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ABSTRACT 

 

 We analyze both the spatiotemporal behavior of non-linear “reaction” models 

utilizing reaction-diffusion equations, and spatial transport problems on surfaces and in 

nanopores utilizing the relevant diffusion or Fokker-Planck equations. 

The non-linear “reaction” models involve spatial discrete systems where 

“particles” reside at the sites of a periodic lattice: particles, X, spontaneously annihilate 

(X) at a specified rate p, and are autocatalytically created given the presence of 

nearby pairs of particles (+2X3X) at rates depending on the local configuration. 

[This reaction model is equivalent to a spatial epidemic model where sick individuals 

spontaneously recover (SH), and healthy individuals are infected by pairs of sick 

neighbors (H+2S3S).] The model exhibits a non-equilibrium phase-transition from a 

populated state to a vacuum state (with no particles) with increasing p. Near this 

transition, one can consider the propagation of interfaces separating the two states. 

Planar interfaces exhibit an orientation-dependence (leading to so-called generic two-

phase coexistence), and curved interfaces enclosing droplets exhibit even richer 

behavior. These phenomena are analyzed utilizing the appropriate set of discrete 

reaction-diffusion equations (corresponding to lattice differential equations). 

 Diffusive transport of particles between islands or clusters of particles on a 

surface leads to coarsening of island arrays which can be analyzed by solution of an 

appropriate boundary value problem for the surface diffusion equation. We extend 

previous treatments to strongly anisotropic systems. Diffusion and passing of pairs of 
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overdamped Langevin molecules in narrow nanopores can be described by the 

appropriate Fokker-Planck equations (corresponding to a high-dimensional diffusion 

equation). We provide the first analysis of this problem focusing on a characterization of 

the propensity of passing as a function of pore diameter. 
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CHAPTER 1 

GENERAL INTROCUTION 

 

Background 

In this thesis, we analyze both the spatiotemporal behavior of: (A) non-linear 

“reaction” models utilizing (discrete) reaction-diffusion equations; and (B) spatial 

transport problems on surfaces and in nanopores utilizing the relevant (continuum) 

diffusion or Fokker-Planck equations. Thus, there are some common themes in these 

studies, as they all involve partial differential equations or their discrete analogues which 

incorporate a description of diffusion-type processes. However, there are also some 

qualitative differences, as shall be discussed below.  

In the first component (A) of these studies, the non-linear “reaction” models 

involve spatially discrete systems where “particles” reside at the sites of a periodic 

lattice or grid. In the most general models particles are added to (creation reaction), 

removed from (annihilation reaction), or shifted between (diffusive hopping) such sites. 

In the most basic model of interest here [1-4], particles, X, spontaneously annihilate 

(X) at a specified rate p, and are autocatalytically created given the presence of 

nearby pairs of particles (+2X3X) at rates which depend on the local configuration. 

See Fig.1. It is appropriate to note that this reaction model is equivalent to a spatial 

epidemic model where individuals reside in households which are distributed on a 

periodic grid (as in most towns); individuals can be either sick or healthy, and sick 
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individuals spontaneously recover (SH) at rate p, and healthy individuals are infected 

by pairs of sick neighbors (H+2S3S) at rates depending on the local configuration.  

The basic reaction model exhibits a discontinuous non-equilibrium phase-

transition from a populated state to a vacuum state (with no particles) with increasing p 

[4]. Near this transition, one can consider the propagation of interfaces separating the 

two states. Expansion of the vacuum state by displacement of the populated state would 

correspond to extinction of the reaction (or extinction of the particle population). [In the 

spatial epidemic analogue, the opposite situation of expansion of the infected state would 

correspond spreading of the epidemic as in the spread of the Black Death across Europe 

in the 12
th

 century.] In contrast to analogous phenomena in spatially continuous models, 

we find that the propagation of planar interfaces exhibits an orientation-dependence [4]. 

This leads to so-called generic two-phase coexistence [4-6], where each phase is stable 

against local perturbations by the other phase for a finite range of “control parameter” p. 

This behavior is in stark contrast to that for thermodynamic systems exhibiting 

discontinuous transitions where a fundamental principle of thermodynamics enforces the 

requirement that two states can only coexist (being equally or equi-stable) at a single 

point in parameter space.   

Discontinuous phase transitions and associated nucleation phenomena (i.e., 

analysis of the formation of droplets of the more stable phase embedded in a less stable 

or metastable phase) have been studied for decades. These analyses have been performed 

almost exclusively for thermodynamic systems and often within a quasi-continuum 

framework. The general view from these studies is that there is a unique critical size 
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above which droplets grow and below which they shrink. However, for the discrete non-

equilibrium model analyzed here, we find much richer behavior as a result of both 

generic two-phase coexistence and propagation failure. In the two-phase coexistence 

region, droplets always shrink (i.e., droplets of the populated state embedded in the 

vacuum state shrink, and also droplets of the vacuum state embedded in the populated 

state always shrink). Outside this region, sometimes entire families of stationary droplets 

exist as a direct consequence of propagation failure for planar interfaces. 

