the pore end as noted previously [9,10,14]. These 

approximations and the hydrodynamic treatment all describe effectively exactly evolution in the 

interior of the pore where there is just one species (B). Note that the A-concentration profile 

reaches a non-trivial steady-state form (with significant population only on the four sites closest 

to the pore end) long before the steady-state of the entire system is reached (for which 

<Xn>=0.2). This can be anticipated since all that is required for development of steady-state 
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<An> is sufficient diffusion into the pore end so that <Xn> is close to its steady state value at sites

near the pore end. Filling of the interior of the pore by species B occurs on a slower time scale. 

Simulation with the same rate parameters but for longer pores produces essentially identical 

steady-state <An> distribution, but just take longer for the interior of the pore to fill with B. 

Figure 2: Evolution of concentration profiles to the steady-
state in a pore with all sites reactive: A (blue solid lines); B
(red dashed lines); X=A+B (black dotted lines). This format
is used in subsequent figures. Parameters are Wads = 0.2, Wdes

= 0.8, Wrx = 1, Wdiff = 1, and L = 30. Time increments are Δt
= 100. (a) KMC results averaged over 2.5x105 simulations;

(b) hydrodynamic, (c) MF, and (d) pair approximation
results. The B-concentration increases with time.

As noted above, hydrodynamic analysis predicts that in the steady-state, the central region 

will contain just B and no A, so that <Bn> = Wads/(Wads+Wdes) ≈ Xeq and <An> ≈ 0. Only the end 

sites have significant A population in our discrete formulation. Thus, the non-zero population of 

A near the pore ends observed in simulations can be associated with fluctuation effects not 

included in the hydrodynamic formulation. Since the reactivity of the system is determined by 
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the population of A in the pore, these fluctuations are entirely responsible for the steady-state 

reactivity. 

This motivates more detailed analysis of the dependence of this steady-state <An> 

concentration profile on model parameters. Steady-state profiles appear to have an exponential 

form, 

<An> ≈ c· rn = c·exp(-λn) = c·exp(-n/Lp1), at least for larger n <L/2. (11)

In (11), λ = - ln r is the decay rate, and Lp1=1/λ is a measure of the penetration depth of A into

the pore. In our analysis of KMC data below, we do find deviations from simple exponential 

decay for smaller n, most clearly in cases where Lp1 is large (so decay is slow). The behavior (11)

also implies that the production rate, RB
tot, should converge exponentially to a finite value with 

increasing pore length. We note that another natural measure a penetration depth, Lp, at least in 

the regime where Lp is large is Lp2 = Σn<L/2 <An>/<A1>. Yet another alternative is Lp3 = -1/ln( 1- 

1/Lp2), which would correspond exactly to Lp1 for perfect exponential decay where <An> = <A1> 

rn-1.

First, we examine the dependence on reaction rate, Wrx, of steady-state penetration depth Lp 

(considering all of Lp1, Lp2, and Lp3). We set Wdiff =1 and vary Wrx from 1 to 10-3 for a system of 

size L=100. The lower the reaction rate, the greater the extent of penetration of A into the pore, 

and the greater Lp. Fig.3a-b show concentration profiles for Wads=0.8 and Wdes=0.2 for various 

Wrx. Analysis of this data and analogous data for Wads=0.2 and Wdes=0.8 to extract Lp versus Wrx 

is shown in Fig.3c-d. One finds that Lp increases with decreasing Wrx much more slowly than 

(Wrx)-1/2. Instead, we suggest that Lp ~ (Wrx)-1/4, as Wrx → 0, corresponding to asymptotically 

linear behavior in Fig.3c-d for large abscissa. This behavior might be anticipated from the 

postulate that Lp should reflect the root-mean-square displacement for single-file diffusion on a 

time-scale corresponding to the reaction time, τrx = 1/Wrx. This implies that (Lp)4 ~ τrx and thus 

that Lp ~ (Wrx)-1/4. This result for Lp immediately yields scaling of the total reactivity per pore as 

RB
tot ~ Wrx Lp ~ (Wrx)3/4.

Second, we examine the dependence on diffusion rate, Wdiff, of steady-state behavior. For a 

conventional reaction-diffusion system, increase of hopping rates ultimately produces spatial 
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uniformity of species concentrations due to “efficient stirring” corresponding to Lp→∞. One also

achieves randomization of configurations in the absence of interactions [4,30]. A special feature 

of the single-file system being considered here [14,15] is the existence of non-trivial spatially 

non-uniform limiting behavior as Wdiff→∞ (but retaining finite Wads, Wdes, and Wrx) [31]. One 

obtains a well-defined limiting concentration profile with finite penetration depth, 

Lp(Wdiff→∞)<∞, in this regime. More detailed analysis of steady-state concentration profiles for 

increasing Wdiff suggests that Lp1 ~ Lp1(Wdiff→ ∞) + c(Wdiff)-1/4. See Fig.4. Limiting values of 

Lp1(Wdiff→∞) was obtained from a tailored simulation algorithm (cf. [15]). Separate analysis 

indicates that Lp2 and Lp3 are fairly insensitive to Wdiff.

Figure 3: Steady-state behavior for a mesopore with all
sites catalytic. (a) Concentration profiles for Wads=0.8,
Wdes=0.2, and Wdiff=1, with L=100 for Wrx=1, 0.1, 0.01,
and 0.001; (b) ln <An> versus n<<L/2 for the data in
(a); data for smaller Wrx has greater penetration in (a)
and smaller slopes in (b); Lp versus (Wrx)-1/4 with Wdiff=1

for: (c) Wads=0.8, Wdes=0.2; and for (d) Wads=0.2,
Wdes=0.8. Squares, diamonds, and triangles denote Lp1,

Lp2, and Lp3, respectively.
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Table 1: Tabulation of Lp-values from KMC simulations, and the MF and pair-approximations,
for the cases analyzed in Fig.3.

Wads = 0.8 and Wdes = 0.2 Wads =0.2 and Wdes = 0.8
Wrx 1 0.1 0.01 0.001 1 0.1 0.01 0.001

Lp1(KMC) 0.41 0.69 1.00 2.56 0.88 2.13 5.56 16.7
Lp2(KMC) 1.10 1.47 2.64 5.21 1.47 2.92 6.77 15.2
Lp3(KMC) 0.42 0.88 2.10 4.69 0.87 2.39 6.25 14.7
Lp1,3(MF) 0.520 1.44 4.48 14.1 0.937 2.84 8.95 28.29
Lp2(MF) 1.17 2.00 5.00 14.7 1.53 3.37 9.46 27.78
Lp1(pair) 0.432 1.23 2.92 9.26 0.882 2.59 8.11 27.89
Lp2(pair) 1.11 1.79 3.47 9.77 1.48 3.12 8.61 27.84
Lp3(pair) 0.433 1.23 2.94 9.26 0.882 2.59 8.10 27.33

Figure 4: Dependence of Lp1 on Wdiff (but retaining fixed
finite values of Wads, Wdes, and Wrx) demonstrating the

nature of the convergence to Lp1(Wdiff→ ∞) as Wdiff →∞.

Next, we consider the predictions of MF-type analytic treatments regarding the above 

behavior. The simplest MF approximation exhibits precise exponential decay for long pores. This

behavior, noted previously [14], is a result of the feature that <En> =1-<Xn> is constant, which in 

turn allows reduction of the steady-state form of (1c) to a linear coupled set of equations. Setting

ε = Wrx/Wdiff and Xeq = Wads/(Wads+Wdes), then seeking a solution to these linear equations of the 

form <An>  rn yields for r the quadratic equation (cf. [14])

(1-Xeq)(r + r-1 -2) = ε. (12)

Consequently, one has that δ = 1-r ~ (1-Xeq)-1/2 ε1/2, for small ε, so that (cf. [14])
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Lp1(MF) ~ δ-1 ~ (1-Xeq)1/2 (Wrx)-1/2(Wdiff)1/2, for Wrx → 0 or Wdiff →∞. (13)

The result (13) can be obtained more directly from the continuum MF formulation [32]. This 

result reveals a fundamental failure of the MF treatment to describe asymptotic behavior of Lp. 

The failure to describe scaling as Wrx→0 or Wdiff→∞ reflects an inability to capture single-file 

aspects of diffusion. Since concentration profiles become spatially uniform within the MF 

approximation as Wdiff →∞, this enables simple direct analysis of MF behavior, e.g., showing that

MF reactivity converges like 1/L rather than exponentially as L→∞. See Appendix C.

It is instructive to assess the predictions of the higher-order pair approximation for the 

behavior of the penetration length, Lp. The complex non-linear form of pair equations [14] 

excludes exact exponential decay. However, there should be asymptotic exponential decay <An> 

~ exp(-n/Lp1) for large n <L/2. In the steady-state, one has the relations <An> + <Bn> = Xeq and 

<BnBn+1> + <BnAn+1> + <AnBn+1> + <AnAn+1> = (Xeq)2. Since one expects that <AnAn+1> decreases 

more quickly than <An>, <AnBn+1>, or <Bn-1An> for increasing n, it follows that one can just 

analyze equations for the latter quantities. Anticipating solutions of the form <An> ≈ c·rn, 

<AnBn+1> ≈ c·β·rn, and <Bn-1An> ≈ c·γ·rn and substituting into the rate equations for the pair 

approximation yields three coupled equations 

(1-β)(r-1) + (1-γ)(r-1-1) = ε,   (1-γ)(γ-1Xeq)(r-1+1) - (1-Xeq) - (1-β) = ε,
and (1-β)(β-1Xeq)(r+1) - (1-Xeq) - (1-γ) = ε.

(14)

Seeking solutions for small ε and δ = 1-r with β ≈ Xeq + Bδ and γ ≈ Xeq + Cδ yields C = -B = 

Xeq(1-Xeq)(2+Xeq)-1 [33] and 

Lp1(pair) ~ δ-1 ~ (2-Xeq)1/2(2+Xeq)-1/2Lp(MF) , for large Lp1. (15)

Thus, Lp1(pair) is smaller than Lp1(MF) and closer to the exact Lp1, but still has the incorrect 

asymptotic functional form as Wrx→0 or Wdiff→∞.

4.B. Transient behavior

In this subsection, we characterize the evolution of concentration profiles during filling of a 

very long (semi-infinite) pore with an emphasis on scaling behavior for increasing time, t. Recall

that the total concentration satisfies a standard discrete diffusion equation which reduces to the 
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conventional continuum equation in the hydrodynamic regime. Thus, it follows that this profile 

has the “classic” scaling form 

<Xn(t)> ≈ <X(t=∞)> F(n/(Wdiff t)1/2), for n<L/2, where F(y) = erfc(y/2), (16)

where erfc is the complementary error function [34]. Thus, concentration profiles collapse onto a

single curve for increasing t after rescaling the n-axis by (Wdiff t)1/2. However, when considering 

the individual species A and B, the system is dominated by B for increasing time due to reaction 

(when keeping all parameters fixed). After rescaling the spatial variable, one obtains <Bn> ~ 

<Xn> and <An> ~ 0. To achieve non-trivial scaling profiles with significant populations of both 

species inside the pore, it is natural to reduce the reaction rate as time is increased so that Wrxt 

remains constant. More precisely, we seek scaling solutions for the individual species 

concentrations of the form

<An(t)> ≈ <X(t=∞)> FA(n/(Wdiff t)1/2, Wrxt) and (17a)

<Bn(t)> ≈ <X(t=∞)> FB(n/(Wdiff t)1/2, Wrxt), (17b)

for n<L/2, where FA + FB = F. Support for the existence of such solutions comes from 

substitution of these forms into the hydrodynamic reaction-diffusion equations of Sec.3. One 

then obtains a closed coupled pair of partial differential equations for the scaling functions FA,B(y,

u). The specific form of the equations depends on the choice of diffusion fluxes (e.g., 

hydrodynamic versus MF), as do the solutions FA,B. See Appendix D.

From the earlier discussion of hydrodynamic versus fluctuation effects, one might anticipate 

the following: (i) The MF and pair approximations should capture exact KMC behavior better for

shorter times when most particles are relatively close to the pore opening. In this regime, 

behavior is more influenced by fluctuations. (ii) The hydrodynamic treatment should provide a 

better description of exact KMC behavior for longer times where the concentration profiles 

varies smoothly over many lattice constants. Indeed, this is the case as shown in Fig.5. For the 

selected parameters, the peak <An>-concentration of around 0.08 in the MF and pair 

approximations for smaller times (larger Wrx) matches KMC results, but these approximations 

retain this value for longer times. In contrast, the peak in hydrodynamic treatment increases to 
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about 0.13-0.14 for longer times (smaller Wrx) in good agreement with long-time KMC results. 

This peak is far above the converged MF and pair approximation value of 0.08.

5 Peripheral or Central Catalytic Sites

5.A. Peripheral catalytic sites

Here, we consider situations where contiguous strings of sites at each end of the pore are 

catalytic, but sites in the central region are not. One can imagine this type of distribution might 

result where catalytic sites are created by grafting after formation of a meso- or nano-porous 

material and where diffusion into the pores is inhibited. (An alternative co-condensation process 

for mesoporous silica materials tends to produce a more uniform distribution of catalytic sites 

[35].) An example of the results of KMC simulations for evolution to the steady-state is shown in

Fig.6. The parameter choices is Wads = 0.8, Wdes =0.2, Wrx =0.017, and Wdiff =10 for a pore of 

length L=100 with 20 catalytic sites at each end.

Characterization of behavior in this system is most appropriately divided into two regimes 

(provided that the reaction rate is not too large). In the first transient regime of “pore filling”, a 

significant amount of A may avoid reaction in the peripheral catalytic regions and diffuse into the

central non-catalytic region, i.e., A will successfully run the gauntlet passing catalytic sites 

without conversion. After the pore has filled so that the total concentration <Xn> ~ Xeq is roughly 

constant, one expects a peak in the concentration of A (i.e., a “blob” of A) in the center of the 

pore, and strongly decreasing A concentrations approaching and entering the peripheral regions 

from the center of the pore. Indeed, in a hydrodynamic treatment, one achieves a stationary state 

with a frozen blob of A in the central non-catalytic region of the pore, and the peripheral catalytic

regions occupied only by B and completely devoid of A. (Note that this hydrodynamic steady-

state is not unique, the specific form of the frozen A-distribution in the central region will depend

on the initial conditions.) However, this is not a true steady-state of the stochastic model, 

although it might be regarded as a metastable state.

Fluctuations at the end of the pore ensure that the A-concentration profile always has a local 

maximum at this location which does not diminish for long times (contrasting the hydrodynamic 
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Figure 5: Diffusion into an initially empty semi-infinite pore with all sites
catalytic. Parameters are: Wads=0.2, Wdes=0.8, Wdiff = 1, and Wrx t = 4

(ensuring comparable amounts of A and B in the pore). Rescaled
concentration profiles for: (a) KMC simulation; (b) hydrodynamic; (c) MF;
and (d) pair approximations. KMC results are shown for Wrx = 0.1, 0.01,…
and 0.000001 (6 cases), where convergence to the limiting profile shapes is

very slow. Convergence is fast for the MF and pair approximations (by
Wrx~0.01), and moderate for the hydrodynamic treatment (by Wrx ~ 0.001

where data is shown for Wrx = 0.1, 0.01, and 0.001). 

description). In fact, part of the concentration profile is very similar to that for pore with all sites 

reactive (and with the same rate parameters). 
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Figure 6: KMC results for the complete evolution of species concentrations for a pore
of length L=100 with 20 catalytic sites at each end. Parameters are Wads = 0.8, Wdes

=0.2, Wrx =0.017, and Wdiff =10. The left frame shows the transient pore-filling
regime for time increments of 60 up to t=600 where the peak <A50> is growing
significantly to reach a maximum. The following “metastable regime” has little

change over ~103 time units. The right frame shows slow late-stage evolution for
times t = 1000, 5000, 10000, 14000, 20000, and 100000 where <A50> decreases

below its maximum. The steady-state (with <An>≈0 in the central region) is reached
after ~105 time units. Black dotted arrows indicate evolution with increasing time.

However, more dramatically, in the second late-stage regime, fluctuation effects mean that 

the blob of A formed during the transient regime in the central non-catalytic region is not frozen. 

The entire blob can undergo anomalous diffusion, and is thus guaranteed to reach the peripheral 

catalytic regions. As a result, eventually essentially all of the A in this blob will be converted to B

leading to the true steady-state with the central non-catalytic region, and indeed most of the 

interior of the pore, devoid of A. Indeed, the true steady-state for this case is very similar to that 

for the case where all sites are catalytic (with the same rate parameters). The reason is that for the

case with all sites catalytic, it is only the end of the pore where one has conversion A→B in the 

steady state.

Fig.7 compares the predictions of the hydrodynamic treatment and other approximations with

exact KMC simulations for a finite time selected to correspond to the end of the first transient 

regime in the KMC results. The parameter choices is Wads = 0.8, Wdes =0.2, Wrx =0.017, and Wdiff
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 =10. Specifically, we choose the time t = 420 where the A-concentration at the center of the pore

has roughly reached its maximum. In Fig.7, the concentration profile of the central A-blob in the 

KMC simulations is reasonably described by the hydrodynamic treatment. Small discrepancies 

presumably result from the feature that we have chosen a fairly small system, so fluctuation 

effects are still significant. In contrast, the MF and pair approximations fail to predict a 

significant peak in the concentration of A in central region. This is a consequence of the tendency

of these approximations to allow artificially enhanced mixing of A and B. The pair 

approximation prediction is slightly closer to KMC behavior, reflecting the somewhat improved 

description of diffusion relative to MF.

Figure 7: Behavior roughly at the end of the transient regime t =
420 for a pore of length L=100 with 20 peripheral catalytic sites
at each end. Parameters are Wads = 0.8, Wdes =0.2, Wrx =0.017,

and Wdiff =10. Reactant A in the pore center has “run the
gauntlet” through the peripheral catalytic regions. Results from:

KMC (solid); hydrodynamic (dashed); pair (dot-dashed); MF
(dotted). 
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In Fig.8, we show a series of snapshots from KMC simulations for fluctuation-dominated 

evolution in the late-stage regime. These fluctuations lead to diminution and removal of the 

significant A-concentration in the central non-reactive region of the pore. The diffusion of the A-

blob within the non-catalytic region is clear, as well as its ultimate complete annihilation after 

several “collisions” with the peripheral catalytic region. 

5.B. Central catalytic sites

Here, we consider situations where a contiguous string of sites in the center of the pore is 

catalytic, but sites in the peripheral regions are not. This geometry of catalytic sites has been 

considered in previous studies [14]. Towards the end of the first transient stage of pore filling, a 

central catalytic region with reactant A largely converted to product B has been created, with 

non-catalytic regions on both sides primarily occupied by reactant A. Then, in the second late-

stage regime, the central catalytic region remains essentially exclusively populated by B, but the 

concentration of product B in the non-catalytic end regions increases and that of reactant A 

decreases to achieve the final steady-state form. The details of this fluctuation dominated process

are described below. It should be noted that there is very low reactivity in the steady-state for this

system (compared with a pore with all sites catalytic and the same parameters) since there is little

population by A of the central catalytic region.

Fig.9 compares evolution in exact KMC simulations with the predictions of the 

hydrodynamic treatment and also the MF and pair approximations for a finite time selected to 

correspond roughly to the end of the first transient regime. In the hydrodynamic treatment, since 

diffusion fluxes are always towards the center of the pore, it is impossible to populate the non-

catalytic end regions with B. Thus for long times in this treatment one has <An> ≈ Xeq and 

<Bn>=0 in the non-catalytic end regions, and <An> ≈ 0 and <Bn> ≈ Xeq in the central catalytic 

region. This is a steady-state in the hydrodynamic treatment, which might be described as a 

metastable state for the stochastic model. In fact, this simple hydrodynamic picture describes 

quite well the KMC results, deviations being due to fluctuations. In contrast, the MF and pair 

approximations predict a B-population in the non-catalytic end regions which is far too high. 

This is again a consequence of the tendency of these approximations to allow artificially 

enhanced mixing of A and B. The pair approximation prediction is slightly closer to KMC 
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behavior, again reflecting the somewhat improved description of diffusion relative to MF.

Figure 8: Later-stage evolution in a pore of length
L=50 with 10 catalytic sites (gray) on each end

catalytic. Dark blue circles are reactant A. Lighter red
circles are product B. Sequence of images separated by

42 time units from a single KMC simulation run.
Parameters are Wads=0.1, Wdes=0.9, Wrx=0.08, and

Wdiff=100. The central A-blob diffuses to the peripheral
catalytic regions ultimately being converted to product.

Higher Xeq=0.9 makes the A-blob more visible.



28

Figure 9: KMC of concentration profile evolution for the central 60
sites catalytic in a pore of length L=100. Parameters are Wrx = 0.33,
Wdiff = 10, and for (a) Wads = 0.1, Wdes = 0.9; (b) Wads = 0.9, Wads =

0.1. Time increments are 50 and the final time is t=500.

Fig. 10 shows KMC results for more complete evolution to the reactive steady-state. This 

occurs quite quickly for Xeq=0.1 (left frame). But for the case with Xeq=0.9 (right frame), this 

evolution is much slower. In either case, one finds the development of quasi-linear concentration 

profiles in non-catalytic end regions. Note that the MF treatment predicts linear concentration 

profiles in the non-catalytic end regions. This result follows from (10) noting that the steady-state

JK(MF) must be constant in these regions which yields the relation ∂/∂x K(x) = constant for K = 

A or B. Further insight into this behavior comes from the analysis immediately following. 
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Figure 10: KMC results for the complete evolution of species
concentrations for the central 60 sites catalytic in a pore of length

L=100 with Wrx = 0.33 and Wdiff = 10 for two cases. (a) Wads = 0.1, Wdes

= 0.9 (so Xeq=0.1) with time-evolution in increments of 100, so the
steady-state is achieved quickly by t ~700; (b) Wads = 0.9, Wads = 0.1 (so

Xeq=0.9) and profiles are shown at times t=50, 100, 200, 500, 1500,
15000. Thus in (b), the steady-state is achieved slowly, where <An>

again finally achieves a quasi-linear steady-state variation in the end
non-catalytic regions.

In Fig.11, we show a series of snapshots from KMC simulations for fluctuation-dominated 

evolution in the late-stage regime for a case similar to Fig.9 where Xeq=0.9. These fluctuations 

lead to the development of a significant B-population in the peripheral non-catalytic regions of 

the pore (while the central catalytic region remains essentially exclusively populated by B). The 

simplest case is where the reaction rate Wrx is fairly large. Then, in any single realization of the 

reaction system, there is relatively little intermixing of the A and B species, i.e., the peripheral 

regions are essentially all A and the central region is essentially all B. (There is strictly no 

intermixing in the limit Wrx→∞.) Thus, evolution in this regime simply involves the interface 

between A- and B-regions undergoing an (anomalous) random walk within the non-catalytic end 

regions, where this random walk is effectively subject to reflecting boundary conditions. When 

the interface and thus A species attempts to move into the central catalytic region, those A are 

quickly converted to B, so the interface effectively cannot pass into the catalytic region and 

eventually meanders back into the non-catalytic region. When the interface and thus the B 

species reach the end of the pore, they can desorb and are replaced by adsorbing A species, so 
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that the interface eventually wanders back toward the center of the pore. Thus, the quasi-linear 

steady-state concentrations in non-catalytic region shown in Fig.9, and also in previous studies 

[14], correspond to an ergodic-like time-average over the interface position. 

Figure 11: Later-stage evolution in a
pore of length L=50 with the 30 central
catalytic sites (gray). Dark blue circles
are reactant A. Lighter red circles are

product B. Sequence of images
separated by 300 time units from a

single KMC simulation run. Parameters
are Wads = 0.9, Wdes = 0.1, Wrx = 0.6, and
Wdiff = 3. The interface between A- and
B-dominated regions diffuses within the

non-catalytic end regions. Higher
Xeq=0.9 makes the interface more

visible.

6 Generalizations and Conclusions

There are many instructive generalizations of the above model and analyses. Here, we briefly

comment on a few of these. It is natural to consider other distributions of catalytic sites not 

necessarily involving contiguous strings of such site. Simple examples would be periodic or 

spatially homogeneous random distributions. For a conventional reaction-diffusion system 

(without single-file diffusion), a coarse-grained continuum description of the form (6) would 

simply reduce the reaction rate by a factor proportional to the local density of catalytic sites. 

However, in single-file systems with steady-state reactivity localized at the end of the pore, this 
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procedure might not be effective unless the penetration depth is very large.

Other natural generalizations include the introduction of unequal hop rates for reactant and 

product species in the absence of interactions between species. Then, the behavior of the non-

equilibrium steady-state will be more complex, but key features induced by single-file diffusion 

persist [36]. One could also introduce interactions between these species where all rates must be 

chosen to satisfy detailed-balance [13]. For simplicity, one might choose the strength of the 

interactions and also the adsorption-desorption rates to be species-independent (cf. [13]). Then, 

just focusing on whether sites are occupied by particles X=A+B, the steady-state is a 

conventional grand canonical equilibrium state with a uniform total particle density away from 

the pore ends. In the hydrodynamic regime, the chemical diffusion fluxes must still vanish in this

steady-state as a consequence of the single-file nature of diffusion [36]. Thus, just as for our 

simpler model, one can conclude that catalytic regions inside the pore will be unreactive (as all 

reactant A will be converted to product), and that steady-state reactivity will be controlled by 

fluctuations [36]. 

Yet another class of generalizations of the above process include sequential conversion 

reactions A→B→C→. . . or parallel conversion reactions A→B, A→C, etc., at catalytic sites. 

For simplicity, consider the special choice of rates, WK
des = Wdes and WK

diff = Wdiff, for all species 

types, K. Again, if one does not discriminate between the identity of particles, but only considers 

whether sites are empty, E, or filled, X=A+B+. . ., then evolution of X is described by a standard 

discrete diffusion equation. Furthermore, significantly, the exact hydrodynamic treatment of 

diffusion for the two-species case readily generalizes to treat this more complex case (cf. [37]). 

Thus, effective analysis of transient behavior should be possible with appropriate h-RDE, and 

again we expect steady-state reactivity to be controlled by fluctuation effects [36].

In summary, the transient and steady-state behavior of single-file conversion reaction systems

displays some general features. Transient evolution of concentration profiles is effectively 

described by hydrodynamic RDE which properly incorporate the single-file nature of diffusion. 

However, steady-state reactivity is controlled by fluctuation effects not incorporated in the 

hydrodynamic treatment. MF-type treatments can capture some aspects of this steady-state 

behavior, but not scaling properties for extreme choices of reaction and diffusion rates.
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Appendix A: Exact Hydrodynamic Diffusion Fluxes

Consider a two-component lattice-gas where species A and B have equal hop rates, Wdiff, to 

NN empty sites, and there are no interactions beyond site exclusion. Set DX = a2Wdiff. Then, for 

hyper-cubic lattice of any dimension, the diffusion flux for species A in the hydrodynamic 

regime of slowly varying concentrations has the exact form [4,18,26]

JA = -DX X-1[A + B Ftr(X)] A - DX X-1A [1– Ftr(X)] B
    = -DX [AX-1] X - DX Ftr(X) X-1 [B A – A B],

(18)

with an analogous expression for JB. Here, A, B and X=A+B represent concentrations per unit 

length, and  denotes the spatial gradient. The quantity Ftr represents the tracer diffusion 

coefficient for a tagged particle with hop rate of unity within a dense single-component lattice-

gas on the hyper-cubic lattice of concentration X. Generalizations have been explored for the 

case of unequal hop rates of A and B [4,38]. 

For an infinite 1D lattice, JA is a scalar,  = ∂/∂x, and Ftr = 0, recovering the result (8). Ftr 

vanishes since diffusion is anomalous in 1D, the root-mean-square displacement of the tagged 

particle increasing like t1/4 rather than t1/2 [6-8]. It is instructive to note that the MF form of the 

diffusion fluxes (9) is recovered by choosing Ftr = (1- X/Xm). This offers the possibility of 

developing a hybrid expression for the diffusion fluxes capturing both aspects of the MF 

description near the pore ends and the hydrodynamic description in the pore interior [36].

Appendix B: Discrete Forms of Diffusion Fluxes

For comparison of KMC results sometimes for relatively short pores with predictions based 

on a hydrodynamic treatment of diffusion, we naturally incorporate an appropriate discrete 

version, JK
n>n+1 , of the hydrodynamic diffusion fluxes (8) into the discrete RDE’s (1). We have 
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utilized discrete forms

JK
n>n+1 = -Wdiff PK

n,n+1 Δ<Xn> with Δ<Xn> = <Xn+1>-<Xn> for K=A or B, (19)

with PK
n,n+1 = 1 if <Xn><Xn+1> = 0. For <Xn><Xn+1> ≠ 0, one standard choice would set 

PK
n,n+1 = ½ (<Kn>/<Xn> + <Kn+1>/<Xn+1>). (20)

However, other reasonable choices have the form PK
n,n+1 = <Kn,n+1>/<Xn,n+1> where <Kn,n+1> = 

½ (<Kn>+<Kn+1>), or 2<Kn><Kn+1>/(<Kn>+<Kn+1>)], or √<Kn>√<Kn+1>. Analysis of evolution 

typically finds only small differences between results from these different choices.

One case requiring special treatment is where just the central sites are catalytic. Then, there is

a sharp boundary between a central region with finite population of B and peripheral regions 

devoid of B (in a continuum treatment). Choice (20) produces a substantial B-flux from the site 

just outside to that just inside the catalytic region, producing an unphysical negative B-

concentration for the former. The same behavior occurs to varying degrees in the other choices. 

However, in our analysis, we eliminate this problem by setting to zero the B-flux between these 

two sites (and identifying the A-flux with the total particle flux). 

As an aside, for the continuum MF diffusion flux (9), a standard numerical PDE treatment 

would implement various discretizations, e.g., analogous to (20). However, our analysis starting 

with the discrete master equations and applying a factorization approximation suggests the 

natural form

JA
n>n+1(MF) = -Wdiff [(1-<Bn>)Δ<An>  + <An>Δ<Bn>]. (21)

Appendix C: Mean-field Behavior as Wdiff→∞

The MF prediction for Wdiff→∞ of spatially uniform concentration profiles enables simple 

analysis of the MF steady-state. Summing all of the equations for <An> implies 

0 = d/dt (Σn <An>)
   = Wads(<E1>+<EL>) –Wdes(<A1>+<AL>) – Wrx (Σn <An>) + (Σn JA

n>n+1=0),
(22)

where Σn JA
n>n+1=0 by symmetry. Consequently, using spatial homogeneity yields



34

<An>|MF = 2Wads Eeq/(2Wdes + LWrx) ~ 1/L where Eeq = Wdes/(Wads+Wdes). (23)

 and <An>|MF + <Bn> |MF = Xeq=1-Eeq. Thus, the MF total reactivity, Rtot
MF = WrxL<An>|MF, 

converges like 1/L, as L→∞, rather than displaying the correct exponential convergence.

Appendix D: Scaling Forms for Pore Filling

For the total concentration X(x,t), substitution of the form X(x,t) ≈ F(x/(Dxt)1/2) into the 

standard diffusion equation yields 

-½ yF´(y) = F´´(y), (24)

which is satisfied by the “classic” erfc solution. Next, consider the scaling forms A(x,t) ≈ FA(x/

(Dxt)1/2, Wrxt) and B(x,t) ≈ FB(x/(Dxt)1/2, Wrxt) for the concentrations of A and B. Substitution into 

the hydrodynamic RDE yields

-½ y FA
1(y,u) + uFA

2(y,u) = - uFA(y,u) + K(FA, FB), and (25a)

-½ y FB
1(y,u) + uFB

2(y,u) = + uFB(y,u) + K(FB, FA), (25b)

where the subscripts 1(2) denote partial differentiation with respect to the first (second) variable 

y (u). The “diffusion terms” K have the form

K(FA, FB) = [1-FB]FA
11 + FAFB

11 (MF), and (26a)

K(FA, FB) = FA
1FB

1/F – FA (F)-2 (F1)2 + FA (F)-1 F11 (exact hydrodynamic). (26b)
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Abstract

Functionalized nanoporous materials have broad utility for catalysis applications. However, the 

kinetics of catalytic reaction processes in these systems can be strongly impacted by the anomalous 

transport. The most extreme case corresponds to single-file diffusion for narrow pores in which species 

cannot pass each other. For conversion reactions with a single-file constraint, traditional mean-field-

type reaction-diffusion equations fail to capture the initial evolution of concentration profiles, and they 

cannot describe the scaling behavior of steady-state reactivity. Hydrodynamic reaction-diffusion 

equations accounting for the single-file aspects of chemical diffusion can describe such initial 

evolution, but additional refinements are needed to incorporate fluctuation effects controlling, e.g., 

steady-state reactivity localized near pore openings.

1 Introduction

Advances in the synthesis of functionalized porous materials, either microporous zeolites 

(aluminosilicates) or mesoporous silica nanoparticles (MSN), have provided significant opportunities 

for development of new catalytic systems [1-4]. Pore diameters for zeolites are in the range of 1-2 nm 

[1] and those for MSN range from 2-10 nm [2]. Our focus is on the regime of small pore diameters no 

larger than ~2 nm. We note that the effective diameter for pores in MSN can be even smaller than the 

nominal ~2 nm minimum after functionalization with catalytic sites. Clearly, small pore diameters 

provide mechanism for selectivity. However, it is also the case that diffusive transport within such 
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pores can be severely restricted. In the extreme case, transport within one-dimensional (1D) 

linear pores corresponds to so-called single-file diffusion where molecules cannot pass each 

other. Naturally, there have been extensive studies of transport in single-file systems, often 

emphasizing the anomalous nature of tracer- or self-diffusion [5,6]. This anomaly is reflected in a

sub-linear increase with time in mean-square displacement of a specific “tagged” particle [7,8]. 

Such behavior contrasts the linear increase for conventional diffusion. However, of additional 

interest for catalysis, and the focus of this contribution, is the interplay between this type of 

anomalous transport and the catalytic reaction kinetics.

The above examples constitute special class from amongst general reaction-diffusion 

processes, which are traditionally described by mean-field reaction-diffusion equations (RDE) 

[9,10]. These RDE include a conventional mean-field treatment of chemical kinetics which 

ignores spatial correlations in the reactant distribution. These RDE typically also include a 

simplified treatment of chemical diffusion with constant Fickian diffusion coefficients and 

independent transport of different species. Note that chemical or collective diffusion describes 

the diffusion flux induced by concentration gradients [11] and is distinct from tracer diffusion 

mentioned above. We remark that heterogeneous catalytic reactions on two-dimensional (2D) 

surfaces have been effectively treated by mean-field RDE [12]. However, it is well recognized 

that interactions between chemisorbed reactants can produce islanding or ordering, and thus non-

mean-field kinetics [13]. The complexities of diffusion in mixed reactant adlayers are less 

appreciated [14]. Nonetheless, such complications can be appropriately treated by realistic 

atomistic-level modeling [15,16]. 

In contrast, for 1D nanoporous reaction-diffusion systems, there is a broad appreciation of 

complexities of diffusion as well as analysis of certain aspects of chemical (as well as tracer) 

diffusion [6,17,18]. There has also been some development of approximate RDE for simple 

catalytic reaction models [19-21]. One might anticipate that the restricted nature of transport in 

these systems (as well as interactions between reactants) could induce spatial correlations in the 

reactant distributions, and thus deviations from mean-field reaction kinetics. The nature of the 

reaction kinetics, and also the interplay with chemical diffusion, have been explored in some 

simulation studies [19-25]. However, such analyses are limited and the current understanding is 
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far from complete. Thus, the goal of this contribution is to provide a perspective on recent 

developments and also to contribute new results in the analysis of catalytic conversion and 

polymerization reactions in nanoporous single-file systems.

Conversion reactions (A→B) in 1D nanoporous systems with single-file diffusion have been 

the subject of the most extensive analyses [19-26]. It should be emphasized that for systems with

inhibited passing or a strict single-file constraint, the key factor impacting reactivity is the extent 

to which reactants and products A and B can pass each other. The influence on reactivity of the 

extent of passing of reactants A with each other, and products B with each other, is relatively 

minor. One general expectation emerging already from earlier studies of a generic A→B 

conversion model with single-file diffusion [24] is that reactivity is localized near the pore 

openings. Various single-file conversion reactions have been considered in zeolites, including a 

detailed study of Pd-catalyzed neopentane conversion [25]. Our motivation here comes from 

studies of various conversion reactions, such as Beckman rearrangement [27,28], in 

functionalized MSNs with narrow pores. In some cases, the effective diameter of the pores is 

reduced below 2 nm by functionalization with the catalytic group. Then, larger reactant and 

product species cannot pass, at least not without difficulty due to the need for orientational 

alignment with each other and with the pore axis. We are also interested in more general catalytic

transformations involving two reactants (A+A´→B) subject to inhibited passing or a strict single-

file constraint for A and B. These processes can be analyzed using the simpler A→B conversion 

models provided that A´ is sufficiently small so that it can readily pass both A and B, and 

provided that A´ is present in excess. Examples of this type might the nucleophilic catalytic 

reactions in MSNs functionalized with the bulky dialkylaminopyridine (DMAP-MSN) [29], and 

the Diels-Alder reaction in urea or thiourea-functionalized MSN [30]. As discussed further 

below, of particular interest for our modeling of the effects of anomalous transport is a study of 

the conversion of p-nitrobenzaldehyde (PNB) to an aldol compound in amine-functionalized 

MSN where the dependence of reactivity on effective pore diameter has been quantified [31]. 

Fundamental questions for these conversion reactions still requiring resolution include:

(i) How does overall reactivity depend on basic parameters such as the intrinsic rate of 

reaction for reactant species in the vicinity of a catalytic site and on species mobility within the 
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pore?

(ii) How does the propensity for passing of various reactant and product species within the 

pore (which depends strongly on pore diameter) affect the overall reactivity?

(iii) How does the distribution of catalytic sites affect overall reactivity, particularly catalytic 

functionalization restricted to near the pore openings versus uniformly throughout the entire 

pore?

(iv) To what extent can the evolution of concentration profiles and thus reactivity be 

described within a traditional deterministic mean-field-type RDE picture as opposed to being 

controlled by stochastic effects (e.g., fluctuations in numbers of adsorbing and desorbing species 

at the pore openings).

(v) Can shortcomings of traditional RDE approaches be overcome by refined treatments?

In this study, we consider simple A→B and sequential A→B→C conversion reaction 

mechanisms, and provide new insights and modeling strategies addressing the above issues. 

In Sec.2, we describe the conversion reaction models analyzed in this study, together with the

hierarchical form of the associated exact master equations. In Sec.3, we present hydrodynamic 

RDE formulations for continuous coarse-grained versions of the models. Precise results from 

KMC simulations are compared with predictions from various analytic formulations in Sec.4. 

Conclusions are provided in Sec.5.