Although not emphasized above, our discrete reaction model should be regarded 

as a stochastic Markov processes, particle creation and annihilation occurring 

“randomly” with specified rates. (More explicitly, each of these processes occurs 

stochastically according to an exponential waiting time distribution with mean waiting 

time determined by the relevant rate.) A precise determination of behavior can be 

achieved via kinetic Monte Carlo simulations. However, in this thesis we focus on 

analytic techniques in an attempt to provide a more fundamental understanding of 

behavior (although we caution that the analysis involves approximations). Specifically, 

exact behavior of the model can be described by master equations for the stochastic 

process, which we generally write in hierarchical form. These equations are most 

familiar for spatially homogeneous states. However, in this work we typically utilize the 

natural extension to spatially heterogeneous states (so we can assess interface formation 

and droplet dynamics). Exact analysis of the hierarchical equations is typically not 

possible. Thus, factorization approximations (which either completely neglect spatial 

correlations or introduce some approximations for these) are implemented to truncate or 
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close the hierarchy. For spatially heterogeneous states, this produces a set of set of 

discrete reaction-diffusion type equations [7] (which are typically referred to as lattice 

differential equations by the mathematical community [8]). 

 In the second component (B) of these studies, transport problems are analyzed (in 

the absence of reaction) which involve diffusion of atoms or molecules on surfaces or in 

nanopores. Spatially continuous (rather than discrete) models are utilized and thus 

analysis involves the appropriate (continuum) diffusion or Fokker-Planck equations. One 

class of problems involves diffusive transport of atoms on flat surfaces, whereas atoms 

attach and detach from two-dimensional (single atom high) islands or clusters of such 

atoms [9,10]. This leads to coarsening or ripening of island arrays since there is a bias 

for atoms to detach from smaller islands and attach to larger ones. Thus, larger islands 

tend to grow at the expense of smaller islands which shrink and disappear. This process 

is called Ostwald ripening (OR) [11]. Almost all previous studies of OR have been for 

isotropic systems where at least diffusion on the surface is isotropic (although islands 

may have non-circular shapes reflecting the crystallinity of the surface). We extend 

previous treatments to strongly anisotropic systems by analyzing the solution of an 

appropriate boundary value problem for the surface diffusion equation. In fact, a key 

advance is the use of appropriate non-traditional boundary conditions for these equations 

[12]. Our analysis successfully describes and elucidates experimental scanning tunneling 

microscopy (STM) observations for the Ag/Ag(110) system [13,14]. Fig.2 provides an 

example of the type of analysis where we model island decay in this experimental 

system. 
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Another class of transport problems which we consider involves diffusion and 

passing of pairs of overdamped Langevin molecules [15] in narrow nanopores. See Fig.3 

for an example of passing versus separating spheres in a cylindrical pore. The propensity 

for reactant and product molecules to pass each other within the pores of catalytic 

nanoporous materials strongly impacts reaction yield [16,17]. For overdamped Langevin 

molecular dynamics, we describe the dependence of the passing propensity, P, on pore 

radius, R, including the scaling, P ~ (R-Rc)

, as R Rc from above (where Rc the critical 

radius below which passing is sterically blocked). We find that the exponent, , is 

generally lower than transition state type theory predictions [18]. Precise numerical 

analysis of the Langevin [15] and equivalent Fokker-Planck [19] equations is provided 

for rotationally symmetric molecules. This facilitates development of a general picture 

for the dependence of passing propensity on molecular degrees of freedom including 

shape and rotational motion. 

 

Thesis Organization 

The main body of this dissertation is based on two published papers (Chapter 2 

and 3), three additional contributions on a related topics (Chapter 4, 5 and 6) for reaction 

models. The last two chapters relate to transport studies. The first (Chapter 7) is a 

submitted paper and the second (Chapter 8) will soon be submitted. 

Chapter 2 reprints the published paper “Schloegl's Second Model for 

Autocatalysis on a Cubic Lattice: Mean-Field-Type Discrete Reaction-Diffusion 

Equation Analysis”, by C.-J. Wang, X. Guo, D.-J. Liu and J.W. Evans in J. Stat. Phys. 
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144 (2011), 1308-1328. This paper gives a detailed description and analysis of generic 

two-phase coexistence on a cubic lattice.  

Chapter 3 reprints the published paper “Schloegl's Second Model for 

Autocatalysis on Hypercubic Lattices: Dimension-Dependence of Generic Two-Phase 

Coexistence”, by C.-J. Wang, D.-J. Liu and J.W. Evans in Phys. Rev. E 85, 041109 

(2012). This paper extend Schloegl's second model in any dimension and gives an 

analysis of two-phase coexistence and artificial propagation failure as d, 

Chapter 4 focuses on the threshold version of Schloegl’s second model. This 

version reveals analogous behavior to the basic model. 

Chapter 5 presents a detailed discussion on the perturbations of Schloegl’s 

second model. These refined models remove the quirk in the vertical interfaces but still 

reveal propagation failure behavior. 

Chapter 6 studies discontinuous phase transitions and associated nucleation 

phenomena in Schloegl’s second model. And we illustrate the behavior of stationary 

droplets inside and outside of the generic two-phase coexistence region. 

  Chapter 7 reprints a submitted paper “Analytic Formulations for One-

Dimensional Decay of Rectangular Homoepitaxial Islands During Coarsening on 

Anisotropic fcc(110) Surfaces” by  C.-J. Wang, Y. Han, H. Walen, S.M. Russell, P.A. 

Thiel, and J.W. Evans to Physical Review B. This paper provides an effective and 

instructive modeling tool capturing the basic features of 1D decay of islands in strongly 

anisotropic fcc(110) homoepitaxial systems.  
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Chapter 8 corresponds to the unpublished manuscript “Langevin and Fokker-

Planck Analysis of Inhibited Molecular Passing Processes Controlling Reactivity in 

Nanoporous Catalytic Materials”. This paper gives a general picture for the behavior of 

molecular passing processes in narrow pores. 
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Figures 

 

Fig.1. Schematic of the Durrett version of the basic reaction model including 

spontaneous annihilation of particles at rate p, and autocatalytic creation provided there 

is a suitable pair of neighboring particles.  
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Fig.2. Top: Magnified STM image (50.0×15.5 nm2) for the local environment of the 

small narrow island decaying 1. Island dimensions are shown in yellow and separations 

in white (in nm). Bottom: FEMLAB results for the rescaled adatom density from our 

solution of the appropriate boundary value problem for the surface diffusion equation. 

The simulation cell has zero-flux boundary conditions at the outer edges. 

 

 

Fig.3. Simulated trajectories for separating spheres (left) and passing spheres (right) in a 

cylindrical pore for gap size equal to the particle diameter where passing probability 

0.20. 
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CHAPTER 2 

SCHLOEGL’S SECOND MODEL FOR AUTOCATALYSIS ON A CUBIC 

LATTICE: MEAN-FIELD-TYPE DISCRETE REACTION-DIFFUSSION 

EQUATION ANALYSIS 

A paper published in Journal of Statistical Physics 

Chi-Jen Wang,
1,2

 Xiaofang Guo,
1,2,3
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1
 and J.W. Evans

1,2,3
 

 

Ames Laboratory – USDOE
1
 and Departments of Mathematics

2
 and

 
Physics & 

Astronomy
3
, Iowa State University, Ames, Iowa 50011 

 

Abstract 

Schloegl’s second model for autocatalysis on a hypercubic lattice of dimension 

d2 involves: (i) spontaneous annihilation of particles at lattice sites with rate p; and (ii) 

autocatalytic creation of particles at vacant sites at a rate proportional to the number of 

diagonal pairs of particles on neighboring sites. Kinetic Monte Carlo simulations for a 

d=3 cubic lattice reveal a discontinuous transition from a populated state to a vacuum 

state as p increases above p=pe. However, stationary points, p=peq (pe), for planar 

interfaces separating these states depend on interface orientation. Our focus is on 

analysis of interface dynamics via discrete reaction-diffusion equations (dRDE’s) 

obtained from mean-field type approximations to the exact master equations for spatially 

inhomogeneous states. These dRDE can display propagation failure absent due to 

fluctuations in the stochastic model. However, accounting for this anomaly, dRDE 
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analysis elucidates exact behavior with quantitative accuracy for higher-level 

approximations. 

 

Keywords 

Schloegl’s second model, Generic two-phase coexistence, Discrete reaction-

diffusion equations, Interface propagation 

 

1. Introduction 

Stochastic lattice-gas “reaction” models prescribe kinetic rules and rates for the 

creation and annihilation of one or more types of species residing on a lattice [1]. Often, 

the reaction steps are cooperative, i.e., dependent on the local environment, and 

sometimes irreversible. Typically, no Hamiltonian is prescribed for the models, so the 

rates do not satisfy any detailed-balance conditions. These systems may evolve to non-

equilibrium steady-states which are not characterized by an equilibrium Gibbs measure. 

Nonetheless, these non-equilibrium steady states can display phase transitions, as some 

control parameter is varied, somewhat analogous to those in equilibrium Hamiltonian 

systems [1]. Some progress has been made in elucidating such phenomena despite the 

lack of a thermodynamic free energy framework. The most extensive analysis has been 

directed towards characterization of universality associated with continuous transitions 

or critical points [1-3]. However, there have also been some investigations of 

discontinuous transitions [1,4-7], where issues of metastability and nucleation, and of the 

structure and dynamics of interfaces separating phases are of natural interest [8-11].  



12 

 

One surprising recent discovery was the occurrence of generic two-phase 

coexistence (2PC) associated with a discontinuous transition in a realization of 

Schloegl’s second model involving spontaneous annihilation and autocatalytic creation 

of particles X on a square lattice [7,11]. 2PC means that the two distinct phases 

associated with the transition coexist and are stable for a finite range of annihilation rate. 

2PC behavior was traced to an orientation-dependence of the value of the annihilation 

rate corresponding to a stationary planar interface separating the two phases. This 

contrasts phase coexistence at a unique point corresponding to equality of chemical 

potentials in an equilibrium Hamiltonian system. Such 2PC behavior had been observed 

and analyzed previously in Toom’s model for voter dynamics where the kinetic rules 

have a broken symmetry, in contrast to Schloegl’s second model [12,13].  

The conventional mean-field formulation of a restricted version Schloegl’s 

second model includes the mechanistic steps [7,11,14-18]: 

X  (spontaneous annihilation @ rate p); 

2X3X (autocatalytic creation). 

For the latter, nearby pairs of particles (2X) can create an additional particle. Off-lattice 

formulations include the autocatalytic annihilation process 3X2X to avoid population 

explosion. However, in lattice versions considered here [7,11,18], particle creation 

requires an empty site, , which automatically limits population growth, so autocatalytic 

particle creation might be better represented as +2X3X. The lattice versions specify 

the rate of autocatalytic creation at an empty site as proportional to the number of 
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suitable pairs of particles on neighboring sites. Such models are also known as Quadratic 

Contact Processes (QCP) [18].  