2 Conversion Reactions: Models and Master Equations

2.A. Models

First, we describe a general class of models for the diffusion-mediated catalytic conversion of

a reactant to a product (A → B) inside narrow pores. Reactants and products are localized to sites

of a 1D linear lattice traversing the pore, or more generally to sites on a ladder (see Fig.1). The 

separation between adjacent sites is given by the lattice constant “a” which is selected to be 

comparable to the reactant and product size (~1 nm). The simplest scenario for diffusion is that A

and B hop to adjacent empty sites. This prescription corresponds to single-file diffusion with a 

strict no-passing constraint on the 1D linear lattice, but not on the ladder. One could allow 
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positional exchange of adjacent A and B on the 1D linear lattice to relax the strict single-file 

constraint, noting that exchange of adjacent particles of the same type has no effect. (Allowing 

longer hops over other particles would also relax the constraint.) On the other hand, one could 

impose a nearest-neighbor (NN) exclusion constraint on the linear ladder which would enforce 

no-passing. One has considerable flexibility treating diffusive dynamics! The other mechanistic 

steps in the model are: adsorption of external reactant species A at terminal sites of the pore 

provided that these sites are unoccupied or empty (E); conversion A → B at catalytic sites (c) 

within the pore; and desorption of both the reactant, A, and product, B, from terminal sites of the 

pore. The catalytic sites may constitute all sites or various subsets of sites within the pore. These 

mechanistic steps and a configuration with catalytic sites just near the pore openings are also 

illustrated in Fig.1. The total reactivity (i.e., the total production rate of B) is proportional to the 

total amount of A within the catalytic regions of the pore. Sequential conversion reactions, e.g., 

A→B→C, could also be considered.

Figure 1: Schematic of the A→B conversion reaction (rxn) model with hopping
only to NN empty sites within a pore described by: (a) a 1D linear lattice (no

passing); (b) a ladder-like lattice (passing). Here, only sites near pore ends are
catalytic “c”, and desorption and hopping rates for A and B are equal; n labels

sites in the direction along the pore axis.

2.B. Hierarchical master equations

We first formulate our model for a general sequential conversion reactions A→B→C→. . .  
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(including A→B as a special case) on a linear lattice. Sites in the pore are labeled by n=1, 2,…, L

(for pore length L), so that the terminal sites are n=1 and n=L. Allowing only hopping to NN 

empty sites results in strict single-file diffusion, but this constraint is relaxed if one includes 

exchange of NN particles. Rates for the various processes will be denoted by: Wads(A) = Wads for 

adsorption of A; Wdes(K) for desorption of species K=A, B,...; Wdiff(K) for hopping to NN empty 

sites for K; Wex(K|K´) for exchange of NN K and K´; and Wrx(A) for A→B conversion, etc.. An 

exact analytical description of such stochastic Markov processes is provided by the master 

equations for the evolution of probabilities of various configurations for the entire system [32]. 

Often these are written in hierarchical form [19-23]. Here, we use <Kn> to denote the probability

or ensemble averaged concentration for species K at site n, <KnEn+1> for the probability that K is 

at site n and for site n+1 to be empty (E), etc.. Then, the lowest-order equations in the hierarchy 

describe the evolution of the probabilities for individual sites to be occupied by various species. 

For just A→B conversion in the case where all sites are catalytic, one has that

d/dt <A1> = Wads<E1> - Wdes(A)<A1> -Wrx(A)<A1> - JA
1>2, (1a)

d/dt <B1> = - Wdes(B)<B1> +Wrx(A)<A1> - JB
1>2, (1b)

d/dt <An> = -Wrx(A)<An> - JA
n>n+1 + JA

n-1>n, for 1<n<L, (1c)

d/dt <Bn> = +Wrx(A)<An> - JB
n>n+1 + JB

n-1>n,  for 1<n<L, (1d)

together with equations for the terminal site n=L similar to those for n=1. In these equations, 

JA
n>n+1 = Wdiff(A)[<AnEn+1> - <EnAn+1>] + Wex(A|B)[<AnBn+1> - <BnAn+1>], (2)

denotes the net flux of A from site n to n+1. The expression for JB
n>n+1 is similar. The total rate of 

production of B is given by RB
tot = Wrx(A) Σn=c<An>, where the sum is over all catalytic sites (i.e.,

over all sites in this example). 

It is instructive to consider the special case where Wex(A|B) = Wdiff(A), so that transport of A 

including passing of B is completely unhindered (in some sense the opposite of a strict single-file

constraint). Then, it follows that (2) reduces exactly to JA
n>n+1 = Wdiff(A) [<An> - <An+1>]. An 

analogous exact reduction of diffusion fluxes was demonstrated by Kutner [33] for a single-
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species system. 

The equations (1) are coupled to probabilities for various configurations of site pairs. 

Equations for pair probabilities couple to those for triples, etc., thus generating a hierarchy. Pair, 

triplet, etc., probabilities are not simply related to single-site probabilities due to spatial 

correlations deriving from the reaction-diffusion process. A simple mean-field (MF) factorization

approximation, <KnEn+1> ≈ <Kn><En+1>, etc., produces a closed set of discrete reaction-diffusion 

equations (dRDE) for single-site concentrations, <An> and <Bn>, noting that <An> + <Bn> + 

<En> =1. A higher-level pair approximation retains pair quantities like <KnEn+1>, but factorizes 

triplet quantities, e.g., <KnMn+1Nn+2> ≈ <KnMn+1><Mn+1Nn+2>/<Mn+1>, with K, M, N = A, B, or E. 

This generates a closed set of equations for single-site quantities, <An> and <Bn>, and the pair 

quantities, <KnMn+1>, with K, M = A or B [19-23]. Such approximations should not be expected 

to accurately capture all features of single-file diffusion. It is straightforward to generalize the 

exact master equations and approximations to the case of more general sequential conversion 

reactions A→B→C→…

Similar to previous studies of the A → B reaction [20-23], we will explore this and the more 

general reaction A→B→C for a parameter choice where the desorption rates and diffusion rates 

are equal for all species, i.e., Wdes(K) = Wdes and Wdiff(K) = Wdiff, for K = A, B, and C. There is an

important consequence of this rate choice. Suppose one does not discriminate between the 

identity of particles, but only considers whether sites are empty, E, or filled, X=A+B+…. Then, 

the particle dynamics corresponds to a pure adsorption-desorption-diffusion process for particles 

X with no reaction. Thus, the single-site concentrations, <Xn>, satisfy a standard discrete 

diffusion equation with constant (concentration-independent) diffusion coefficient [20,22,33,34]. 

Since there is no reaction in the dynamics of particles X, the steady-state corresponds to a 

conventional Gibbsian grand canonical equilibrium state. Furthermore, since there are no 

interactions between particles X at different sites, they are randomly distributed in this 

equilibrium state (i.e., there are no spatial correlations). The equilibrium concentration at each 

site satisfies <Xn>eq = Xeq = Wads/(Wads+Wdes) [19-22]. Below, we always choose Wads + Wdes =1 

which sets the time-scale.
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3 Conversion Reactions: Hydrodynamic Regime

In discrete LG reaction-diffusion systems, it is common to consider behavior in the 

“hydrodynamic regime” where there is sufficient diffusion to produce slowly varying particle 

concentrations over several lattice constants [12,14,35]. This treatment applies to models where 

the particles are confined either to a linear lattice or to more general ladder-like lattices.

3.A. Hydrodynamic reaction-diffusion equations

In the hydrodynamic regime, behavior is described by continuum hydrodynamic reaction-

diffusion equations (hRDE) after coarse-graining. Specifically, for linear or ladder lattices, one 

sets x = na, where n is the lattice site label in the direction along the pore. Then, species 

concentrations per unit length become functions of a continuous variable K(x=na) ≈ a-1 <Kn> 

(leaving t-dependence implicit). Thus, Xm=1/a corresponds to the maximum concentration per 

unit length. Below, we set a=1.

The hRDE in our A→B conversion reaction model with all sites catalytic for individual 

species concentrations, A(x) for A, and B(x) for B (leaving implicit the t-dependence), have the 

form

∂/∂t A(x) = -Wrx(A) A(x) - ∂/∂x JA, (3a)

∂/∂t B(x) = +Wrx(A) A(x) - ∂/∂x JB. (3b)

The total concentration satisfies X(x) = A(x)+B(x), and E(x) = 1-X(x) gives the concentration

of empty sites. If sites within the pore are catalytic only in specific regions (e.g., the peripheral 

regions), then the reaction terms appear only for those locations. Boundary conditions for (3) at 

the pore ends reflect the adsorption-desorption dynamics [22]. Description of the diffusion 

fluxes, JK, for K = A and B is non-trivial for this mixed lattice-gas, even in the absence of 

interactions beyond site-exclusion. However, Onsager transport theory [17,18,35] ensures that, 

e.g., the diffusive flux of A has the form

JA = - DA,A ∂/∂x A(x) - DA,B ∂/∂x B(x), (4)

where the diffusion coefficients DA,K generally depend on species concentrations. A similar 
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expression applies for the flux, JB, of B. One simple case allows exchange of A and B with 

Wex(A|B) = Wdiff(A), i.e., unhindered transport of A including passing of B, as discussed in 

Sec.2B. Then, it follows that DA,A = a2Wdiff(A) and DA,B =0, i.e., the presence of B does not 

interfere with the diffusion of A.

We will compare predictions of a discrete form of these RDE with results from KMC 

simulation. The appropriate discretization of the reaction kinetics is clear (e.g., from the exact 

master equations) [22], and that for the diffusion fluxes is mentioned below. The above 

formulation naturally extends to sequential conversion reactions, e.g., A→B→C.

3.B. Diffusion fluxes for species-independent hop rates

Here, we consider the case of non-interacting lattice-gases (with exclusion of multiple site 

occupancy) with two components A and B on linear or ladder lattices and with equal hop rates to

NN empty sites, so that Wdiff(A) = Wdiff(B) = Wdiff, and where exchange can be operative at rate 

Wex = Wex(A|B). Then, in the hydrodynamic regime, one has that [35-38]

JA = - X(x)-1[DX A(x) + B(x) Dtr(X)] ∂/∂x A(x) 
       – X(x)-1A(x) [DX – Dtr(X)] ∂/∂x B(x)
    = -DX [A(x)X(x)-1] ∂/∂x X(x) 
       -Dtr(X) X(x)-1 [B(x) ∂/∂x A(x) – A(x) ∂/∂x B(x)],

(5)

with DX = a2 Wdiff [39]. An analogous expression applies for JB. Dtr = Dtr(X) represents the tracer 

diffusion coefficient for a tagged particle within a dense single-component lattice-gas of 

concentration X=X(x) with hop rate of Wdiff to NN empty sites, and where all NN pairs of 

particles can exchange with rate Wex. For systems with no single-file constraint, e.g., due to 

exchange with adjacent particles on a 1D linear lattice, or due to a ladder-like lattice model of 

pore structure, Dtr = Dtr(X) is non-zero and depends in a non-trivial way with X=X(x). It should 

decrease from DX to 0 as X increases from 0 to 1. In the special case of unhindered exchange 

with Wex = Wdiff, one has that Dtr(X) = DX for all X. In this case, (5) reduces to JA = -DX ∂/∂x A(x)

consistent with the analysis of this simple case in Sec.3A.

Next, we describe the form of these diffusion fluxes for a linear lattice constituting a strict 

single-file system for different choices of Dtr. In the hydrodynamic limit for large systems, one 
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has the exact result Dtr(X) = 0. This is a consequence of the anomalous nature of the diffusion of 

a tagged particle. Then, (5) gives the exact hydrodynamic (h) diffusion fluxes [22]

JK(h) = -DX [K(x)/X(x)] ∂/∂x X(x), for K = A or B. (6)

This result follows directly from (5) and is also intuitively clear. The JK must sum to the total 

diffusion flux which satisfies JX = -DX ∂/∂x X(x) for this non-interacting lattice-gas, and the 

individual fluxes are in proportion to the local species concentrations. 

The mean-field (MF) treatment for a single-file system sets Dtr(X) = DX [1 – X] which yields 

chemical diffusion fluxes with the form

JA(MF) = -DX [1 - B(x)] ∂/∂x A(x) -DX A(x) ∂/∂x B(x), (7)

and an analogous expression applies for JB(MF). This result has been obtained previously by 

making simple MF-approximations for the conductivity in Onsager’s transport theory [17,18,40],

and also from coarse-graining of a MF approximation to the discrete hierarchical master 

equations [20,22,41]. This MF form (7) can produce artificially high diffusion fluxes relative to 

(6). 

Finally, we introduce a perturbed hydrodynamic (ph) treatment for a single-file system which

is intended to account for finite system size (i.e., finite pore length, L). We first note that the 

tracer diffusion for finite 1D systems of L sites with periodic boundary conditions satisfies Dtr = 

Dtr(X, L) = X-1[1–X]DX/(L-1) where the concentration is restricted to X = m/L for m particles in 

the system [42]. For finite open systems of L sites where transport is not limited by adsorption-

desorption at the pore ends, we use the effective form

Dtr(X, L) ≈ [1–X]DX/[1 +X(L-1)]. (8)

This choice is motivated by analogous expressions for Dtr applied in the analysis of 

membrane transport [43], and by noting that (8) recovers the desired results that Dtr → 0 as 

X→1, and Dtr→DX as X→0. The requirement that transport is not adsorption-desorption limited 

in our modeling will be met by restricting consideration to cases where Wads + Wdes ≥ Wdiff. In our

perturbed hydrodynamic treatment, we incorporate the expression (8) into the general form (5) 

for JK = JK(ph). 
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The steady-state of our model has a constant particle concentration, X(x) = Xeq = Wads/

(Wads+Wdes). Thus, for the case of a single-file system treated above, the steady-state diffusion 

fluxes have the form

JK(h)→0,  JK(MF) → -DX(1-Xeq) ∂/∂x K(x), and JK(ph) → -Dtr(Xeq) ∂/∂x K(x), (9)

as X(x) → Xeq (constant). In the hydrodynamic treatment, this result implies that the pore is 

populated only by the product B if all sites are catalytic; the pore can have non-trivial frozen 

concentration distributions in regions with no catalytic sites. These artificial features are erased 

in the perturbed hydrodynamic treatment. One anticipates that the mean-field treatment results in

artificially large diffusion fluxes in the steady-state.

As noted above, we will compare the predictions of discrete versions of various RDE with 

results of KMC simulation for both transient and steady-state behavior. To this end, one must 

implement a natural discrete version of the diffusion fluxes. For the MF approximation, this is 

automatically provided from the master equations, and for other cases we utilize choices 

described elsewhere [22].

4 Conversion Reactions: KMC and Analytic Results

4.A. All sites catalytic (A→B)

Here, we highlight the key features of steady-state behavior for our single-file A→B 

conversion reaction model, the shortcomings of popular mean-field treatments in describing this 

behavior, and the potentially far higher reactivity of systems with no single-file constraint. Our 

parameter choice is Wads = 0.8, Wdes = 0.2 (so Xeq = 0.8), Wdiff = 1, with fairly low reaction rate 

Wrx = Wrx(A) = 0.001 which will amplify the above differences, for a pore of length L=100. To 

analyze behavior, it is instructive to introduce the concept of a penetration depth, Lp, for reactant 

A. In the steady-state, one typically finds a roughly exponential decay of the concentration <An> 

~ exp(-n/Lp) into the pore for n<<L/2, with possible deviations for the first few sites n=1,2,…. 

[20,22]. Determination of Lp allows an assessment of steady-state reactivity since RB
tot ~ Wrx(A) 

Lp. Fig.2a shows steady-state concentration profiles for single-file diffusion noting that <Xn> = 

<An>+<Bn> = Xeq = 0.8 for all n. The small penetration for the exact KMC results (thickest line) 
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with Lp(KMC) ≈ 2.6 reflects single-file effects where the center of the pore is devoid of reactant 

and thus does not contribute to RB
tot. The MF prediction, Lp(MF) ≈ 14.1, greatly overestimates Lp 

due to artificial intermixing of A and B, and the pair approximation (not shown) does only 

slightly better with Lp(pair) ≈ 9.3. The hydrodynamic treatment predicts essentially no 

penetration of the pore, and the perturbed hydrodynamic treatment does only slightly better with 

Lp(ph) ≈ 1.6. None of these analytic treatments reliably captures behavior near the pore ends 

which is controlled by fluctuations in adsorption-desorption processes (a feature completely 

neglected in the standard hydrodynamic treatment).

Figure 2: Steady-state concentration profiles
for the A→B reaction for all sites catalytic:

Wads = 0.8, Wdes = 0.2, Wdiff = 1, Wrx(A) = 0.001,
and L=100. (a) Single-file diffusion: KMC, MF
and perturbed hydrodynamic results are shown
as thick, moderate, and thin lines, respectively.
(b) Unhindered passing (exact results). Solid

blue lines <An>; dashed red lines <Bn>.

To further understand the shortcomings of analytic theories, we note that the MF, pair, and 

also higher-order triplet, etc. [44] approximations naturally predict a functional dependence Lp ~ 

(Wrx/Wdiff)-1/2 for Wrx/Wdiff <<1. The perturbed hydrodynamic treatment actually predicts the same

dependence, but with a much smaller prefactor. In contrast, simulation analysis (details not 

shown) indicates distinct non-MF behavior, Lp ~ (Wrx/Wdiff)-n for Wrx/Wdiff <<1, where n ≈ 1/3 

[45].

Finally, we contrast single-file behavior with that for unhindered passing of A and B which 

can be determined analytically using the exact form of the fluxes JK
n>n+1 described in Sec.2B. 

Fig.2b reveals a far greater penetration of reactant, A, into the pore in this case with Lp ≈ 31. This
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feature and the associated higher reactivity are expected given the more facile diffusive transport 

[24].

4.B. All sites catalytic (A→B→C)

In Fig.3, we show the time-evolution toward the steady-state for a pore of length L=25, for 

the single-file A→B→C sequential conversion reaction where all sites are catalytic, Wads =0.2, 

and all species have the same hopping and desorption rates, Wdes = 0.8, and Wdiff = 1. We choose 

Wrx(A) = 0.4 and Wrx(B) = 0.2 low enough to ensure a significant population of A and B in the 

pore, but high enough so that center of pore is exclusively populated by C. Note that steady-state 

profiles for A and B are achieved quickly, but subsequent filling of the pore center (essentially 

just by C) occurs on a slower time scale. The steady-state has <An> + <Bn> + <Cn> = Xeq = 0.2 

for all n, but the hydrodynamic treatment would incorrectly predict that all interior sites are 

populated only by C with <Cn> = 0.2. The perturbed hydrodynamic treatment is closer to the 

KMC results, but cannot correctly predict the extent of penetration of A and B into the pore. The 

mean-field and pair approximations capture the exact KMC behavior quite well in this case, but 

only because all rate parameters have similar magnitude.

Next, we consider transient behavior associated with filling of a very long (semi-infinite) 

pore for the single-file A→B→C reaction with all sites catalytic and the above parameters. 

Recall that the total concentration satisfies a standard discrete diffusion equation which reduces 

to the conventional continuum equation in the hydrodynamic regime. Thus, total concentration 

profiles collapse onto a single curve for increasing t after rescaling the n-axis by (Wdiff t)1/2. 

However, to achieve non-trivial scaling species profiles with significant populations of all 

species inside the pore, it is necessary to reduce the reaction rates as time is increased so that 

Wrx(K)·t remains constant for all K. See Ref.[22]. More precisely, we find scaling solutions for 

the individual species concentrations of the form

<Kn(t)> ≈ Xeq FK(n/(Wdiff t)1/2, Wrx(A)t, Wrx(B)t), for K = A, B, and C, (10)

where FA(y,u,w) + FB(y,u,w) + FC(y,u,w) = F(y) = erfc(y/2). Here, erfc is the complementary error

function and corresponds to the scaling solution for the classic non-reactive diffusion problem 

for a semi-infinite system [46]. Substitution of (12) into the hydrodynamic reaction-diffusion 
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equations (3) consistently yields a closed coupled set of partial differential equations for the 

FK(y,u,w) (cf. [22]).

The observations above on fluctuation effects suggest that: (i) The MF and pair 

approximations should capture fluctuation-dominated behavior better for shorter t when most 

particles are close to the pore opening. (ii) The hydrodynamic treatment should better describe 

behavior for longer t where concentration profiles are smooth and broad. Indeed, this is the case 

as shown in Fig.4 where Wads = 0.2, Wdes = 0.8, Wdiff = 1, and Wrx(B) = 0.5Wrx(A) with fixed 

Wrx(A)·t=4. The peaks in <Bn> (<Cn>) of around 0.05 (0.03) in the MF and pair approximations 

match KMC results for smaller t (larger Wrx), but these values persist for longer t. In contrast, the

peak in <Bn> (<Cn>) in the hydrodynamic treatment increases to about 0.09 (0.07) in good 

agreement with KMC results for longer t (smaller Wrx).

Figure 3: Concentration profiles for the A→B→C reaction for all sites catalytic: Wads = 0.2, Wdes

= 0.8, Wdiff = 1, Wrx(A) = 0.4, Wrx(B) = 0.2, and L=25. Solid blue lines <An>; short-dashed green
<Bn>; short-dashed red <Cn>; dotted black <Xn> =<An> +<Bn> +<Cn>. (a) KMC simulation;
(b) perturbed hydrodynamic treatment; (c) MF and (d) pair approximations. t = 100, 200, 300,

and 400 where <Xn> and <Cn> increase with t.

4.C. Peripheral sites catalytic (A→B)

We consider behavior for the A→B reaction for situations where contiguous strings of sites at

each end of the pore are catalytic, but not those in the center. This type of distribution might 

result when catalytic sites are created by grafting after formation of a mesoporous material, in 

contrast to a co-condensation process [3]. An example of the results of KMC simulations for 

evolution to the steady-state is shown in Fig.5. The parameter choice is Wads = 0.8, Wdes = 0.2 (so 

Xeq = 0.8), Wdiff = 1, and Wrx = 0.001, for a pore of length L=100 (as in Sec.4A) with just 20 

catalytic sites at each end
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Figure 4: Scaled concentration profiles near the end of a semi-infinite pore for the A→B→C
reaction with for all sites catalytic during pore filling: Wads = 0.2, Wdes = 0.8, Wdiff = 1, Wrx(B) =

0.5Wrx(A) with fixed Wrx(A)·t=4. (a) KMC for Wrx(A)= 0.01, 0.0001, 0.000001. (b)
hydrodynamic, (c) MF, and (d) pair approximations for Wrx(A)= 0.1, 0.01, and 0.001. Solid blue

lines <An>; short-dashed green <Bn>; short-dashed red <Cn>; dotted black <Xn> (an erfc
curve). B and C profiles increase (A decreases) with t.

Characterization of behavior is naturally divided into distinct regimes. First, in the pore-

filling regime, some A successfully “runs the gauntlet” avoiding reaction in the peripheral 

catalytic regions and diffuses into the central non-catalytic region (Fig.5a). Second, after pore 

filling where <Xn> ~ Xeq ~ constant, a metastable regime persists for ~103-104 time units. In this 

regime, there is a peak in the quasi-static concentration of A (i.e., a “blob” of A) in the center of 

the pore. Third and finally, there is a slow relaxation regime, where the population of A in the 

center of the pore decreases leading to the true steady-state where the pore center is almost 

devoid of A by t~106 (Fig.5b). In fact, the final steady-state is very similar to that for a pore of 

length L=100 with all sites reactive in Sec.4A (cf. Fig.2)..

Fig.6 compares the KMC simulation results with predictions of analytic treatments for a 

finite time corresponding to the end of the pore-filling regime. The standard hydrodynamic 

treatment reasonably describes concentration profile of the central A-blob in the KMC 

simulations, but evolves to a steady-state close to the profile shown. This “artificial” steady-state 

(which corresponds to the metastable state in the actual model), and a slight difference from 

KMC profile shape, derive from the neglect of fluctuations. In contrast, the MF and pair 

approximations (which incorporate artificially enhanced intermixing of A and B) fail completely 

to predict a significant peak in the concentration of A in central region. The pair approximation 

prediction (incorporating a somewhat better description of diffusion) is slightly closer to exact 

behavior. Significantly, the perturbed hydrodynamic treatment describes almost perfectly the 
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shape of the A-profile in the non-catalytic pore center. Furthermore, this treatment eliminates the 

artificial steady-state of the standard hydrodynamic treatment and effectively describes evolution

of concentration profiles in all three regimes (Fig.5c-d). The only shortcoming is in the 

description of concentration profiles near the pore ends (analogous to that noted in Sec.4A). 

Figure 5: Complete evolution of species
concentrations for the A→B reaction: Wads = 0.8,
Wdes =0.2, Wdiff =1, and Wrx =0.001, and L=100
with 20 catalytic sites at each end. Solid blue
lines <An>; dashed red <Bn>. Top row: (a,b)

KMC results. Bottom row: (c,d) perturbed
hydrodynamic treatment. Left column: (a,c) pore-
filling regime for t=1,5,10,20,40,60 (x102) where

<A50> grows. Right column: (b,d) late-stage
evolution for t = 1,5,10,20,40,60 (x104) where

<A50> decreases. Black dotted arrows are  in the
direction of increasing t.

Finally, we describe in more detail the nature of fluctuation-dominated evolution in the last 

slow relaxation regime. The “blob” of A formed in the central non-catalytic region during pore 

filling is not frozen, but undergoes anomalous diffusion due to fluctuations allowing it to reach 

the peripheral catalytic regions. Eventually, essentially all of the A in this blob will be converted 
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to B after a number of “collisions” with the catalytic regions. See Fig.7 for snapshots of this 

behavior from KMC simulations. 

Figure 6: Behavior at the end of the pore-filling regime t ≈ 6000 for the A→B reaction: Wads =
0.8, Wdes =0.2, Wdiff =1, Wrx =0.001, and L=100 with 20 peripheral catalytic sites. Solid blue

lines <An>; dashed red lines <Bn>. A in the pore center “ran the gauntlet” past catalytic
regions. (a) KMC; (b) perturbed hydrodynamic; (c) hydrodynamic treatments; (d) MF (thicker

lines), pair (thinner lines) approximations.

5 Summary and Conclusions

There have been several previous experimental and theoretical studies of catalytic 

conversion reactions in single-file systems primarily motivated by catalysis in zeolites. A picture 

has emerged for these systems of low reactivity localized near the pore openings, but a 

comprehensive and reliable theoretical framework is still lacking. Similarly, for conversion 

reactions in functionalized MSN with narrow pores where passing of reactants and products can 

be severely constrained, there is also a need to provide a sound theoretical and modeling 

framework to enable appropriate interpretation and detailed analysis of experiments. This need 

motivated the current contribution from which we can draw the several key observations 

regarding behavior in these systems:

(i) Dependence of reactivity on key rates, specifically rates for reaction (Wrx) and diffusion 

(Wdiff). The penetration depth, Lp, of reactant into the pore scales like Lp ~ (Wrx/Wdiff)-n for Wrx <<

Wdiff, where n ≈ 1/3. This is distinct from the prediction n=1/2 of commonly accepted mean-field-

type treatments. The scaling of Lp determines that of the overall reactivity since Rtot ~ Wrx Lp. As 

a consequence an Arrhenius analysis of reactivity, Rtot ~ exp[-E/(kBT)], for temperature T yields 

the Arrhenius energy E = (1-n)Erx + nEdiff, where Erx (Ediff) is the activation barrier for reaction 

(diffusion). 



54

Figure 7: Sequence of KMC configurations
(Δt=3000) for late-stage evolution in a pore
of length L=50 with 10 catalytic sites (gray)
on each end. Dark blue circles are A. Lighter

red circles are B. Parameters: Wads=0.9,
Wdes=0.1, Wdiff=1, and Wrx=0.0005. Higher

Xeq=0.9 makes the A-blob more visible.

(ii) Fluctuation-dominated reactivity. The above scaling behavior of Lp reflects the feature 

that reactivity in single-file systems is controlled by fluctuations in adsorption-desorption 

processes near the pore openings. This underlies the failure of both traditional mean-field (or 

related higher-order pair, etc.) approximations, as well as the standard or perturbed 

hydrodynamic treatments introduced here. 

(iii) Pore diameter dependence on reactivity. The overall reactivity increases dramatically 

upon relaxing the single-file constraint to allow some degree of passing of reactants and products

(see Fig.2). This feature translates into a strong increase of reactivity with increasing pore 



55

diameter. We are currently analyzing such behavior for the conversion of PNB to an aldol 

compound in the presence of acetone in MSN functionalized by catalytic amine groups. 

Experimental data is available for effective pore diameters ranging from 1.3 nm (very limited 

passing) to about 2.5 nm (facile passing) where these values account for both a reduction in 

diameter after functionalization by catalytic sites, and a further reduction during reaction by 

formation of a MSN-PNB adduct. A dramatic change from low to high yield is observed 

increasing pore diameter over this range [31].

(iv) Dependence on distribution of catalytic sites. Functionalizing pores with catalytic sites 

just in the peripheral regions near the openings can result in concentration profiles quite distinct 

from the case with the entire pore being catalytic: some reactant can “run the gauntlet” past 

catalytic end regions to form a robust long-lived “blob” in the unreactive interior region (which 

eventually dissipates). However, in terms of reactivity, there is little difference from the case 

where all sites are catalytic, so functionalizing just near pore openings suffices to obtain optimal 

reactivity.

(v) Predictive analytic formulations for spatiotemporal behavior. Appropriate description of 

chemical diffusion is key in these systems. Yet, there has been lack of recognition of the 

existence of an hydrodynamic form (5) for diffusion fluxes which captures aspects of single-file 

diffusion, and a lack of utilization of this form. Use of (5) incorporating simple form for tracer 

diffusion, Dtr, in finite systems captures almost perfectly the complex behavior described in (iv). 

For the fluctuation-dominated steady-state reactivity, preliminary analysis indicates the success 

of a treatment based on (5), with a heuristic form for Dtr varying from higher fluctuation-

dominated values near the pore ends to a lower single-file-controlled values in the pore interior. 

We have considered here only the case of species-independent hop rates and desorption rates,

in the absence of interactions between various species. Exploiting Onsager’s transport theory and

more general results for diffusion fluxes of the form (5), one can show that basic features of 

chemical diffusion carry over to more general cases where species have unequal hop rates and 

interactions. Again, fluctuations control aspects of evolution and steady-state reactivity near pore

openings, although some features of steady-state behavior differ from the case of species-

independent rates.
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In summary, utilization of the theoretical and modeling framework presented above for 

catalytic conversion reactions in single-file systems allows us to address and elucidate numerous 

key issues listed above. When applied to specific catalytic reactions in nanoporous systems, this 

will enable more sophisticated analysis and interpretation of experimental data.
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Abstract

We analyze the interplay between anomalous transport and conversion reaction kinetics in 

mesoporous materials functionalized with catalytic groups. Of primary interest is functionalized 

mesoporous silica containing an array of linear pores with diameters tunable from 2-10 nm, although 

functionalization can produce smaller effective diameters, d. For d < 2 nm, transport and specifically 

passing of reactant and product species within the pores can be strongly inhibited (single-file 

diffusion). The distribution of catalytic groups can also vary depending on the synthesis approach. We 

apply statistical mechanical modeling (utilizing spatially discrete stochastic lattice-gas models) to 

explore the dependence of reactivity on the extent of inhibition of passing of species within the pore, as

well as on the distribution of catalytic sites. 

1 Introduction

Functionalized mesoporous materials integrate the selectivity of homogeneous catalysts with the 

stability and separability of heterogeneous catalysts [1,2]. In the case of mesoporous silica, nanospheres

with diameters of the order of 100 nm are synthesized via a soft-templating technique wherein a silica 

precursor (TEOS) aggregates around a self-assembled array of cylindrical CTAB micelles. Removal of 

CTAB produces mesoporous silica nanospheres (MSN) with a hexagonal arrangement of parallel linear

nanopores with nominal pore diameters of around 2 nm or larger [3]. Control of surface properties is 
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achieved by functionalization with suitable anchored groups serving as catalysts, and sometimes 

by additional groups modifying selectivity by acting as “gatekeepers” near the pore openings [4],

or tuning activity (e.g., by strongly interacting with one of the products to alter the reaction 

equilibrium [5]).

Functionalization by grafting of these groups after formation of the MSN should produce a 

higher loading of catalytic groups near the pore openings and likely also populate the exterior 

surface. In contrast, co-condensation during nanosphere formation produces a more uniform 

distribution within the pores. For MSN, it is significant to note that functionalization can reduce 

the effective diameter, d, below 2 nm. Then, transport can be strongly inhibited. The extreme 

case of “no passing” of reactants and products corresponds to so-called single-file diffusion [6]. 

There have been extensive studies of single-file diffusion systems often motivated by studies 

of transport and catalytic reaction in zeolites [7]. Typically, these studies emphasize the 

anomalous nature of tracer- or self-diffusion, this anomaly being reflected in a sub-linear 

increase (vs. a conventional linear increase) with time in mean-square displacement of a specific 

“tagged” particle [6]. Our interest is in the interplay between this type of anomalous transport 

and the catalytic reaction kinetics. Such behavior is traditionally described by reaction-diffusion 

equations (RDE). However, characterization of chemical diffusion (rather than tracer diffusion), 

which provides key input to these equations, has received relatively little attention for quasi-

single-file systems. Its correct description is a non-trivial statistical mechanical challenge.

Our focus in this contribution is on simple first-order catalytic conversion reactions (A→B) 

in systems with linear nanopores. A key factor impacting reactivity is the extent to which 

reactants and products A and B can pass each other. Passing of A with other A (or B with B) is 

not significant. Several previous analyses exist for the case of single-file diffusion [8-15] 

revealing that reactivity is strongly localized near the pore openings in this case of no-passing 

[9]. A perception exists that a simple mean-field (MF) type treatment of chemical diffusion (see 

below) is adequate [11]. Unfortunately, this is not true in regimes with large variations in the 

magnitude of rates for various processes (e.g., low reaction versus diffusion rates). This feature 

motivated our development of an alternative “hydrodynamic” description of chemical diffusion 

which effectively captures the single-file constraint [13]. However, this formulation did not 
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incorporate finite-size or fluctuation effects, so additional refinement was necessary to achieve 

quantitative predictive capability [14,15]. We also note that an effective alternative for precise 

characterization of model behavior is Kinetic Monte Carlo (KMC) simulation. 

In this paper, we apply statistical mechanical modeling (adopting spatially discrete stochastic 

lattice-gas models) to analyze A→B conversion reactions in linear nanopores with inhibited 

transport. Specifically, we explore the dependence of reactivity on the extent of inhibition of 

passing of species within the pore, as well as on the distribution of catalytic sites. We focus on 

precise characterization of model behavior (as is readily achieved, e.g., by KMC simulation) 

rather than on the above-mentioned development of theoretical methodology.

2 Catalytic Conversion Reaction in a Linear Nanopore: LG Model

2.A. Stochastic lattice-gas (LG) reaction-diffusion model prescription

In our model for A→B conversion (see Fig.1), species within a pore are localized to sites (or 

cells) of a 1D linear lattice traversing that pore. The cell width “a” is selected as comparable to 

the species size (~1 nm). To describe the surrounding fluid, we extend the 1D lattice inside the 

pores to a 3D lattice outside. We specify “external” reactant and product concentrations in the 

surrounding fluid as <Aout> and <Bout>. These give the probabilities that sites or cells on the 3D 

lattice are occupied, where fluid cell occupation is assumed random due to efficient stirring. 

Figure 1: Schematic of the LG conversion reaction model illustrating processes within a single
pore (shaded light blue), as well as coupling to the surrounding fluid. ‘c’ denotes catalytic sites.

The simplest prescription for diffusion within the pores is that A and B hop to adjacent empty

(E) sites at rate Wdiff. This would correspond to single-file diffusion with a strict no-passing 

constraint. We also allow positional exchange of adjacent A and B at rate Wex = Wdiff Pex to relax 

the strict single-file constraint, noting that exchange of adjacent particles of the same type has no
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effect. The passing propensity, Pex = Pex(d), will increase with the effective pore diameter, d (from

Pex = 0 for d below a threshold where passing is strictly excluded due to steric effects, to Pex = 1 

for large d and unhindered passing). The other mechanistic steps in the model are: (i) Adsorption 

of external species at terminal sites of the pore at rate WA
ads = Wdiff <Aout> (WB

ads = Wdiff <Bout>) 

for the reactant (product), provided that these end sites are unoccupied or empty (E); (ii) 

Desorption of both the reactant, A, and product, B, from terminal sites of the pore at rate Wdiff 

provided that the fluid site just outside the pore is unoccupied (Eout). Since fluid sites are 

occupied with probability <Xout> = <Aout> + <Bout> = 1 - <Eout>, desorption of A and B occurs 

with effective rate Wdes = Wdiff <Eout>; (iii) Conversion A→B at catalytic (c) sites within the pore 

at rate Wrx; c-sites may occupy all or just some sites within the pore. See Fig.1. 

For our rates, the dynamics for particles X=A+B is a non-reactive diffusion process. In the 

steady state, sites are randomly occupied by particles, X, with probability Xeq = <Xout> [12].

2.B. Master equations and reaction-diffusion equations (RDE)

Sites within the pore(s) are labeled by n=1, 2,…, L (for pore length L), so terminal sites are 

n=1 and n=L. An exact description of our discrete reaction-diffusion model is provided by the 

master equations for the evolution of probabilities of various configurations within the pore. 

Often these are written in hierarchical form [8,11,12-14]. Here, we use <Cn> to denote the 

probability or ensemble averaged concentration for species C = A or B at site n, <CnEn+1> for the 

probability that C is at site n and for site n+1 to be empty (E), etc. Then, the lowest-order 

equations in the hierarchy describe the evolution of single-site occupancies. 

For A→B conversion in the case where all sites are catalytic, one has that [12-14]

d/dt <An> =  -Wrx<An> - JA
n>n+1, d/dt <Bn> =  +Wrx<An> - JB

n>n+1,  
for 1<n<L.

(1)

with separate equations for terminal sites reflecting adsorption-desorption boundary conditions 

(BC’s), e.g., d/dt <A1> = WA
ads <E1> - Wdes <A1> - Wrx <A1> - JA

1>2. In (1), we have defined the 

discrete derivative, Kn = Kn – Kn-1. The net flux, JA
n>n+1, of A from site n to n+1 is given by

JA
n>n+1 = Wdiff [<AnEn+1> - <EnAn+1>] + Wex [<AnBn+1> - <BnAn+1>]. (2)
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The expression for the net flux, JB
n>n+1, of B is analogous. In the special case Pex =1 where Wex

= Wdiff, transport of A including passing of B is completely unhindered (the opposite of single-

file diffusion). Then, (2) reduces exactly to JA
n>n+1 = Wdiff [<An> - <An+1>] = -Wdiff  <An> (cf. 

Ref. [16]). If some sites are not catalytic, then the reaction terms are absent for such sites. The 

total rate of production of B is given by RB
tot = Wrx Σn=c<An>, summing over all catalytic sites.

Equations (1) couple to various pair probabilities in (2). Pair probability evolution is coupled 

to triples, etc., producing a hierarchy. Pair, etc., probabilities are not simply related to single-site 

probabilities due to spatial correlations. A simple MF factorization approximation, <CnEn+1> ≈ 

<Cn><En+1>, etc., produces a closed set of discrete reaction-diffusion equations (dRDE) for 

single-site concentrations. A higher-level pair approximation retains pair quantities, but 

factorizes triplets, e.g., <CnMn+1Nn+2> ≈ <CnMn+1><Mn+1Nn+2>/<Mn+1>, with C, M, N = A, B, or E. 

This generates a closed set of equations for single-site and pair quantities [8,11,12-14].