A mean-field (MF) rate equation treatment for either lattice or off-lattice versions 

reveals bistability, where a stable active populated steady-state and stable vacuum 

steady-state coexist over a range of smaller p>0. This feature is readily understood. The 

particle annihilation rate, R-(C) = pC is exactly linear in particle concentration, C. The 

particle creation rate has the qualitative non-linear non-monotonic form R+(C) ~ C
2
(1-C) 

for lattice models where C=1 corresponds to a completely filled lattice. Thus, for large 

enough p, one has that R-(C) > R+(C) for all C>0, and C=0 is the unique stable steady 

state. However, for smaller p, one has that R+(C) > R-(C) for a range of intermediate C, 

leading to an additional stable populated state with C>0. Note that C=0 is always a stable 

absorbing “vacuum” state.  

Bistability in a MF treatment is often the signature of a discontinuous transition 

in a stochastic model. Thus, given the MF bistability for this model and the 

discontinuous transition for a d=2 square lattice, one naturally expects that the model 

will also display a discontinuous transition and perhaps 2PC for a d=3 cubic lattice and 

for a d>3 dimensional hypercubic lattice. The current paper considers the case of a d=3 

cubic lattice, although some of the formalism is developed for general d2. 

In Sec.2, we provide a detailed description of our stochastic realization of 

Schloegl’s second model on d2 dimensional hypercubic lattices. We present new 

Kinetic Monte Carlo (KMC) simulation results for d=3 and review previous results for 

d=2. In Sec.3, we present the exact master equations for spatially homogeneous states of 
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the model and perform MF and pair truncation approximation analyses.  From these 

approximations to the master equations for spatially heterogeneous states, we develop 

discrete reaction-diffusion equations (dRDE) in Sec.5. The dRDE are used to assess the 

propagation of planar interfaces between active and vacuum states, specifically 

stationarity and propagation failure. This is done at the MF level in Sec.6, and for the 

pair approximation in Sec.7. The interpretation of the dRDE results and their 

relationship to exact behavior of the stochastic reaction model is described in Sec.7. 

Further discussion and conclusions are provided in Sec.8. 

 

2. Model Prescription and KMC Simulation Results 

Our lattice-gas realization of Schloegl’s second model as a stochastic Markov 

process on a d-dimensional hyper-cubic lattice with sites labeled by i = (i1, i2, i3,…, id) 

generalizes Durrett’s prescription [18] for a d=2 square lattice. It involves the following 

components: (i) spontaneous creation of particles at unoccupied sites at rate p; (ii) 

autocatalytic annihilation of particles at empty sites at rate k/kmax, where k is the number 

of “diagonal” pairs of particles on neighboring sites, and kmax is the maximum possible 

value. Such “diagonal” pairs neighboring the empty site i have one particle at one of (i1, 

i2,…, ij1,…, id) and another at one of (i1, i2,…, ik1,…, id) where jk. The number of 

pairs of sites of any type selected from the 2d neighbors of an empty site satisfies ktot = 

(2d)(2d-1)/2! = d(2d-1), and the number of linear pairs is klin = d. Thus, the maximum 

number of diagonal pairs of particles satisfies kmax = ktot – klin = 2d(d-1), corresponding 

to the case where all 2d neighboring sites are occupied. 
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Consider a d=3 cubic lattice where kmax=12. If only n = 0 or 1 of the six 

neighboring sites of an empty site i are occupied, then k=0 and a particle cannot be 

created at i. If n=2 non-adjacent neighbors are occupied, e.g., (i1+1, i2, i3) and (i1-1, i2, 

i3), then again k=0. If n=2 diagonally adjacent neighbors are occupied, then k=1 and a 

particle is created at rate 1/12. The different possibilities with k=0 (n=0, 1, or 2), k=1 

(n=2), k=2 (n=3), k=3 (n=3), k=4 (n=4), k=5 (n=4), k=8 (n=5), or k=12=kmax (n=6) are 

enumerated in Fig.1. 

Considering steady-state behavior for any d2, we expect that a stable populated 

steady-state exists for a range of “low” annihilation rates, 0  p  pe. We describe this 

state as “active” since particles are continually created and annihilated. For higher p>pe, 

only the particle-free “vacuum” state will exist as a stable state. However, a somewhat 

ill-defined metastable extension of the active state should also exist for a small range of 

pe<p<ps, where p=ps denotes the spinodal point [11,19]. Previous KMC simulation 

studies for d=2 revealed a discontinuous transition from the active state to the vacuum 

state at pe(d=2) = 0.09443 [7] with ps(d=2)  0.101 [19]. New KMC simulations for a 

d=3 cubic lattice yield pe(d=3) = 0.13939 with ps(d=3)  0.15. Similar to d=2 [7], we 

find 2PC for d=3 between the stable active and vacuum states for a finite range pf  p  

pe (see below), noting that the vacuum state exists for all p as an absorbing state. See 

Fig.2.  

Another quantity of fundamental interest is the “equistability” value of p=peq 

corresponding to a stationary planar interface separating active and vacuum states. In 

these models, one finds that peq depends on interface orientation, and that necessarily pe 
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= max peq and pf = min peq [7]. For a specific orientation, when 0p<peq, the active state 

is more stable and displaces the absorbing vacuum state leading to perpetual interface 

propagation. For peq<p<pe, the vacuum state is more stable and displaces the active state 

leading to perpetual interface propagation. For pe<p<ps, the vacuum state displaces the 

metastable active state more quickly until the latter spontaneously converts to a vacuum 

state. See [11,19] and Fig.2. 

One caveat to the above picture derives from a “quirk” in the reaction model. For 

a vertical interface corresponding to i1=0, say, on a hypercubic lattice for any d2, the 

active state can never displace the vacuum state. This follows since empty sites within 

but at the edge of the vacuum state have at most one neighboring occupied site (and 

those in the interior have none). Thus, vertical interfaces are stationary for all ppeq, but 

propagation of the vacuum state into the active state still occurs for p>peq. 

Given the above observations regarding vertical interfaces, one might anticipate 

that peq would be the highest for interface orientations “furthest from vertical” where the 

active state can “most easily” displace the vacuum state. This has been confirmed for the 

d=2 square lattice. For a diagonal interface with (11) orientation, and for a vertical 

interface with (10) orientation, previous KMC simulation analysis yielded [7] 

peq(10) = min peq = pf(d=2) = 0.0869, and 

peq(11) = max peq = pe(d=2) = 0.09443. 

Correspondingly, for a d=3 cubic lattice, one might anticipate that a “skew” 

interface with (111) orientation would have the highest peq. Indeed, for this orientation, 
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for a diagonal interface with (110) orientation, and for a vertical interface with (100) 

orientation, our new KMC simulation analysis reveals that  

peq(100) = min peq = pf(d=3) = 0.13529, 

peq(110) = 0.13903, and   

peq(111) = max peq = pe(d=3) = 0.13939. 

One could modify the rules for autocatalytic creation still within the framework 

of a Schloegl model of the second type to require only that the empty site has at least 2 

occupied neighbors (i.e., to drop the diagonal pair constraint). The basic behavior of the 

model should be preserved (including the quirk), as already demonstrated for d=2 [20]. 

What motivates our specific choice of autocatalytic creation rates counting diagonal 

pairs of particles? This generalization of Durrett’s specification of the QCP for d=2 [18] 

produces a simple universal d-independent form for the mean-field kinetics of the model. 

Furthermore, the choice has perhaps a deeper significance in enabling an exact 

simplification of the master equations, as described in Sec.3 and Appendix B. 

As an aside, all KMC simulations described above were performed on finite 

lattice with periodic boundary conditions. In conventional constant-p ensemble 

simulations, processes are implemented with probabilities proportional to their rates. For 

any finite system, our reaction model must eventually evolve to the absorbing vacuum 

state. However, for large systems, this takes very long and constant-p simulations reach 

a quasi-steady state mimicking the true steady state of an infinite system. For analyses of 

equistability values of p=peq, we have implemented alternative and particularly effective 
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constant-concentration or constant-C ensemble simulations [7,11,21]. This analysis and 

further refinements for vertical interfaces will be discussed in detail elsewhere. 

 

3. Master Equations: Spatially Homogeneous States 

3.1 Exact master equations 

For spatially homogeneous states on infinite lattices, the probability that a single 

site, or cluster of sites, is occupied is independent of location.  The exact master 

equations for the reaction model can then be written in the form of an infinite coupled 

hierarchy for the evolution of the probability of a single filled site, a filled pair, etc. 

Equivalently, one can consider empty configurations. It will be convenient to introduce 

the following notation. Let x (o) denote a filled (empty) site, and let P’s denote 

probabilities of various configurations of such sites. For example, P[x] = C (particle 

concentration) and P[x x] denote the probabilities of that a single site and that a 

neighboring pair is filled, respectively. Similarly, P[o] = 1-C and P[o o] denote the 

probability that a single site and neighboring pair are empty, respectively. Conservation 

of probability implies that P[x] + P[o] = 1, P[x o] + P[o o] = P[o], P[x x] + P[x o] = P[x], 

etc. Then, in terms of probabilities for empty configurations, the exact master equations 

have the form 

d/dt P[o] = pP[x] – {autocatalytic particle creation terms},   (1) 

d/dt P[o o] = 2pP[x o] – {autocatalytic particle creation terms}, (2) 

with analogous equations for larger configurations of empty clusters.  
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The first gain terms in (1) and (2) correspond to spontaneous particle annihilation 

producing desired empty configurations. The second loss terms correspond to 

autocatalytic particle creation destroying the empty configurations under consideration, 

and come from summing over various relevant configurations multiplied by the 

appropriate rates. For a d=3 cubic lattice, these are shown in Fig.1 for (1), and will be 

discussed below for (2). As an aside, we favor empty configurations in formulating (1) 

and (2) as all terms can be recast in terms of probabilities of connected empty 

configurations. This feature also applies for irreversible particle creation processes 

(without particle annihilation) with nearest-neighbor cooperativity [22].  

Our choice for particle creation rates enables an exact reduction or simplification 

of the particle creation terms in these master equations. This exact reduction not only 

allows simple derivation of the universal mean-field kinetics, but also facilitates 

generation of higher-order approximations for the kinetics, as discussed below. One can 

show that the particle creation terms in (1) for P[o] (shown in Fig.1 for d=3) sum exactly 

to 









xo

x
P , the probability of an empty site with a diagonal pair of particles on 

neighboring sites. See Appendix A. This leads to the simple and intuitive exact equation 

         d/dt P[o] = pP[x] – 









xo

x
P     (3) 

An analogous exact reduction is possible for the particle creation in (2) for P[oo] 

(shown in Fig.3a for d=3). See Appendix A. This yields the exact equation 

  d/dt P[o o] = 2pP[x o]– [4(d-1)/kmax] 









xoo

x
P – [4(d-1)(d-2)/kmax] 










o

x
P .  (4) 
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Here 









xoo

x
P  and 










o

x
P  represent probabilities of an empty pair where one site 

in this pair has a diagonal pair of particles on neighboring sites. The first is where one 

filled site forms a linear triple with the empty pair. The second where both filled sites 

form bent triples with the empty pair. These are shown in Fig.3b for a d=3 cubic lattice.  