For smoothly varying concentrations within the pore, it is natural to consider a coarse-

grained description where species concentrations per unit length are K(x=na) ≈ a-1 <Kn>, leaving 

the t-dependence implicit. Below, we set a=1. The continuum or hydrodynamic RDE (hRDE) for 

our A→B conversion reaction model with all sites catalytic then have the form [12-14]

∂/∂t A(x) = -Wrx(A) A(x) - ∂/∂x JA, ∂/∂t B(x) = +Wrx(A) A(x) - ∂/∂x JB. (3)

If only portions of the pore are catalytic, reaction terms appear just for those locations. BC’s 

for (3) at the pore ends reflect the adsorption-desorption dynamics [13]. Description of the 

diffusion fluxes, JC, for C = A and B is non-trivial. In the steady-state with uniform total 

concentration, Xeq, we write JC= -Dtr(Xeq) ∂/∂x C(x) where Dtr is a tracer diffusion coefficient [13-

15]. The MF treatment sets Dtr = (1 – Xeq)Wdiff [12,13] overestimating fluxes. In a classic 

hydrodynamic treatment, one has Dtr ~ Wdiff/L→0, as L→∞ [14], underestimating fluxes. Precise 

fluxes follow from a generalized hydrodynamic treatment where Dtr is enhanced near pore 

openings [15].
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3 Catalytic Reaction Kinetics: LG Model Predictions

3.A. Pore completely functionalized with catalytic sites

For the case where all sites within the pore are catalytic, Fig.2a compares steady-state 

concentration profiles for <An> and <Bn> versus n for single-file diffusion (Pex = 0), hindered 

passing of A and B with Pex = ¼, and completely unhindered passing (standard diffusion) where 

Pex = 1. Other model parameters are specified in the caption (reflecting the initial stages of 

reaction with no significant buildup <Bout>). The most dramatic feature is the strongly enhanced 

penetration of reactant into the pore with increasing propensity, Pex, of passing of A and B. 

Correspondingly, the reaction rate, RB
tot , increases strongly increasing Pex as shown in Fig.2c. 

Figure 2: Steady-state concentration profiles for model parameters L=100, Wrx = 0.001, Wdiff =
1, <Aout> = 0.8, and <Bout> = 0: (a) dependence on the propensity for passing of reactants and
products (Pex = 0, ¼, 1); A (B) is blue, solid (red, dashed); (b) comparison of exact profiles for
Pex = 0 (single-file diffusion) with those predicted by MF and pair approximations; A (blue) is

minimum and B (red) is maximum at the pore center. (c) Reaction rate, RB
tot(f), versus fraction of

conversion of reactant to product, f = (Xeq - <Aout>)/Xeq = <Bout>/Xeq, for Pex = 0, ¼, and 1.

Given our remarks on the short-comings of MF-type treatments of chemical diffusion, it is 

appropriate to show the extent of this failure for the above example for single-file diffusion. (The

MF treatment becomes more accurate with increasing Pex, and is actually exact for Pex =1.) Fig.2b

compares exact behavior with that obtained from the standard MF approximation and also the 

pair approximation. The MF approximation greatly overestimates diffusion fluxes in the steady-

state, and thus also the extent of penetration of reactant into the pore and the reactivity. The pair 

approximation, which at least approximately accounts for the effect of spatial correlations, shows

significant improvement over MF predictions, but is still far from precise.
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Next, we characterize behavior during the “extended reaction” for the above parameter 

choice as a significant fraction, f, of reactant outside the pore becomes converted to product. 

During the extended reaction, <Aout> decreases and <Bout> increases while <Xout> = <Aout> + 

<Bout> = 0.8 = Xeq remains constant. Thus, one has f = (Xeq - <Aout>)/Xeq = <Bout>/Xeq. Since the 

volume and thus the amount of reactant and product outside the pores far exceeds that inside, this

induces a separation of time scales in the system. The characteristic time for change of <Aout> far

exceeds that for relaxation to steady-state of the concentration distribution inside the pores. Thus,

one can perform a sequence of simulations for different values of conversion, f, to determine the 

associated reaction rate, RB
tot , then interpolate these results to obtain the variation of RB

tot during 

the extended reaction. This yields the complete kinetics for conversion of A to B.

The results of this analysis shown in Fig.2c reveal that the reaction rate decreases linearly as 

a function of f. This reflects the linearity of the governing master equations or RDE’s, together 

with linearity of the BC’s controlling input of reactants and products to the pore. This result 

means that it suffices to determine RB
tot(f=0) for negligible conversion, since then RB

tot(f) = (1-f) 

RB
tot(0). Then the reaction kinetics follow from d/dt <Aout> = -c RB

tot(0) <Aout> producing 

exponential decay of <Aout>. The constant c equals the number of pores in the system divided by 

the total number of 3D lattice sites associated with the fluid and by Xeq.

3.B. Functionalization only of pore ends with catalytic sites

Next, we consider the case where only the 20 sites at each end of a pore of length L=100 are 

catalytic. Other parameters are selected as above. For Pex=0, behavior is shown in Fig.3a. We find

that a significant amount of A entering the pore “runs the gauntlet” to reach the non-reactive 

central region without conversion to B [13,14]. Thus, at the end of the first stage of pore filling, a

significant blob of A remains in the pore center. Then, in a second much slower stage, this blob 

of A is converted to B via fluctuation-dominated diffusion from the center to the end reactive 

regions [14]. The pore center is devoid of A in the final steady-state. The profile is essentially the

same as that when all sites reactive given that the penetration of reactant is well below 20 sites.
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Figure 3: Steady-state concentration profiles for pores of length L=100 with just 20 catalytic
sites on each end: (a) Pex = 0 (single-file diffusion); (b) Pex = ¼; and (c) Pex = 1 (unhindered

diffusion). Profiles are shown for a time corresponding to the peak A-concentration in the pore
center, as well as for long time t = 60,000 [where the system reached the steady-state, or nearly

so for (a)]. Arrows indicate time evolution (e.g., reducing the A concentration in the pore
center). Other model parameters are: Wrx = 0.001, Wdiff = 1, <Aout> = 0.8, and <Bout> = 0.

For Pex = ¼ (Fig.3b), there is also a slight initial buildup of A in the pore center which 

diminishes for longer times. The final steady-state profile retains a significant uniform 

concentration of A in the center. This reflects the larger penetration of reactant (beyond 20 sites) 

for all sites reactive when Pex = ¼. The uniformity of the steady-state concentration in unreactive 

regions follows from the governing equations. For Pex = 1 (Fig.3c), the above trend is amplified, 

and now there is no transient maximum of concentration of reactant in the pore center.

4 Conclusions

The catalytic activity of mesoporous materials containing functionalized linear nanopores is 

shown to be strongly dependent of the propensity for passing of reactants and products within the

pores. Limited passing means that most of completely functionalized pores are actually 

catalytically unproductive, being filled with “trapped” product. For this reason, pores with only 

the ends functionalized will have the same reactivity (unless passing of reactants and products is 

sufficiently facile that the reactant can penetrate to the central region of the pore). 
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Abstract

Behavior of catalytic reactions in narrow pores is controlled by a delicate interplay between 

fluctuations in adsorption-desorption at pore openings, restricted diffusion, and reaction. This behavior 

is captured by a generalized hydrodynamic formulation of appropriate reaction-diffusion equations 

(RDE). These RDE incorporate an unconventional description of chemical diffusion in mixed-

component quasi-single-file systems based on a refined picture of tracer diffusion for finite-length 

pores. The RDE elucidate the non-exponential decay of the steady-state reactant concentration into the 

pore and the non-mean-field scaling of the reactant penetration depth.

1 Introduction

Anomalous tracer diffusion of a “tagged” particle in a single-file system, where particles within 

narrow pores cannot pass each other, was proven in the 1960’s for hard-core interactions [1] and later 

for general interactions [2]. Often motivated by early investigations of biological transport across 

membranes [3,4], numerous studies have considered single-file tracer diffusion in finite open [5], 

periodic [6,7], or closed [8] “pores”, and in other systems [9]. This type of inhibited transport has also 

been recognized to impact reactivity for catalysis in zeolites and other functionalized nanoporous 

materials [10-15]. For the latter reaction-diffusion phenomena which are of interest here, it is actually 

chemical diffusion [16] which controls behavior [15], and for which the connection to tracer diffusion 

is not well recognized. Another key aspect of these open reaction-diffusion systems is that steady-state 
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behavior is not described by a classic Gibbs thermodynamic ensemble. In fact, a fundamental 

understanding of these steady-states, which depend on both the reaction kinetics and transport, 

remains a significant challenge [17-19].

Our specific focus is on first-order conversion reactions, A→B, occurring inside a parallel 

array of linear nanopores of a catalytically functionalized material such as mesoporous silica. 

Reactants, A, enter the pore openings, diffuse to catalytic sites, convert to a product, B, with 

microscopic rate k, and both reactants and products can diffuse out of the pore [11-15]. 

Furthermore, we assume that these pores are sufficiently narrow that passing of reactant and 

product species is inhibited or even excluded. It was recognized that reactivity can be strongly 

inhibited for single-file diffusion (SFD) relative to unhindered passing [12]. The reason is that 

except near their ends, the pores tend to be exclusively populated by product which is not readily

extruded. Thus, the pore center does not participate in the conversion A→B. 

Some studies have suggested that this type of behavior, even for inhibited transport, can be 

captured by mean-field-type treatments of reaction-diffusion [13] which predict an exponential 

decay of reactant concentration into the pore with penetration depth scaling like Lp ~ kζ with ζ = 

-½ [14,15]. However, we will find fundamental short-comings in these mean-field treatments, 

noting that exact behavior for SFD even exhibits different scaling of Lp with ζ ≠ -½. A 

deterministic hydrodynamic treatment [20] accounting for SFD [15] can describe reaction-

diffusion behavior in the regime of slowly varying concentration profiles (for long pores) even 

for SFD, but this treatment completely fails to describe steady-state reactivity [15]. The reason 

for this failure is that steady-state behavior is controlled by the stochastic nature of adsorption 

and desorption of species at the pore openings. Thus, to correctly capture behavior, in this Letter, 

we pursue a generalized hydrodynamic formalism. This formalism requires an appropriate 

description of chemical diffusion in mixed-component systems, including the case of SFD, based

on a relationship between chemical and tracer diffusion deriving from interacting particle systems 

theory. However, it also requires a refined picture of tracer diffusion for finite-length pores.

2 Model Description

In our model for A→B conversion (Fig.1), we consider a catalytic material composed of an 



70

array of similar parallel linear nanopores. Species within any pore are localized at a linear array 

of cells (or sites) labeled n=1 - L traversing the pore. The cell width “a” is chosen as a~1 nm 

comparable to species size. To describe the surrounding fluid, we can extend the 1D lattice inside

the pores to a 3D lattice outside. But the fluid is assumed well-stirred, so that cells of the 3D 

lattice are randomly occupied with specified probabilities, <Aout> and <Bout>, corresponding to 

the suitably normalized external reactant and product concentrations, respectively. The total 

concentration, <Xout> = <Aout> + <Bout> = χ, say, is fixed, whereas <Bout> slowly increases 

from an initial value of zero during extended reaction. This slow time-scale is controlled by the 

fluid volume and far exceeds that for relaxation of the concentration profile within the pore.

In the simplest prescription corresponding to SFD within the pores, A and B hop to adjacent 

empty (E) cells at rate h per direction. We can also allow positional exchange of adjacent A and 

B at rate hex = h Pex to relax the strict SFD constraint, noting that exchange of adjacent particles 

of the same type has no effect. The passing propensity, Pex, will increase with pore diameter d 

from Pex = 0 below a SFD-threshold to Pex ~1 for unhindered passing. Other mechanistic steps in 

the model are: (i) Impingement of external species at terminal cells n=1 and n=L of the pore at 

rate iA = h<Aout> (iB = h<Bout>) for the reactant A (product B), successful adsorption occurring if

these end cells are unoccupied or empty (E); (ii) Attempted desorption of both A and B from 

terminal cells of the pore at rate h, success occurring with probability <Eout> = 1 - <Xout> for the

neighboring fluid site to be unoccupied (Eout); (iii) Conversion A→B at rate k at catalytic cells.

Figure 1: Schematic of the key steps in our A→B catalytic conversion reaction model. “c”
denote catalytic cells where reaction occurs at rate k. Behavior is shown in two adjacent

pores which should be regarded as part of a larger array of pores.

For the above rate choice, which follows previous studies [11-15], the “species blind” 
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dynamics for particles X = A or B corresponds to a non-reactive diffusion process. In the steady-

state, cells within the pore are randomly occupied by particles, X, with probability <Xout> = χ 

[14]. We will assess typical concentration profiles within a pore, corresponding to averaging over

many pores. Both time evolution and steady-state behavior (see Fig.2 for examples for the initial 

stages of reaction with <Bout>≈0) can be assessed precisely by Kinetic Monte Carlo (KMC) 

simulation. 

An exact description of our discrete reaction-diffusion model is provided by hierarchical 

master equations for the evolution of probabilities of various configurations of subsets of cells 

within the pore [11,13-15]. Let <Cn> denote the probability that species C = A or B is at cell n, 

<CnEn+1> that C is at cell n and that cell n+1 is empty (E), etc. Then, the total conversion rate is 

Rtot = k Σn=c<An> with the sum extending over all catalytic cells. Below we consider only the case

of all cells catalytic (c). Then, the lowest-order equations in the hierarchy are [14,15]

d/dt <An> =  -k <An> - JA
n>n+1, d/dt <Bn> =  +k <An> - JB

n>n+1,  
for 1<n<L.

(1)

Separate equations for terminal cells reflect adsorption-desorption boundary conditions 

(BC’s), e.g., d/dt <A1> = h(<Aout> <E1> - <Eout> <A1>) - k <A1> - JA
1>2. In (1), we have defined 

the discrete derivative, Kn = Kn – Kn-1. The net flux, JA
n>n+1, of A from site n to n+1 is given by

JA
n>n+1 = h [<AnEn+1> - <EnAn+1>] + hex [<AnBn+1> - <BnAn+1>]. (2)

The first term gives the contribution from hopping to adjacent empty cells, and the second 

from exchange. The expression for the net flux, JB
n>n+1, of B is analogous. In the special case of 

unhindered transport where Pex =1 so hex = h, (2) reduces exactly to JA
n>n+1 = -h <An> [15,21].

Equations (1) couple to pair probabilities in (2). Pair probability evolution couples to that of 

triples, etc., producing a hierarchy. Multi-site probabilities are not simply related to single-cell 

probabilities due to spatial correlations. The lowest-order site-approximation, <CnEn+1> ≈ 

<Cn><En+1>, etc., produces a closed set of discrete reaction-diffusion equations (RDE) for 

single-cell concentrations. A pair approximation factorizes triples in terms of pair and single-cell 

quantities generating a closed set of equations for these [13-15]. The triplet approximation 
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factorizes quartets in terms of triplets, etc. [22]. However, these and all higher-order mean-field 

(MF) like truncation approximations suffer fundamental shortcomings. While accuracy increases 

with the order of the approximation, convergence to exact behavior can be slow. See Fig.2a.

An alternative coarse-grained description considers concentrations per unit length, C(x=na, 

t) ≈ a-1 <Cn>, for C = A or B, smoothly varying with position x, which satisfy the continuum 

RDE

∂/∂t A(x, t) = -k A(x, t) - ∂/∂x JA, ∂/∂t B(x, t) = +k A(x, t) - ∂/∂x JB. (3)

BC’s for (3) at the pore ends reflect the adsorption-desorption dynamics [15]. Description of the 

diffusion fluxes, JA and JB, is critical. Setting X(x,t)=A(x,t)+B(x,t), we exploit a little-used result 

from interacting particle systems theory for mixtures of particles with identical dynamics [23]

JA  = -D(A/X)∂X/∂x - Dtr[(B/X)∂A/∂x - (A/X)∂B/∂x] → -Dtr ∂A/∂x 
for uniform X=a-1χ,

(4)

The form of JB  is analogous. Here D = a2h is the chemical diffusion coefficient for particles 

X, and Dtr =D Ftr is a tracer diffusion coefficient. The site-approximation described above 

implies the mean-field form Ftr = 1 – χ [14,15] as is evident after coarse-graining of the discrete 

RDE. This choice overestimates fluxes for SFD. A classic analysis of SFD for infinite systems 

[1] finds that Ftr =0. The associated “hydrodynamic” RDE can describe the evolution of slowly 

varying profiles during filling of long pores [15]. However, this formulation which sets the 

diffusion fluxes to zero and neglects fluctuations near pore openings completely fails to describe 

steady-state profiles [15] as shown in Fig.2a. A refined treatment setting Ftr ~ 1/L, motivated by 

studies of finite-sized SFD systems [3,4,6,7], does not resolve this basic shortcoming.

3 Implementation and Results

Our strategy is to develop a “generalized hydrodynamic” form for Ftr which captures the 

mesoscale fluctuations near pore openings being enhanced in these regions. A discrete form of 

(4) incorporating this Ftr then provides fluxes in (1) which are integrated to determine steady-

state behavior. One strategy to determine this Ftr(n) at cell n [24] for a pore with uniform 

<Xn>=χ is based analysis of the “exit time”, tn(χ), for a tagged particle starting at this cell to 
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reach a pore opening in the sense that its root-mean-square (rms) displacement grows to match 

the distance from the nearest pore opening. Specifically, we set Ftr(n) = tn(0+)/tn(χ) since 

diffusivity is inversely proportional to the time for the rms displacement to reach some specified 

value. This recovers the correct limiting value Ftr(n)→1 as χ→0+. Results for Ftr(n) in Fig.3a for

SFD in finite pores reveal a central plateau of magnitude ~1/L (consistent with [3,4,6,7]), but 

with significantly larger values near pore openings. Use of this variable Ftr(n) in appropriate 

RDE to determine steady-state profiles yields excellent agreement with precise results from 

KMC simulation for SFD with L=100, in marked contrast to all other treatments. See Fig.4 for 

profiles with <Bout> ≈ 0 (the initial stages of the reaction), and results in Table I for the 

penetration depth, Lp, naturally defined as Lp = ΣΣ1≤n≤L/2 <An>/<A1>.

Figure 2: Steady-state concentration profiles (A=solid, blue; B=red, dashed) for pore length
L=100, k= 0.001, h=1, and χ=0.8: (a) predictions of site, pair, triplet approximations and the

standard hydrodynamic treatment (hydro) versus precise KMC results for SFD (Pex=0); (b) KMC
results for restricted passing with various Pex ≥0.

Table 1: Comparison of reactant penetration depths, Lp (in units of ‘a’), with h=1 and L=100,
for KMC, generalized hydrodynamic (GHydro) and mean-field site-approximation (MF)

analyses.

χ=0.2 k=1 k=0.1 k=0.01 k=0.001 χ=0.8 k=1 k=0.1 k=0.01 k=0.001
KMC 1.47 2.92 6.77 15.2 KMC 1.10 1.47 2.64 5.21

GHydro 1.49 3.10 7.19 15.8 GHydro 1.06 1.43 2.61 5.15
MF 1.53 3.37 9.46 27.8 MF 1.17 2.00 5.00 14.7
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Figure 3: KMC results for Dtr(n) [=Ftr(n) for a=h=1]: (a) n-dependence for various pore lengths
L for χ=0.8 (inset shows L-dependence of central plateau value of Dtr for χ=0.2); (b) fitting of

the decay of Dtr(n) with n for semi-infinite pore. Using the form in text, we choose α=0, β=1.543,
γ=0.944 for χ=0.8 (inset:α=0.753, β=0.371, γ=0.0064 for χ=0.2).

Figure 4: Comparison of results for steady-state concentration values for L=100, k=0.001
(inset: k=0.01), and h=1 from KMC (symbols + line) with generalized hydrodynamic RDE

predictions (thicker blue curves): (a) χ=0.2; (b) χ=0.8 (log is base 10).

Next, we turn to the fundamental issue of the form of the concentration profiles and the 

scaling of the penetration depth, Lp, for SFD in a semi-infinite pore with 1≤n<∞. Clearly now 

Ftr(n)→0, as n→∞, but how? Deep inside the pore where classic SFD should apply, the rms 

displacement increases like t1/4 [1], so one expects that tn(χ>0) ~ n4. In contrast, tn(0+) ~ n2 for 

conventional diffusion. This suggests that Ftr(n) ~ 1/n2, as n→∞. Simulation results indicate that 

this behavior is achieved quickly for high total concentration χ=0.8, but more slowly for low 
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χ=0.2 which displays an intermediate regime better described by Ftr(n) ~1/n scaling. Data in both

cases is fit well for all n by the form Ftr(n) = Ftr(1)(1-α+β+γ)/(1-α·n1/2+β·n+γ·n2). See Fig.3b.

Insight into the consequences of this decay of Ftr(n) comes from analysis of the steady-state 

solutions of the continuum RDE for a semi-infinite pore x≥0 using (4) with the form Ftr(x) ~ 1/xp.

One finds solutions which for small k and large Lp have the dominant form 

A(x) ~ exp[-(x/Lp)q] where q=(2+p)/2, and Lp ~(k/D)ζ with ζ = -1/(2+p). (5)

Thus, the true asymptotic scaling exponent is ζ =-1/4 (for p=2), but behavior mimicking ζ ≈ 

-1/3 (for p=1) might be seen for lower χ, both contrasting MF behavior ζ = -1/2 (for p=0) 

[14,15]. These predictions are confirmed by numerical analysis of discrete generalized 

hydrodynamic RDE’s exploiting the capability of this deterministic treatment to obtain much 

more precise ζζ-values than possible by KMC. See Fig.5. Concentration profiles also exhibit the 

predicted non-exponential decay, a feature which is already indicated in the non-linear form of 

the log-linear plots in Fig.4 (the downward bend corresponding to an effective exponent q>1 due

to p>0).

Figure 5: Predictions of generalized hydrodynamic RDE for the effective scaling exponent ζ =
dlog(Lp)/dlog(k) for a semi-infinite pore: (a) χ=0.2; (b) χ=0.8. Upper insets: Lp versus k.

We now mention various extensions of the above analysis. All results were presented for 

initial stages of reaction where <Bout>≈0. However, analysis is readily extended to treat arbitrary 
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fraction of conversion f = <Bout>/<Xout>, and we find an exact linear variation with f of the total 

conversion rate Rtot(f) =Rtot(0)(1-f) by virtue of the linearity of the RDE’s and BC’s. Dropping the

SFD constraint, we have also analyzed Ftr(n) which still decreases with increasing n but now 

retains a substantial non-zero L-independent value in the pore center corresponding to tracer 

diffusion with exchange in an infinite pore. The corresponding generalized hydrodynamic 

treatment readily recovers behavior shown in Fig.2b. The greatest challenge in developing a 

predictive analytic treatment is for complete or near SFD, as other cases have more MF-like 

behavior. One can also readily extend the analysis to treat reversible reaction A↔B using the 

same Ftr(n) as determined above. 

Finally, we consider more general diffusional dynamics with unequal diffusion coefficients, 

DA and DB, for A and B, respectively. Analysis for SFD reveals behavior entirely analogous to the

case of equal hop rates with penetration of reactant into the pore, but the pore center populated 

only by product. Again, MF treatments overestimate diffusion fluxes and fail to describe steady-

state behavior. The key is to describe chemical diffusion for the mixed system (cf. [19,25]). We 

apply Onsager theory to determine the hydrodynamic form (corresponding to zero tracer 

diffusion) of JA = -A(A/DA+B/DB)-1 ∂X/∂x for SFD, and JB is analogous. Since the total flux, JX 

=JA + JB, must vanish in the steady state, this implies that X is constant, so JA vanishes which in 

turn implies that A must be absent from the pore interior due to conversion to B. This failure of 

the hydrodynamic description to describe reactant penetration must again be overcome by 

accounting for fluctuation effects at the pore openings.

4 Conclusion

In summary, the location-dependence of tracer diffusion near the openings of narrow pores is 

shown to control non-MF scaling of reactant penetration depth and thus reactivity for conversion 

reactions. Generalized hydrodynamic RDE’s provide a powerful tool with which to analyze this 

behavior. This work is supported by the Division of Chemical Sciences – BES, USDOE. Ames 

Laboratory is operated for the USDOE by ISU under Contract No. DE-AC02-07CH11358.
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CHAPTER 6. DRIVEN DIFFUSION CALCULATION OF TRACER
DIFFUSION COEFFICIENTS

1 Introduction

The generalized hydrodynamic theory previously developed [1] requires tracer diffusion values, 

Dtr(i), for each site i in the pore. Previous work has generated these values using a random walk 

approach. An alternative method using Fick's Law and flux calculations is described below. This 

method has a few advantages over the random walk approach. A single simulation cycle can generate 

diffusion coefficients for all sites in the pore leading to faster generation of results for smaller pore. 

There is no ambiguity of the choice of definition of Dtr(i) as there is in the random walk approach. The 

resulting Dtr values apply to the transition between sites (site i to site i+1) rather than at a specific site. 

This better matches the values needed for the generalized hydrodynamic formulation. However, it also 

means the results are not exactly comparable to the Dtr values from the random walk approach. Both an 

overall pore averaged diffusion value and individual site specific values are calculated using the same 

method. A significant downside is the inability to calculate values for very long pores. 

The kinetic Monte Carlo model used is described in Sec 1, followed by the description of the 

multiple definitions of the diffusion coefficients as derived from Fick's Law in Sec 2. In Sec. 3, the 

long time correlations inherent in the system are discussed. Results are presented for the single file 

diffusion case as well as cases with varying degrees of passing in Sec 4. Finally, in the appendix, 

comparison is made with a similar method by Nelson et al.

2 Model and Kinetic Monte Carlo (KMC)

This study models a single, linear pore which forms part of a larger system containing many pores 

such as mesoporous silica or zeolites. The model, see figure 1, has a linear pore split into L discrete 

sites of uniform size. The sites are of width (diameter) d and length a, with 'a' on the order of 1nm, 

comparable to the size of a single molecule. Thus, the overall physical pore length is Ltotal = aL. The 

pore is contained within an external fluid and open at both ends which allows particles to diffuse into 

and out of the pore at the end sites, n=1 and n=L. Outside each end of the pore is an external site of the 

same size as the pore sites. This is occupied with probability Xout. Connecting with a physical system, 

Xout can be related to a fluid concentration using the size of the external site. Assuming the external site 

to be the same size as a site within the cylindrical pore, the fluid concentrations, Cout, is given by Xout/(π
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(d/2)2a).

Figure 1: Schematic of pore, showing A (in blue) entering from one end of the pore, with B (in
red) entering form the other. Hopping occurs to neighboring empty sites as shown at n=2.

Exchange of occupied sites (e.g. n=L-2 and n=L-1) may or may not be allowed.

A kinetic Monte Carlo (KMC) simulation is used to generate a steady state configuration and 

calculate average site occupancies. The simulation is performed by making a series of discrete 

moves from one configuration to another. The possible moves are as follows: (i) particles in the 

pore can hop to a nearest neighbor site, undergoing a discrete random hopping process which 

leads to a diffusional motion within the pore. The rate of hopping to an unoccupied site is h. For 

an occupied site, a hopping process is an exchange of the particles at neighboring sites. The rate 

for this process is Pex h, where Pex is an exchange factor (in range [0,1]) representing the ease of 

particles passing each other within the pore. Pex is primarily based on the diameter of the pore 

being large enough to allow particles to pass. Pex=0 is a strict single file case where passing is 

prohibited as the pore is too narrow. In the single file case, hops can then only be made to empty 

sites. When Pex>0, particles are able to hop to occupied sites at the reduced rate Pex h and also 

hop to empty sites at the normal rate h. At the extreme, Pex=1 would be a very wide pore where 

particles can pass each other unhindered, essentially becoming a single particle diffusion 

problem. The intermediate case of 0<Pex<1 represents a partial relaxation of the single restriction 

and is called hindered passing. All three cases are treated below. (ii) Particles can hop into the 

pore at either end site. The external fluid is assumed to be well-stirred and to move at a faster 

rate than the fluid inside. Since the fluid particles just outside the pore move rapidly the 

occupancy of the external fluid site is not tracked. Instead it is represented by the average 

occupancy Xout. The rate to hop in is wads = h Xout, reflecting the standard hopping rate scaled by 

the probability of the site just outside of the pore to be occupied. In this model, the relaxation of 

the single file constraint (i.e. cases where Pex>0) does not change the adsorption rules. (iii) A 
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particle at an end site can hop out of the pore. The rate for this desorption is wdes = h (1-Xout), 

with the 1-Xout factor representing the probability of the external site being empty. As with 

adsorption, the desorption process is unchanged when passing is added to the system. This 

adsorption/desorption scheme results in the steady state concentration inside the pore being equal

to the concentration of the external fluid. 

In this model, there are two types of particles labeled A and B. At the start of the pore, n=1, 

only atoms of type A enter the pore. At the end of the pore, n=L, only atoms of type B can enter. 

Once in the pore, they move as described above, and both types can exit from either end. There is

no conversion between types. The properties of each type are identical, leaving the label only as 

a convenient method of bookkeeping. Atoms of type A that exit at site n=L have managed to 

diffuse through the entire pore to reach the other end. Similarly atoms of type B that exit from 

n=1 have made it through the pore. This allows determination of the flux through the pore, 

despite the fact that steady state requires the net flux out each end to be zero.

The initial occupancy of each site is determined by filling it with a probability given by the 

desired loading, Xout. The species of each atom is determined by a probability which varies 

linearly from 100% A at one end to 100% B at the other. This approximates the final averaged 

concentration. See section 4 for further details.

The simulation is tracked over time. After an initial equilibration period, the occupancy of 

every site is recorded and the number of atoms exiting the pore is counted. Atoms exiting the end

they entered from are ignored, but ones exiting the opposite end (at site L for type A and site 1 

for type B) are counted for as part of the flux analysis.

3 Theory and Simulations

We consider only the case where the total concentration X=A+B s constant. In this case, 

dA/dx=-dB/dx. In this “counter diffusion” mode, one has a refined version of Fick's [2] first law 

that gives[3]:

J=−Dtr
δc
δ x

(1)
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with J as the flux of either A or B atoms, and δc/δx the concentration gradient of A or B. The 

gradient and flux are defined such that D is positive. All further equations are written assuming 

species A which enters the pore at site 1 and exits at site L. 

3.A. Pore averaged tracer diffusion coefficient (Dtr)

Equation (2) can be used in two manners. The first is as an overall value for diffusion across 

the length of the pore. This is an averaged D value for an atom moving from one end to another. 

In this case, the flux is then the atoms that pass out the end opposite of where they entered, and 

the gradient of interest is the concentration change from one end to the other. These values are:

J=wdes c1 (2)

δc
δx
=

2c1−X eq

(L−1)
(3)

where wdes is the rate of hopping out of the pore, and c1 is the concentration at site 1. By 

symmetry, the concentration at the other end must be Xout – c1. A factor of a, representing a 

characteristic length, is omitted from equation (3) and all future equations for the gradient and 

diffusion coefficients. The diffusion coefficients presented are reduced values: D = D'/a

Plugging these into the Fick's law and rearranging yields the expression for D: 

D(L)=
wdes c1(L−1)
(Xout−2 c1)

(4)

An exact solution is possible only with a knowledge of c1, but an analytic expression for c1 

has proven elusive. A simplifying approximation for large L comes when Xout>> 2c1 :

D(L)=
wdes L

Xout

∗c1(L) (5)

c1 decreases with increasing L. As D(L) also decreases with increasing L, c1(L) must decrease

faster than 1/L. 
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3.B. Site specific Dtr

The second method uses equation (2) to calculate the diffusion coefficient between two sites. 

In this case, the gradient is defined as being between two adjacent sites:

δ c
δ x
=c i−ci+1 (6)

With this definition, the D value is actually the value between sites rather than at specific 

sites as found by the random walk method. The flux is the same as before as it must be uniform 

throughout the pore. This yields the equation for D(i+0.5), which is defined as the site specific 

tracer diffusion coefficient, Dtr(i):

Dtr(i)≡D(i+0.5)=
wdes c1

c i+1−ci
(7)

The per site diffusion coefficient is roughly constant in the center of the pore as the 

concentration profile there is linear. Near the end of the pore, the non-linear concentration curve 

results in an increase of Dtr. Correspondingly, the Dtr values in the center region must be smaller 

than the pore averaged D value (this can also be seen by noting that the concentration slope in 

the center region is greater than the pore averaged slope - see figure 3). This effect is greatest for 

short pores where the non-linear region is a significant fraction of the overall length. For a long 

pore, if this non-linear region is taken to be small compared to the total length, the value of 

Dtr(L/2) will approach the value of D for the pore. This is easily seen by noting that for the limit 

of large L, cL/2+1 - cL/2 = Xout/L, recovering equation (5) from equation (7).

3.C. Minimum Dtr

The value for the minimum value of Dtr is given as: 

Dtr (min)=
1−X eq

1+ X out (L−1)
(8)

Equating this to the large L equation from Fick's law, eq. (5), (but retaining the L-1) gives:
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wdes c1(L−1)
Xout

=
1−Xout

1+X out (L−1)
(9)

Noting that wdes = h(1 – Xout), under the condition h = 1, c1 is given by:

c1=
1

(L−1)
Xout

+(L−1)2 (10)

3.D. Simulation flux and concentration profiles

Calculating the Dtr values requires the flux of each type of particle as well as the 

concentration profile to calculate the concentration gradient. The flux is easily found by 

recording the number of particles that exit from the opposite end as they entered. Labeling the 

particles by which end they enter makes this process trivial and is the only purpose for the A/B 

labels of otherwise identical particles. 

The concentration profile is a time weighted average of the occupancy at each site:

〈K i〉=

∑
m=1

N

Δ tmOi(K )

∑
m=1

N

Δ tm

 (11)

Oi(K )={1, if site i is occupied by particle of type K

0,otherwise
 (12)

where K is the particle type, either A or B, and Oi(K) denotes whether site i is occupied by a 

particle of type K. Calculating this requires knowing how long each type of atom remained at 

each site. As the time steps in the kinetic Monte Carlo algorithm are different, eq (11) is used to 

generate a time weighted average of how long each site is occupied by each particle type. 

Implementing this requires some care to do correctly and efficiently. The simplest method is to 

update the sums at each time step - either during the simulation or by recording the configuration

at each time step for later analysis. An easy way to gather this data is to store the occupancy at 

each site at each configuration change (i.e. after each change, update the statistics to note that the



85

particle type at each site has been there for Δtn, the length of time for this move). While this is 

simple, it is very inefficient. A single configuration change affects, at most, two sites. The others 

are unchanged. Updating sites only when they change dramatically reduces the number of 

calculations performed.

To only update the sites that change, we need to track the time at which each site's occupancy

was last changed (particle is added/removed/swapped from the site). The algorithm used is as 

follows: We create a listing of the last modified time for each site. At the end of the equilibration 

phase we set the values for all sites to the current time, which is the start of the production part of

the simulation. These times are updated every time a site's occupancy changes. At any time, the 

time a particle has been in the site is the current time less our stored time of when the site's status

last changed. At each time step, this value is calculated only for the sites where a change occurs. 

Those values are added to the accumulated stats. No calculation is made for any other sites. In 

this way, particles that don't move are ignored. At the end of the simulation, the occupancy time 

is calculated for all sites and added to the total. Failure to do so would omit the current 

configuration from the averaging.

This method ensures that the time spent on calculating statistics for each time step is 

independent of the size of the system, compared to the simple method which requires more time 

for larger systems. The cost of this faster method is the additional bookkeeping of the last time 

each particle was moved. For all but the smallest system sizes, this overhead should be 

significantly less than the time saved by not updating occupancy times for particles that have not 

moved.

4 Correlations

As noted above, the initial configuration is generated as a linear gradient with A=Xout, B=0 at 

one end and A=0, B=Xout at the other. This artificial initial configuration, Figure 2a, will evolve 

into the actual steady state profile which displays non-linear behavior near the pore ends as seen 

in Figure 2b. The non-linear effects should increase with decreasing pore loading.



86

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Initial-A

Initial-B

site index

<
A

i>
,<

B
i>

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Actual-A

Actual-B

site index

<
A

i>
,<

B
i>

(a) (b)

Figure 2: Example of - (a) initial concentration profile and (b) steady state
concentration profile, showing non-linear end effect and greater slope in the

center region. Both plots correspond to Xout=0.8 and L=100.

4.A. Pore loading correlation

During the change from the initial concentration profile to the steady state profile, the single 

file motion creates correlations within the system. This occurs as the initial loading of each site - 

which is completely independent of the loading of surrounding sites - relaxes to the steady state 

profile. A challenge in this type of simulation is to determine when the system has reached this 

steady state. One method of quantitatively tracking the evolution is to follow these correlations 

and related quantities over time. They will evolve from their artificial initial values and reach the 

steady state values. There are several quantities of interest. The total number of particles is N, 

and the number of A and B particles is NA and NB, respectively. Variations in these values are 

described by the variance(Var) and covariance(Cov) [4] as defined below:

Var (N )=〈(N−〈N 〉)2〉=〈N2
〉−〈N 〉2 (13)

Var (N A)=〈(N A−〈N A〉 )
2
〉=〈N A

2
〉−〈N A 〉

2 (14)

Var (NB)=〈(N B−〈N B〉)
2
〉=〈N B

2
〉−〈N B〉

2 (15)

Cov(N A ,N B)=Cov (NB , N A)=〈(N A−〈N A〉 )∗(N B−〈N B〉)〉=〈N A NB〉−〈N A 〉 〈N B〉 (16)
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The average values <NA>, <NB>, and <N> are calculated as an ensemble average of the 

number of A, B, and N atoms present at a given time point. The expected value for Var(N) can be

calculated by treating all site loadings as uncorrelated:

Var (N )=
L∗wdes∗wads

(wads+wdes)
2=L X out (1−X out) (17)

The quantities in eq. (13) - (16) are related [4]:

Var (N )=Var (N A)+Var (NB)+2∗Cov (N A , N B) (18)

As A and B are indistinguishable, the variance of both must have the same convergence time.

By construction, Var(N) of the initial configuration is at its expected value and remains constant. 

Thus, Cov(NA, NB) must have the same convergence time as Var(NA) and Var(NB), making any of

the 3 quantities equally valid for tracking convergence.

Equation (18) above can also be written as:

Var (N )=〈N A
2
〉−〈N A〉

2
+〈N B

2
〉−〈N B〉

2
+2∗(〈N A N B〉−〈N A〉 〈NB 〉) (19)

Again noting that A and B are indistinguishable, it follows that <NA> = <NB> and <NA
2> = 

<NB
2>, yielding:

Var (N )=2∗〈N A
2
〉−4∗〈N A〉

2
+2∗〈N A NB 〉 (20)

Figure 3a shows the convergence of the values given above (the A and B curves nearly 

overlap and aren't distinguishable on the plot). The total variance in the number of particles is 

essentially constant. The variances of A and B and the covariance take a significant time to 

converge, but all do so on the same time scale, as expected. Figure 3b shows the evolution of the 

variance in A as it approaches the steady state value.



88

Figure 3: Relaxation of particle numbers over time for Xout=0.8, L=100. (a)
shows all values, while (b) shows details of NA reaching the steady state

value.

4.B. Pair correlations

In addition to the total site occupancies, the variance in the values of site concentrations can 

be calculated. Individual site concentrations should all have the same variance. However, the 

correlation of neighboring sites can be calculated and will vary at different sites in the pore. In 

principle, correlations could be calculated for any two sites. In practice, it was only done for 

adjacent sites.