 

3.2 Approximations 

The simplest mean-field (MF) approximation ignores all spatial correlations in 

occupancy of different sites and thus factors multi-site probabilities in terms of P[x] = C 

and P[o] = 1-C. Applying factorization directly to the exact equation (3), and noting that 

d/dt P[o] = -dC/dt yields the MF kinetic equation 

d/dt C = -pC + C
2
(1-C) = -C[p-C(1-C)]  R(C),   (5) 

i.e., universal d-independent kinetics. Note that R(C) = R+(C) - R-(C) corresponds to the 

difference in creation and annihilation rates described in Sec.1. Analysis of the steady-

states of (5) yields 

C(1-C) = p for populated state, or C=0 for the stable vacuum state. (6) 

A stable active state is given by Cact(MF) = 1/2 + 1/2(1-4p)
1/2

, revealing bistability for 0 

 p  ps(MF), where ps(MF) = 1/4 denotes the MF spinodal point. The large discrepancy 

from the KMC estimates of ps for d=2 and 3 is expected since MF treatments generally 

produce an artificially extended regime of bistability. 
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Next, we describe a more sophisticated pair-approximation where probabilities 

for configurations or triples (and larger clusters) of sites are factorized in terms of those 

for constituent pairs. For example,  











xoo

x
P    










o

x
P   P[o o]P[x o]

2
/P[o]

2
.   (7) 

It is convenient to introduce the conditional concentration, K = P[x o]/P[o], representing 

the probability of finding a particle next to a site specified empty. Then, one has that           

P[o o]/P[o] = 1-K. The pair approximation leads to the equations 

d/dt P[o] = -p C + K
2
(1-C)     (8) 

, and 

d/dt P[o o] = 2K(1-C)[p – cd K(1-K)],   (9) 

with cd = (d-1)/d. Equations (8) and (9) can be rewritten as a closed pair of equations for 

C and K using that P[o] = 1-C and P[o o] = (1-C)(1-K).  

A steady-state analysis yields the relations 

pC – K
2
(1-C)  = 0 and cd K(1-K) = p  for active states,  (10) 

and C = K = 0 for the vacuum state. Note that (10) implies Kact(pair) = cdC/[1-(1-cd)C] in 

contrast to K(MF) = C. More specifically, one has that Kact(pair) = 1/2 + 1/2(1-4p/cd)
1/2 

 

and then Cact(pair) follows from (10). Also from (10), one finds that the bistability 

regime in the pair-approximation exists for 0 < p < ps(pair), where 

ps(pair) = cd/4 = (d-1)/(4d)  ps(MF) = 1/4, as d.   (11) 

Note also that Kact(pair)  C = K(MF), as d. For a d=2 square lattice, ps(pair) = 1/8 

= 0.125 is fairly close to the KMC estimate of ps  0.101. For a d=3 cubic lattice, ps(pair) 
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= 1/6 = 0.166

 is even closer to the KMC estimate of ps  0.15. This demonstrates the 

significantly improved accuracy of the pair-approximation relative to MF. 

 

4. Master Equations: Spatially Inhomogeneous States 

4.1 Exact master equations 

For spatially inhomogeneous states, the probability that a site is occupied 

depends on its location. Thus, we let P[oi] = P[oi1,i2,…,id]  denote the probability that site i 

=  (i1, i2,…, id) is empty, etc. Then, Ci1, i2, …,id = P[xi] = 1 - P[oi]  is the probability that 

site i is occupied. One can still write down an exact set of master equations in 

hierarchical form [22]. For the autocatalytic particle creation terms, now many of the 

configurations described for the homogeneous case are degenerate. For example, in the 

equation for P[oi], there are now 2d distinct terms corresponding to particle creation with 

exactly 2d-1 particles neighboring the empty site, i. These differ in the location the 

neighboring unoccupied site. In all these cases, one has k = (2d-1)(d-1) so that a particle 

can be created with rate at i with (2d-1)(d-1)/kmax. Analogous to the case of 

homogeneous states, an exact reduction of these autocatalytic creation terms is possible. 

See Appendix A. One can also obtain equations for probabilities of adjacent pairs of 

empty sites, e.g., P[oi1,i2,…,id oi1+1,i2,…,id], and for larger clusters of empty sites, accounting 

for gain and loss contributions due to particle annihilation and creation. Again, an exact 

reduction applies. See Appendix A. It should be noted that probabilities of pairs of 

empty sites with different orientations, as well as different locations, will in general have 

different values. 
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As an example, for a d=3 cubic lattice, one obtains the exact equation 

 ...}
x

xo
P

xo

x
P{(1/12) - ]P[xp  ]d/dt P[o

i31,-i2i1,

i3i2,1,i1i3i2,i1,

i3i2,1,i1i3i2,i1,

i31,i2i1,

i3i2,i1,i3i2,i1, 


























           (12) 

where we have shown explicitly only 2 out of the 12 creation terms with different 

diagonal pairs of particles in sites neighboring i = (i1, i2, i3). For interfaces with specific 

orientations, the Ci1, i2, i3 can be independent of some ik or dependent only on certain 

combinations of them. Also, some probabilities for configurations of clusters of sites 

become identical. For example, for one class of vertical interfaces, one has that Ci1, i2, i3 = 

Ci1 and the first two particle creation terms in (12) are equivalent. For the reaction model 

in general dimension d, one has an analogous equation to (12) but with kmax separate 

autocatalytic creation terms multiplied by the coefficient 1/kmax. Similarly, one can 

develop equations for the probability of empty pairs P[oi1,i2,i3 oi1+1,i2,i3], etc. 

 

4.2 Approximations: Discrete Reaction-Diffusion Equations (dRDE) 

One can extend the mean-field (MF) approximation to treat spatially 

inhomogeneous states, again by simply ignoring all spatial correlations in occupancy of 

different sites. Thus, multi-site probabilities factor in terms of P[xi1,i2,…,id] = Ci1,i2,…,id and 

P[oi1,i2,…,id] = 1-Ci1,i2,…,id for various sites i. Applying this procedure to (12) produces 

discrete reaction-diffusion (dRDE) type equations for d=3. In this case, the “diffusion” 

type terms are not due to particle hopping, but rather due to spatial coupling in the model 

which derives from cooperativity in particle creation. These type of dRDE have been 

developed and explored previously for other lattice-gas reaction models [23-25]. If one 
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refines the reaction model to include particle hopping to nearby empty sites, then this 

results in additional terms in the dRDE which have a conventional discrete diffusion 

form [11,19]. One can also extend the pair-approximation to treat spatially 

inhomogeneous states thereby obtaining sets of dRDE for the Ci1,i2,…,id and well as 

various pair quantities. 

For a d=3 cubic lattice considered exclusively below, it is straightforward to 

write down the general form of the MF dRDE’s starting from (12). A key component of 

this study is the use of these equations to analyze the propagation of planar interfaces 

between active and vacuum states for 0 < p < ps(MF), and in particular to determine the 

stationary values of p = peq. We shall consider interfaces of general orientation such that 

a i1 + b i2 + c i3 = m, where a, b, c, and m are integers. In this case, one has that Ci1,i2,i3 = 

Cm depends only on m. The MF dRDE’s can then be conveniently recast as 

d/dt Cm = -pCm + (1/12)(1-Cm)h(m)    (13a) 

, where  

h(m) = [Cm-a + Cm+a][Cm-b + Cm+b] + [Cm-b + Cm+b][Cm-c + Cm+c] 

+ [Cm-c + Cm+c][Cm-a + Cm+a]     (13b) 

It is instructive to introduce a normalized discrete Laplacian   

abcCm = (dabc)
-2

 Cm with Cm = Cm+1 -2Cm + Cm-1.   (14) 

where dabc denotes distance between adjacent planes m and m1. Then, for the key low-

index (a b c) = (100) “vertical”, (110) “diagonal”, and (111) “skew” orientations, (14) 

can be further rewritten in a particularly simple reaction-diffusion equation type form 

d/dt Cm = R(Cm) + D(Cm) abcCm + fabc (1-Cm) (abcCm)
2
,   (15) 
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where again R(C) = -pC+C
2
(1-C) describes the MF kinetics, and D(C) = C(1-C)/3 is an 

effective diffusion type coefficient. Also, one has that d100 =1, d110 =2, and d111 =3, 

and f100 =0, f110 = 1/48, and f111 = 1/36.  

The dRDE from the pair-approximation for the Ci1,i2,i3 and well as various pair 

quantities are given in Appendix B. The complex form of these equations is similar to 

those analyzed previously for a d=2 square lattice [23]. Predicted behavior should be 

qualitatively similar to the MF dRDE, but quantitatively more accurate. 

 

5. Discrete RDE Analysis: d=3 Mean-Field Results 

We consider the evolution of planar interfaces between the active and vacuum 

states with orientation corresponding to constant m = a i1 + b i2 + c i3 for the reaction 

model on a d=3 cubic lattice. Results presented below are obtained from numerical 

integration of various forms of the MF dRDE’s (13). The initial data corresponds to a 

sharp interface with the active state Cm = Cact = 1/2 + 1/2(1-4p)
1/2

 on the left m<m* and 

the vacuum state on the right Cm = 0 for m>m*. The interface location is determined the 

center of mass, <m> = m Cm/Cact for a large finite system of ~1000 sites. The 

asymptotic interface velocity, V(p) = d/dt <m>, for large t is determine by integrating the 

dRDE’s up to time t  410
4
. Note that, e.g., V(p) < 0 corresponds to the vacuum state 

displacing the active state, a scenario which occurs for larger p (but with p<ps). These 

MF results will be summarized again and compared with KMC results in Sec.7. 

Our focus is on assessing variation of V(p) versus p to determine stationarity and 

propagation failure. Since these features correspond to time-independent steady-states of 
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the dRDE’s, one could anticipate that direct analysis is possible without consideration of 

interface evolution. This can be achieved using iterated map techniques described in 

Appendix C. Results are consistent with those from numerical integration of (13), but the 

latter also have the advantage of characterizing the dependence of V(p) on p. 

 

5.1 Skew (111) orientation 

In this case (a=b=c=1), one has that m = i1+i2+i3 and d111 =3. Analysis of (13) 

with f111=1/36 reveals a unique MF stationary point peq(111) = 0.21137710
-6

. For 0 < p 

< peq(111), the active state displaces the vacuum state and V(p)>0. For peq(111) < p < 

ps(MF)=1/4, the vacuum state displaces the active state and V(p)<0. See Fig.4a. The 

form of stationary interface is shown in Fig.4d. Deviating from a skew (111) orientation 

produces continuous deviations from the above behavior with peq shifting to lower 

values.  