The covariance of any two site occupancies is defined as:

Cov(A i , A j)=〈(A i−〈 Ai〉)∗(A j−〈 A j〉)〉=〈A i A j〉−〈A i〉〈A j〉 (21)

The case of adjacent sites gives:

Cov(A i , Ai+1)=〈Ai Ai+1〉−〈 Ai〉 〈Ai+1〉 (22)

The correlations increase for sites further in the pore. Pairs of sites near the pore end appear 

to show faster convergence to a steady state value than those further in the pore. Figure 4 shows 

the curves for several i values. Note the different Y-axis scale on the two plots.
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Figure 4: Pair correlation curves for Xout=0.8 and L=100. (a) shows curves for sites
i=1,3,5,7,9 (from bottom to top). (b) curves for  for sites i=10,20,30,40,50. Note the different

scales on the y axis in (a) and (b).

5 Simulation Results

Simulations were run for the strict single file case (Pex=0), the complete passing case (Pex=1), 

and the intermediate obstructed passing case (0<Pex<1). Results are shown for multiple pore 

lengths. Three diffusion coefficients were derived as described previously. These values are: 

Dtr(i), the tracer diffusion coefficient based on the flux between site i and i + 1 (equation (7));  

Dtr(min), a minimum value calculated from the pore length and Xout values as given by equation

(8); and D(pore averaged), the diffusion coefficient calculated using the flux across the entire 

pore (equation (4)). D(pore averaged) will be larger than Dtr(min) but should approach that value 

as the pore length increases. Dtr(min) is calculated from the system parameters without any 
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simulations. A corresponding value can be calculated from the KMC data by taking an average of

Dtr(i) values in the pore center.

5.A. Single-file diffusion

Two cases were considered for the diffusion studies, a high loading case with Xout=0.8 and a 

low loading case with Xout=0.2. The former would exhibit stronger single file effects as the 

individual particles are more confined by neighboring particles. For the high loading case, 

parameters are Pex=0, wads=0.8, wdes=0.2, and h=1. Pore length ranged between 10 and 500. 

Results for the flux and pore averaged values of Dtr are in table 1 below. Figures 5 and 6 show 

the first few Dtr values. A line is shown on each plot indicating the expected minimum value of 

Dtr. 

Next to each plot of Dtr values in figures 5 and 6 is a graph of the convergence of the 

variances of A and site pair data in the pore center. This was used to determine where to start 

averaging the data for the flux calculations. The start time used is shown on the plots. The end 

time is not shown.

The pair correlation curve was scaled vertically to fit on the plot to show comparison of the 

time required to reach a steady state value.

For the low loading case of Xout=0.2, parameters are Pex=0, wads=0.2, wdes=0.8, and h=1. 

Results are given in table 2 and plots are shown in figures 7 and 8. Format of the tabulated and 

plotted results is the same as for the high loading case.
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Table 1: Calculated and expected values for flux, c1, and tracer diffusion coefficients for
Xout=0.8. * Expected c1 value is calculated using eq. (10),  ** Expected flux is calculated from
with eq. (2) ,using actual c1 values. *** “Minimum” value for the actual case is an average of
values from the center 20% of the pore. ****Calculated from eq. (4), using the actual c1 value.

Pore
length

c1 

actual
(expected*)

flux 
actual

(expected**)

Dtr(min) 
actual***
(expected)

Dtr
**** pore

average

10 0.01230
(0.01084)

2.461x10-3

(2.460x10-3)
0.02301

(0.02439)
0.02856

30 1.34x10-3

(1.14x10-3)
2.684x10-4

(2.684x10-4)
7.998x10-3

(8.264x10-3)
9.761x10-3

50 4.699x10-4

(4.0613x10-4)
9.397x10-5

(9.397x10-5)
4.873x10-3

(4.975x10-3)
5.763x10-3

100 1.1278x10-4

(1.0076x10-4)
2.2556x10-5

(2.2556x10-5)
2.458x10-3

(2.494x10-3)
2.792x10-3

300 1.20x10-5

(1.111x10-5)
2.402x10-6

(2.402x10-6)
8.31x10-4

(8.33x10-4)
8.98x10-4

500 4.21x10-6

(4.006x10-6)
8.4118x10-7

(8.4113x10-7)
4.934x10-4

(4.998x10-4)
5.247x10-4

Table 2: Calculated and expected values for flux, c1, and tracer diffusion coefficients for
Xout=0.2. * Expected c1 value is calculated using eq. (10) ** Expected flux is calculated with eq.
(2) ,using the actual c1 value. *** “Minimum” value for the actual case is an average of values

from the center 20% of the pore. ****Calculated from eq. (4), using the actual c1 value.

Pore
length

c1 

actual
(expected*)

flux 
actual

(expected**)

Dtr(min) 
actual***
(expected)

Dtr
**** pore

average

10 0.01038
(7.937x10-3)

8.305x10-3

(8.304x10-3)
0.3595

(0.2857)
0.4170

30 1.623x10-3

(1.014x10-3)
1.298x10-3

(1.298x10-3)
0.1333

(0.1176)
0.1913

50 5.949x10-4

(3.779x10-4)
4.760x10-4

(4.760x10-4)
0.07864

(0.07407)
0.1173

100 1.1428x10-4

(9.7125x10-5)
1.1433x10-4

(1.1426x10-4)
0.03880

(0.03846)
0.05664

300 1.4217x10-5

(1.1002x10-5)
1.1376x10-5

(1.1373x10-5)
0.01308

(0.01316)
0.01701

500 4.90x10-6

(3.9762x10-6)
3.9212x10-6

(3.9222x10-6)
0.007940

(0.007937)
0.009786
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Figure 5: Tracer diffusion values and correlation curves. For all plots, Xout=0.8,
Pex=0, h=1. L=10 for (a) & (d). L=30 for (b) & (e). L=50 for (c) & (f).
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Figure 6: Tracer diffusion values and correlation curves. For all plots, Xout=0.8,
Pex=0, h=1. L=100 for (a) & (d). for L=300 for (b) & (e). L=500 for (c) & (f).
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Figure 7: Plots of tracer diffusion values and correlation curves used to
determine onset of steady state. For all plots, Xout=0.2, Pex=0, h=1 (a) and

(d) for L=10, (b) and (e) are L=30, (c) and (f) are L=50.
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Figure 8: Plots of tracer diffusion values and correlation curves used to
determine onset of steady state. For all plots, Xout=0.2, Pex=0, h=1 (a) and

(d) for L=100, (b) and (e) are L=300, (c) and (f) are L=500.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Dtr(i)

Dtr(min)

site index

D
tr

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Dtr(i)

Dtr(min)

site index

D
tr

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Dtr(i)

Dtr(min)

site index

D
tr

0.00E+00 2.00E+07 4.00E+07
0

100

200

300

400

500

600

700

800

Var(N  )

steady state Var(N  )

start of calculation

Cov(A250,A251)

time

nu
m

be
r 

of
 p

ar
tic

le
s

0 1000000 2000000 3000000
0

50

100

150

200

250

Var(N  )

Cov(A150,A151)

start of calculation

steady state Var(N  )

time

nu
m

be
r 

of
 p

ar
tic

le
s

0 60000 120000 180000 240000
0

5

10

15

20

25

Var(N  )

Cov(A50,A51)

start of calculation

steady state Var(N  )

time

nu
m

be
r 

of
 p

ar
tic

le
s

(a)
(d)

(b)

(c)

(e)

(f)

A

A

A

A

A

A



96

5.B. With passing

A pore diameter larger than twice of the size of the hopping particles can allow room for 

particles to pass each other. This behavior is modeled using a non-zero Pex value. For a very wide

pore, Pex=1 and the particles can move unhindered by their neighbors. This is also equivalent to 

the case of single particle diffusion and is exactly solvable. The tracer diffusion values are 

trivially determined as D=h for all sites. The results are more interesting for the case with 

passing and Pex<1. Simulations were run for pores of length 100 with both high (Xout=0.8) and 

low (Xout=0.2) loading and several values of Pex. The correlation data is shown is figure 9. 

Comparison with results for figures 6e and 8e shows there is very little correlation apparent in 

the systems. The introduction of passing allows any correlations that might form to relax rapidly. 

The variation in the number of particles of each type quickly reaches the steady state value. 

Meanwhile, the pair correlation in the center of the pore is essentially zero. 

Figure 9: Particle number variation and pair correlation in the pore center for
L=100, h=1, Pex=0.25. (a) shows the low loading, Xout=0.2 (b) shows the high

loading Xout=0.8. Note: Unlike previous plots, the pair correlations have not been
scaled as they are mostly noise around zero.

Figure 10 shows plots of the tracer diffusion coefficients for several Pex values. The results 

match the expected values and previous results.
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Figure 10: Tracer diffusion values as calculated with passing. (a) shows high
loading, Xout=0.8 (b) shows high loading Xout =0.2.

6 Conclusions

The method of calculating Dtr values presented here shows qualitative agreement with 

previous results. The values do not exactly match the random walk method used in previous 

studies and exact agreement is not expected as the quantities being calculated are different. The 

primary advantage of this approach is the ability to simultaneously calculate Dtr(i) for all sites 

with a method free from the ambiguity inherent in the random walk case. 

An extensive study of correlations leading to steady state behavior was made. It shows a 

significant time required from the initial condition to reach the steady state in a single file 

system. When the single file condition is relaxed, the correlations are weaker. This agrees with 

the intuition that a system that can allow easy mixing will not form the same degree of 

correlations as one where the motion is more confined and particles can't change neighbors 

without reaching a pore end. 

The method presented is a complete working description of Dtr calculations. The values can 

be used interchangeably with previous results from the random walk approach. Future studies of 

this method could entail adding a swapping behavior at the end of the pore where a particle in an 

end site will make a single step exchange with the particle at the external site. This behavior was 

omitted from the model and has shown to affect the results in the vicinity of the pore openings. 
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Appendix A: Mixed Type Adsorption

A more general case of this model has the adsorption at each end being a mixture of types, 

with some fraction being A and the rest being B. The opposite end would then have the same 

ratio of adsorption with the types reversed. The resulting Dtr values should be the same as before 

since the hopping process is independent of the type of particle adsorbed. This treatment is 

included to validate the method. Fick's law, equation (2), applies as before; however, in this case 

the flux is the net flux at the end:

J = J out−J i n

= c1
* wdes

= c1
* wdes−(1−Xout )wads

B

= c1
XS wdes

(23)

c1
XS

≡ c1
*
−X out

B

X out
B

≡
wads

B

(wads+wdes)

 (24)

where wB
ads is the adsorption rate of B at site n=1 (which was zero in the previous case). c1

XS is 

the excess B at site n=1 that is present due to diffusion through the pore.  The * in c1* is included

to distinguish from the previous case where only one type enters at each end (hereafter referred 

to as the pure adsorption case). The gradient is given as:

δc
δx
=

2c1
*
−X eq

(L−1)
=

2c1
XS
+2 Xout

B
−Xout

(L−1)
(25)

The equation for D is found from Fick's law:

D=
w des c1

XS
(L−1)

(Xeq−2 c1
XS
−2 X out

B
)

 (26)

With wB
ads = 0, this matches the previous result in equation (4). Comparison of the two 

equations shows that they are equivalent if:
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c1
XS

c1

= (1−2 S )

S ≡ wads
B
/wads

 (27)

where S is the splitting factor and is just the fraction of the adsorbed particles that are type B. 

The range is 0 (pure adsorption case) to 0.5 (equal split of A and B).

The site-specific diffusion coefficients generated using this method will be equal to the pure 

adsorption case if the differences of site concentrations follows equation (28). 

ci+1
XS
−c i

XS

c i+1−ci

=
Δ c i

XS

Δ c i

=(1−2 S )  (28)

The two cases investigated were S=0.2 and S=0.4 (the S=0 case is the pure adsorption for 

comparison). These were done for both low loading (Xout=0.2) and high loading (Xout=0.8) and 

for both single file (Pex=0) and a case with hindered passing, Pex=0.5. Plots are labeled with the 

parameters used. Figure 11 shows that the diffusion coefficients are comparable for the three 

splitting factors investigated.

Figure 11: Comparison of diffusion coefficients calculated with and without
mixed adsorption for Xout=0.2. (a) shows Pex=0 (b) shows Pex=0.5.
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equation (28). Figure 12 shows the strong agreement with this equation for the case with 

hindered passing, Pex=0.5. The actual ci
XS values depend on the passing rate, but the difference 

between two neighboring sites does not. This means the plots for different degrees of passing 

will look the same.

Figure 12: Agreement of simulation results with expected values as derived in
equation (28) (a) shows Pex=0 (b) shows Pex=0.5.

Figure 13 shows the same behavior as above in the strict single file case for Xout=0.8.

Figure 13: High loading, Xout=0.8 results using mixed diffusion with Pex=0. (a)
shows the tracer diffusion values (b) shows agreement with equation (28).
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Appendix B: Counter Diffusion

Nelson et al have performed work [5,6,7,8] in a similar vein to this method. They name their 

method Tracer Counter Diffusion (TCP). Rather than structures with linear pores, the systems 

modeled in their approach are zeolites with interconnected pores. The lattice sites in the model 

represent the intersection of the channels in the crystal. (The choice of a 2D lattice was made for 

simplicity; the actual system is three-dimensional). Similar to this work, they start with the 

constraint of A particles entering one side and identical (except for labeling) B particles entering 

the other. Once in the system, they diffuse and can eventually exit from the opposite side. In the 

TCP approach, a 2D matrix of sites is used instead of a 1D array of sites. The hopping within the 

matrix is to the four nearest neighbors. Hop rates in the x and y direction may be different. 

Motion through the channels is governed by the rate constants. 

This work treats passing as a probability of A and B exchanging places which represents the 

motion of molecules sliding past each. In the TCP model, passing occurs by hopping around a 

site using the 2D lattice which represents molecules taking alternate paths in the crystal to move 

around a site. Particles pass by hopping to sites around each other. 

The TCP system has an anisotropy parameter, η = ky/kx, where kx and ky are the rate constants

for hopping in the x and y directions, respectively. A value of zero in one direction corresponds 

to single file diffusion. There isn't an exact correlation between the anisotropy parameter and the 

Pex parameter as they are fundamentally different diffusion processes. It is not possible to directly

compare results. The significance of this difference is clear at higher loadings. The 2D lattice 

model requires vacancy motion for all motion including passing while the passing method 

presented here does not. In the limit of a completely filled system, there is no motion within the 

TCP system regardless of the anisotropy. With the approach presented here, a completely filled 

pore with passing will still have motion as atoms swap places based on the passing rate. 

Nelson has the diffusion coefficient defined as: Ds(θT) = D0*(1-θT)*f(θT). D0 is the transport 

diffusivity and equal to the self diffusion coefficient at infinite dilution, θT is the total loading, 

and f is the correlation factor resulting from an increased probability to return to the site just 

vacated by the particle. This f value is the result reported. It ranges from 0 to 1. Based on the 

description in Nelson's work, this should be a function of the occupancy of a site and the time it 
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takes for a site to fill after being vacated, although this isn't discussed.

The individual diffusion coefficient values to pass between sites are determined from Fick's 

law, J=D Δθi, where Δθi is the concentration difference between sites i and i+1.

The primary focus is the bulk diffusion values far from the edges. This is equivalent to the 

center minimum value in diffusion coefficients shown in figures 5, 6, 7, and 8. The system sizes 

studied are L=10 to L=100. Fitting is done to extract limiting results for larger L. For the case 

where η≠0, there is a finite limit on the bulk value. This limit is independent of the pore length 

beyond some critical L value. For η>0.01, this L value is less than 10. For η=0.001, it is around 

70. For η=0, there is no limit, and the value always depends on the pore length. Nelson finds the 

limiting value approaching zero as 1/L.

The results in Nelson's papers are for high loading, θT=0.9, where the correlation effects are 

strongest.  The system is initially empty - though the paper mentions that this is not the most 

desirable way to start the simulation. There is no mention of correlations in site occupancies in 

the equilibration process. While in the current work, correlations with passing are very limited 

when passing is introduced, it is not clear if this will also be the case in the two-dimensional 

method of passing as the motion is still limited by site exclusion criteria preventing particles 

from moving until they find an empty site. This limit is the origin of the correlations in the single

file case discussed here. 

The only concentration profile across an entire pore is shown in figure 4 of ref 6 for L=20 

and η=1. It is mostly linear with barely perceptible deviations at the end sites. The f values at the 

ends show noticeable deviations from the value expected for a linear profile. Based on the plots 

of f for different configurations, the profiles are likely linear for all but the smallest η values. The

profile is presented with multiple sizes scaled to a single plot. This misses an important feature of

the diffusion coefficients that is evident when data from multiple pore lengths is plotted on a 

single graph (figure 14). Diffusion coefficients from all pore lengths follow the same master 

curve which breaks off when the diffusion coefficient reaches the limiting value for that pore 

length. This behavior matches with previous theory of diffusion coefficient values in pores.
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Figure 14: Tracer diffusion values for all pore lengths studied at Xout=0.2. The
values beyond the center of the pore were truncated. The curves for L=100 and

L=500 are directly below the L=300 curve.

While the TCP method bears a strong resemblance to the work discussed in this chapter, 

there are important distinctions that become clear when looking at the underlying model. The 

nature of the passing is fundamentally different. The TCP method is best applied to a system of 

interconnected channels such as a zeolite structure. It would be inappropriate to apply the TCP 

method to a linear system with passing hindered by steric constraints.
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Abstract

Statistical mechanical modeling is performed of a catalytic conversion reaction within a 

functionalized nanoporous material to assess the effect of varying the reaction product – pore 

interior interaction from attractive to repulsive. A strong enhancement in reactivity is observed 

not just due to the shift in reaction equilibrium towards completion, but also due to enhanced 

transport within the pore resulting from reduced loading. The latter effect is strongest for highly 

restricted transport (single-file diffusion), and applies even for irreversible reactions. The 

analysis is performed utilizing a generalized hydrodynamic formulation of the reaction-diffusion 

equations which can reliably capture the complex interplay between reaction and restricted 

transport.

1 Introduction

Advances in synthesis of nanomaterials have led to broad capabilities for 

multifunctionalization of mesoporous or nanoporous catalysts. Such capabilities allow for not 

only effective functionalization with catalytic groups, but also the possibility to tune the 

interaction between reaction products and the interior pore environment [1-3]. This can in turn 
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significantly impact and potentially enhance catalytic reactivity. For example, creation of an 

unfavorable environment for product species within pores can lead to enhanced product 

extrusion or inhibited product re-entry. This feature would shift the equilibrium of reversible 

reactions towards completion. Other possible scenarios are discussed below.

One class of examples of the above type is provided by dehydration reactions such as 

esterification (acid + alcohol ↔ ester + water) in mesoporous silica nanoparticles (MSN). 

Multifunctionalization of MSN to include hydrophobic groups, as well as catalytic groups, has 

been observed to significantly enhance reactivity in several such systems [4-6]. This effect has 

been explained as a result of functionalization converting an intrinsically hydrophilic interior 

pore surface of MSN into a hydrophobic environment thereby “expelling” the product water and 

shifting the equilibrium of the reversible esterification reaction. The greatest enhancement to date

has been achieved through solvent-mediated control of the configuration of hydrophobic 3-

(pentafluorophenyl) propyl groups to lie prone on silica surface thereby minimizing the 

interaction of the product water with the hydrophilic MSN surface groups [6,7]. 

In fact, there are several possible scenarios wherein functionalization to tune product-pore 

interactions can influence both the thermodynamics and the kinetics of transport and reaction, 

and thereby impact reactivity in meso- or nanoporous reaction systems. First, we discuss 

thermodynamic factors. Accounting for detailed-balance requirements, it follows that creating an

unfavorable environment for a reaction product within the pore increases the ratio of the rate of 

product desorption from the pore opening to that for product (re-)adsorption. One should note 

that product re-adsorption can become significant for substantial conversion of reactant to 

product in the surrounding fluid. However, even constraining rates to satisfy detailed-balance, 

there are still many distinct possibilities for rate behavior: (i) the product desorption rate could be

tied to the rate of diffusion within the pore, and thus the rate of re-adsorption would be inhibited 

for stronger interior pore-product repulsion; (ii) the product re-adsorption rate could be tied to 

the rate of external diffusion, and thus the rate of desorption would be enhanced for stronger 

interior pore-product repulsion; (iii) more general cases where both rates change. Any of these 

cases will result in a shift of equilibrium for reversible reactions.

Second, we discuss other kinetic factors that can impact reactivity, but which are unrelated to 
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shift of equilibrium for reversible reactions. Although not dictated by thermodynamic 

considerations, diffusive transport within the pore can also be modified by 

multifunctionalization. An unfavorable environment could enhance diffusion removing localized 

regions of strong binding and thereby “smoothing” interaction with the pore walls. Another 

possible scenario is that modifying the interior pore environment can change loading of product 

in the pore even for irreversible reactions. The loading can have a dramatic effect on effective 

transport for narrow pores, especially in the single-file diffusion (SFD) regime where species 

cannot pass each other in the pore, and this in turn greatly impacts reactivity. To test this latter 

effect, we will naturally consider the special case of irreversible reactions.

Our focus in this contribution is on exploring the effects of multifunctionalization for simple 

first-order catalytic conversion reactions (A to B) in mesoporous or nanoporous materials such as

MSN consisting of parallel arrays of effectively identical linear nanopores. A key factor 

impacting reactivity is the extent to which reactants and products A and B can pass each other. 

Previous analyses for SFD or restricted passing [8-15] reveal that reaction is strongly localized 

near the pore openings [9]. While simple mean-field type reaction-diffusion equations [8,11-13] 

are not adequate, recent studies have shown that behavior in this regime is captured by a 

“generalized hydrodynamic” formulation which accounts for both the effect of restricted passing 

on chemical diffusion as well as fluctuation effects in adsorption-desorption at pore openings 

[14]. Here, we adopt the latter rather than computationally more expensive Kinetic Monte Carlo 

simulation which could also provide a precise characterization of model behavior.

In Sec. 2, we describe our model for conversion reaction in linear nanopores, the associated 

exact master equations, and associated generalized hydrodynamic reaction-diffusion equations 

(RDE). In Sec.3, we present results for both irreversible and reversible conversion reactions 

focusing on reactivity (i.e., turn-over frequency) per pore as a function of the fraction of reactant 

converted to product, and contrasting behavior for pores where product entry in enhanced versus 

inhibited. Our conclusions are presented in Sec.4.
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2 Spatially-Discrete Model for Catalytic Conversion Inside Linear
Nanopores

2.A. Spatially-discrete stochastic reaction-diffusion model prescription

Our model for catalytic conversion describes nanoporous materials which consist of a 

parallel array of linear pores by partitioning the continuous-space pores into adjacent sites 

labeled n = 1 to L [8-14]. The site width “a” is selected to be comparable to the species size ~1 

nm. Species within pores are regarded as localized to specific sites, and diffusive transport is 

treated as hopping or exchange between adjacent sites. To describe the surrounding fluid, we 

extend the 1D lattice of sites inside the pores to a 3D lattice outside. See Fig. 1. We specify 

“external” reactant and product concentrations in the surrounding fluid at each stage of the 

reaction as <Aout> and <Bout>, for a fixed total concentration <Xout> = <Aout> + <Bout>. These 

correspond to the probabilities that sites or sites on the 3D lattice are occupied by various 

species, where fluid site occupation is assumed random due to efficient stirring. Then, <Aout> 

will decrease from an initial value of <Xout>, and <Bout> will increase from zero with increasing 

fraction, F = <Bout>/<Xout> (= 1- <Aout>/<Xout>), of the initial reactant converted to product 

[14,15]. 

Following most previous stochastic modeling of reaction-diffusion processes in linear 

nanopores [8-15], the simplest prescription for diffusion dynamics within the pores is that A and 

B hop to adjacent empty (E) sites at rate h, corresponding to a diffusion rate of D0 = a2h for 

isolated particles. This simple prescription would correspond to single-file diffusion with a strict 

no-passing constraint. For a more general treatment of diffusional dynamics, we also allow 

positional exchange of adjacent A and B at rate Pex h, thereby relaxing the strict single-file 

constraint. (Note that exchange of adjacent particles of the same type has no effect.) The passing 

propensity, Pex, will increase with the effective pore diameter, d, from Pex = 0 for d below a 

threshold for SFD, to Pex = 1 for large d and unhindered passing.

In addition to hopping or exchange within the pore, the other mechanistic steps in the model 

(see Fig. 1) are as follows: (i) Adsorption of external reactant A (product B) to terminal pore sites

n=1 and n=L at rate h (αh), provided that these end sites are unoccupied or empty (E). We 

emphasize that the factor α will account for the effects of multifunctionalization modifying the 
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interior pore – reaction product interaction. (ii) Desorption of both the reactant, A, and product, 

B, from terminal sites of the pore at rate h provided that the fluid site just outside the pore is 

unoccupied (Eout). The probability for this fluid site to be unoccupied is given by <Eout> = 1 - 

<Xout>. (iii) Conversion A→B at catalytic (c) sites within the pore at rate k, as well as the reverse

reaction B→A at rate k´. Our model can treat general distributions of catalytic sites, but here we 

shall assume that all sites are catalytic. (iv) One could also consider exchange in and out of the 

pore. One choice is to ignore such processes. Another plausibly more realistic choice is to 

specify that A (B) just outside exchanges with B (A) inside at n = 1 or L at rate Pexh (αPexh). Both

choices (and others) are consistent with detailed-balance. We expect that the choice will not 

greatly effect of reactivity (except in the special regime of both high Pex and high loading).

Figure 1: Schematic of the A to B conversion reaction model illustrating processes within pores
(shaded light blue), as well as coupling to the surrounding fluid. In-out exchange processes are

not shown (but are active in our modeling). ‘c’ denote catalytic sites.

It should be emphasized that there is a natural “separation of time scales” for “local” 

relaxation (in time) of concentration profiles within the pore, and for “global” equilibration of 

the entire system including the fluid. Relaxation of concentration profiles to a local steady state 

form determined by the current values of <Aout> and <Bout> should be effectively instantaneous 

on the time scale of global equilibration of the entire system (which in experiments is on the 

order of hours). Thus, the main challenge is to solve the non-trivial statistical mechanical local 

steady-state problem to determine reactant and product concentration profiles, and thus the 

reactivity, as a function of the fractional conversion, F=<Bout>/<Xout> , of reactant to product. It 

should also be noted that the global equilibrium values of <Aout> and <Bout>, and thus of F = Feq, 



110

are determined not just by the equilibrium constant Kc = k/k´ for the conversion reaction within 

the pores, but also by the parameter α. This issue is addressed immediately below.

For the above model, it is clear that the “color-blind” dynamics for particles X = A+B (i.e., A 

or B) is described by a non-reactive diffusion process where particles hop within the pore and 

desorb at rate h. At a specified fractional conversion, F, particles adsorb at an effective rate hads = 

hads(F) = eads(F) h with eads = eads(F) = (1-F) + αF, where the first (second) term is the weighted 

contribution from A (B) adsorption. In the local steady state for fixed F, all sites within the pore 

are randomly occupied by particles, X, with equal probability <Xin> = <Xin(F)>, say. Then, 

balancing the adsorption flux, Jads, and desorption flux, Jdes, for particles X where

Jads = hads(F)<Xout>(1-<Xin>) and Jdes = h(1-<Xout>)<Xin> yields (1)

<Xin> = eads<Xout>/[1+(eads-1)<Xout>] = [1+(α-1)F]<Xout>/[1 + (α-1)F<Xout>]. (2)

We recall that <Xout> remains constant at its initial value. As expected, (2) demonstrates that 

<Xin> exceeds <Xout> for α>1 (enhanced product reentry), and that <Xout> exceeds <Xin> for α<1 

(inhibited reentry).

A simple analysis of individual species concentrations in the local steady state is not possible 

since these concentrations exhibit non-trivial spatial profiles within the pore. However, in the 

final global equilibrium state, concentrations of both species within the pore, <Ain>eq and <Bin>eq,

are spatially uniform, and satisfy <Bin>eq/<Ain>eq = Keq. Then, separately balancing the adsorption

and desorption fluxes for species A and for species B yields

<Aout>eq(1-<Xin>eq) = <Ain>eq(1-<Xout>) and α<Bout>eq(1-<Xin>eq) 
= <Ain>eq(1-<Xout>),

(3)

so that <Bout>eq/<Aout>eq = α-1 <Bin>eq/<Ain>eq = Kc/α, and Feq = Kc/(Kc + α). (4)

The latter result characterizes the shift in equilibrium for our model associated with tuning of

the reaction product – pore interior interaction via multifunctionalization. We thus find that <Xin>

changes from its initial value of <Xout> at the onset of the reaction (F=0) to 

<Xin>eq = α(1+Kc)<Xout>/[α(1+Kc<Xout>)+Kc(1-<Xout>)], when F=Feq, (5)
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at completion of the reaction. This result (5) recovers the requirement that <Xin>eq =0 for blocked

product reentry α=0. It also shows that for enhanced reentry with, e.g., α=5 and <Xout>=0.8 (the 

case considered below), one has <Xin>eq/<Xout> = (1+Kc)/(1+0.84Kc) >1.

2.B. Exact master equations and discrete reaction-diffusion equations

An exact description of our discrete reaction-diffusion model is provided by the master 

equations for the evolution of probabilities of various configurations within the pore. Often these

are written in hierarchical form [8,11-15]. Here, we use <Cn> to denote the probability or 

ensemble averaged concentration for species C = A or B at site n (or for this site to be empty 

when C = E), <CnEn+1> for the probability that C is at site n and for site n+1 to be empty (E), etc. 

Then, the lowest-order equations in the hierarchy describe the evolution of single-site 

occupancies. 

For A to B conversion in the case where all sites are catalytic, one has that

d/dt <An> =  -k<An> + k´<Bn> - JA
n>n+1 and (6a)

d/dt <Bn> =  +k<An> - k´<Bn> - JB
n>n+1  for 1<n<L, (6b)

where we have defined the discrete derivative, Gn = Gn – Gn-1. The net diffusion flux, JA
n>n+1, of 

A from site n to n+1 due to both hopping and exchange is given by

JA
n>n+1 = h [<AnEn+1> - <EnAn+1>] + Pex h [<AnBn+1> - <BnAn+1>]. (7)

The expression for the net flux, JB
n>n+1, of B is analogous. Separate equations for terminal 

sites reflect adsorption-desorption boundary conditions (BC’s). In the presence of in-out 

exchange with rates as specified in Sec. 2A, one has that

d/dt <A1> = h<Aout> <E1> - h<Eout> <A1> + Pex h <Aout><B1> - Pex αh <Bout><A1> 
                - k <A1> + k´<B1> - JA

1>2, and
(8a)

d/dt <B1> = αh<Bout> <E1> - h<Eout> <B1> + Pex αh <Bout><A1> - Pex h <Aout><B1> 
               + k <A1> - k´<B1> - JB

1>2,
(8b)



112

with analogous equations for concentrations at site n=L. If some sites are not catalytic, then the 

reaction terms are absent for such sites. Defining <ΔAn> = <An> - Kc
-1<Bn> as the “excess” 

reactant concentration, the net overall rate of production of B per pore is given by 

RB
rxn = Σn=c (k<An> - k´<Bn>) = k Σn=c <ΔAn> (9)

summing over all catalytic sites, c.

Equations (6) couple to various pair probabilities in (7). Pair probability evolution is coupled 

to triples, etc., producing a hierarchy. Pair and multisite probabilities are not simply related to 

single-site probabilities due to spatial correlations. A simple mean-field (MF) factorization 

approximation, <CnEn+1> ≈ <Cn><En+1>, etc., produces a closed set of discrete reaction-diffusion 

equations (RDE) for single-site concentrations. However, this approximation, and even higher-

order pair, triplet, etc., approximations, fundamentally fail to capture model behavior, at least for 

low reactivity k/h<<1 when Pex <<1 [13-15]. Thus, below we discuss an alternative “generalized 

hydrodynamic” approach which does reliably describe model behavior. 

As an aside, in the special case Pex =1 (unhindered passing of A and B), (7) reduces exactly to

JA
n>n+1 = h [<An> - <An+1>] = -h  <An>, and similarly for JB

n>n+1 [14-16]. This yields an exact set 

of discrete RDE matching the MF approximation.

2.C. Generalized hydrodynamic reaction-diffusion equations

For smoothly varying concentrations within the pore, it is natural to consider a coarse-

grained description of the spatially-discrete reaction-diffusion model which regards the species 

concentrations per unit length, C(x=na) ≈ a-1 <Cn>, as functions of a continuous spatial variable x

(leaving the t-dependence implicit), and denote the total concentration by X(x) = A(x) + B(x). 

The continuum RDE for our A to B conversion reaction model with all sites catalytic then have 

the form

∂/∂t A(x) = -k A(x) + k´ B(x) - ∂/∂x JA, and ∂/∂t B(x) 
               = +k A(x) - k´ B(x) - ∂/∂x JB.

(10)

If only portions of the pore are catalytic, then reaction terms appear just for those locations. 

BC’s for (10) at the pore ends reflect the adsorption-desorption dynamics, i.e., one balances the 
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diffusion fluxes at the end of the pore with the net adsorption-desorption rate for each species. 

Description of the diffusion fluxes, JA and JB, is non-trivial. 

Analysis from the theory of interacting particle systems [17,18] for the hydrodynamic regime

of slowly varying concentrations suggests the general form [13,14,17,18] 

JA = -D0[1- X-1(1-Ftr)B] ∂A/∂x - D0 X-1(1-Ftr)A ∂B/∂x. (11)

In this expression, one has D0 = a2h and Ftr is related to a tracer diffusion coefficient for 

particles within the pore by Dtr = D0Ftr. In applying the form (11), we utilize the feature that the 

diffusive dynamics for both A and B within the pore is identical. An analogous expression 

applies for JB. Here, it suffices to consider the local steady-state regime with uniform total 

concentration, X = <Xin> = <Xin(F)>, corresponding to a counter-diffusion mode [19] where 

∂A/∂x = -∂B/∂x. Then, (11) and the analogous expression for JB simply reduce to [13,19]

JA = -Dtr ∂A/∂x and JB = -Dtr ∂B/∂x. (12)

In the MF treatment, X-1(1-Ftr) in (11) is replaced by 1-Pex which corresponds to the 

assignment Ftr = Ftr(MF) = 1- (1-Pex)X. However, this MF choice overestimates diffusion fluxes 

within the pore, and thus overestimates overall reactivity, especially for the quasi-SFD regime, 

Pex<<1 and Ftr(MF) ≈ 1 - X [12,13]. A contrasting deterministic hydrodynamic (DH) formulation 

of Ftr, applicable for large systems (very long pores) with slowly varying concentrations and 

negligible fluctuation effects, follows from a precise analysis of tracer diffusion for effectively 

infinite systems. One finds that the corresponding Ftr = Ftr(DH) = Ftr(X, Pex) has the form shown 

in Fig.2. Simple limiting behavior includes: 

Ftr(DH)→1, as Pex→1; Ftr(DH)→Pex, as X→1; and 
Ftr(DH)→0, as Pex→0 (for X>0).

(13)

The latter behavior for Pex =0 is in marked contrast to the MF form, and reflects the 

anomalous nature of SFD wherein the mean-square displacement of a tagged particle increases 

sub-linearly [20]. To account for the finite length of pores, we have considered a refinement of 

the DH choice where Ftr ~ 1/L for SFD when Pex =0 [21]. This modified choice was motivated by

analyses of transport through channels across membranes of finite width [22]. However, 
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choosing either Ftr = 0 or Ftr ~ 1/L for SFD underestimates diffusion fluxes at least near pore 

openings, and thus underestimates underestimates the overall reactivity [21].

Figure 2: Behavior of the conventional
(DH) tracer diffusion coefficient, Ftr(DH),
for infinite systems as a function of pore

loading <Xin> for various passing
probabilities, Pex (shown).

Figure 3: Variation of the generalized hydrodynamic tracer diffusion coefficient, Ftr(n) =
Dtr(n)/D0, with distance x=na into the left end of the pore for a pore on length L=100 a. The

plateau value near the pore center corresponds to Ftr(DH). Results are shown for fixed
<Xout> = 0.8 and varying <Xin> for: (a) single-file diffusion, Pex =0; and (b) exchange with

Pex=0.25.
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To address the shortcomings of the MF and DH approaches described above, we will utilize a

generalized hydrodynamic (GH) treatment [23] which incorporates a position-dependent 

Ftr(x=na) = Ftr(GH). This Ftr(x=na) is enhanced near pore openings above the deterministic 

hydrodynamic value of Ftr(DH) [14]. This enhancement of Ftr(DH) reflects the influence of 

stochastic adsorption-desorption processes which facilitate transport in and out of the pore near 

these pore openings [14]. Results are shown in Fig.3 where Ftr(x) approaches Ftr(DH) for x or n 

corresponding to the central region of the pore. The algorithm which we use to determine this 

location-dependent Ftr(GH) is described in Ref. [14] and also in the Appendix. Roughly 

speaking, we set Ftr(x=na) = t0(x=na)/ tX(x=na) where tX is time for a tagged particle starting at a 

specific location, x=na, in a pore with concentration X of other particles to reach the closest pore 

opening. This choice is based on the classic result that diffusivity scales like the mean-square 

displacement divided by time. See Ref. [19] for an alternative formulation. Thus, it is 

immediately clear that Ftr(x)→1, as X→0 (as required). Introducing these variable Ftr(x=na) = 

Ftr(n) into a discrete form of (10) and (11) [24] recovers almost exactly the results of precise 

KMC simulations of model behavior, but much more efficiently [14]. This formalism will be 

used to generate results in the following sections.

3 Catalytic Reaction Kinetics: Reactivity Versus Conversion

In this section, we present simulation results for the reactivity (i.e., the turn-over frequency) 

per pore as a function of fractional conversion of reactant to product. We also provide more 

detailed information on concentration profiles within the pores. In all cases below, we consider a 

pore of length L=100 a in which all sites are catalytic. The hop rate is set to unity h=1, which 

determines the time scale. The rate of the forward reaction A→B chosen as k=0.001. The initial 

reactant concentration, and thus the total concentration in the exterior fluid, is set to <Xout> = 0.8.

This high <Xout> results in a high loadings inside the pore, and thus strong SFD effects in the 

absence of exchange diffusion when Pex = 0. We will consider and compare behavior for three 

cases: (i) significantly enhanced product reentry with α=5 (mimicking hydrophilic pores for 

dehydration reactions); (ii) neutral product reentry with α=1; (iii) blocked product reentry with 

α=0 (mimicking strongly hydrophobic pores for dehydration reactions).
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3.A. Irreversible reaction

For irreversible reaction, A→B, where k´=0, Fig.4a shows the local steady state 

concentration profiles for <An> and <Bn> versus n at the onset of the reaction (F=0) for various 

passing probabilities ranging from SFD (Pex = 0) to completely unhindered passing (Pex = 1). 

Behavior for F = 0 is independent of α due to the lack of product in the exterior fluid. Note the 

strongly enhanced penetration of reactant into the pore with increasing passing propensity, Pex. 

This results in a strong increase in reactivity, RB
net, as discussed further below. Fig.4b-4d show 

the concentration profiles for A→B when F = 0.625 for α = 5, 1, and 0, respectively. Here the α-

dependence on behavior is seen clearly not just in the increased values of <Xin> for larger α, but 

also in the increased dominance of product over reactant within the pore.

Figure 4: Local steady-state concentration profiles for irreversible
reaction A→B with L=100 a, k = 0.001, h = 1, and <Xout> = 0.8. A (B)
is blue, solid (red, dashed). Behavior for: the onset of the reaction F=0

(a) for all α; and for F = 0.625 with (b) α=5; (c) α=1; (d) α=0.

Our main focus here is on a comprehensive characterization of the variation of reactivity 

during the “extended reaction”. Of particular significance is our demonstration of a dramatic 

difference between behavior for enhanced versus blocked product reentry to the pore. In Fig.5, 
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we show the reactivity, RB
rxn, as a function of the fraction, F, of reactant outside the pore 

converted to product for the irreversible reaction A→B. The key observation is the contrasting 

strong decrease of RB
rxn with increasing F for enhanced product reentry (α=5) versus the slow 

decrease of RB
tot (or even an initial slight increase with Pex=0) for blocked product reentry (α=0). 

Thus, blocking reentry greatly enhances the effective reactivity of the system. The neutral case 

where reentry is neither enhanced or inhibited (α=1) exhibits intermediate behavior with a linear 

decrease of RB
rxn(F) = (1-F) RB

rxn(0) versus F, as explained below. 

Figure 5: Net reactivity per pore, RB
net, as a function of the fraction F of reactant converted to

product for irreversible reaction A→B with L=100 a, k = 0.001, h = 1, and <Xout> = 0.8. (a)
enhanced product reentry α=5; (b) neutral reentry α=1; (c) blocked reentry α=0.

The enhanced reactivity upon converting from enhanced reentry (α>1) to blocked reentry 

(α=0) reflects the reduction in pore loading <Xin>. For example, when <Xout> = 0.8 and F=1/2, 

one has <Xin> = 0.92 for α=0 versus <Xin> = 0.67 for α=5. Lower <Xin> (or higher <Ein>) 

impacts the rate of adsorption of reactant A via hopping into the pores,

RA
ads(hop) = h<Aout><Ein> = h<Xout><Eout>(1-F)/[1+(α-1)F<Xout>] . (14)

Thus, RA
ads(hop) increases with decreasing α, for F>0, which naturally boosts reactivity. 

Note, however, that the rate of exchange adsorption of reactant for Pex>0 may decrease for lower 

<Xin>. More significantly, lower <Xin> greatly increases the tracer diffusion coefficient Ftr(GH) 

which strongly increases penetration of reactant into the pore, and thus also boosts reactivity. 

This strong increase in reactivity in changing from enhanced to blocked product re-adsorption is 

purely kinetic in origin rather than thermodynamic (noting that the reaction is irreversible).

Finally, we provide some further comments on reaction kinetics. First, for the neutral case 



118

α=1, we describe the origin of the linear decrease of RB
net(F)  (1-F) with F. This behavior is a 

consequence of two features. One is the homogeneous F-independent linear form of the steady-

state master equations, 0 = -k<An> - JA
n>n+1, noting that Ftr(GH) = Ftr(n) is independent of F 

when α=1. The other relates to the feature that the BC terms for <An> when n=1 or n=L adopt an 

inhomogeneous linear form with driving term proportional to 1-F [25]. This implies that all <An>

 (1-F) and thus one has RB
rxn(F) = (1-F) RB

rxn(0). A detailed derivation of the analogous result 

for the more general reversible case is provided in Sec.3B. 

Second, we note that if α≠1, RA
ads(hop) in (14) exhibits a non-linear decrease with F, and also 

the position-dependent tracer diffusion coefficient adopts a non-trivial non-linear dependence of 

F. As a result, it is not possible to provide a simple analytic expression for the non-linear 

dependence of RB
rxn(F) on F when α≠1.

Third, we emphasize that our results for the F-dependence of RB
rxn(F) encode complete 

information about the reaction kinetics through the equation

d/dt <Aout> = ε RB
rxn(F), where F = 1- <Aout>/<Xout>). (15)

Here, the constant ε equals the number of pores in the system divided by the total number of 

3D lattice sites associated with the fluid. Thus, for no product reentry α=0 where RB
rxn(F) ≈ 

RB
rxn(0) is roughly independent of F (up to F ≈ ¾), one has a sustained fast linear decrease in 

time t of <Aout> ≈ <Xout>[1- ε RB
rxn(0)<Xout>-1 t)] . For α=1 where RB

rxn(F)  (1-F), one has 

exponential decay <Aout> ≈ <Xout> exp[- ε RB
rxn(0)<Xout>-1 t]. For α>1, one has slower decay. All 

cases exhibit the same α-independent initial decay rate.

3.B. Reversible reaction

Next, consider the reversible reaction, A↔B, with k=0.001 as above, but now k´=0.0005 is 

non-zero corresponding to a finite equilibrium constant Kc = 2. Fig.6a shows the local steady 

state concentration profiles for <An> and <Bn> versus n at the onset of the reaction (F=0) for 

various passing probabilities Pex. Behavior for F = 0 is independent of α as for irreversible 

reaction, and penetration of “excess” reactant, <ΔAn> = <An> - Kc
-1<Bn>, into the pore is 

strongly enhanced with increasing passing propensity, Pex. Fig.6b-6d show the concentration 
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profiles for A→B when F/Feq = 0.625 for α = 5, 1, and 0, respectively. Here, the reduction in 

excess reactant with increasing α is evident.

In Fig.7, we show the reactivity, RB
rxn, versus F for the reversible reaction. The contrast 

between the strong decrease of RB
rxn with increasing F for enhanced product reentry (α=5) versus 

the slow decrease or even slight increase of RB
tot for blocked product reentry (α=0) is even 

greater than for irreversible reaction. This is due to opposite shifts in the global equilibrium for 

enhanced versus blocked reentry. The neutral case (α=1) exhibits intermediate behavior with a 

linear decrease of RB
rxn(F) = (1-F/Feq) RB

rxn(0) versus F, as explained below. 

Figure 6: Local steady state concentration profiles for reversible
reaction A↔B with L=100 a, k = 0.001, k´=0.0005, h = 1, and <Xout>
= 0.8. A (B) is blue, solid (red, dashed). Behavior for: the onset of the

reaction F=0 (a) for all α; and for F/Feq = 0.625 with (b) α=5; (c)
α=1; (d) α=0.

The enhanced reactivity upon converting from enhanced reentry (α>1) to blocked reentry 

(α=0) partly reflects kinetic effects due to the reduction in pore loading <Xin>. RA
ads(hop) is still 

given by (14) and increases with decreasing α, thus boosting reactivity. More significant is that 

lower <Xin> greatly increases the tracer diffusion coefficient Ftr(GH) which boosts reactant 
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penetration of excess reactant and thus reactivity. However, a synergistic factor is the strong shift

in equilibrium with varying α, noting that blocked reentry allows completion of the reversible 

reaction to F=1!

Finally, we provide some further comments on reaction kinetics. First, for the neutral case 

α=1, we describe the origin of the linear decrease RB
net(F)  (1-F/Feq) where Feq = Kc/(Kc +1). To 

this end, it is instructive to consider steady-state equations for <ΔAn> = <An> - Kc
-1<Bn>. 

Subtracting Kc
-1 times (6b) from (6a) yields the homogeneous F-independent equations

0 = -k(1+Kc
-1) <ΔAn> - JΔA

n>n+1 where JΔA
n>n+1 = -h Ftr (<ΔAn>). (16)

For the BC at n=1, subtracting Kc
-1 times (8b) from (8a) yields

0 = h<Eout> <ΔAout> - [h<Eout>+ k(1+Kc
-1)] <ΔA1> + 

      (1+Kc
-1) RA

ads-des(ex) - JΔA
1>2.

(17)

where <ΔAout> = <Xout>(1- F/Feq) and RA
ads-des(ex) denotes the net rate of exchange of reactant 

A into the pore at n=1. Using that <A1> + <B1> = <Xout> for α=1, one can also write 

(1+Kc
-1) RA

ads-des(ex) = Pex h<Xout>2(1- F/Feq) - Pex h<Xout><ΔA1>. (18)

Thus, the BC adopt an inhomogeneous linear form with driving term proportional to 1-F/Feq. 

This implies that all <ΔAn>  (1-F/Feq), and thus one has RB
rxn(F) = (1-F/Feq) RB

rxn(0). 

Figure 7: Net reactivity per pore, RB
rxn, as a function of the fraction F of reactant converted to

product for reversible reaction A↔B with L=100 a, k = 0.001, k´=0.0005, h = 1, and <Xout> =
0.8. (a) enhanced product reentry α=5; (b) neutral reentry α=1; (c) blocked reentry α=0.

Second, the above analysis is useful for understanding the change in initial reactivity (for F=0
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where behavior is independent of α) going from irreversible reaction (where 1+Kc
-1 =1) to 

reversible reaction (where 1+Kc
-1 >1). Equation (17) indicates that one should have quite similar 

values of <ΔA1> since k<<h (with <ΔA1> marginally lower in the reversible case), and (16) 

indicates that <ΔAn> should decay somewhat faster into the pore for the reversible case. Mainly 

the latter effect produces a slightly lower initial reactivity for the reversible case. In Fig.8, we 

compare <ΔAn> profiles for F=0 and α=1 to confirm this picture.

Figure 8: Fig.8. Comparison of excess reactant concentration,
<ΔAn>, for irreversible reaction (where <An> = <ΔAn>) and

reversible reaction at the onset of reaction (F=0) with L=100 a, k
= 0.001, k´=0.0005, h = 1, α=1, and <Xout> = 0.8. The net
reactivity RB

rxn corresponds to the area under these curves.

Third, non-linear variation of RB
rxn(F) on F when α≠1 has similar origins to those for the 

irreversible case. Fourth, our results for the F-dependence of RB
rxn(F) encode complete 

information about the reaction kinetics as discussed for the irreversible case.

4 Conclusions

The catalytic activity of nanoporous materials containing multifunctionalized linear 

nanopores is shown to be strongly dependent on the tunable interaction between reaction 

products and the interior pore environment. Making the pore interior unfavorable to products not 

only modifies the reaction equilibrium towards completion, but also reduces pore loading which 

can significantly enhance diffusivity and thus reactivity especially in the SFD regime. As noted 

in previous studies, catalytic activity is also strongly dependent on the propensity for passing of 

reactants and products within the pores [9,14,15,21]. Our generalized hydrodynamic formulation 
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of reaction-diffusion phenomena provides an efficient tool to explore behavior over a broad 

phase-space of model parameters. This approach can reliably capture the complex interplay 

between reaction and restricted transport which results in subtle spatial correlations and 

fluctuations of reactants and products within the pore. These effects are not described by 

traditional mean-field approaches.

There are numerous possible modifications and extensions of our modeling which could be 

performed either utilizing refined generalized hydrodynamic RDE or with KMC simulation. 

In this contribution, we have considered the benchmark case of equal mobility of reactants 

and products within the pore, following previous studies of conversion reactions in nanoporous 

systems [8-14]. However, the basic features of the reaction-diffusion process and the variation 

for enhanced versus blocked product reentry to the pore will be preserved for unequal mobilities.

Some comments pertaining to the required refinement of refined GH formulation are found in 

Ref. [14]. Another natural extension of our modeling is to consider different reaction 

mechanisms, e.g., A+B↔C+D better matching esterification reactions, and to consider the 

scenario where pore reentry of just one of the two products is enhanced versus blocked. The 

approximate MF and precise GH formalism described above are readily extended to treat this 

more complex situation, and preliminary studies reveal analogous behavior to that discussed 

above for the simpler A↔B conversion reaction mechanism. 
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Appendix: Random Walk Analysis of GH Tracer Diffusivity Ftr(n).

The position-dependent tracer diffusion coefficient, Ftr(x=na) = Ftr(n), for a tagged particle 

starting at site n in a pore with a concentration X of other particles is central to our generalized 

hydrodynamic formulation. This quantity is determined by simulations involving a finite 
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concentration of a single type of particle in the pore with dynamics of all particles identical to the

tagged particle. This dynamics is naturally selected to match the (equivalent) dynamics A or B 

particles within the pore: hopping to neighboring empty sites at rate h; exchange with adjacent 

particles within the pore at rate Pex h; desorption from end sites n=1 and n=L by hopping to 

empty sites just outside the pore. If the reaction model excludes (includes) exchange in and out 

of the pore, then this process is excluded (included) in the simulations to determine Ftr. If 

included with rates described in Sec. 2A, then the corresponding single-particle dynamics 

includes exchange in and out of the pore at rate eadsPexh. This choice recovers the appropriate 

values for α=1 (where eads =1) and for F=1 with only B in the fluid (where eads =α).

Our explicit algorithm to determine Ftr(n) is based on a suitably defined “exit time” tX(x=na) 

for the tagged particle to exit the pore (where exiting the pore corresponds to reaching a site just 

outside the pore opening). Given anomalous features of random walks in one-dimension, such as 

long time-tails in return-time distributions [26], a judicious choice of definition for tX is 

appropriate. Rather than simply average exit times over many simulation trials, we define 

tX(x=na) as the time when the root-mean-square displacement of the tagged particle reaches the 

distance to the closest pore opening (i.e., a distance n for n<L/2). Then, we assign Ftr(n) = 

t0(n)/tX(n), motivated by the classic result that diffusivity scales like the mean-square 

displacement divided by time. Here, t0(n) corresponds to the exit time for an isolated particle in 

the pore, which can be determined analytically. Thus, one has that tX(n) ~ t0(n) and Ftr(n)→1 for 

all n, as X→0. 

For a semi-infinite pore L→∞, it is clear that Ftr(n)→Ftr(DH) = Ftr(X, Pex), as n→∞, recalling 

that Ftr(DH) is the standard tracer diffusion coefficient for an infinite system. Thus, one has that 

Ftr(n)→0, as n→∞ for SFD (Pex=0) when X > 0. The anomalous diffusion observed for SFD in 

infinite systems [20] suggests that tX(n) ~ n4 [14] versus t0(n) ~ n2 for classic diffusion. Together, 

these imply that Ftr(n) ~ 1/n2, as n→∞, for SFD. Numerical studies show that behavior for SFD is

fit well by a more general form Ftr(n)  1/(n2 + a n + bn1/2 +c) over a broad range of n [14]. For 

finite pores L<∞, usually Ftr(n)→Ftr(DH) quickly upon entering the pore interior if Pex >0. See 

Fig. 3b. For SFD (Pex=0), numerical studies reveal that Ftr(na ≈ L/2) ~ 1/L at the pore center. 

To generate optimal numerical data for Ftr(n), we sometimes smooth simulation results using 
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a fit δFtr(n) = Ftr(n) – Ftr(DH)  1/(n2 + an +c), for larger n. Simulations are typically used to 

generate Ftr(n) data for a selected set of values of X = <Xin>. Data for other intermediate X-values

can be readily and reliably obtained by interpolation. 
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CHAPTER 8. LANGEVIN PASSING DYNAMICS OF CIRCLES
AND SPHERES

1 Introduction

The previously-described hydrodynamic and kinetic Monte Carlo (KMC) methods [1,2,3] for

tracking diffusion and reaction in a pore can allow limited passing of particles. Physically, this is 

representative of the size of the pore being large enough to allow some degree of passing 

between particles. This passing was modeled with a passing parameter, Pex, which ranged from 0 

in the strict single file case to 1 in the complete passing case. The value is a scaling factor for the 

exchange motion of the particles. As such, its behavior is clear, but there was no direct physical 

connection between pore size and particle size that gives a specific Pex value. The goal of this 

work is to determine the probability of passing for two molecules in a narrow pore and 

investigate the degree of passing as a function of the diameter of the pore and the size and shape 

of the molecules. The general case of a molecule of arbitrary shape is complicated by the 

rotational freedoms of an arbitrary three dimensional shape. To better understand the behavior of 

molecules in the pore and isolate the size dependence, the simpler case with no rotational motion

was investigated. Both two dimensional (circles) and three dimensional (spheres) particles were 

studied. 

2 System Description

Two particles are contained within a linear pore that constrains their motion perpendicular to 

the pore axis which hinders the passing behavior. The desired information is the probability that 

the two neighboring particles will move in such a way to pass each other. The particles are 

started with a defined separation, and the positions are allowed to evolve over time. The particles

are free to move in any direction provided that they do not overlap each other or cross the pore 

wall. The pore is treated as infinite, so there is no possibility of particles leaving through the end 

of the pore. The ending configuration is either the particles passing each other or moving a given 

distance apart as shown in figure 1. The lines between particles in the figure denote a 

characteristic length of the system. It is intended to correspond to the the distance between sites 

in single file hopping systems [1-5] which is on the order of the size of a single molecule.
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Figure 1: Initial configuration and the two options for final
configuration: passing and no passing.

In the 3D case, particles are spheres contained within an infinitely long cylindrical pore 

aligned with, and centered on, the z-axis. The surface of the pore is smooth and defined by x2+y2 

= Rp
2 for all z. The 2D case consists of circles contained within an infinitely wide rectangular 

pore in the x-z plane. The pore is aligned along the z-axis with the boundary defined as abs(x) = 

Rp, with Rp as half the width of the rectangle (effectively the “radius” of the rectangle).

The system's evolution is described by Langevin [6,7] equations of motion governing the 

degrees of freedom. The pore is stationary while the particles are confined to move inside. In the 

most general case, each particle has six degrees of freedom – three rotational angles (θ1, θ2, θ3) 

and three translational positions ri for i={x, y, z}. The symmetry of the circle and sphere case 

reduces the degrees of freedom by removing rotational motion. This leaves only the translational 

degrees of freedoms: 2 for each circle and 3 for each sphere. In principle, a further degree of 

freedom can be eliminated by noting that the absolute values of z for each particle are not 

needed. Only the separation distance between particles is relevant. This reduction was not used 

in this work as it poses issues generalizing to the case of an arbitrary shaped particle. Examples 

of the particle evolution are shown in figures 2 (circles) and 3 (spheres).
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Figure 2: Motion of particles that separate (a), (b) and pass (c), (d). Starting position of each
particle is given by the black dots. The center of mass paths are shown, going from dark green at the

start of the simulation to light yellow at the end. Matching colors on both paths can be used to
determine the relative location the particles over the course of the simulation. Parameters, details

described later, are gap=2R (gap defined as rectangle width – 4R, with R=circle radius), time
step=0.0001, D=1. Upper and lower edges of boxes correspond to pore boundaries. Side edges are

not meaningful and do not constrain motion in that direction.

The translational positions obey the Langevin equations:

mr̈ i( t )+m ζi ṙ i(t)+
∂
∂ri

V (ri ,t )=Fi(t ) (1)

where m is the particle's mass, ζ is the frictional damping coefficient from the surrounding fluid, 

V is an external potential, and Fi(t) is a Gaussian random force with the properties:
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〈F i(t)〉=0

〈F i(t)F i( t ')〉=2k T m ζ iδ( t−t ' )
(2)

With no external potential and assuming an over-damped system ( r̈i=0 ), equation (4) 

becomes:

m ζi ṙ i(t)=F i(t) (3)

Figure 3: Motion of particles that separate (a), (b) and pass (c), (d). Starting position
of each particle is given by the black dots, with the path to the final position, indicated
by the large spheres, shown. Parameters are gap=2R (gap defined as pore diameter –
4R, with R=sphere radius), time step=0.01, D=1. The cylindrical boundary is shown.

3 Simulation

The simulation is performed by moving the pair of particles through a number of discrete 

configuration changes governed by the Langevin equations as given in equations (5) and (6). 

Configuration changes are attempted until one of the two ending conditions is reached. Each trial

change is accepted if it results in a configuration where both particles are entirely within the pore

and the particles do not intersect. If any of the above conditions are violated, the trial move is 

rejected and the system is restored to the previous condition. This acceptance criteria is written 
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as:

Acc=Acc int∧Accpore
A
∧Accpore

B  (4)

where Acc is the acceptance function (True/False) and Accint, Accpore are the acceptance functions

determined from whether particles intersect or are contained within the pore, respectively. The Λ 

term is the logical conjunction (A Λ B is true iff both A and B are true).

The intersection component is greatly simplified from the general case as the particles are 

symmetric. For both the sphere and circle case, the function is given by:

Acc int={True , if ∥r A−r B∥≥(RA+RB)

False ,otherwise
 (5)

where ri, and Ri are the position and radius, respectively, of particle i.

The criteria for particle i being within the pore for the two dimensional case is given by:

Accpore
i
={True , if ∣x i∣+Ri≤R p

False ,otherwise
 (6)

The three dimensional case is given by:

Accpore
i
={True , if √x i

2
+ y i

2
+Ri≤Rp

False , otherwise
 (7)

In this study, both particles are treated as identical with a reduced mass of 1.0 and radii of 

1.0. The pore radius size is varied giving a pore gap defined as Rp-2Ri. While this can result in a 

negative gap value for some choices of Rp and Ri, passing can only occur when the gap is equal 

to or greater than zero. A friction value for translation must be specified as well. The particles are

initially placed at a separation of Δz = z0 = R1 - R2 (see Appendix B for a discussion of initial 

separation). They move via a series of configuration changes until they separate, moving to a 

separation of Δz = 2z0, or pass each other by moving to a separation of Δz = -z0.

3.A. Algorithm

A single simulation run proceeds until either of the end conditions are met. Multiple runs are 
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required to determine the passing probability. Each run is performed using the following 

sequence:

1) Set up the initial configuration. The particles are placed at a separation distance of z0. For

spheres, the starting x and y positions are randomly chosen to place both particles within 

the pore. For circles, the y position is fixed at zero and the x position is chosen randomly 

to place the particle within the rectangle.

2) Perform configuration changes. Changes are continued until the system meets one of the 

ending conditions. Until then, this step is an infinite loop doing the following:

a) Select random distances. The translations are selected randomly from a zero centered 

Gaussian, Fi, and scaled to match the appropriate distribution given by equation (5). 

The discrete value for Fi is determined from the continuous F(t):

F n=
1
Δ t ∫t n

t n+1

F ( t)

〈Fn
2 〉= 2 k T ζ

Δ t

F n=√ 2k T ζ
Δ t

wn

 (8)

where wn is a random number with a unit normal distribution. For spheres, 

translations are generated for the x, y, and z directions; while for circles, translations 

are only generated for the x and z directions.

b) Apply translations. The particles are moved by the amounts determined in the 

previous step. Using the random force given in equation (8), the translation is given 

by:

xn+1=xn+
Fn

mζ
Δ t  (9)

c) Check acceptance criteria. The particles are checked to see if the new positions result

in both particles being within the pore and not overlapping. 
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i. If accepted, the move acceptance counter is incremented and the program 

continues to step (3)

ii. If not accepted, the move denial counter is incremented, the system is reverted to 

the previous configuration, and a new trial move is selected, starting from step 

(2a)

3) Check completion criteria for simulation. The separation of the particles along the z axis 

is tested against the pass and no pass end conditions.

a) If either criteria is met, the statistics for pass/no pass are updated. If more simulations

need to be run, the loop is repeated from step (1). Otherwise, the simulation is 

complete.

b) If neither criteria is met, the simulation continues with trial moves from step (2a).

The resulting data is the number of runs that end in a passing configuration (Npass) and the 

number that end in a non passing configuration (Nnopass). The passing probability P is simply 

given by Npass/(Npass+Nnopass). The desired value is the scaling factor for passing, Pex, used in the 

kinetic Monte Carlo simulations. With a starting separation of z0 and ending criteria of zpass = -z0, 

znopass=2z0, the passing value is given by:

P =
pex

(2 + pex)
 (10)

where P is the fraction of simulations where the particles end in the passing configuration (which

can have values between 0 and 1/3), and Pex is the probability of exchange as given in the 

hopping system. The parameter Pex is then given by (see figure 4).

pex =
2P

1 − P
 (11)

3.B. Time step selection

A time step must be selected for the simulation in order to implement equations (8) and (9). 

Proper selection of the time step is necessary for accurate and efficient results. A large time step 

is desirable as it leads to faster simulations. However, large time steps can lead to inaccurate 
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results for two reasons. First, a large time step can allow particles to pass through each other in 

an nonphysical way leading to an erroneously high passing probability. Second, the larger steps 

can make it difficult for particles to fully explore the phase space due to steric limitations on 

possible moves. This makes passing through small gaps more difficult. It would be expected that 

very small gaps would require smaller time steps to get accurate results. The relative error is 

smaller for large gaps. In practice, the desired time step is the largest one that produces 

acceptable results. This can be determined by trial of a series of data sets with progressively 

smaller time steps to identify the time step where the results converge. If a larger time step leads 

to results that are within an acceptable error of the results from the smaller time step, the larger 

one is sufficient to use.

Figure 4: Connection between P and Pex

4 Results

Both the circle and sphere cases were investigated. The results are given separately below. 

For all of the data below, circles and spheres of equal radius (RA=RB=R) were used. These radii 

were set to 1.0, and the pore radius was chosen as a multiple of that. Due to steric limitations, 

passing will only be possible when the gap is greater than or equal to 0.0. All friction values were

set to 1.0, and kT was set to 1.0, which yields D=1.0 (see Appendix A). 
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4.A. Circle passing data

The passing rate, P, was measured as a function of the pore gap (Rp-2R). The initial 

separation, z0, was chosen as twice the radius of the circle with the no passing end condition 

being znopass = 2z0 = 4R, and the passing end condition being zpass = -z0 = -2R. Figure 5 shows data

taken using six different time steps to determine the optimal time step to use for further 

simulations. All other parameters are the same for each curve. The probabilities are taken from 

100,000 independent runs. 

The smallest time step curve is taken to be most accurate as it is least impacted by the 

artificial jump from position to position in the discrete moves. The plot shows that, at the largest 

time step, there is substantially increased passing. This is explained by the circles moving so far 

in each step that they can artificially pass through each other. The remaining curves show 

reduced passing with increasing time step. This is likely due to the moves being too large to slide

through the small spacing available for passing. This effect would decrease as the gap increases. 

That change is evident in the plot below. The curves for t=0.0001 and smaller show the 

converged behavior with errors between them on the order of the error in the simulation. Thus, it 

is reasonable to consider t=0.0001 the largest value of the time step that produces acceptable 

results.
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Figure 5: Circle passing probability as a function of gap for several time steps  

The curves in figure 5 show data down to a gap of 0.2. Figure 6 shows how that changes 
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when the the radius of the rectangle is only slightly larger than the sum of the radii of the two 

circles. The passing rate drops off at a faster rate as it approaches zero. The curve for t=0.0001 

shows a larger relative deviation at smaller radius ratios. This suggests that, for very small gaps, 

a smaller time step is required.

Figure 6: Passing rates for circles in
pores with small gaps.

4.B. Sphere passing data

The simplest three-dimensional case has both particles as spheres with radius RA=RB=R. In 

this case, the six degrees of freedoms are: xA, xB, yA, yB, zA, zB
 . The initial separation, z0, was 

twice the radius of the particle with the no passing end condition being znopass = 2z0 and the 

passing end condition being zpass = -z0. 

Figure 7 shows behavior similar to the circle case for seven choices of time steps. Each data 

point is an average over 100,000 simulations. As with the circle case, a time step of t=0.0001 is 

an appropriate choice. For the larger gaps, above about 2.0, a larger time step of t=0.001 appears 

to be sufficient. At smaller gaps, that time step is too large for an accurate result.

The passing rate for smaller gaps is shown in figure 8. The drop off in the approach to zero 

mimics that seen in the case of circles. The t=0.01 data below is from 5,000,000 runs; the other 

data is from 500,000 runs. Statistics are poor due to very rare passing.
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Figure 7: Sphere passing probability as a function of gap for several time steps
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Figure 8: Passing rate for spheres at small gap sizes.

4.C. Time step

Representative values for approximate simulation run times for each data point are listed in 

table 1. The run time scales as ~1/time step which illustrates the value in selecting the largest 

time step that gives acceptable results. Figures 5 and 7 suggested a value 0.0001 was appropriate 

over the range plotted. From the table of times, the very small difference in accuracy gained from

going to the next smaller time step would require simulations taking ten times longer. 
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Table 1: Simulation run time for two circles using several time steps for
circles (left) and spheres (right).

Timestep Runtime Timestep Runtime
1 <5 seconds 1 <5 seconds

0.1 <5 seconds 0.1 <5 seconds
0.01 20 seconds 0.01 25 seconds
0.001 2 minutes, 20 seconds 0.001 3 minutes, 30 seconds
0.0001 23 minutes 0.0001 33 minutes
0.00001 3 hours, 45 minutes 0.00001 5 hours, 30 minutes

0.000001 55 hours

4.D. Limiting behavior

With the given choice of initial separation and ending conditions, the expected limit in an 

infinitely wide pore is 1/3. Figure 9 shows an extended set of data out to a larger gap to show the 

approach to the limiting value. For spheres (figure 9a), the data for the larger time steps exceeds 

this slightly with a limiting value between 0.35-0.38; however, the smaller time step shows 

closer agreement to the expected limit. For circles (figure 9b), none of the time steps used 

produced a passing probability curve that reached the limiting value in the range of gaps studied. 

In both cases, the larger time step shows a crossover from underestimating the passing at small 

gaps to overestimating the value at large gaps.
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Figure 9: Extended passing probabilities for (a) spheres and (b) circles.
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5 Conclusion

A method of calculating the passing parameter, Pex, was created and tested. This data, missing

from previous studies, provides an essential connection between experimental results and the 

reaction-diffusion theory. For example, previous studies have used passing values of Pex=0.125, 

0.25, and 0.5. From equation (10), we see that these correspond to a passing rate of P=0.059, 

0.11, and 0.2. Using the parameters for spheres from this study, the ratios of pore radius to 

particle radius for those cases are approximately (using data from figure 7) 2.27, 2.5, and 3.1. A 

fairly small change in the pore size results in a large change in the passing parameter.

These results are only for circles and spheres. While they yield important information about 

behavior, may not necessarily represent a given experimental system. An obvious extension to 

this work would be to use particles that match the size and shape of specific molecules in an 

actual system. This is much more complicated as it involves rotations for an arbitrary shape 

particle. 

Circles were chosen as they are the most simple case that can be studied. The general 

behavior of circles and spheres is qualitatively the same, but the scaling with radius ratio is 

different.

Appendix A: Method Validation

A few simple tests were run on the Langevin program to ensure correct dynamical behavior. 

The mean square displacement over time for Langevin dynamics is given by:

〈 x2
〉=2NDt

D=
kT
m ζ

(12)

where D is the diffusion coefficient and N is the dimensionality of the diffusion occurring (2 for 

circles, 3 for spheres). Allowing a particle to diffuse in time should give a linear curve for the 

mean square displacement. If the dynamics are correct, the slope should match the diffusion 

coefficient calculated from the input parameters. Figure 10 shows the mean square displacement 

behavior for circles and spheres. This was calculated for a free particle without a pore. The 

simulation shows very strong agreement with the expected value from the parameters used.
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Figure 10: Mean square displacement curves for a lone circle (a) and sphere (b). The black lines
show the expected curve.

The time evolution of a particle's probability distribution function is given by a Gaussian 

distribution [8]:

C (x ,t )=
1

√2N π D t
exp( −x

2

2N Dt ) (13)

 To confirm this behavior, a pair of particles were allowed to move under the Langevin model

described above without being confined by a pore. Testing for collisions between particles was 

turned off which allowed them to pass through each other. Multiple simulations were run with 

the initial separation fixed at 2. After each move, the separation and time were recorded. A 

histogram of the results is shown in figure 11. Black lines corresponding to equation (13) are 

superimposed on the simulation data which show excellent agreement with theory. For these 

plots, x in equation (13) is Δz, and D is twice the individual diffusion coefficient for a single 

particle.
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Figure 11: Concentration evolution over time for (a) a circle and (b) a sphere.

Appendix B: Initial Separation

The initial spacing between the particles affects the final passing probability. The expected 

passing value can be given by: 

p pass (z0)=
z 0

Leff+ 3z0

 (14)

where Leff is the effective diffusion length for two particles starting in contact to pass by each 

other. This length will depend on the pore gap and is assumed to be independent of the initial 

separation. A larger gap will lead to a lower Leff value which represents a lower difficulty in 

passing. In the limit of large z0,this goes to 1/3. For the case of unhindered passing (either from 

an infinitely wide pore or particles that can pass through each other), Leff=0, giving a passing rate

of 1/3 for all values of z0. Finally, for the case of no passing, Leff=∞ yielding Ppass=0. 

Leff can be calculated from the case where particles start in contact, z0=d:

Leff=d
1− p pass(d )
ppass (d )

 (15)

The passing value for any initial separation can then be determined from the value for the 
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case where the particles start in contact using the formula:

p pass (z0)=
z0

d
p pass(d )

+ 3(z 0−d )
 

(16)

This dependence on the initial spacing can also be derived using Markov chains with 

adsorbing states. Consider the general case as shown in figure 12 . The blue particle at 0 is 

treated as stationary with the red moving. Site D is the initial position, site A is the point at which

the particles have passed, and sites B and C are where the red and blue particles are in contact. 

Finally, site E is the point at which they are considered to have separated. The location of each 

site along the pore axis is shown below the position with d as the particle's diameter and z0 as the

initial spacing.

Figure 12: Schematic of initial setup and ending
positions.

The probability to go from any site i to site j is given by pij. Collectively, these are the 

elements of the transition matrix P. The elements in each row must sum to one. As sites A and E 

are adsorbing states, pAA=pEE=1, pAB=PED=0. Non-adjacent sites have zero transition probability. 

The full matrix is (with the letters labeling the rows and columns for clarity):

P=

A B C D E

A
B
C
D
E
(

1 0 0 0 0
pBA 0 pBC 0 0

0 pCB 0 pCD 0
0 0 pDC 0 pDE
0 0 0 0 1

)  (17)

For any starting condition, S, the configuration, un
, after n transitions is given by:
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un=S P ( n)  (18)

The ending distribution after an infinite number of transition steps will have the initial 

distribution split between the two absorbing states: A and E. To find these values, the matrix P is 

rearranged to the canonical form (with row and column labels retained to show the changes):

P=

D B C A E

D
B
C
A
E
(

0 0 pDC 0 pDE

0 0 pBC pBA 0
pCD pCB 0 0 0

0 0 0 1 0
0 0 0 0 1

)=((
0 0 pDC
0 0 pBC

pCD pCB 0) (
0 pDE

pBA 0
0 0

)
(0 0 0
0 0 0) (1 0

0 1) )=(Q R
0 I ) (19)

The fundamental matrix N is given by:

N=(I−Q)−1  (20)

The probability of a particle ending in state j after  starting in state i is given by bij, defined 

from:

B=N R  (21)

As all particles start at site D and end at either site A or E, only bDA (pass) and bDE (no pass) 

are relevant:

bDA=p pass=∑
k

nDk rkA=n12 pBA=
pBA pCB pDC

1− pCB pBC− pCD pDC

bDE=pnopass=∑
k

nDk r kE=n12 pDE=
pDE(1−pCD p BC)

1− pCB pBC− pCD pDC

 (22)

Recalling that the sum of each row in P is one and noting that, by symmetry, pCB=pBC and 

pCD=pBA gives the simplified expressions:
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p pass (z0)=
pCB pDC

1+ pCB− pDC

pnopass(z0)=
(1−pDC )(1+ pCB)

1+ pCB−pDC

 (23)

The problem is now reduced to finding the values of pCB and pDC. The latter is determined 

from the ratio of the distance between sites D and E to the distance between sites C and E:

pDC (z0)=
z0

2z0−d
 (24)

The value of pCB can be approximated as:

pCB( z0)=
z 0−d

Leff+ z0+ d
 (25)

where Leff is the effective diffusion length to pass over the other atom. This length will depend on

the ratio of pore radius to particle radius and is assumed to be independent of the initial 

separation. A greater ratio will lead to a lower Leff value which represents a lower difficulty in 

passing. Using the definitions from equations (24) and (25), recovers the passing rate given in 

equation (14).
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CHAPTER 9. LANGEVIN PASSING DYNAMICS OF
ASYMMETRIC PARTICLES

1 Introduction

The preceding chapter presented a Langevin dynamics[1,2,3] method of calculating passing 

probabilities of over-damped molecules within a confined pore. The molecules considered in that

treatment were limited in shape to circles and spheres. While valuable information on the general

behavior can be determined from these cases, the actual molecules in a pore are usually not 

spheres. This chapter expands the previous treatment to include non-spherical molecules with the

associated complications introduced by the addition of rotations that arise in the motion of these 

molecules. The approach is general enough to apply to molecules (referred to below as particles) 

of arbitrary shape.

2 Simulation Description

Except where noted below, the details of the simulation follow those given for the circle and 

sphere case. The description of the simulation is given in the previous chapter. 

2.A. Particle description

Each particle in the system is described by a collection of one or more component spheres 

joined together to form the desired shape. The spheres represent atoms or collections of atoms in 

a molecule and together provide an accurate description of the molecule's shape. The particles 

are rigid and have no internal degrees of freedom, so the relative positions of each component 

are fixed. This constraint limits the method to cases where the internal motion of the molecules 

can be neglected. Generalizing beyond this constraint would require internal relaxation during 

motion. Methods of performing this type of relaxation exist [5,6] but are beyond the scope of this

work.

Each of the spheres in the particle has a center position xj, radius Rj, and mass mj. From this 

collection of N spheres, the center of mass position about which rotations are performed, xcom, is 

easily determined:



146

xcom=
∑
j

N

x jm j

∑
j

N

m j

(1)

We consider a bounding sphere, centered on the center of mass for the particle, the radius, 

Rmol, of which is determined by the distance of the furthest point in the molecule from the center 

of mass. This gives the smallest sphere centered on the center of mass of the particle which 

incorporates the particle. Note that in general, smaller bounding spheres may exist which are not 

centered on the center of mass. However, this is not the case for the examples considered here.

As in the previous chapter, the pore is an infinite, smooth cylinder of radius Rp, aligned along

the z axis, with the origin in the center of the pore (the pore surface is defined by x2+y2 = Rp for 

all z). Since pore length is treated as infinite, there is no possibility of molecules exiting the pore.

2.B. Equations of motion

The system's evolution is described by Langevin equations of motion governing all the 

system's degrees of freedom. In the most general case, each molecule has six degrees of freedom 

– three rotational angles (θ1, θ2, θ3) and three translational coordinates ri for i=(x,y,z). Incremental

motion is determined in the body frame of the particle (defined by unit vectors r1, r2, and r3). 

Furthermore, we will consider only molecular shapes where the friction tensor describing 

dissipative interaction with the surrounding fluid reduces to a diagonal form in the body frame 

(thus determined by at most three scalar values for translation and three for rotation). Once 

determined in the particle's body frame, motions are then converted to the system frame and 

applied to increment the particle's position in that frame. 

At each point in time, the rate off change of the three translational coordinates in the body 

frame is determined by the over-damped Langevin equations:

m ζi ṙ i(t)+
∂
∂r i

V (ri ,t )=F i( t ) (2)

where m is the molecule's mass, ζri is the frictional damping coefficient from the surrounding 

fluid for motion in the ri direction (particle frame), V is an external potential (which here is set to
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zero), and Fi(t) is a Gaussian random force in the ri direction (particle frame) with the properties:

〈F i(t)〉=0

〈F i(t)F i( t ')〉=2k T m ζ iδ( t−t ' )
(3)

We emphasize that these equations are only applied to determine incremental motion, 

choosing at each point in time the current body frame of the particle in order to simplify the 

description of friction. They do not apply globally in a moving body frame.

The evolution of the translational coordinates is given by:

r i(t+Δ t)=r i(t)+ṙ iΔ t (4)

At each point in time, the rate of rotation in the body frame is described by the Langevin 

equations for the angular velocities for this frame, in an over-damped system with no external 

potential. These are given by [3] (see Appendix A):

(I 3−I 2)θ̇2(t ) θ̇3(t )+ζr 1 θ̇1(t )=λ1(t)
(I 1−I3)θ̇1(t ) θ̇3(t )+ζr 2 θ̇2(t )=λ2(t)
(I 2−I1)θ̇1(t )θ̇2(t )+ζr3 θ̇3(t )=λ3(t)

  (5)

where Ii is the moment of inertia, ζri is the rotational drag, λi is a random Gaussian torque term, 

and the subscript 'i' indicates the axis of rotation. The random torque has the properties:

〈λi(t )〉=0

〈λ i( t)λ j(t ')〉=2k T ζr ijδijδ (t−t ' )
 (6)

These equations are solved for θ̇i which, unlike the translational terms, is, in general, a 

complicated expression coupling parameters for different rotations. Appendix A gives the 

formulas for the general case of an arbitrary shape as well as the formulas for a dimer. The 

values are used to increment the rotational angles of the particle during each configuration 

change:

θi(t+Δ t)=θi(t)+θ̇iΔ t (7)

After each rotation, the vectors defining the frame are updated to the current configuration.
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2.C. Configuration changes

As the particle positions evolve, they are restricted to not overlap with each other or with the 

pore walls. Each trial move is accepted if it results in a configuration where:

• particles A and B do not intersect,

• particle A is entirely within the pore, and

• particle B is entirely within the pore

If any of the above conditions are not true, the trial move is rejected and the system is 

restored to the previous condition. This acceptance criteria is written as:

Acc=Acc int∧Accpore
A
∧Accpore

B  (8)

where Acc is the overall acceptance function for the trial configuration change (having a value of

either true or false), Accint is the acceptance function for whether the particles do not intersect, 

and Accpore is the acceptance function for whether the particles are contained within the pore. 

The intersection component is given by:

Acc int=¬(∨i , j
I (i , j))  (9)

where∨ denotes a logical disjunction (yielding true if any of the components are true) over all 

pairs of components i, j formed by taking one component from each particle. I(i, j) is the 

intersection function for any two components:

I ( i , j)={True , if volume of i and j intersect
False,otherwise

 (10)

The criteria for particle i being within the pore is given by:

Accpore
i
=∧

j=1

n

Cpore( j)  (11)

where∧ denotes a logical conjunction over all components of molecule i (yielding true if all of 

the components are true) and Cpore(j) specifies whether component j of the particle is contained 
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within the pore:

Cpore( j)={True , if j is entirely within pore
False ,otherwise

 (12)

Equations (9) - (12) hold for the general case of a particle composed of any type of sub-

particles. For the specific case of spherical sub-particles which is considered in this work, 

equation (10) becomes: 

I ( i , j)={True , if ∥xi−x j∥< (Ri+ R j)

False,otherwise
(13)

and equation (12) becomes: 

 Cpore( j)={True , if (R j+∥x j∥)≤R p

False ,otherwise
(14)

For computational efficiency, the bounding spheres of both particles can be used to exclude 

cases where the particles are clearly not overlapping each other or the pore. If the condition (Rmol 

+ (xcom
2 + ycom

2)1/2) <= RP holds, all parts of the particle must be within the pore and there is no 

need to check individual components using equation (11). If it doesn't hold, each component in 

the particle must be tested individually. Similarly, to check if two particles intersect, the center of

mass separation is calculated. If the distance is greater than or equal the sum of the radii of the 

bounding spheres (||xA
com – xB

com|| >= RA
mol + RB

mol), the particles do not overlap. If the distance is 

less, they may overlap and the separation distance must be calculated for each pair of spheres 

from different particles using equation (9). These screening tests for overlap can significantly 

speed up configuration changes for particles with many components.

3 Initial and Final Conditions

In the previous chapter, spheres and circles were started in an “adjacent” configuration where

the maximum z value for the left particle equals the minimum z value for the right one. That 

separation distance, z0, is equal to their diameter and the simulation is continued until the 

particles have either moved apart to a separation of 2z0 (for no passing) or -z0 (for passing). This 
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choice is desirable because it naturally models the setup in the kinetic Monte Carlo simulations 

of pores. For particles of arbitrary shape, the initial condition involves choosing an orientation as

well as position. In this case, the orientation is chosen at random. This choice leads to a couple 

options for the initial separation. It is again possible to put them “adjacent” as an initial 

condition. However, for particles without spherical symmetry, this “adjacent” separation depends

on the orientation. Choosing this option requires selecting the initial orientation and then 

calculating the separation at which particles are adjacent. The particles would then be moved to 

that separation prior to starting the simulation. While that can be done with little difficulty, this 

variable initial separation does not match the conceptual model of the pore sites used in the 

previous KMC studies of particles in pores. It also requires deciding how to handle the ending 

conditions. Either the ending separations vary with the initial separation or they remain fixed and

the distance from the initial position to the ending separations will vary across different 

simulations. 

An alternate approach for the initial separation, and the one used in this work, is to place the 

particles at a fixed value equal to the sum of the bounding radii of the particles (z0 = RA
mol + 

RB
mol). This is the smallest distance that guarantees that the randomly oriented particles will not 

overlap in the initial configuration.  Aside from the simplicity of avoiding calculating a different 

initial condition every simulation, this choice is the conceptual analogue of the choice made for 

circles and spheres. With this fixed choice of z0, the ending condition separations are -z0 and 2z0 

as before.

Given the initial separation z0, the initial particle positions are selected by choosing 

orthogonal x,y coordinates inside the pore and random values for θ1, θ2, θ3. The resulting 

configuration is tested for overlap with the pore wall. Unlike when selecting a separation 

between particles, the radius of the bounding box is not chosen as the minimum distance between

the pore wall and the particle's center of mass. Instead, the intersection is calculated using 

equation (11).

3.A. Translation and Rotation

In order to perform translations and rotations, the particle's orientation must be tracked. This 
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is done by recording the vectors defining the reference frame of the particle. As rotations are 

performed, these vectors are rotated as well which increments the body fixed reference frame 

during the simulation. While the particles change orientation with respect to the frame of the 

system, they retain the same orientation in their body frame. This removes the need to adjust the 

friction based on the orientation and converts general off-diagonal friction tensors into diagonal 

tensors described by a few scalars in our application. All translations occur along the vectors in 

the molecule's frame and are then projected onto the system's frame.

The axes in the system's frame will be defined as the xyz frame (with axes x,y,z). The 

particle's frame is the XYZ frame (with axes X, Y, Z). The projections of the X axis into the xyz 

frame are Xx, Xy, Xz. The other axes have corresponding values.

Figure 1: Relation between translation in the system frame and
the body frame of the the particle.

All of the Langevin equations govern motion within the XYZ frame. As the friction and force

is location independent, translations can be calculated in the XYZ frame and projected into the 

system frame without the need to keep track of position in both frames. 

For a set of translations ΔX, ΔY, ΔZ in the particle's frame, the equivalent translations in the 

xyz frame are given by:

Δ x=Δ X∗X x+ΔY∗Y x+Δ Z∗Zx

Δ y=Δ X∗X y+ΔY∗Y y+Δ Z∗Z y

Δ z=Δ X∗X z+ΔY∗Y z+ΔZ∗Zz

 (15)
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Once these conversions have been made, they are applied to all components of the particles.

Rotation is done using quaternions (see Appendix B). Rotations around each of the three axes

are formed into a quaternion. These are multiplied to form the final rotation. This value is 

converted into a rotation matrix and applied to all the components of the particle. As noted 

above, the quaternion is also applied to the basis vectors defining the particle's reference frame.

3.B. Frictional terms

The friction coefficients impacting motion can be calculated (or at least estimated) based on 

the size and shape of the particles (and the properties of the surrounding fluid). For a single 

sphere, Stoke's law gives a translation friction term of:

ζ t
1
=6π ηR (16)

where η is the viscosity of the surrounding fluid, R is the sphere radius, and the superscript 

denotes the single sphere value. The rotational friction term for a single sphere is:

ζ r
1
=8πηR3 (17)

The particles in this study are composed of spherical sub-units. The relevant frictional 

coefficients for the overall particle can be calculated (or at least estimated) from the structure of 

the particle and the above results. The method is covered in detail in references [9,10,12].

In general, the scalar friction coefficients will not be the same for different translations and 

rotations. For motion in the particle frame, there will be at most three distinct translational 

frictions and three distinct rotational frictions which leads to at most six different coefficients. 

Particles with higher symmetry may have less than six distinct values. For example, the dimer 

particle studied here has only two distinct translational frictions and two rotational frictions (see 

figure 2). For the translation along the dimer axis, the friction is taken to be  ζt║  = ζt
1. For 

translation perpendicular to the dimer axis, the friction is ζt┴  = 2ζt
1. For the rotation frictions, the 

dimer results presented in [9, 11] are used. These give a rotational friction along the dimer axis 

of ζr║  = 1.78ζr
1 and a perpendicular value of ζr┴  = 3.76ζr

1.
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Figure 2: Translation and rotation directions and corresponding friction coefficients for a dimer.
The axes are in the frame of the particle.

4 Results: Dimer and Sphere

The case studied was a dimer (composed of two spheres) and a sphere in a pore which adds 

the rotational effects while maintaining some similarities with the previous case of two spheres. 

The sphere was chosen to have a radius R, and the dimer is composed of two spheres, each with 

radius R, in contact with each other (see figure 3). The initial separation is 3R. The separation 

criteria for passing and non-passing are -3R and 6R, respectively. The pore gap is defined as the 

diameter of the pore minus twice the the sphere diameter, or 4R. The gap is then 2(Rp – 2R).. A 

gap of zero will be just enough space for the particles to pass but only if the dimer is perfectly 

aligned with the pore. Any other orientation will not allow passing at that gap size. A gap 

between 0 and 2R will always require some degree of orientational alignment of the dimer in 

order for the particles to pass. A gap greater than 2R is wide enough to allow the dimer to pass 

even when oriented perpendicular to the pore.
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Figure 3: Two examples of the initial configuration. On the left is the dimer aligned with the pore
and the particles in contact. On the right, the dimer is perpendicular to the pore axis. The

bounding radius is shown to indicate the separation is the same. In both cases, the pore is just
wide enough to allow passing if the dimer aligns with the pore.

The z axis (the r3 direction about which the θ3 angle is defined) is is treated as the symmetry 

axis for the dimer. Translation along that axis is performed with a friction coefficient of 1. For 

translation along the other two axes, the friction coefficient is set to 2.0. The rotation friction is 

2.37 when rotating about the dimer axis and 5.0 in the direction perpendicular to the dimer axis 

based on values from references [9, 11].

A range of time steps between 0.00001 and 1.0 was used for the simulations to determine an 

appropriate regime for accurate, converged results. Figure 4 shows the passing behavior for these

time steps. As seen in the case of two spheres, an insufficiently small time step leads to 

underestimation of the passing probability. In general, the values monotonically converge to the 

correct value with decreasing time step. The exception are the values for Δt=1.0. Unlike the 

system with two spheres, they are close to the correct values. In fact, the data is “better” than 

data for some of the smaller time steps over most gap sizes. However, these values are erroneous 

which is evident from the data at very small gaps and very large gaps (not pictured). The data for

the dimer-sphere case is noisier than for the sphere-sphere case, but the plot indicates that data 

from a time step of 0.0001 gives acceptable results. This value agrees with the value found for 

spheres. 
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The data for the dimer-sphere case is similar to that from the sphere-sphere case. Comparison

is shown in figure 5. For large gaps, the curves converge to the correct limiting passing value and

do so at approximately the same rate. For smaller gaps, the sphere-dimer case consistently has a 

lower passing rate, but the curves are similar in shape. The lower passing rate is attributed to the 

requirement for alignment of the dimer with the pore axis.

Figure 5: Comparison of passing rates for two spheres to rates for a dimer and a
sphere: (a) shows behavior over the full range of the gaps studied and (b) shows

the behavior for smaller gap sizes.

Figure 4: Dimer-sphere passing probability as a function of gap for several time
steps
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5 Conclusion

The method presented here extends the previous approach for passing of pairs of circles and 

pairs of spheres. Significant additional complication comes from the rotational motion which 

must be tracked when the spherical symmetry is broken. The method here can be used for 

particles of arbitrary shape. The general method can be simplified substantially by exploiting 

symmetry in a specific particle. An example of this process for dimers is presented in Appendix 

A.

The passing rates for a dimer and sphere were calculated using this method. The time 

required for the simulation runs increases substantially over the systems with only translational 

motion. This makes it difficult to get good statistics for the results. Qualitatively, the behavior for

a dimer and a sphere shows little difference from the previous case with spheres. The passing 

rates are lower for all but the largest gap sizes due to the requirement for alignment of the dimer. 

However, the general behavior of the passing probabilities for different gap sizes is similar to the

results for two spheres. 

Appendix A: Rotational Langevin Equations

General case

The Newton-Euler [3,4] equation for torque, τ, (with the origin at the center of mass) is:

τ= Î ω̇ (t)+ ω(t)× Î ω(t)  , (18)

Where Î is the inertia tensor, and ω(t) is the angular velocity (dθ/dt). The inertia tensor, and its 

components, are:

Î=[
I 11 I12 I 13

I 21 I22 I 23

I 31 I32 I 33
]  (19)
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I 1=I 11=∑
i=1

N

mi( y i
2+zi

2)

I 12= I 21=−∑
i=1

N

mi( x i y i)

I 13=I 31=−∑
i=1

N

mi(x i zi)

I 2=I 22=∑
i=1

N

mi (x i
2
+zi

2
)

I 23= I 32=−∑
i=1

N

mi( y i zi)

I 3=I 33=∑
i=1

N

mi(x i
2
+ y i

2
)

 (20)

where the sums are over the N subparticles and xi, yi, zi are the distances from the center of 

subparticle i to the point of rotation.

The Langevin version of equation (18) with no external potential is given by:

Î ω̇ (t)+ ω(t)× Î ω(t)+ ζ̂rω( t)=λ ( t )  , (21)

with ζ̂r as the rotational friction drag tensor and λ(t) as the random torque vector whose 

components obey the distribution:

〈λ i(t)〉=0

〈λ i( t )λ j(t ')〉=2k T ζr ijδ(t−t ')
 (22)

The scalar versions of equation (21) are (with the time dependence implicit):

I 11ω̇1+ I 12ω̇2+ I 13 ω̇3+ I13ω1ω2−I 12ω1ω3+(I 33−I 22)ω2ω3+

I 23(ω2
2
−ω3

2
)+ζr11ω1+ζ r12ω2+ζr 13ω3=λ1

I21 ω̇1+ I 22ω̇2+ I 23ω̇3−ω1(I 13ω1+ I 23ω2)+( I 11ω1−I 33ω1+ I13ω2)ω3+

I 13ω3
2
+ζr21ω1+ζr22ω2+ζr23ω3=λ2

I 31ω̇1+ I 32ω̇2+ I 33ω̇3+(I 22−I11)ω1ω2+ I 12(ω1
2
−ω2

2
)+

I 23ω1ω3−I 13ω2ω3+ζ r31ω1+ζr 32ω2+ζ r33ω3=λ3

 (23)
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These equations are non-linear and complicated by the off diagonal terms in the inertia and 

friction tensors. To simplify these, we first introduce the frame of the particle where the inertia 

tensor becomes diagonal. The principle axes are the eigenvectors of equation (19). The principal 

moments of inertia are the eigenvalues of equation (19) and the inertia tensor becomes a diagonal

matrix I' (and defining Ii ≡ Iii') in the particle's frame.

The principal moments of inertia are found by solving for the eigenvalues:

0=∣
I 11−X I 12 I 13

I 21 I 22−X I 23

I 31 I 32 I33−X∣  (24)

Solving for X gives,

X 3
−(I 11+ I 22+I 33)X

2
+( I 11 I 22+ I 11 I 33+ I 22 I 33− I 12

2
−I 13

2
−I 23

2
)X

+(−I 11 I 22 I 33+ I 11 I 23
2
+ I 22 I 13

2
+ I 33 I 12

2
+2I12 I 13 I 23)=0

 (25)

The three roots X=(I1, I2, I3) give the diagonal matrix I'. The principal axes (ai1, ai2, ai3) for 

i=1,2,3 are found by solving for the eigenvectors:

0=[
I11−I i I 12 I13

I21 I 22−Ii I23

I31 I 32 I33−I i
][

a i1

a i2

a i3
]  (26)

The directions are then found by normalizing the resulting non-unique values such that ai1
2 + 

ai2
2 + ai3

2 = 1. 

We evolve the molecules by performing incremental rotations (and translations) in the frame 

of the particle assuming that the friction tensor is diagonal (ζri = ζrii) in this frame. In addition, we 

consider just the over-damped limit and determine instantaneous angular velocities (which are 

used to increment orientation) via:

(I 3−I 2)ω2(t )ω3(t)+ζr 1ω1(t )=λ1(t )
(I 1−I3)ω1(t )ω3(t)+ζr 2ω2(t )=λ2(t )
(I 2−I1)ω1(t )ω2(t)+ζr3ω3(t )=λ3(t )

 (27)
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This set of equations are coupled. However, symmetry or restricted rotation can decouple 

them for some systems. In the general case, simultaneous solution of these equations must be 

done numerically. Solving these equations for the rotations is done using the algorithm and code 

of Skowron & Gould[8].

Dimers

The symmetry of a dimer (figure 2) reduces the complexity of the general rotational 

equations. Rotation about the z axis (the ω3 rotation) does nothing to change the particle position 

or alignment. This causes many of the moments of inertia to become zero. Again working in the 

frame of the particle, the moments are:

I 1≡I 11=2mi Ri
2

I 2≡I 22=2mi Ri
2

I 3≡ I 33=0

I 12= I 21= I 13=I 31= I 23= I 32=0

(28)

and the rotational Langevin equations become:

−I 2ω2(t)ω3(t)+ζr1ω1(t)=λ1( t)
I 1ω1(t)ω3(t)+ζr 2ω2(t )=λ2(t)

ζr 3ω3( t)=λ3(t)
(29)

which can be solved analytically (with time dependence implicit):

ω3=
λ3

ζr3

ω1=

λ1+
I 2λ2ω3

ζ2

ζ1+
I 1 I 2ω3

2

ζ2

ω2=
λ2−I 1ω1ω3

ζ2

(30)

With the generated random torques and the known values of inertia and friction, the angular 

velocities can be calculated and used to update the rotation angles at each step.
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Appendix B: Quaternions

Quaternions [7] provide an alternative method for tracking rotations. The advantage over 

other methods is greater numeric stability and avoidance of singularities in Euler angles. A 

quaternion consists of two components, a three dimensional vector (v=ix+jy+kz) and a scalar 

term (w). The real components are tracked as q = [v,w]=[(x,y,z),w]. All quaternions used here are

normalized: x2+y2+z2+w2 = 1.

Multiplication of two quaternions, q1 and q2 is given by

q1q2=[v1×v2+w1 v2+w2 v1,w1w 2−v1⋅v2]  (31)

Note that in general q1q2 ≠ q2q1.

The conjugate of a quaternion (q-1) is simply:

q−1
=[−v ,w]  (32)

Applying a rotation to a vector r is done by treating the vector as a quaternion with zero real 

part:

(r '0 )=q(
r

0) q
−1  (33)

A rotation by an angle, α, about an axis defined by the unit vector, u, is given by the 

quaternion:

q=[u sin( α
2
) ,cos( α

2
)]  (34)

Two rotations (given by quaternions q1, q2) can be combined into a third rotation (q3, which is

rotation 1 followed by rotation 2) by multiplying the quaternions:

q3=q1q2  (35)

The quaternion rotation can be written as a rotation matrix and applying it to a vector r by 

treating the vector as a quaternion:
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M=[
w2
+ x2
− y2

− z2 2 x y−2w z 2 x z+2w y 0
2 x y+2w z w2

−x2
+ y2
− z2 2 y z+2w x 0

2 x z−2w y 2y z−2w x w2
− x2

− y2
+z 2 0

0 0 0 1
]

(r '0 )=M (
r

0)

 (36)
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CHAPTER 10. GENERAL CONCLUSION

1 Summary and Conclusions

A reaction-diffusion model was developed for particles in a confined pore. This consists of 

both a discrete kinetic Monte Carlo (KMC) model and a generalized hydrodynamic model. 

Results of the model were studied in detailed and show strong improvement over other models 

such as a mean-field approach. The model is general enough to cover a variety of scenarios. Both

single file and restricted passing were considered. These deviations from standard diffusion are a 

key component in systems with narrow pores. Single file restrictions strongly impact the 

mobility of particles and the resulting concentration profiles within the pore.

The generalized hydrodynamic approach accurately describes both the transient and steady 

state regimes. This approach requires the input of tracer diffusion values, in this case derived 

from KMC simulations. Two methods are presented for calculating these diffusion values. The 

first uses a random walk based approach, while the second uses Fick's law. Characteristic 

behavior was the same for both methods. Either approach is suitable for generating values for use

in the generalized hydrodynamic method.

The Langevin dynamics simulations discussed provide a link between the structure of a 

particle and the general passing parameter used in the simulations. The method was extensively 

tested for circular and spherical particles. The results can be used to find pore sizes that 

correspond to the passing parameters selected in previous chapters.

This method was further generalized to work with molecules of arbitrary shape. The addition 

of rotations significantly increases the complexity of the model and the time required for 

simulation. However, using physically realistic shapes gives more accurate results and is 

necessary for modeling specific experimental systems. Comparison of a dimer and a sphere to 

the case of two spheres showed that the general behavior of passing was similar but that the 

actual values were different.

2 Future Work

A number of options exist for expanding on the methods described. The general nature of the 



164

work makes it applicable to a variety of specific systems. 

The Langevin dynamics approach to passing is designed to mimic real molecules. Using real 

molecule shapes and the pore sizes from experiments would allow a direct comparison with 

physical experiments. A challenge here is to select parameters that match the real system. While 

the passing rate can be calculated via the Langevin simulations, the microscopic reaction rates 

are not directly known within the pore. A more accurate model would require an appropriate 

choice of these parameters.

Throughout the study of reaction dynamics within pores, a consistent model has been used. 

However, the method developed is general enough to apply to other model choices. For example,

a topic currently being investigated with this method is modeling reactions with multiple 

pathways. These reactions produce different products depending on the local conditions under 

which the reaction occurs. Examples such as this are incremental improvements on the general 

model that can be added to handle specific cases beyond the ones treated. The flexibility of the 

models presented allows a variety of these improvements which can build upon the existing 

approach to form a more comprehensive model of systems, as needed. This modeling should 

allow for a deeper understanding of behavior of molecules within confined pores.
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Abstract

We analyze discrete 2D deposition-diffusion equations for the density of adatoms deposited at a 

periodic array of adsorption sites on a vicinal crystalline surface with kinked steps. Our analysis 

provides insight into the appropriate boundary conditions (BC) at steps for a coarse-grained Burton-

Cabrera-Frank (BCF) type treatment involving continuum 2D deposition-diffusion equations. Such a 

BCF type treatment should describe step flow on vicinal surfaces under non-equilibrium growth 

conditions. We focus on cases where there is no activation additional barrier inhibiting to attachment at 

steps beyond that for terrace diffusion. Then, the classical BCF treatment simply imposes a Dirichlet 

BC equating the limiting value of the terrace adatom density to its equilibrium value at the step edge. 

Our analysis replaces this BC with one incorporating finite kinetic coefficients, K±, measuring inhibited

diffusion-limited attachment at kinks. We determine the dependence of K± on key parameters such as 

the kink separation and terrace width, and on the width of nearby terraces. Our formulation provides a 

framework within which to describe step-pairing phenomena observed on so-called AB-vicinal surfaces

without attachment barriers, a feature not captured by the classical BCF treatment.

1 Introduction

Growth, erosion, and relaxation of crystalline surfaces are often characterized in terms of the 

motion of steps separating adjacent terraces with a height difference of a single atomic layer [1-4]. In a 

detailed discrete atomistic picture of these processes [3,4], atoms are deposited or removed from the 
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surface. The resulting adatoms or advacancies diffuse across terraces on the surface by hopping 

between adjacent adsorption sites which form a periodic array or lattice. Potentially, there is also 

transport of these adspecies between different layers. When the adspecies reach and attach to 

steps, they can typically diffuse along steps and become incorporated into these steps at kink 

sites. They can also possibly detach from step edges. These processes together induce the motion

of steps. It is natural to coarse-grain this detailed atomistic picture to achieve a so-called 

continuum step-dynamics picture in which steps are regarded as continuous curves [1,2,5,6]. 

Their smooth motion is determined by solving continuum diffusion equations on the terraces 

including an appropriate deposition or erosion driving term and with suitable boundary 

conditions (BC) at steps. The local velocity of the step is determined largely from the net 

diffusive flux of atoms to the step. Such equations are referred to as “deposition-diffusion 

equations” in this paper. Coarse-graining of atomistic models can potentially enable more 

efficient computational modeling, and will ideally lead to a deeper or more fundamental 

understanding of the evolution of surface morphologies. Below, we just use the language of 

deposition rather than erosion, so that the adspecies are deposited adatoms.

A classic 1951 continuum treatment of Burton, Cabrera, and Frank [7] (BCF) assumed that 

steps were ideal sources and sinks of adatoms, so that the adatom density on the terraces always 

approaches its local equilibrium value at these steps. In other words, this treatment imposed a 

simple Dirichlet BC equating the adatom density at steps to its equilibrium value. Such a 

situation is generally assumed to apply if there is no additional activation barrier for diffusing 

adatom to attach to steps beyond that for terrace diffusion. The current contribution focuses on 

this case of no attachment barrier. Subsequent refinements of this classic treatment initiated by 

Chernov accounted for inhibited attachment at step edges [8,9], and other extensions 

incorporated partial transparency or permeability of steps [10]. These various refinements lead to

BC’s with a more complex form involving kinetic coefficients, K±, the magnitude of which 

reflects the ease of attachment to steps, and also involving a permeability coefficient, P. See 

Sec.2 for a more detailed description. Within this more general framework, the BC in the 

classical BCF theory can be regarded as corresponding to the choice K± = ∞.

Vicinal surfaces present a special, simple terrace-step staircase morphology with an array of 
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parallel steps. This simple morphology provides a natural testing ground to assess various 

formulations of step dynamics during deposition where the entire step train advances (so-called 

step flow). Depending on the details of the system, this moving step train can be subject to step 

pairing, bunching, or meandering instabilities [1-3,6]. Of some relevance here is the existence of 

a specific sub-class of what have been called AB-vicinal surfaces which present two distinct 

types of alternating steps [11]. If these surfaces are stable, then the two types of steps have equal 

chemical potentials and therefore equal equilibrium adatom densities. Thus, the classical BCF 

treatment (for no attachment barrier) would impose identical Dirichlet BC’s at both types of steps

implying equal velocities of all steps for a perfect staircase.

Recently, there has been considerable interest in assessing the validity of BCF type BC’s, 

particularly in the far-from-equilibrium regime realized under conditions of “rapid” growth or 

erosion [12-17]. Our focus is also on the validity of BCF type formulations. Our motivation 

comes from the observation of step pairing in a simple anisotropic solid-on-solid (SOS) model 

for AB-vicinal surfaces with no attachment barrier [18], behavior which is not described in the 

classical BCF treatment (as noted just above). Differing from other recent studies [12-17] 

described in Sec.2, our strategy is to develop a discrete two-dimensional (2D) deposition-

diffusion equation formulation with which to describe and analyze such behavior. The output is 

effective kinetic coefficients which can provide input to a coarse-grained BCF formulation with 

generalized Chernov-type BC’s (rather than the classical Dirichlet BC). These coefficients are 

finite despite the absence of an attachment barrier, and depend on kink separation, thereby 

elucidating the above-mentioned step pairing phenomena. The inadequacy of the classical BCF 

formulation can be understood since it implicitly assumes high kink densities (i.e., large terrace 

widths relative to the typical separation between kinks), whereas step pairing behavior 

considered here only occurs for limited terrace widths (relative to kink separation). 

In Sec.2, we review the generalized BCF theory by Chernov et al., and also other theories 

and strategies for description and analysis of step dynamics. In Sec.3, we briefly describe 

behavior of an atomistic anisotropic solid-on-solid model with no attachment barriers but which 

displays step pairing contrasting predictions of the classical BCF theory. Then, in Sec.4, we 

present our new modeling strategy developing a discrete 2D deposition-diffusion equation model



168

and define relevant kinetic coefficients. Next, in Sec.5, we analyze in detail the case excluding 

interlayer transport (i.e., with an infinite barrier to attach to descending steps), but no barrier to 

attach to ascending steps. The case where there is no barrier to attach to either ascending or 

descending steps is analyzed for uniform vicinal surface in Sec.6. More complex cases with zero 

attachment barriers are analyzed in Sec.7, and more general cases with finite attachment barriers 

are discussed in Sec.8. A summary is provided in Sec.9.

2 Step Dynamics

2.A. Traditional (generalized) BCF formulation

The description of step motion during adatom deposition is usually based on quasi-steady-

state solutions for the adatom density per unit area, n(x, t) and lateral position x and time t. This 

density satisfies the continuum deposition-diffusion equation [1,3-7]

∂/∂t n(x, t) = F + D 2n(x, t) ≈ 0. (1)

Here, F is the deposition flux per unit area, and D is the terrace diffusion coefficient for adatoms.

The density n(x, t) is taken to satisfy boundary conditions at a step edge of the form [7-10]

± D n n|± = K±(n± - neq) + P(n± - n∓) ( = J± ), (2)

ignoring convection terms given that steps move slowly on the time scale of adatom density 

relaxation. Here, n denotes the normal derivative to the step edge (in the descending direction), 

and neq denotes the equilibrium density of the diffusing species. Also ± indicates the limiting 

values of various quantities approaching the step edge, where + refers to the lower terrace, and – 

refers to the upper terrace. See Fig.1. K± and P are kinetic coefficients described below. 
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Figure 1: Schematic of the generalized BCF
boundary conditions with total diffusion fluxes

J+ = K+(n+ - neq) + P(n+ - n-) and J- = K-(n- - neq)
+ P(n- - n+) reaching the ascending and

descending steps, respectively. Also Jp = P(n- -
n+) denotes the flux across the step due to

permeability.

The expressions in (2) represent the diffusion fluxes, J±, of adatoms reaching the step edge 

from the lower (+) and upper (-) terrace, and the step velocity is given by V = J+ + J-. The first 

term on the right hand side corresponds to attachment at steps where K± are the associated kinetic

coefficients [8,9]. Thus, K+ corresponds to intralayer attachment at ascending steps. K- 

corresponds to downward interlayer attachment involving transport over descending steps. The 

second term on the right hand side corresponds to transport across the step where P is the step 

permeability [10]. Rather than being a relation derived from a class of atomistic models, (2) is 

usually thought of as a defining relation for the kinetic coefficients. 

It is instructive to write K± = D/L± where L± are the corresponding attachment lengths. These 

reflect any additional energy barriers, δ±, to attachment at step edges, where δ- corresponds to the

Ehrlich-Schwoebel (ES) step-edge barrier inhibiting downward transport over descending steps 

[3,4,9]. Below, we let ‘a’ denote the surface lattice constant, and β=1/(kBT) denotes the inverse 

temperature for surface temperature T and Boltzmann constant kB. Then, traditional formulations 

typically assign either L± = a[exp(βδ±) - 1] or L± = a exp(βδ±) [3,4]. See Appendices A and B. In 

the case of facile attachment at steps (i.e., δ± = 0), the first formulation on which we focus yields 

K±/D = ∞ or L± = 0 which recovers classical BCF Dirichlet BC n = neq. The second yields K±/D =

1/a or L± = a for δ± = 0. In the case of an infinite ES barrier precluding, clearly one has that K- =0
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and P=0 (i.e., the step is impermeable). With finite δ±, there is no reason to preclude the 

assignment P>0, and for some systems this seems key to describing observed behavior [19]. For 

the models considered here when the ES barrier is not finite (and usually zero), one expects 

physically that the steps are permeable (P>0).

Determination of step velocities, V, requires solving the above boundary value problems to 

determine the fluxes, J±. If P>0, then the behavior on all terraces is coupled. The case of most 

relevance here is where the permeability term drops out of (2), either because P=0 or because n+ 

= n-. Then, the boundary value problem for each terrace is uncoupled from the rest, and one 

needs only solve these for terraces adjacent to a step to determine the step velocity. For parallel 

straight steps, the analysis is simple since the steady-state solution of (1) is a parabolic profile. 

For a single terrace of width W, let Kl = D/Ll and Kr = D/Lr denote the K-values for the left 

(ascending) and right (descending) step, respectively, and Jl and Jr the corresponding fluxes. 

Then, one has that [4]

Jl + Jr = FW and Jl/(Jl + Jr) = [½ + Lr/W]/[1 + Ll/W +Lr/W] (=Pl). (3)

The result for the sum of the fluxes follows trivially from mass conservation. We let Pl (Pr) 

denote the fraction of this flux reaching the left (right) step. Then, the expression for Pr simply 

follows from that above for Pl after interchanging the labels l and r, and one has that Pl + Pr =1. 

From (3), it is clear that knowledge of the K-values, or the corresponding attachment lengths, 

and the terrace width, W, allows evaluation of the fluxes and thus the step velocities. For 

completeness, we note that the value of excess adatom density, δn = n-neq, at the left and right 

steps can be determined from Kl δnl = Jl and Kr δnr = Jr, respectively.

Finally, we emphasize one consequence of (3): any assignment of attachment lengths far 

below the terrace widths corresponds to “large” K-values or facile attachment, and yields similar 

behavior for step dynamics to the classical BCF Dirichlet BC. One should regard K±/D = O(a) as 

“large”. 

2.B. Other established formulations and refinements 

A well-established formulation prominent in the liquid-phase crystal growth community is 
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based on the observation that step motion derives from incorporation of atoms at kinks and the 

resulting motion of those kinks [20,21]. A simple geometric argument implies that the step 

velocity, V, satisfies V  vkink/L, where L is the typical kink separation and vkink is the kink 

velocity along the step. Typically, it is assumed that attachment to kinks is strongly inhibited by a

kink attachment barrier, δkink. Then, one has that vkink ~ exp(-βδkink) (n-neq). This, in turn, implies a 

step kinetic coefficient of the form K ~ exp(-βδkink)/L. This formulation will not apply to the 

models of interest here where there are no attachment barriers of any type. However, it is 

appropriate to note that our analysis will also produce a dependence of K on L (but of a different 

form).

Within the above picture (which again does not apply for our models), the mean kink 

separation or density is a key factor in determining step propagation, higher kink densities 

implying higher propagation velocities. Thus, one is should ask what determines the value of this

kink density. For higher temperatures, T, thermal fluctuations of the steps will spontaneously 

produce a high density of kinks which will presumably be close to its equilibrium value. 

However, for lower T (or high kink energy), kinks may be rare. Then, the kink density during 

deposition and step flow may be determined by kinetic factors associated with the 1D nucleation 

of new rows of atoms on the step. A corresponding kinetic theory has been developed by 

Voronkov [22] and others [21]. Such kinetic formulations are the precursors of more recent 

detailed treatments of non-equilibrium step flow described below in Sec.2C. 

All of the above formulations apply for the propagation of straight steps. Step evolution in 

situations with curved steps, e.g., growth of 2D islands, is often analyzed by decomposing the 

step velocity into two components. One component comes from diffusion-mediated attachment-

detachment of atoms from or to the terrace described above by (2), and the second from diffusion

along the step edge. In general, the island growth shape [3,4] is determined by interplay between:

(i) a Mullins-Sekerka type instability associated with diffusion-limited aggregation of terrace 

adatoms; and (ii) relaxation of the shape of the growing island due to edge diffusion. Both 

depend sensitively on the local curvature and the latter on the orientation of the step edge. The 

edge diffusion flux controlling relaxation can be dominated by a non-equilibrium component 

(proportional to the local aggregation flux) rather than by the traditional Mullins-type step edge 
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flux which is determined by the gradient in curvature [3,4]. Heuristic forms have been proposed 

for the non-equilibrium edge flux [23], but rigorous analysis is limited [24]. 

Finally, we note that the step velocity is given by the net flux of attachment of atoms at the 

step edge accounting for all attachment pathways. In addition to contributions from diffusion 

across adjacent terraces and along the step edge, there is the possibility of direct deposition at the

step edge. Of course, this contribution will be minor for broad terraces of many lattice constants. 

Also, relative to traditional atomistic models based on a simple-cubic crystal structure (SOS 

models), sites at the step edge actually directly capture more depositing atoms than terrace sites 

for realistic fcc or bcc structures due to “downward funneling” of atoms deposited right at the 

step edge [25]. One can readily incorporate this effect into step dynamics or discrete models by 

augmenting the direct deposition flux at step edge sites. Correct accounting for this feature is 

particularly important for predictions of slope selection during mound formation [26]. 

2.C. Kinetic terrace-step-kink models

One general strategy utilized in recent analyses of non-equilibrium step dynamics starts with 

a terrace-step-kink picture of the surface [2,7] and develops separately mean-field diffusion 

equations for the density of terrace adatoms and for that of edge adatoms, as well as a mean-field

convection equation for the density of kinks [12-17]. Constitutive relations are also required for 

various quantities, e.g., step attachment and detachment fluxes are calculated in terms of the 

limiting value of the terrace adatom density at the step edge and the actual non-equilibrium edge 

atom density. Development of this formulation is simplest for step orientations with low kink 

densities [12], but has been extended to other step orientations [15,16]. The latter development is

related to a key component of this paper, i.e., consideration of the dependence of the kinetic 

coefficient on kink density (noting that kink density is simply related to step orientation).

The focus of these studies has for the most part been in determining key properties of non-

trivial non-equilibrium steady-state associated with step flow such as the kink density [12-16]. 

However, the work of Margetis and Caflisch (MC) [17] also presented results for kinetic 

coefficients defined by the relation (2), connecting more closely with our focus. MC utilized a 

perturbation analysis for the regime of small Peclet number (which is inversely proportional to 
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the edge diffusion rate). The study by MC is distinct from but complementary to our own work: 

MC regards attachment fluxes or adatom densities approaching the step as input parameters and 

solves for the non-equilibrium steady-state step geometry including kink density. In contrast, we 

will specify the surface geometry (including the kink distribution along steps) as input and solve 

the corresponding diffusion-diffusion equation to determine kinetic coefficients.

Interestingly, MC also introduces an effective non-equilibrium stiffness from a perturbation 

analysis of step flow for slightly curved steps. An analogy is exploited with the equilibrium 

Gibbs-Thomson relation which relates the equilibrium adatom density for curved steps to step 

stiffness. Usually stiffness of steps (or more generally of interfaces) is assessed from interface 

fluctuations. For equilibrated interfaces, the fluctuation amplitude is inversely proportional to 

stiffness and completely independent of interface mobility [2]. In contrast, the lack of a 

fluctuation-dissipation relation for general non-equilibrium systems introduces some ambiguity 

since the mobility no longer factors out of expressions for the fluctuation amplitudes [27]. 

However, the approach of [17] avoids this ambiguity.

2.D. Discrete lattice-based deposition-diffusion models

An alternative class of strategies to assess appropriate BC’s in a BCF formulation for step 

flow might be based on discrete deposition-diffusion equations describing the adatom density at 

a discrete periodic array of adsorption sites on stepped crystalline surfaces. A few previous 

studies have examined the steady-state solutions of the one-dimensional (1D) version of these 

equations for step flow on vicinal surfaces [3,4,28]. Coarse-graining then allows derivation of 

BC’s of the type (2), as discussed further in Appendix B. However, such 1D models must 

necessarily describe in an average or effective fashion the complex structure of steps in physical 

two-dimensional (2D) surface systems where steps have both kink and ledge sites [29]. 

Thus, in the current study, we are motivated to analyze models based on the steady-state 

solutions of discrete 2D deposition-diffusion equations which explicitly incorporate the kink and 

ledge site structure of steps on a vicinal surface. All the details of our model are described in 

Sec.4A. Certainly our modeling is still somewhat idealized in that it incorporates a simple frozen

step geometry. However, it still provides new insights into non-equilibrium step flow, thereby 
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supplementing the alternative modeling strategies of Sec.2C. A goal of these studies is to obtain 

appropriate boundary conditions for continuum step-dynamics models which are regarded as 

deriving from coarse-graining of the discrete models over length scales larger than the typical 

kink separation. A specific aim is to characterize the dependence of the effective kinetic 

coefficients K± on the microscopic parameters in the discrete model, particularly on the mean 

kink separation.

3 AB-Vicinal Surfaces and Non-Equilibrium Step Pairing

Perhaps the most familiar example of an AB-vicinal surface [11], and one with immense 

technological significance, is that of vicinal Si(100) [30,31]. A dimer-row reconstruction of the 

Si(100) surface, together with an alternation of the direction of the dimer rows on adjacent 

terraces, leads to alternating so-called SA and SB type step types. SB steps have low stiffness and 

thus meander greatly with a high kink density. SA steps are stiff and relatively straight with a low 

kink density. Step pairing has been observed experimentally during deposition on vicinal Si(100)

surface with SB steps initially moving faster than SA steps. Faster propagation of the more kinked 

SB step has been rationalized with the framework of the model for inhibited kink attachment 

described in Sec.2B, refined by ideas of Voronkov to account for kinetic contributions to the 

(low) kink density on SA steps, and also accounting for anisotropic terrace diffusion [21]. It 

should be emphasized that this is a particularly complex system due to the surface 

reconstruction. In addition to the features above, attachment and detachment at steps effectively 

occurs in units larger than atoms (dimers or dimer pairs) [30]. Thus, precise atomistic level 

modeling is difficult. For this reason, sometimes a heuristic approach is adopted of simply 

assigning distinct kinetic coefficients to SA and SB steps, the latter being higher reflecting higher 

“accommodation” or “stickiness” at SB steps [32]. A similar heuristic approach has be adopted in 

analyses of island formation during Si(100) homoepitaxy [33,34].

Another example of an AB-vicinal surface, structurally equivalent to Si(100), is provided by 

vicinal Ge(100) surfaces. A rather different realization is provided by surfaces of hcp metal 

crystals vicinal in the principal direction to the basal plane [11], where close-packed steps 

alternate between [100]- and [111]-microfaceted structures.
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However, our purpose here is to provide a fundamental understanding of step dynamics. 

Thus, rather than a considering detailed realistic model for a specific system such as Si(100), it is

more instructive to consider a simpler generic model. To this end, we consider a simple 

anisotropic solid-on-solid (SOS) model as developed in Ref. [18] which includes random 

deposition at rate F per site, isotropic terrace diffusion with barrier Ed, and no attachment 

barriers at steps. There are attractive anisotropic interactions between deposited atoms on 

nearest-neighbor (NN) adsorption sites. These attractions lead to a thermodynamic preference for

aggregation of adatoms with steps or into islands. Specifically, the model incorporates stronger 

attractive NN interactions s>0 in one direction and weaker NN attractions w>0 in the 

orthogonal direction. Furthermore, these directions alternate between adjacent terraces on a 

vicinal surface. Activation barriers for either intra- or inter-layer hopping to NN empty sites are 

chosen to have the form Eact = Ed + nss + nww where ns (nw) is the number of strongly (weakly) 

bonded neighbors in the same layer before hopping. Hop rates are given by h = υ exp[-βEact] 

where again β=1/(kBT). As a result of anisotropic interactions, the vicinal surface displays two 

types of steps, alternating between straight or stiff (which we denote type-A), and wandering or 

meandering (which we denote type-B). For B-type meandering steps, the strong bonding is 

orthogonal to the step, so kink creation is controlled weak bonding which leads to a high density 

of kinks [2]. For A-type stiff steps, the opposite is true. 

Model behavior as determined from Kinetic Monte Carlo simulations is shown in Fig.2. 

Before deposition on average the two different types of steps are equally spaced. When 

deposition is initiated, step pairing occurs, the meandering B-type steps initially moving faster 

than the A-type stiff steps. However, both types of steps have the same equilibrium density, neq = 

exp[-βb] where b = s + w, and thus should advance with the same velocity according to the 

traditional BCF Dirichlet boundary condition. Thus, the observed pairing is a non-equilibrium 

phenomenon, which has been described previously only qualitatively in terms of differences in 

“accommodation” or “stickiness” of the two types of steps [18]. The current work will provide a 

more precise and quantitative formulation.
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Figure 2: Images (200x200 sites) from our KMC simulation of the anisotropic
SOS model for step flow on an AB-vicinal surface with higher terraces on the

right: (a) structure of the equilibrated surface (before deposition) with on-
average equal spaced terraces and alternating A-type stiff and B-type

meandering steps; (b) structure after deposition of ~0.6 layers of atoms.
Parameter choices: βs = 7.25, βw = 2.90, and υ/F = 108.

4 Discrete 2D Deposition-Diffusion Equations for Vicinal Surfaces

4.A. Model specification

Guided by the anisotropic SOS model described in Sec.3, we first consider an idealized 2D 

deposition-diffusion equation model for deposition on a perfect vicinal surface where all terraces

have a width of W sites. Kinks are periodically distributed along each step edge with a separation

of L lattice constants. Also kinks on different steps are aligned in the direction orthogonal to the 

steps. Due to periodicity both orthogonal to and parallel to the steps, we need only analyze 

behavior of the adatom density in an LxW site “rectangular unit cell” on a single terrace between

adjacent kink sites. We label sites in this unit cell by (i,j) where 1≤i≤L and 1≤j≤W. Step edge 

sites (i,1) correspond to those at the bottom of an ascending step, where (1,1) is regarded as a 

kink site which acts as a source and sink for adatoms. Sites (i,W) correspond to those at the 

upper edge of a descending step. See Fig.3. The adatom density at site (i,j) is denoted by n(i,j), 

where the density at the kink site is fixed at a constant value of unity, i.e., n(1,1) =1. 

Next, we describe the energetics and dynamics of the model also illustrated in Fig.3 where 

again β=1/(kBT). Atoms are deposited at rate F per site. Given our interest in anisotropic systems,
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we allow for direction-dependence of the bonding of adatoms to step edge atoms. Edge adatoms 

at sites (i,1) with 1<i≤L adjacent to the ascending step are regarded as bonded to the step edge 

atoms via an attractive nearest-neighbor (NN) attraction of strength ┴ >0. In addition, these 

edge adatoms (with j=1) upon reaching the kink sites are regarded as acquiring additional 

bonding of strength ║ >0. A terrace atom at site (2,1) upon directly reaching the kink site (1,1) 

is regarded as acquiring additional bonding of strength b = ┴ + ║ >0. Thus, the total strength 

of bonding for adatoms at kink sites is consistently given by b. Edge adatoms at sites (i,W) 

adjacent to the descending step do not have any lateral bonding.

Figure 3: Schematic of discrete 2D deposition-diffusion model for perfect vicinal surface. We
show adsorption sites a LxW rectangular unit cell together with nearby surrounding sites, and

also indicate kink sites. Rates of various hopping processes (and of deposition) are also
indicated.

Hopping of adatoms from terraces sites (i,j) to other sites on the same terrace typically occurs

at rate h for 2≤j≤W. The only exception is for hopping from site (i,2) to (i,1), which corresponds 

to attaching to an ascending step, and where the rate may be reduced to exp(-βδ+)h in the 

presence of an additional attachment barrier δ+. Hopping of edge adatoms already at edge sites 

(i,1) with 1<i≤L to other edge sites (including the kink site) occurs at rate he. According to 

detailed-balance, a step edge adatom at site (i,1) with 2≤i≤L hops to terrace site (i,2) on the same 

terrace with rate exp(-β┴-βδ+)h. An adatom at the kink site hops to adjacent step edge sites with 
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rate exp(-β║)he, and to the adjacent terrace site (1,2) at rate exp(-βb-βδ+)h. Consistently, the 

equilibrium adatom density at the step edge is given by nEQ = exp(-βb)n(1,1) = exp(-βb), based

on consideration of an equilibrium between terrace and kink adatoms [1-3].

In addition, we must prescribe the details of interlayer adatom hopping between terraces. We 

allow for the existence of an additional ES step-edge barrier of strength δ-. This implies that 

adatoms at sites at an upper step edge (i,M) hop down to adjacent edge or kink sites on the lower 

terrace at reduced rate exp(-βδ-)h relative, which is reduced from that for terrace diffusion. 

According to detailed-balance, adatoms at the lower step edge sites (i,1) with 1<i≤L can hop to 

the adjacent upper terrace site with rate exp(-β┴-βδ-)h. The atom at the kink site can hop to the 

adjacent upper terrace site with rate exp(-βb-βδ-)h. Thus, in the special case of an infinite ES 

barrier (δ- =∞), there is no transport or “communication” between different terraces.

Appendix C presents a refined version of the discrete 1D deposition-diffusion model of 

Appendices A and B which better captures the features of our discrete 2D model.

4.B. Discrete 2D deposition-diffusion equations

We assume sufficiently low deposition rate that adatom densities are very low and thus 

adsorption attempts are essentially always successful. Then, the discrete 2D deposition-diffusion 

equations describing evolution in this model have the steady-state form

d/dt n(i,j) = hL
i+1,j n(i+1,j) + hR

i-1,j n(i-1,j) + hU
i,j-1 n(i-1,j) + hD

i,j+1 n(i,j+1) 
                   - (hL

i,j + hR
i,j +hU

i,j + hD
i,j) n(i,j) + F ≈ 0,

(4)

for 1≤i≤L and 1≤j≤W, except for the kink site (i,j)=(1,1) where n(1,1)=1. Here, hX
i,j denotes the 

rate for hopping from site (i,j) in a direction X = L (left), R (right), U (up), and D (down) in the 

(i,j)-plane. Specific values for any (i,j) follow from the description above. The detailed-balance 

feature of these rates ensures that the equilibrium solution for F=0 satisfies n(i,j) = exp(-β┴ 

-β║) = exp(-βb) = nEQ for terrace sites 1<j≤W, n(i,1) = exp(-β┴) for step edge sites with 

1<i≤L, and again n(1,1)=1. 

There exists a natural rescaling of the above deposition-diffusion equations setting 
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n*(i,j) = n(i,j) for terrace sites 2≤j≤W, 
n*(i,1) = exp(-β║) n(i,1) for step edge sites with 2≤i≤L, and
n*(1,1) = exp(-β┴-β║) n(1,1) = exp(-βb) n(1,1) for the kink site. 

(5)

This rescaling ensures that all terms associated with adatom hopping on the right-hand-side 

of the rescaled evolution equations can be written in terms of differences in n*-values for NN 

pairs of sites. This, in turn, makes transparent the equilibrium solution n*(i,j) = n*(1,1) = nEQ for 

all (i,j) when F=0. The rescaling also produces more generic equations in that rescaled densities 

for all terrace sites satisfy an equation with exactly the same form for zero attachment barriers, 

δ±=0, even for sites with j=2 or j=W adjacent to the step edge. This important feature will be 

exploited below. It is also the case that all edge sites satisfy generic equations (even those 

adjacent to the kink sites).

Inhomogeneities in the steady-state form of these rescaled equations derive both from 

deposition terms, and from the coupling to n*(1,1) of n*(i,j) with (i,j) neighboring (1,1). It is thus

instructive to introduce new variables, δn*(i,j) = n*(i,j) – nEQ characterizing deviations from 

equilibrium, so then δn*(1,1)=0. Letting δn* denote a LxW-dimensional vector composed of 

these quantities, the steady-state form of (3) can be recast in matrix form as

A(he/h, ┴) · δn* = (F/h) e(┴), (6)

where the only inhomogeneity now comes from the deposition terms on the right-hand-side. The 

entries of the non-symmetric square (LxW)x(LxW) matrix A and vector e can be readily 

obtained from comparison with (4). The dependence on he/h and on ┴ comes from sites at the 

step edge. In (6), we leave implicit the dependence on attachment barriers δ±. There is no 

dependence on ║. The form of (6) immediately demonstrates that the equilibrium solution for 

F=0 satisfies δn* = 0, consistent with the above observations. Significantly, it also illustrates 

basic features of non-equilibrium behavior, e.g., the exact proportionality δn*  F.

 The model above was described for a perfect vicinal surface where all terraces have the same

width W and kinks are distributed periodically along steps and are aligned in the direction 

orthogonal to steps. However, the model is readily generalized to treat more complex vicinal 

surface geometries. Our analyses below will often consider bi-periodic systems with alternating 
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broad and narrow terraces, but still with periodically distributed and aligned kinks. In addition, 

one could consider more complex terrace geometries and arrangements of kinks. In all these 

cases, there will be a larger rectangular unit cell for which a finite closed set of equations must be

analyzed. However, the formulation and structure of the equations is analogous to that above.

4.C. Kinetic coefficients from discrete models

Our focus in this study will be on extracting values for kinetic coefficients, K±, from analysis 

of the discrete 2D model for cases where the step permeability term drops out of (2) in the 

corresponding continuum setting. There, are two situations where this scenario applies. The first 

trivial case is for an infinite ES barrier where naturally P=0. Then, clearly one has K- = 0, and 

the task is just to determine K+. The second corresponds to cases in a continuum setting where 

the limiting value of the adatom density is the same approaching any step from either side, i.e., 

n+ = n- in (2) (but these limiting values could differ for different steps). This second situation is 

realized for a uniform vicinal surface with symmetric attachment barriers, where the adatom 

density profile is symmetric about the center of the terrace and the same for all terraces. 

However, to analyze even this case and certainly for more general situations, we must precisely 

specify a procedure for define these “limiting values” of adatom densities for the discrete picture.

Given the above remarks, we now specify how values of adatom densities at terrace sites, 

n(i,2≤j≤W)=n*(i,2≤j≤W), are smoothly extrapolated or “analytically extended” in a precise and 

unambiguous way to those at the left step j=1 to determine n+*(i,1), or to those at the right step 

j=W+1 to determine n-*(i,W+1). Our basic requirement that the equations for the terrace 

densities adjacent to the steps (i.e., for j=2 and j=W) can be recast into same generic form as 

those in the middle of the terraces when incorporating the above extrapolated densities. This 

formulation is illustrated explicitly in Appendices A and B for a simpler 1D model. An 

equivalent simpler prescription focuses on the diffusion fluxes, J+(i,1) of adatoms reaching the 

step j=1 and J-(i,W+1) of adatoms reaching the step j=W+1, at the left and right of the terrace 

along column ‘i’ in the 2D discrete model. We demand that the extrapolated densities n+*(i,1) 

and n-*(i,W+1) satisfy
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J+(i,1) = exp(-βδ+)h [n*(i,2)-n*(i,1)] = h[n*(i,2)-n+*(i,1)], and
J-(i,W+1) = exp(-βδ-)h [n*(i,W)-n*(i,W+1)] = h[n*(i,W)-n-*(i,W+1)].

(7)

In Sec.4B, we have already noted that for zero attachment barrier on a perfect vicinal 

surface, the equations for rescaled densities have the generic form for j=2 and j=W. This implies 

that one can make the identification n+*(i) = n-*(i) = n*(i,1) = n*(i,W+1) consistent with (7) 

above, i.e., in this case of zero attachment barriers, there is no discontinuity at the step edge in 

extrapolated values of the rescaled adatom density (i.e., one has n+* = n-*). Significantly, the 

corresponding analysis of the equations for rescaled densities for vicinal surface with non-

uniform terrace widths shows that the equality n+* = n-* is preserved for zero attachment barriers.

We exploit this result in our analysis of K± for these cases in Sec.8. 

Next, we provide an explicit prescription for the extraction of kinetic coefficients, K±, from 

our discrete 2D model. To this end, we introduce an average along the step edge direction 

<Bi >i = L-1 Σ1≤i≤L Bi. (8)

If “a” denotes the lattice constant, then D = a2h is the terrace diffusion coefficient, and the 

deposition flux per unit area in (2) satisfies F =a-2 F. Motivated by (2), to define K+ in the discrete

model, we make the replacements

a2(n+ - neq)→<n+*(i) – nEQ>i = <δn+*(i,1)>i 
                                               = <δn+*edge> (excess edge density),

(9a)

a2n n|+→a-1<n*(i,2) – n+*(i,1)>i = a-1<δn*(i,2) - δn+*(i,1)>i (rescaled flux), (9b)

recalling that δn*(i,j) = n*(i,j) – nEQ. Here, we use that a2 n(x) corresponds to a density per site 

with area a2, so for example nEQ = a2 neq. Then, to define the kinetic coefficients in the discrete 

model, we make the following replacement

K+/D = (n n|+)/(n+ - neq) in (2) (10a)

→ K+/D = a-1 <δn*(i,2) - δn+*(i,1)>i/<δn+*(i,1)>i, (10b)

to obtain K+ for the step at j=1. Thus, from (6), one has that K+/D = 1/L+ depends on h and he 

only through the ratio he/h. Perhaps more significantly, K+ is independent of F. (However, K+/D 
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does depend on β┴ and βδ+.) A similar analysis applies for K- and L- for the step at j=W+1. We 

emphasize that for zero attachment barriers, one has that n+*(i,1) = n*(i,1) and n-*(i,W+1) = 

n*(i,W+1) making the above types of formulae explicit.

4.D. Selected properties of steady-states and kinetic coefficients

The kinetic coefficients are determined entirely from the steady-state properties of the 

solutions of the discrete 2D deposition diffusion equations, in particular from the ratio of excess 

density at the steps to the diffusive flux to the step. In a continuum setting, the diffusive flux is 

constrained by mass conservation, i.e., the amount of material deposited within a region of the 

terrace must be balanced by the diffusive flux out of that region. This constraint is expressed 

mathematically by Gauss’ Theorem noting that the steady-state form of the continuum 

deposition-diffusion equations matches that of Poisson’s equation. In the continuum setting, it is 

also common and instructive to introduce the concept of “capture zones” (CZ’s) for steps or 

islands, such that the flux from all points within the capture zone flows to that step or island [4]. 

Then the CZ area times F gives the total diffusive flux to the step or island. 

These basic ideas carry over to a discrete setting with some minor modification. The mass 

conservation constraint described above can be precisely formulated as a discrete version of 

Gauss’ Theorem [37]. One can introduce the concept of CZ’s although in general the total 

diffusion flux will not correspond to an integer number of adsorption sites times F. However, 

effective CZ boundaries can still be selected to reflect the total diffusion flux. As a simple 

example, mass conservation for infinite ES barrier and δ+=0 yields the relation 

J+ = <J+(i,1)> = h<n*(i,2) – n*(i,1)>i = h<δn*(i,2) - δn*(i,1)>i = F(W-1) (11)

for the total flux reaching the ascending step. As discussed in Sec.2B, the step velocity is 

determined by the total flux of atoms reaching the step. In addition to the diffusive components, 

this always includes a component, Jdd = F, due to direct deposition at the step edge. For a perfect 

vicinal surface with terraces of width W, mass conservation implies that J+ + J- + Jdd = FW.

Now, we turn to analysis of the dependence of the kinetic coefficients on specific model 

parameters. First, we remark that the limiting case he→∞ is of special interest since it produces 
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equilibration of the step edge density, n*(i,1)→nEQ. In fact, the discrete 2D deposition-diffusion 

equations reduce to the 1D equations of Appendices A and B by virtue of translational invariance

along the step direction. Then, simpler “traditional” results for kinetic coefficients immediately 

follow. In particular, K+ = ∞ with attachment barrier δ+ =0, and K- = ∞ with zero ES barrier d- = 

0. Thus, an appealing feature of our model is the ability to tune the degree of equilibration (or 

lack thereof) by adjusting he relative to h.

For finite step edge diffusion rates he < ∞, we will obtain finite values for the effective K± 

even in the absence of attachment barriers. This is because incorporation at steps inhibited by a 

“small” kink density, which results in a strictly positive excess edge density <δn*edge>i. From this 

perspective, it is expected that K± should vanish with increasing kink separation L→∞. To 

elucidate this regime and the associated behavior of K±, it is natural to introduce a semi-discrete 

version of the fully discrete model described in Sec.4A. Here, the discrete density, n(i,j), in the 

step direction i for large L is replaced by a semi-continuous quantity, n(x,j), where the continuous

position x corresponds to ia. One then analyzes a finite coupled set of continuous deposition-

diffusion equations for the n(x,j) for 0<x<aL and 1≤j≤W where these densities extend 

periodically to other x. See Appendix D. The resulting analysis indicates that

K±(L) ≈ A/L2, as L→∞. (12)

Furthermore, behavior for a broad range of L should be well described by K±(L) ≈ A/(L2 + BL + 

C). Since K± are given by the ratio of the attachment flux and the excess step density, the result 

(12) is understood from the feature that the attachment flux is independent of L [cf. (11)], and the

excess step density naturally scales like L2. As noted in Sec.2B, considerations of kink 

attachment-limited step flow in liquid-phase crystal growth naturally led to kinetic coefficients 

which decrease with increasing kink separation. The functional form of K± versus L is different 

here since we are considering diffusion-limited kink attachment.

Results for K± with finite he < ∞ will also depend on the width, W, of the terrace on the 

vicinal surface. Since coarse-grained models are usually applied to situations where the typical 

kink separation is well below other characteristic lengths (e.g., typical terrace widths), it is 

natural to examine the behavior of K± in the limit of broad terraces, W→∞. For an infinite ES 
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barrier with δ+=0, using that h<δn*(i,2) - δn*(i,1)>i = F(W-1) from (11). Then, provided that the 

excess adatom density at steps is roughly proportional to the terrace width <δn*edge>  W, it 

follows that 

K±(W) ≈ K±(∞)(W-1)/W. (13)

As a sample numerical test of this W-dependence of <δn*edge>, for L=50, h=he, and β┴=1, we 

find that <δn*edge> ≈ 0.00305W + 4.2x10-8 for W ranging from 50 to 500.

5 Infinite ES Barrier δ- = ∞ and Zero Attachment Barrier δ+ = 0

This case of an infinite ES barrier, δ-=0, has the simplifying feature that atoms cannot attach 

to a step from the upper terrace, i.e., K-=0, and thus that steps are impermeable, i.e., P=0. Then 

(2) reduces to the zero-flux boundary condition D n n|- = 0 at descending steps. In such 

systems, behavior on each terrace is completely independent. We consider in Sec.5 only the case 

of zero step attachment barrier to the step, δ+ = 0. Our focus is on the determination of the 

kinetic coefficient, K+, describing attachment to the ascending step. Here, the step velocity is just 

determined by the width of the associated lower terrace (and by the deposition flux) which 

constitutes the capture zone (CZ) for the step.

Typical behavior of the rescaled densities δn*(i,j) is shown in Fig.4 for h=he and h/F=104 

with L=20, W=20, and β┴ = 1. Note the increase in the step edge densities δn*(i,1) between the 

kink sites above neq. The traditional view for this case would be that K+ = ∞ forcing the classic 

BCF boundary condition that n+=neq. However, as already noted in Sec.4, we find finite values of 

K+ due to inhibited incorporation at kinks. 
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Figure 4: 3D plot of scaled excess adatom density, δn*(i,j), for
infinite ES barrier, he=h, and h/F=104 with L=20, W=20, and
β┴ = 1. The foreground of the plot shows the kink sites at i=1

and i=21 where the adatom density is lowest, and also the
variation of adatom density along the step edge peaking midway

between the kink sites.

Table 1: K±(∞) versus kink spacing L for perfect vicinal surfaces with broad terraces. Results are
shown for infinite ES barrier (δ-=∞) with δ+=0, and no attachment barriers δ±=0. We have

chosen he/h=1 and β┴= 1.

Kink spacing, L aK+(∞)/D for δ-=∞, δ+=0 aK±(∞)/D for δ±=0
20 0.133647 0.088766
40 0.045592 0.032735
60 0.025228 0.018814
80 0.016810 0.012835
100 0.012355 0.009589
150 0.007158 0.005702
200 0.004905 0.003971

Next, we consider the dependence of K+ on terrace geometry. In Fig.5a, we show results for 

K+ versus kink separation L for he/h=1 with fixed W=100 and β┴ = 1. It is clear that K+→0 as 

L→∞, and for larger L this decrease is described by (12). Note that for L=1 (an entire step edge 

composed of kinks), the model reduces to a 1D model with a standard BCF Dirichlet BC so that 

K+ = ∞. Next, in Fig.5b, we show results for K+ versus terrace width W for heh/=1 with fixed 
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L=40 and β┴ = 1. It is clear that K+ converges to a finite value as W→∞, and that the functional

form is described well by (13) where aK+(∞)/D=0.0455. See Table I for a list of values of K±(∞) 

for various L.

Now, we turn to consideration of the dependence of K+ on model dynamics and energetics. 

We have already noted that K+ depends only on the ratio he/h rather than on h and he separately. 

Behavior is shown in Fig.6a for L=30, W=100, and β┴ = 1. Apart from some non-linear 

variation for small he/h<1, behavior is essentially linear K+ ~ c · he/h. This form recovers the 

classic result K+→∞ as he→∞ in the absence of an attachment barrier. This limiting behavior is 

due to complete equilibration of the adatom density at the step edge. The asymptotic linear 

dependence derives from the feature that the flux J+ converges to a finite value for he = ∞, and the

deviation of step edge densities from equilibrium scales like <δn*edge> ~ h/he. 

Figure 5: Behavior of K=K+ for an infinite ES barrier and δ+=0 for he/h=1 and β┴

= 1: (a) K+ versus L with fixed W=100; (b) K+ vs W for he/h=1 with fixed L=40.

Figure 6: Behavior of K=K+ for an infinite ES barrier and δ+=0: (a) K+ versus he/h
for L=30, W=100, and β┴ = 1; (b) K+ versus β┴ for he/h=1 and L=W=50. 

Finally, we consider the dependence of K+ on β┴. Intuitively, stronger bonding to the step 
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edge should facilitate capture of diffusing adatoms at kinks. Thus, K+ should increase with 

increasing β┴. For β┴=0 where capture is least efficient, K+ should still retain a finite non-zero

value. Numerical results are presented in Fig.6b for L=W=50 and h=he (where aK+/D = 0.02097 

for β┴=0 and aK+/D =0.03216 for β┴=1) confirming this behavior. To further elucidate this 

behavior, we note that as β┴→∞, an exact analysis is possible for the fundamental equations (4)

or (5). In this regime, the equations for the rescaled adatom density on the terraces all have the 

generic form. However, equations for the rescaled adatom densities along the step edge decouple 

from the terrace densities reducing to a simple 1D discrete diffusion equation (provided that 

he>0) with a vanishing deposition source. Thus, the steady-state solution for these edge densities 

approaches the equilibrium value. Correspondingly, since <δn*edge>→0, one has that K+→∞.

6 Zero Attachment Barriers δ± =0: Perfect Vicinal Surfaces

We consider here the case of a perfect vicinal surface with terraces of width W and no 

attachment or ES barriers, δ± =0, where by symmetry one has that n+* =n-* and that K+ = K-. In 

this case, since all steps are equivalent, it is clear that the step velocities are the same for all steps

and that these are just determined by the single terrace width, W (and the deposition flux). By 

symmetry together with application of the discrete Gauss’ Theorem, the attachment fluxes from 

both sides of each step are equal, and adopt a value J± = ½ F(W-1). In the case, the capture zone 

(CZ) for each step extends symmetrically to the mid-point of the terrace on either side. Since the 

total flux to each step is the same as for the case of infinite ES barrier, one might expect similar 

excess step densities, <δn*edge>. In fact, we find this density for δ± =0 is larger than that for the 

case of infinite ES barrier in Sec.5, which implies that the K-value is smaller. See Table I. 

First, we consider the dependence of K± on terrace geometry. We find that that K±→0 as kink 

separation L→∞. For larger L, the functional form of this decrease is described by (12) as 

follows from analysis of an appropriate semi-discrete version of the model. For L=1, the 2D 

model reduces to a 1D model with a standard BCF BC so that K± = ∞. As an aside, the value of 

K± for kink separation L with δ± =0 corresponds closely to the value of K+ for infinite ES barrier 

(δ-=∞) with δ-=0 for kink separation 1.25L (with the same W and β┴). In addition, we have 

examined the convergence of K± to a finite value as W→∞, and the functional form is described 
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well by (13) given in Sec.4D just as for the case of infinite ES barrier. See Table I for a list of 

values of K±(∞) for various L.

Next, we turn to consideration of the dependence of K+ on model dynamics and energetics. 

Apart from some non-linear variation for he/h<1, one finds an essentially linear variation K± ~ c · 

he/h. This follows since J± converge to a finite value for he = ∞, and one expects that <δn*edge> ~ 

h/he, just as for the case on infinite ES barrier. Finally, we consider the dependence of K+ on β┴.

K+ increases with increasing β┴ from a non-zero value for β┴=0 where capture is least 

efficient, and K+→∞ as β┴→∞, i.e., the same behavior for the same reasons as with an infinite 

ES barrier. For L=W=50 and h=he, one has aK+/D = 0.01666 for β┴=0 and aK+/D =0.02357 for 

β┴=1.

7 Zero Attachment Barriers δ± =0: Imperfect Vicinal Surfaces

Here, we consider the case of imperfect vicinal surfaces with a distribution of terrace widths. 

For simplicity, we assume the same density (or separation) of periodically distributed kinks on 

all steps. Again, kinks on different steps are aligned in the direction orthogonal to the steps. A 

key feature is that for any distribution of terraces widths in the absence of attachment and ES 

barriers, the limiting value of the adatom density is the same approaching each step from either 

side, i.e., n+ = n- in (2), or n+* = n-* in the discrete model. Thus, the step permeability term still 

drops out of (2), and we can determine the (generally different) values of K+ and K- for each step

based on the algorithm described at the end of Sec.4.

7.A. Bi-periodic vicinal surfaces

We consider here the simplest “imperfect case” of a bi-periodic vicinal surface with 

alternating narrower and broader terraces of widths Wa and Wb. In this case, by reflection 

symmetry, there is a single excess adatom density <δn*edge> at both types of steps. Also, the 

adatom density profile is symmetric about the middle of each type of terrace. A typical adatom 

density profile averaged along the steps is shown in Fig.7 for the case of kink spacing L=50, 

terrace widths Wa=50 and Wb=100, he=h, and β┴ = 1. In is clear that the capture zone (CZ) for 

each step extends to the mid-point of the terraces on either side. It is also clear that the velocities 
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of all steps are identical. 

In further analysis, we just focus on behavior in the regime of broad terraces. Let K±
a denote 

the kinetic coefficients for a bi-periodic vicinal surface associated with terraces of widths Wa, 

and K±
b for the terrace of width Wb. By symmetry, one has that K+

a = K–
a and K+

b = K-
b since the 

flux to steps on either side of the same terrace is identical, and since there is a single excess 

adatom density at steps. Then, it follows that 

K±
b/ K±

a ≈ Wb/Wa, (14)

In addition, from numerical data, we find that

K±
a + K±

b ≈ 2 K±(∞), (15)

where K±(∞) denotes the value of the kinetic coefficients for a perfect vicinal surface in the limit 

of broad terraces, and with the same kink density as the bi-periodic case. As an example, for kink

separation L=50 with he=h and β┴ = 1 where 2 aK±(∞)/D= 0.048158, we find that for very 

broad terraces one has aK±
b/D =0.032105 and aK±

a/D =0.016053 for Wb/Wa = 2.

The relation (15) can be understood in terms of the behavior of the single excess adatom step 

density, <δn*edge>BI, in the bi-periodic system. Let <δn*edge>a  Wa denote the excess density for a

perfect vicinal surface with finite terrace width Wa, etc.. Provided that the excess adatom density 

is just determined by the average two-dimensional kink density in the system, then it 

immediately follows that

½(Wa+Wb)/<δn*edge>BI ≈ Wa/<δn*edge>a ≈ Wb/<δn*edge>b. (16)

which is equivalent to the sum rule (15). An equivalent perspective comes from the observation 

that (16) implies that the excess adatom step density <δn*edge>BI in the bi-periodic systems equals

that for a perfect vicinal surface with terrace width equal to the average of the terraces in the bi-

periodic system.
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Figure 7: Scaled excess adatom density profile <δn*> across the
terraces (averaged along steps) for a bi-periodic system with terrace
widths Wa=50 and Wb=100 and zero attachment barriers δ±=0. Other
parameters are he=h, h/F=105, L=50, and β┴= 1. Note the unique

excess adatom density at step edges, but the distinct attachment fluxes
from different sides of the steps.

7.B. Tri-periodic and other vicinal surfaces

Consider tri-periodic vicinal surfaces with cyclically alternating terraces of width Wa, Wb, 

and Wc, but the same kink separation L on all steps. This case is more representative of the 

general situation. Here, there are three types of steps: Sab separating terraces of width Wa and Wb,

and similarly Sbc, and Sac. For each step, there are in general two distinct kinetic coefficients K±
ab 

for Sab, etc. No longer is it possible to simply determine diffusive fluxes to steps since the 

boundaries of the capture zones (CZ’s) for each step do not necessarily correspond to the middle 

of the terraces on either side. Also, in general, each step has a different excess adatom density. 

However, from numerical analysis for broad terraces, we find analogous to (15) that

K+
ab + K-

ab + K+
bc + K-

bc + K+
ac + K-

ac ≈ 6 K±(∞), (17)

where K±(∞) denotes the value of the kinetic coefficients for a perfect vicinal surface in the limit 

of broad terraces, and with the same kink density as the tri-periodic case. For example, in the 

case where Wa = 22m, Wb = 30m, Wc = 37m, and L=50, we show the adatom density profile in 
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Fig.8 and give all six K-values in Table II for the case m=5. More generally, we find that the 

values of the above 6 aK/D-values sum to 0.136766, 0.143657, 0.143983, and 0.144424 for m = 

1, 5, 10, and 100, respectively, which should be compared with 6 aK±(∞)/D= 0.144473.

Table 2: Values of aK/D for a tri-periodic vicinal surface with terrace widths Wa=22m, Wb=30m,
and Wc=37m for m=5, and zero attachment barriers δ±=0. Other parameters are he/h=1, L=50,

and β┴ = 1, so 6 aK±(∞)/D= 0.144473. The six aK/D values sum to 0.143657.

aK+
ac/D aK-

ab/D aK+
ab/D aK-

bc/D aK+
bc/D aK-

ac/D
0.020269 0.017307 0.021182 0.027904 0.030848 0.026965

 
In contrast to all the previous examples, in the case of the tri-periodic vicinal surface, the step

velocities differ and are non-trivial. According to the general strategy laid out in Sec.2, 

knowledge of the six K-values (e.g., from Table II for m=5) together with the result (3) allows 

determination of the diffusive fluxes to each step. Then, adding the simple constant contribution 

from direct deposition at each step allows determination of the step velocities. It is appropriate to

compare the results of our analysis with that from a classical BCF treatment where the adatom 

densities are symmetric about the center of each terrace. Thus, the diffusive flux to the steps on 

the left and right side of each terrace are equal (as for any case with equal K-values for the left 

and right steps). Thus, deviations from classical BCF behavior are due to difference between K-

values for the steps at the left and right ends of the different terraces (cf. Table II). The fact that 

the attachment lengths associated with the K-values are of the order of the terrace widths means 

that these deviations are significant. 

To interpret the sum rule (17) in terms of the excess adatom step densities, let <δn*edge>a 

denote this density for a perfect vicinal surface with broad terraces of width Wa, etc. For the tri-

periodic vicinal surface, let <δn*edge>ab denote the excess adatom density at step Sab, and let W± ab 

denote the width of the capture zone (CZ) for this step on the lower (+) and upper (-) terrace. 

Thus, Wab = W+
ab + W-

ab denotes the full width of the capture zone on both sides of the step. 

These quantities are defined analogously for other steps. Then, it follows that Wab + Wbc + Wac ≈ 

Wa + Wb + Wc. See Fig.8. Also since K±
ab  W±

ab/<δn*edge>ab and thus K+
ab + K-

ab  

Wab/<δn*edge>ab, etc., (17) is instructively recast as
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Wab/<δn*edge>ab + Wbc/<δn*edge>bc + Wac/<δn*edge>ac

= Wa/<δn*edge>a + Wb/<δn*edge>b + Wc/<δn*edge>c.
(18)

where all three terms on the right-hand-side have the same value. In special cases for tri-periodic 

systems, e.g., where two of the terraces have equal width, then (18) can be reduced further.

Figure 8: Scaled excess adatom density profile <δn*> across the
terraces (averaged along steps) for tri-periodic case with terrace

widths Wa = 22m, Wb = 30m, and Wc = 37m for m=5, and zero
attachment barriers δ±=0. Excess adatom densities at the steps
are <δn*ac> ≈ 0.0305, <δn*ab> ≈ 0.0282, <δn*bc> ≈ 0.0336.

Other parameters are he=h, h/F=105, L=50, and β┴ = 1. Note
the distinct excess adatom densities at step edges.

For another perspective leading to a more complete analysis, we note that the K’s for the tri-

periodic system correspond to those from various bi-periodic systems for suitable choices of 

terrace widths (and the same kink separation L). For example, K±
ab above corresponds to K’s in a 

bi-periodic system with terraces of width 2W+
ab and 2W-

ab, where K+
ab (K-

ab) corresponds to K± 

for the terrace of width 2W+
ab (2W-

ab). Then <δn*edge>ab corresponds to the unique excess adatom 

step density in this bi-periodic system. See Fig.9. Thus, Wab/<δn*edge>ab = W/<δn*edge> for any 

perfect vicinal surface with terraces of width W and excess adatom step density <δn*edge>. 

Extending this analysis for other steps recovers (18).
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Figure 9: Schematic comparing: (a) scaled excess adatom density profile across the
terraces (averaged along steps) for a tri-periodic system; and (b) the profile in one

of the “corresponding” bi-periodic systems. Also indicated are the widths of
terraces and of various capture zones (CZ), as well as the boundaries of those CZ’s

(∂CZ).

In more general cases of vicinal surface with higher-order periodicity, one finds a natural 

generalization of (15) or (17). Broader terraces with smaller neighbors tend to have larger K-

values, and the opposite is true for smaller terraces with broader neighbors. The demonstration of

these general K-sum rules follows from extending the analysis in the previous paragraph.

8 Other Cases Without a Permeability Contribution

In addition to the cases discussed in Sec.5-7, there are other situations (some are discussed 

here) where the limiting value of the adatom density is the same approaching each step from 

either side, i.e., n+ = n- in (2), or n+* =n-* in discrete models. Thus, again the step permeability 

term still drops out of (2), and K± can be determined from the algorithm in Sec.4.
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8.A. Finite attachment barriers

For the case of an infinite ES barrier where P=0 and behavior on each terrace is isolated from

or independent of that on other terraces, we consider the effect of including a non-zero step 

attachment barrier δ+ >0 to the ascending step. Intuitively, one expects that the step edge density 

“behind the attachment barrier” should become more equilibrated and spatially uniform with 

increasing δ+. As a result, behavior should reduce to that of the 1D model with an attachment 

barrier in Appendix A. Consequently, K+ = D/L+ should asymptote to the 1D result where L+ ~ a 

exp(βδ+), as δ+→∞. This behavior is indeed realized and shown in Fig.10a for he/h=1, L=50, 

W=50, and β┴ = 1, and D/(aK+) ≈ exp(βδ+) + 77.2 for large δ+.

Figure 10: Variation of K-value with finite attachment barrier for he/h=1, L=50,
W=50, and β┴ = 1: (a) D/(aK+) versus βδ with δ=δ+ for an infinite ES barrier;
(b) D/(aK±) versus βδ  for symmetric attachment barrier δ± = δ. The solid curves

show the function exp(βδ) versus βδ.

For a perfect vicinal surface with terraces of width W, we consider the case of symmetric 

non-zero step attachment barriers δ = δ+ = δ- >0. Here, by symmetry, the limiting value of the 

adatom density is the same approaching the step from either side, i.e., n+* = n-*, and one also has

that K+ = K-. Again, since the step edge density “behind the attachment barrier” should become 

more equilibrated with increasing δ±, behavior should reduce to that of the 1D model, so K± = 

D/L± should asymptote to the 1D result L± ~ a exp(βδ). This behavior is shown in Fig.10b for 

he/h=1, L=50, W=50, and β┴ = 1, and D/(aK±) ≈ exp(βδ) + 155.3 for large δ. One might 

anticipate that we could extend consideration of the case of symmetric non-zero step attachment 

barriers to imperfect vicinal surfaces and still retain the equality n+* = n-*. However, numerical 

data for a bi-periodic vicinal surface with Wa ≠ Wb demonstrates that this is not the case, the 
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adatom density for the broader terraces extrapolating to a higher value at the step edge. In fact, 

this behavior is consistent with the relations (7) determining extrapolated densities.

8.B. Varying kink separations on AB-vicinal surfaces

Finally, in contrast to all cases considered above in this and previous sections, we consider a 

situation where the kink separation differs on different steps. Motivated by the anisotropic SOS 

model described in Sec.3 which provides a simple model for an AB-vicinal surface, we 

specifically analyze the case where the kink separation alternates between L and nL (with n>1) 

on a vicinal surface where all terraces have width W. We choose L=40, n=2, and W=15. Different

kink densities on different steps correspond to different attractive interactions between adatoms 

in the direction of the step edge. Using the terminology of the anisotropic SOS model, we choose

βs = 5.06 and βw = 4.36 to be consistent with our choice of kink separations [30]. Thus, in our 

discrete 2D deposition–diffusion equation modeling, we choose different values of β± for the 

two types of steps alternating between βs for B-type steps with L=40, and βw for A-type steps 

with L=80. A schematic of the steady-state adatom density for this choice of parameters is shown

in Fig.11.

Quantitative analysis of the above system yields aK/D-values of 0.589 for the B-type step 

with higher kink density (L=40), and 0.0817 for the A-type step with lower kink density (L=80). 

Then, application of (3) allows determination of the diffusive flux to each step. We find the ratio 

of diffusive fluxes to A-type and B-type steps is 0.47 (the former being smaller). Accounting for 

direct deposition at steps on terraces of width W=15, one obtains a slightly modified ratio of total

fluxes to A-type and B-type steps of 0.49. Thus, if VA (VB) denotes the velocity of A-type (B-

type) steps for the configuration of Fig.11, it follows that VA/VB = 0.49. As might be expected 

given the higher K-value, the B-type step has the higher velocity, consistent with simulation 

results of Sec.3. An independent way to assess the differing step velocities is provided by Fig.11 

where we also show the boundaries (∂CZ) of the capture zones for both steps. Clearly, the B-type

step with higher kink density has a significantly larger CZ (quantified below), consistent with the

larger velocity. In summary, the different K-values for different steps induce different velocities 

even starting with a perfect “equilibrium” AB-vicinal surface with uniform terrace widths. 
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Figure 11: Scaled excess adatom density δn*(i,j) for system with alternating
kink density on adjacent steps. We choose kink separations of L=40 and

L=80, a terrace width of W=15, and set he=h, h/F=105, and β┴ = 1. The
plot also shows location of the kinks and the non-linear capture zone

boundaries (∂CZ).

One might hope that this system could be analyzed in terms of simpler systems with a single 

kink separation of L and of nL and the appropriate choice of β┴ (cf. our analysis of tri-periodic 

systems in terms of bi-periodic systems). However, in contrast such analyses above, such an 

exact analysis is not possible since, e.g., the capture zone boundary between the two steps is not 

a straight line. See Fig.11. Despite this feature, one can still define an average width, W> = 20.3 

(W< = 9.7), of the capture zone for the B-type (A-type) step, where W> + W< = W. In fact, we 

note that W</W> = 0.48 quite consistent with the above estimate of the ratio of step velocities 

VA/VB. Then, to a first approximation, the step edge with kink separation L will have the same 

<δn*edge> as for a perfect vicinal terrace width 2W> with kink separation L and the appropriate 

value of β┴ and the other parameters (and analogously for the step with fewer kinks). 

Consequently, K± for the B-type (A-type) step should roughly equal the value of these quantities 
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for a perfect vicinal surface with kink separation of L (nL) and suitable choices of other 

parameters. The CZ boundaries in Fig.11 are quite bent, limiting the accuracy of the above 

approximation, but we have checked its validity in other cases with straighter boundaries. 

9 Summary

We have implemented a new strategy to obtain insight into the appropriate kinetic 

coefficients, K±, for BCF-type boundary conditions for step flow under potentially non-

equilibrium conditions. Our approach prescribes as input the geometry of the vicinal surface 

including the distribution of kinks along step edges. Then, we solve discrete 2D deposition-

diffusion equations for this geometry to determine the adatom density distribution, and thus 

fluxes of attachment at (kinks along) step edges. We obtain explicit values for the K± mostly for 

cases where there is no barrier to attachment to steps and where the step permeability is not 

relevant. Specifically, we characterize the dependence of the K± on the kink density and terrace 

width, and also obtain a sum rules for these coefficients for imperfect vicinal surfaces with 

different terrace widths. The systems considered would traditionally be described by the classical

BCF picture which equates the adatom density to its equilibrium value at the step edge 

(corresponding to K=∞). However, this classical treatment fails to capture such phenomena as 

non-equilibrium step pairing observed in an anisotropic SOS model of an AB-vicinal surface 

with alternating types of steps [18]. In contrast, our approach is successful.

Our new approach is somewhat complementary to other recent mean-field rate equation 

modeling based on the terrace-step-kink picture [12-17]. As noted previously, this approach 

specifies diffusion fluxes or adatom densities at steps as input and determined the dynamic 

steady-state step structure (in contrast to our specification of step structure and solution of the 

deposition-diffusion equations). However, both our analysis and that of Margetis and Caflisch 

(MC) [17] assess kinetic coefficients. We obtain precise numerical values and assess dependence 

on various geometric parameters for arbitrary energetic and diffusion parameters. MC perform a 

perturbation analysis to obtained general expressions in the regime of small Peclet number (large

edge diffusion). Thus, direct comparison is difficult. However, there is consistency, e.g., between

our increase in K-values with increasing kink density and MC’s increase with increasing step 

misalignment. 



198

One perspective on the shortcomings of the classical BCF picture, motivating and 

highlighted in our work, is that it is geared towards situations with high kink densities and 

efficient equilibration of the adatom density at step edges. However, for typical kink densities 

along steps, there is always some inhibition to equilibration (less facile equilibration 

corresponding to smaller kinetic coefficients). To assess the degree of equilibration, it is 

instructive to introduce attachment lengths L± = D/K± (less facile equilibration corresponding to 

larger attachment lengths). The classical BCF picture does apply in the regime where typical 

terraces widths far exceed attachment lengths (corresponding to a quantitative characterization of

“high kink density”). However, in the case of step pairing described above, this condition is not 

met. More generally, it is known that traditional continuum near-equilibrium treatments may fail 

when the relevant characteristic length in the system becomes comparable to natural length 

scales determined by the microscopic parameters of the model. For example, for diffusion and 

shape-relaxation of 2D islands on surfaces mediated by edge diffusion, this failure occurs when 

the linear size of the island becomes comparable to the equilibrium kink separation or to another 

characteristic length associated with inhibited edge diffusion [35,36].

In our analysis above, with one exception, we have restricted our attention to cases where the

limiting value of the adatom density is the same approaching the step from either side, i.e., n+ = 

n- in (2), or n+* = n-* in the discrete model. This means that the permeability term drops out of 

the traditional BCF BC allowing us to determine the kinetic coefficients K± in an unambiguous 

fashion. It should be emphasized however that except in the case of infinite ES barrier discussed 

in Sec.5, the steps in our 2D discrete deposition-diffusion equation model should be regarded as 

permeable. Adatom diffusion across steps is possible without incorporation at kinks. In fact, one 

would expect permeability to increase with decreasing bond strength ┴ and decreasing step 

edge hop rate he. In a more general context, interest in and the importance of step permeability 

arose in near-equilibrium situations were there were spatial non-uniformities in chemical 

potential of adatoms causing flow across permeable steps [10,19]. In future work, we will 

explore various strategies to provide insight into step permeability in our model.
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Appendix A: Discrete 1D Deposition-Diffusion Model for Stepped
Surfaces

In this “standard” discrete 1D model, the stepped surface is described by a one-dimensional 

array of sites labeled j = …, -2, -1, 0, 1, 2,… with positions xj = ja where ‘a’ denotes the surface 

lattice constant. These sites correspond to rows of sites parallel to the step edge in the 2D model. 

We focus on the region surrounding a step edge or “step site” at j=0, where sites j = -1, -2,.. are 

on the adjacent upper terrace, and j = 1, 2,.. are on the lower terrace. As in our 2D modeling, we 

also assume that attachment and detachment from the step edge do not alter the step location 

from j=0. Thus, we adopt a quasi-static type approximation where step motion is regarded as 

slow compared to relaxation of the adatom diffusion field. However, one key simplification in 

this model relative to the 2D case is that we assume that the adatom density right at the step edge

is equilibrated. We can allow direct deposition at the step site, but this does not affect analysis of 

the steady-state adatom density, rather just adding a simple contribution to the step velocity. See 

Fig.12 for a schematic.

Notation is selected by analogy with our 2D model. We let n(j) denote the adatom density at 

site j, and set n(0) =1 at the step site. F denotes the deposition flux per site; h denotes the rate of 

hopping between adjacent terrace sites; h± = exp(-βδ±)h denote the possibly modified hop rates 

from the adjacent terrace site j = ±1 to the step site j=0 due to attachment barriers δ± ; and hp 

denotes the rate of direct hopping between sites j= +1 and -1 (reflecting a direct channel for step 

permeability). Corresponding diffusion coefficients are denoted by D = a2h, D± = a2h±, and Dp = 

a2hp. Finally, we let b denote the strength of the bonding of adatoms at step edges 

(corresponding to bonding at kink sites in a 2D model). As a result, nEQ = exp(-βb)n(0) = exp(-
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βb) represents the equilibrium adatom density at the step edge. Also, detailed-balance implies 

that the rate of hopping from the step edge site j=0 to sites j = ±1 is given by exp(-βb) h±.

Figure 12: Schematic of adatom density in the standard 1D
discrete deposition-diffusion model in the vicinity of a step
edge. Also shown are: the adatom hop rates; total diffusion

fluxes reaching the step edge, J±; the flux across the step due to
permeability, Jp; and the flux to the step due to “direct

deposition”, Jdd. The latter does not affect the adatom density
analysis.

Thus, one has the following discrete steady-state deposition-diffusion equations

d/dt n(j) = F + h[n(j+1) – 2n(j) – n(j-1)] ≈ 0, for j>1, (A1)

d/dt n(1) = F + h[n(2) – n(1)] + h+[nEQ – n(1)] + hp[n(-1) – n(1)] ≈ 0, (A2)

with an analogous equations for n(-j). 

A particularly important concept is the idea of smoothly extrapolating or “analytically 

extending” the values n(j) of the adatom densities on lower terrace to the right of the step (j>0) to

an extrapolated value n(0+) at the step site. This extrapolated value is obtained from the 

additional equation [3,4]

d/dt n(1) = F + h[n(2) – 2n(1) + n(0+)] 
               = F + h[n(2) - n(1)] + h[n(0+) - n(1)] ≈ 0,

(A3)
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which must be consistent with (A2). The key point here is that by determining n(0+) through a 

generic equation of the form (A1), one can argue that n(0+) is a natural or analytic extension of 

n(j) for j>0. Similarly, one can analytically extend those n(j) for the upper terrace on the left of 

the step (j<0) to n(0-). Another perspective is that we define n(0+) so that the diffusive flux of 

atoms to the step from the right (J+) and left (J-) satisfy

J+ = h+[n(1) - nEQ] + hp[n(1) – n(-1)] = h[n(1) – n(0+)], and
J- = h-[n(-1) - nEQ] + hp[n(-1) – n(1)] = h[n(-1) – n(0-)].

(A4)

Appendix B: Coarse-Graining Discrete 1D Deposition-Diffusion
Equations

The above discrete 1D model is connected to a coarse-grained continuum model by assuming

that the corresponding smooth continuous adatom density per unit length, n(x), satisfies n(xj =ja) 

= n(j)/a at discrete set of spatial points xj. One then manipulates (A2) and (A3) to extract 

boundary conditions for n(x) at the step edge x=0. The discrete approximation to the right 

derivative at x=0 is 

dn/dx|0+ ≈ [n(1) – n(0+)]/a2. (B1)

Thus, comparing (A2) and (A3), one obtains

D dn/dx|0+ ≈ J+ and -D dn/dx|0- ≈ J-. (B2)

At this point, one has a choice in formulating BCF-type boundary conditions of the type (2).

In one simple formulation, the n± appearing in (2) are identified with n(±1)/a, and neq with 

nEQ/a. Then, by comparison of expressions for ±D dn/dx|0± with (2), one has that 

K± = ah± = D±/a = D/ L± where L± = a exp(βδ±), 
and P = ahp = Dp/a so Lp = aD/Dp = ah/hp. 

(B3)

However, we argue that a more appropriate formulation is to interpret n± as n(0±)/a [4]. This 

formulation corresponds more closely to the 2D model in this paper where n± are interpreted as 

densities right at the step edge, but no analytic extension is in fact needed in the 2D model when 

δ± = 0. The difference between these two formulations might be regarded as a different 
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assignment of the step edge position. First, consider the simplest case where hp=0 (no 

permeability). Then, one can solve (B2) for n(1) in terms of n(0+) to obtain

n(1) = [h n(0+) – h+ nEQ]/(h - h+). (B4)

Substituting this result for n(1) into the right-hand-side of (B2) yields

D dn/dx|0+ ≈ h[n(0+) – nEQ]/(h/h+ -1). (B5)

Thus, replacing n(0+) by n+/a and nEQ with neq/a, yields an expression for K+. Together with 

results of a similar analysis for D dn/dx|0-, one obtains [4]

K± = ah/(h/h± - 1) = D/L± where L± = a[exp(βδ±) – 1] and P=0 (for hp=0). (B6)

For the more general case where hp>0, one might determine both n(±1) in terms of n(0±) and nEQ.

However, some complications arise which we will not discuss in this paper.

Appendix C: Refined Discrete 1D Deposition-Diffusion Models

It is instructive to introduce a refined version of the discrete 1D deposition-diffusion equation

model of Appendix A which more closely reflects the 2D model analyzed in this paper. Indeed, 

development of 1D models will generally be most effective if guided by specific 2D models. We 

retain the geometry of the model described in Appendix A with a 1D array of sites (mimicking 

rows of sites in 2D) and j=0 denoting the step edge. The key distinction from the standard model 

is that we now incorporate limited equilibration of the adatom density right at the step edge or 

“step site”, so that in general n(0) ≠ 1 and exp(-βb)n(0) ≠ nEQ. See Fig.13. More specifically, we

introduce a finite rate, R, for decay of n(0) to 1. If we do not include direct hopping across the 

step (i.e., we set hp = 0), then the revised equations become

d/dt n(j) = F + h[n(j+1) – 2n(j) – n(j-1)] ≈ 0, for j>1, (C1)

d/dt n(1) = F + h[n(2) – n(1)] + h+[exp(-βb)n(0) – n(1)] ≈ 0, (C2)

d/dt n(0) = F + h+[n(1) – exp(-βb)n(0)] + h-[n(-1) – exp(-βb)n(0)] 
   + R[1 – n(0)] ≈ 0,

(C3)
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with analogous equations for n(-j). Thus R=∞ recovers the standard model of Appendix A. We 

smoothly extrapolate or “analytically extend” the values n(j) of the adatom densities to the values

n(0±) at the step edge or step site via the defining relations

d/dt n(±1) = F + h[n(±2) – 2n(±1) + n(0±)] 
= F + h[n(±2) - n(±1)] + h[n(0±) - n(±1)] ≈ 0.

(C4)

Figure 13: Schematic of adatom density in the refined
1D discrete deposition-diffusion model in the vicinity of
a step edge. Also shown are: the adatom hop rates; the
relaxation rate at the step edge; total diffusion fluxes

reaching the step edge, J±; the flux across the step due to
permeability, Jp; and the flux to the step due to “direct

deposition”, Jdd.

To analyze these equations, it is natural to introduce rescaled densities analogous to the 2D 

discrete model. One sets n*(j) = n(j) for j≠0, n*(0±) = n(0±), and n*(0) = exp(-βb)n(0). One 

then solves the steady state equations to determine n*(±1) and n*(0) in terms of n*(0±) and nEQ. 

Setting r = exp(βb)R, and using these results to rewrite the expression for the diffusion fluxes 

approaching the step edge, one obtains

K± = ar (h/h± -1)-1[(h/h+ - 1)-1 + (h/h- -1)-1 + (r/h)]-1,  and (C5)
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P = ah (h/h+ -1)-1(h/h+ -1)-1[(h/h+ - 1)-1 + (h/h- -1)-1 + (r/h)]-1. (C6)

Appendix D: Semi-Continuous Deposition-Diffusion Models

Here, we consider the regime where the kink separation, L, is large and regard the terrace 

width, W, as fixed. It is natural to replace the fully discrete adatom density n(i,j) with a semi-

discrete (or semi-continuous) version n(x,j) where n(x=ia,j) = n(i,j)/a denotes the adatom density 

per unit length along row j. These quantities satisfy a coupled set of continuum deposition-

diffusion equations. For an infinite ES barrier, δ-=∞, and zero attachment barrier δ+=0, these have

the form

∂/∂t n(x,1) = f + De∂2/∂x2 n(x,1) + h[n(x,2) - exp(-β┴)n(x,1)] ≈ 0,
∂/∂t n(x,j) = f + D∂2/∂x2 n(x,j) + h[n(x,j+1) 
                    – 2 n(x,j) + n(x,j-1)] ≈ 0 for 1<j<W,
∂/∂t n(x,W) = f + D∂2/∂x2 n(x,1) + h[n(x,W-1) - n(x,W)] ≈ 0,

(D1)

where D=a2h and De=a2he are diffusion coefficients, and f =a-1 F is the deposition rate per unit 

length. For convenience, we set kink positions at x= ±aL/2 and solve these equations for –aL/2 < 

x <aL/2 with boundary conditions n(±aL/2, 1) = exp(-β||)/a and ∂/∂x n(±aL/2,j) = 0 for j>1.

Just as for the 2D fully discrete model, it is natural to rescale and shift these densities 

introducing variables δn*(x,1) = [exp(-β┴)n(x,1)- nEQ]/a and δn*(x,j) = [n(x,j)- nEQ]/a for j>1, 

where nEQ = exp(-βb). Collecting these variables into a W-dimensional vector δn*(x), one 

obtains a steady-state equation of the form

∂2/∂x2 δn*(x) - B(De/D, ┴)·δn*(x) = (f/D) e(De/D, ┴). (D2)

The entries in the non-symmetric WxW-matrix B are readily determined from (D1), as are 

the entries in the W-component vector e. Solution of the equations is based on determination of a

complete bi-orthonormal set of right- and left-eigenvectors of B denoted vk and wk
T with 

eigenvalues λk ≥ 0 for 0 ≤ k ≤ W-1 where wk·vm = δk,m. We will let k=0 denote the “equilibrium 

eigenstate” where λ0=0. By construction of our scaled variables, the right equilibrium 

eigenvector v0 has equal components (naturally set to unity). The left equilibrium eigenvector w0 

has a first component equal to exp(-β┴)De/D times the rest. 
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Setting Ek = (f/D)wk·e, the solution to (D2) has the form

δn*(x) = Σ0≤k≤W-1 ak(x)vk, where ∂2/∂x2 ak(x) - λk ak(x) = Ek. (D3)

Thus, one has

a0(x) = - ½ E0x2 + b0 and ak(x) = -Ek/λk + bk cosh[(λk)1/2x] for k>0, (D4)

already accounting for reflection symmetry about x=0. The coefficients bk are determined by 

satisfying the boundary conditions. While the detailed forms are complex, the key feature is that

b0 = E0L2/8 + {bk>0 cosh[(λk)1/2L/2] terms} and 
bk  L/sinh[(λk)1/2L/2]  for k>0.

(D5)

Finally reconstructing δn*(x,1) yields an expression of the form

δn*(x,1) =  E0[(L/2)2 – x2](v1)1 
      + L Σk>0 αk[cosh[(λk)1/2L/2] - cosh[(λk)1/2x]]/sinh(λk)1/2L/2] .

(D6)

Averaging over x reveals an effective scaling of the excess adatom density at the step edge 

varying roughly like L2+BL+C, as mentioned after (12). The flux approaching the step edge is 

independent of L (and is exactly determined as for the fully discrete 2D model). Finally, we 

mention that the type of analysis and results described here can be readily extended to other 

cases such as zero attachment barriers, δ± =0.
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APPENDIX II: RING DISTRIBUTION STATISTICS IN
AMORPHOUS NETWORKS

1 Introduction

The structure of amorphous silicon and silica has long been a topic of study. The use of 

mesoporous silica nanospheres (which have an amorphous atomic-scale structure) for catalysis 

and other applications has led to renewed interest in ways of modeling the amorphous structure. 

Different methods have been used to form a model of the amorphous network. One conceptual 

model uses a continuous random network (CRN) which has an interconnected network of 

bonded atoms. While there are rules governing the number and type of connections, atoms are 

not required to be in well-defined periodic array of positions as compared to a crystalline 

structure.   

The lack of a well-defined repeating structure makes characterizing the system a non-trivial 

task. Even confirming that the system has the characteristics of an amorphous structure requires 

some effort. One approach is to determine the radial distribution function of the atoms in the 

system. An alternate method is to note that, in both the crystalline and amorphous systems, there 

is a ring structure defined by the connectivity of the bonds between atoms. The size and 

distribution of these rings can be characterized and is of interest because it impacts mechanical 

and electrical properties. Several previous studies have characterized rings [1,2,3,4], the majority

having been restricted to analyzing the size distribution of rings. Characterization of arrangement

and connectivity of rings gives more information about the structure. The approach taken so far 

has been an atom-centric study of ring correlations [5,6]. This work instead focuses on a ring-

centered approach by presenting a simple and rigorous method of determining ring-ring 

correlation distributions.

The CRN method and this ring characterization method can be applied to structures other 

than silica. To provide a simple test case, an amorphous silicon structure is used as an example in

this work. The description of the amorphous system used and how it is created is given in section

2. Section 3 gives the description of ring calculation and determining correlations. Section 4 

presents results for an example system. Conclusions are given in section 5. Finally, an appendix 
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gives a detailed example using the method described here.

2 Background and Simulation Method

2.A. Ring structures

Within the continuous network, the interconnected bonds form a collection of rings. The size 

of rings is given by the number of atoms the ring contains. Any given bond will, in general, be 

part of several different rings which may vary in size.

Rings are considered neighbors if they share one or more sides. This requires that they also 

share at least two bonded atoms. Only primitive rings, defined as those that cannot be reduced 

into two smaller rings, are considered. Figure 1 shows a primitive ring, a non-primitive ring, and 

a pair of nearest neighbor rings. Identification of rings from the structure is accomplished using 

the algorithm described by Yuan and Cormack [7]. 

Figure 1: Several rings structures. The leftmost ring is a primitive 6-
member ring. The middle 6-member ring is not primitive but is composed
of two 4-member, primitive rings. The rightmost pair of primitive rings are

nearest neighbors.

2.B. Bond Swapping

Creation of an amorphous structure is accomplished using the bond swapping method 

described by Wooten et al [8,9]. The system studied in this work is amorphous silicon (Si). 

However, the description below will work for other structures with appropriate modifications to 

the rules for bonds. Creation of the amorphous network is a three step process. First, an ideal Si 

crystal structure is built using the known Si crystal structure. Next, bonds are swapped following 

rules given below to change the connectivity of the system. After each bond-swap, the system is 
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relaxed (by Monte Carlo (MC) methods) while retaining the current network topology. The 

bond-swap is accepted based on the energy difference before and after the swap according to a 

Metropolis MC algorithm. The details of each step are given below.

The initial system is derived from the unit cell of a crystal. The size of the system is given by

the number of unit cells in each direction. To create the larger crystal, the template atoms are 

translated an appropriate distance to form a new unit cell. After all the unit cells are created, 

bonds are constructed based on the bonds in the template structure. Bonds to atoms that are 

outside of the system box are created using periodic boundary conditions to map them onto 

corresponding atoms within the box. 

The process of creating the random structure is a series of bond swaps. For each swap step, a 

bond between two atoms is selected at random. The atoms are labeled B and C with the bond 

labeled B-C. For both atoms B and C, another bonded atom is selected at random to find bonds 

A-B and C-D, where A≠C and B≠D. To change the configuration, the bonds A-B and C-D are 

broken and reformed as A-C and B-D, as shown in figure 2. There is no change made to the 

central bond or the positions which leads to highly strained bond.

Figure 2: Bond configuration of atoms chosen for
bond swap. i) pre-swap ii) post-swap leading to a

non parallel configuration iii) pre-swap with
alternate selection of atom D. iv) post-swap

leading to parallel bond configuration

When selecting bonds to swap, a swap which creates nearly parallel bonds will reduce the 
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strain introduced into the system relative to one which does not create nearly parallel bonds. 

Identifying these swaps can best be done by ensuring that the bonds are not part of the same 5- or

6- member ring[9]. Figure 2 shows the result of both a non-parallel and a parallel bond swap.

At this stage, all bond swaps are accepted unless they result in the formation of a 3- or 4-

member ring. These swaps are always rejected, because in the relaxed state, the angles in a 3- or 

4- member ring will always have a significant deviation from the ideal bond angle of 109.5 

degrees. The large deviation in angle will lead to a very high strain energy that will be unstable.

Taking the structure from the previous step, another round of bond swapping is performed. 

This time, after every swap, the region around the bond is relaxed with MC translations of the 

atoms. Atoms are translated up to a distance Δrmax from their location. This distance is a 

parameter that must be selected. Smaller values will ensure more moves are selected at the cost 

of a smaller changes per move. The relaxation moves are done at a temperature TR using a 

Boltzmann acceptance rule. Typically TR is very high to ensure the system moves out of potential

wells. The energy of the system is calculated using a Keating potential [10] which is given by the

following form:

E=∑
i , j

3α
16r0

2 (∣r i , j
2
∣−r0

2 )
2
+∑

i≠ j ,k

3β

8r0
2 (ri , j⋅ri ,k+

1
3

r0
2)

2

(1)

The first part is a bond interaction, and the second part is an angular interaction. There are no

non-bonded interactions. The α and β values are force constants dependent on the type of atoms 

involved in the bond or angle. Modeling typically emphasizes the value of the ratio β/α, as most 

properties of the system depend primarily on this parameter [11]. r0 is the ideal bond length for a 

perfect crystal. The first sum is over the bonds containing a given atom and the second sum is 

over the angles formed by three atoms with atom i in the center. 

There is no requirement to use a Keating potential; other potentials would be easily 

substituted. The use of the Keating potential imposes a requirement that the system must be at 

least 2 unit cells wide in any direction. Using only one unit cell in a given direction can lead to a 

case where periodic boundary conditions cause an atom to form an angle with itself. 

After the system has been relaxed, the swap move is accepted with a Boltzmann probability 
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based on the swapping temperature, TS . The ΔE used is the difference between the energy before 

the swap and the energy after the relaxation. The MC relaxation is normally done only in the 

region of the bond swap for reasons of efficiency. After a number of swaps are performed, a full 

MC relaxation over the entire system is performed. The structure resulting from this method is 

used as the amorphous structure for further analysis.

3 Ring Identification and Correlations

The algorithm for finding ring neighbors uses mathematical set objects and operations to 

identify rings. A brief introduction to the relevant theoretical concepts of sets is given here prior 

to discussing their usage. 

3.A. Sets

In the context of this work, a set is a collection of zero or more unique elements. Sets will be 

denoted by a list of items enclosed in braces, {}. The order of the elements in the set has no 

significance. {A,B,C} is a set containing elements A, B, and C. {B,A,C} is the same set. An 

empty set is denoted as {}.

The following set operations are used (see figure 3 for a schematic description of operations):

• A union of two sets, X and Y, will produce a new set, Z, with all elements contained in 

either X and Y. An element in both X and Y will only appear once in Z. The expression 

for this union is Z=XY. A union can be taken over many sets at once using notation 

analogous to a summation:

∪
i=1

N

a (i)=a (1)∪a (2)∪a(3) ...a (N−1)∪a(N ) (2)

• The intersection of sets X and Y will contain only those elements that appear in both sets.

The expression for an intersection is Z=XY.

• The difference of set Y from set X will give a set containing all elements in X that are not 

in Y. The expression for a difference is Z = X-Y
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Figure 3: Schematic of three set operations. X and Y sets are indicated by the
labeled circles, with the region of overlap being the overlap of the sets. The

result, Z, of each operation is indicated by the shaded region.

3.B. Ring Pair Correlations

The procedure for finding ring neighbors is described below. A detailed example is given in 

the appendix. The appendix example goes step-by-step through the process described here using 

a simple example system. 

In order to determine the distribution of rings, all of the rings in the system are first identified

and assigned a unique index. Each ring, once found, is recorded. The ring is stored as the list of 

atoms in the ring. Those atoms are stored in such an order that adjacent atoms in the list are 

bonded pairs in the structure with the first and last atoms in the list also being bonded to each 

other. This creates a list of bonds where each bond is a pair of atom indices.

Additionally, a set of ring pointers, P(j), is maintained for each atom, j. These sets contain 

references to every ring for which the atom is a member. The neighbors of a ring are denoted as 

the sets RN(i) where i is the ring index and N is the order of the nearest neighbor: N=0 is zeroth 

order neighbor (i.e. the ring itself), N=1 are the first nearest neighbors, N=2 are the second 

nearest neighbors, etc... The zeroth nearest neighbor set for each ring is trivially determined as a 

set consisting of only that ring index:

R0(i)={i} (3)

In order to find the first nearest neighbor sets, each ring is analyzed separately. From the list 

of atoms in the ring, a list of all of the bonded pairs of atoms is constructed. This list is b(i) for 
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ring i. For each pair of bonded atoms, j and k, the intersection of ring pointer sets, P(j) and P(k), 

is found. This gives a set of all rings containing both atoms. The union of these sets from all 

bonded pairs in a ring gives a set of pointers to all rings that share an edge with the given ring. 

The ring being analyzed will also be included and must be removed from the set. The remaining 

rings in the set form the first nearest neighbors. Repeating this for each ring gives the ring 

neighbor list for all rings. This procedure can be expressed as an equation in set notation:

R1(i)=( ∪( j , k)∈b (i ) P ( j)∩P(k ))−R0(i) (4)

Finding further neighbors requires a slightly different procedure. To find the rings a distance 

of N away from a given ring, we first take the union of all sets of first nearest neighbors for rings

at a distance N-1 from the source ring. This gives the set of all rings that can be reached in N 

steps along the chain of rings. The first N-1 steps are guaranteed to be a shortest path. However, 

the final step may be to a ring closer (path length N-2), at the same distance (path length N-1), or

further away (path length N). To exclude the first two possibilities, take the difference of sets at 

N-2 and N-1 for this ring from the set of rings that can be reached in N steps. In set notation, the 

equation for this is:

RN (i)=( ∪m∈RN−1 (I )

R1(m))−RN−2( i)−RN−1(i); N≥2 (5)

Once the ring neighbors have been identified, the neighbor statistics can be found by totaling 

the number of neighbors of each size for each type of ring in the system.

4 Results for Silicon System

To test the ring correlation method described above, a silicon system was generated using the

bond switching method given in section 2. A diamond cubic unit cell (lattice spacing = 0.5427 

nm) was used as the basis for the Si system. This cell contains 8 Si atoms with 16 corresponding 

bonds. The cell was replicated to form a system with six unit cells in each direction. This gives a 

total of 1728 Si atoms. The parameters for the Keating potential are: α = 0.1617eV, β = 0.046eV,

and r0 = 2.35Å. All rings in the perfect crystal are 6-member rings. Clearly, all neighboring rings 

must also be 6-member rings. Figure 4 shows the correlation search method recovers this 
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distribution.

Figure 4: Neighbor ring distributions
for 6-member rings in a crystalline

structure.

Initially, 100 bonds were swapped with no relaxation. Following that, 1000 swaps were made

with a full relaxation of 500 moves after each move swap. Each moves translated an atom a 

distance of up to 0.5nm. The temperature for both the swap and relaxation was a 1/(kbT) value of 

0.4eV. The swap and relaxation were repeated at 0.35eV, 0.3eV, and 0.25eV to cool the system. 

After these moves were made, the ring distributions were calculated. Results are shown in 

figure 5. Specifically, for a specified ring size N=4-9 we determine the distribution of sizes of 

nearest neighbors, second nearest neighbors, etc. Very little variation is shown in the ring 

neighbor distributions for different N (i.e. the distributions depend only weakly on N). 6-member

rings are the most likely neighbors for all ring sizes. The stability of those rings is evident in that 

only 6-member rings exist in the crystal structure. Beyond that, there is little deviation from the 

overall distribution, suggesting there is little correlation between neighbors of different size. It 

does appear 4-member rings are unlikely to be next to other 4-member rings and more likely to 

be next to 5- and 6- member rings. However, the small number of 4-member rings present in the 

system makes it difficult to draw conclusions. Larger rings seem to have a preference to be being

closer to similar size rings rather than having them as neighbors further away. 
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Figure 5: Ring neighbor distributions. (a) N=4,(b) N=5, (c) N=6, (d) N=7,
(e)N=8, (f) N=9.
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5 Conclusion

The set-based approach to calculating ring correlations provides an efficient way to take an 

existing structure and calculate the distribution of rings. A significant benefit of this method is 

the ability to write a few simple, exact equations for calculating the number of rings bounding 

any given ring (equations 3 - 5). These equations can be easily implemented in code. Some 

programming languages, such as Python, include built-in support for set operations. Many other 

languages have libraries available to handle set operations. Using this method and existing code 

support for sets can reduce the process of finding nearest rings to a handful of lines of code.

Appendix: Correlation Example

For clarity, a complete example of the set-based method of calculating rings is presented 

here. It shows the steps of the calculations applied to a simple ring system as shown in figure 6. 

The system shown is two-dimensional, but the procedure is independent of dimension and is 

unchanged for three-dimensional systems. The atoms in blue are labeled with numbers (1-13), 

and the rings are labeled with Roman numerals (I - V). 

Figure 6: Example ring structure used to
illustrate the method

Focusing on ring I, the nearest neighbor rings (i.e. the rings that share a bond with ring I) are 

II and III. The second nearest neighbor (i.e. a ring that shares a bond with at least one nearest 

neighbor ring, but does not share a bond with the main ring) is IV. V is a third nearest neighbor. 

This is clearly seen from the image but not trivial for a computer to determine. Below is the 

process the algorithm goes through to determine this for ring I. The same procedure would be 

applied to the other rings as well. 
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First, the proper lists and sets must be constructed. This only needs to be done once for the 

system. All correlations are found from this same set of data. 

The 5 rings are defined by their atoms as:

• I: [1, 2, 3, 4, 5]

• II: [1, 2, 6, 7]  

• III: [2, 3, 8, 9]  

• IV: [2, 6, 10, 9]

• V: [9, 10, 11, 12, 13]

The bond lists are:

• b(I) = [(1,2), (2,3), (3,4), (4,5), (5,1)]

• b(II) = [(1,2), (2,6), (6,7), (7,1)]

• b(III) = [(2,3), (3,8), (8,9), (9,2)]

• b(IV) = [(2,6), (6,10), (10,9), (9,2)]

• b(V) = [(9,10), (10,11), (11,12), (12,13), (13,9)]

The ring pointer sets (which rings an atom is in) are:

• P(1) = {I, II}

• P(2) = {I, II, III, IV}

• P(3) = {I, III}

• P(4) = {I}

• P(5) = {I}

• etc. for P(6) through P(13) ... 

Now that the data items have been created, the neighboring rings of ring I can be determined.

The “zeroth” nearest neighbor (equation 3) is the ring itself and is the only member of the R0 set 
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for this ring:

R0( I)={I } (6)

The first nearest neighbors (equation 4) are generated by first finding the intersection of the 

pointer sets P(j) and P(k) for each bond (atom pair) in ring I as shown in table 1:

Table 1: Intersection of pointer sets for each atom pair in ring I.

bond atoms: j, k P(j) P(k) P ( j)∩P (k )

1, 2 {I, II} {I, II, III, IV} {I, II}

2, 3 {I, II, III, IV} {I, III} {I, III}

3, 4 {I, III} {I} {I}

4, 5 {I} {I} {I}

5, 1 {I} {I, II} {I}

The union of the values in the last column ( ∪
( j , k)∈b (i )

P ( j)∩P(k ) ) is {I, II, III}. Subtracting 

the zeroth order neighbor (R0(I) = {I}) gives the the first nearest neighbors: R1(I) = {II, III}.

The same procedure gives the nearest neighbors for the other rings: R1(II) = {I, IV}, R1(III) =

{I, IV}, R1(IV) = {II, III, V}, R1(V) = {IV}

For the second nearest neighbors of I, equation 5 gives:

R2( I )=( ∪m∈R1(I )

R1(m))−R0( I )−R1( I ) (7)

The first term gives all the candidate rings by considering all the nearest neighbors of ring I's 

nearest neighbors: 

∪
m∈{II , III }

R1(m)=R1( II )∪R1( III )={I , IV }∪{I , IV }={I , IV } (8)

The second and third terms in equation 7 were previously determined. Subtracting these 

removes rings that are closer which gives the correct second nearest neighbor ring set. In this 

case, the set has only one ring:

R2( I )={I , IV }−{I }−{II , III }={ IV } (9)
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The third nearest neighbor is found using equation 5:

R3(I )=( ∪m∈R2 (I )

R1(m))−R1(I )−R2( I ) (10)

∪
m∈{IV }

R1(m)=R1( IV )={ II , III ,V } (11)

R3(I )={II , III ,V }−{II , III }−{ IV }={V } (12)

The set of fourth nearest neighbors is empty:

R4( I )=( ∪m∈R3( I)

R1(m))−R2( I )−R3( I) (13)

∪
m∈{V }

R1(m)=R1(V )={IV } (14)

R4( I )={ IV }−{ IV }−{V }={} (15)

And finally, all higher nearest neighbors are also empty since the first term in equation 5 is an

empty set for i>4.

Application of the equations as given above has resulted in the following neighbors for ring 

I: first nearest neighbors – R1(I)={II, III}, second nearest neighbors – R2(I)={IV}, third nearest 

neighbors – R3(I) = {V}, and all higher nearest neighbor sets are empty. Comparison with figure

6 shows that these are all correct.
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