 

5.2. Diagonal (110) and near-diagonal orientations  

The diagonal case (a=b=1, c=0) has m = i1+i2 and d110 =2.  Analysis of (13a)-

(13b) with f110 = 1/48 reveals MF propagation failure for p-(110) < p < p+(110), where p-

(110) = 0.21023 and p+(110) = 0.21037. For 0 < p < p-(110), the active state displaces 

the vacuum state and V(p)>0. For p+(110) < p < ps(MF)=1/4, the vacuum state displaces 

the active state and V(p)<0. See Fig.4b. The form of the stationary interface roughly in 

the middle of the propagation failure regime is shown in Fig.4e. Interface motion for p 
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just above p+(110) and just below p-(110) exhibits a stop-and-go motion. See Fig.5a-b. 

The waiting period, 

, between jumps of distance m=1 scales like 



(p) ~ |p – p(110)|

-n
 as p p(110), where n+ = 1.56 and n- = 1.68, (16) 

outside the region of propagation failure. Corresponding velocity scaling is determined 

from V(p) ~ 1/

(p). Note that this scaling is only achieved for p very close to p(110). 

See Fig.5c. Such non-analytic behavior is familiar from previous studies of propagation 

failure for dRDE’s where the specific form is known to depend on the detailed structure 

of the dRDE [26,27]. 

Deviation from a diagonal orientation with rare steps. Orientations defined by 

S(i1+i2)i3=m with large S correspond to a diagonal interface i1+i2=0 misoriented by 

occasional horizontal steps separated by S lattice constants vertically. See Fig.6a. If 

peq(S) denotes the stationary value of p, then numerical analysis reveals the MF result 

peq(110H) =  limS peq(S) = 0.21030. This limiting value corresponds to stationarity of 

an isolated horizontal step on a diagonally oriented interface. See Table 1 and Sec.7 for 

further discussion. Note that peq(110H)  1/2[p-(110) + p+(110)] lies close to the center 

of the regime of propagation failure for diagonal interfaces.  

One can consider slight deviations from a diagonal orientation in other directions 

producing differently oriented far-separated steps. For example, analysis for orientations 

defined by S(i1+i2)+i2=m, corresponds to a diagonal interface misoriented by occasional 

vertical double steps. This yields a limiting MF peq as S of peq(110D) =0.21029, very 

close to peq(110H). 
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5.3 Vertical (100) and near-vertical orientations  

The vertical case (a=1, b=c=0) has m = i1 and d100 =1. Analysis of (13a)-(13b) 

with f100 =0 reveals MF propagation failure for p < peq(100) = 0.21038. This feature 

which mimics exact behavior is clear from the structure of the MF dRDE. For peq(100) < 

p < ps(MF)=1/4 the vacuum state displaces the active state and V(p)<0. See Fig.4c. The 

interface for p just above peq(100) exhibits a stop-and-go motion. See Fig.5d-e. The 

waiting time, , between jumps of distance m=1 scales like  

(p) ~ [p – peq(100)]
-n

, as ppeq(100)+ with n=1.98,   (17) 

and velocity behavior follows from and V(p) ~ 1/(p). See Fig.5f. 

Deviation from a vertical orientation with rare horizontal or vertical steps. 

Orientations defined by Si1+i2=m with large S correspond to a vertical interface i1=0 

misoriented by occasional horizontal steps separated by S lattice constants vertically. 

See Fig.6b. If p=peq(S) corresponds to stationarity, then numerical analysis reveals the 

MF result peq(100H) = limS peq(S) = 0.20602 which is strictly below the MF peq(100) 

= 0.21038. This limiting value corresponds to stationarity of an isolated horizontal step 

on a vertical interface. See Table 2 and Sec.7 for further discussion. 

Deviation from a vertical orientation with rare diagonal steps. Orientations 

defined by Si1+i2+i3=m with large S correspond to a vertical interface i=0 misoriented by 

occasional diagonal steps separated by S lattice constants vertically. See Fig.6c. If 

stationarity occurs for p=peq(S), then numerical analysis reveals the MF result peq(100D) 

= limS peq(S) = 0.20605 which is again strictly below the MF peq(100) = 0.21038. See 

Table 3 and Sec.7 for further discussion. This limiting value corresponds to stationarity 
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of an isolated diagonal step on a vertical interface. We note, however, that peq(100D) is 

above peq(100H), a feature reminiscent of behavior for the reaction model on a d=2 

square lattice where the value of p for a stationary diagonal interfaces is above that for a 

horizontal interface [7,22].   

 

6. Discrete RDE Analysis: d=3 Pair Approximation Results 

Again, we consider the evolution of planar interfaces between the active and 

vacuum states with orientation corresponding to constant m = a i1 + b i2 + c i3 for the 

reaction model on a d=3 cubic lattice. Results presented below are obtained from 

numerical integration of the dRDE’s obtained in the pair approximation as described in 

Appendix B. The initial data corresponds to a sharp interface with the active state on the 

left m<m* with site occupations Cm = Cact(pair) and pair occupations obtained from 

Kact(pair) = 1/2 +1/2(1-p/6)
1/2

. The vacuum state on the right for m>m* with Cm = 0 and 

vanishing pair occupations. The interface location, <m> = m Cm/Cact, and velocity, V(p) 

= d/dt <m>, for large t are determined by integrating the dRDE’s for a large finite 

system of ~1000 sites up to time t  410
4
. These results will be summarized again and 

compared with KMC results in Sec.7. 

 

6.1 Skew (111) orientation 

Analysis of the dRDE for the pair approximation reveals a unique stationary 

point peq(111) = 0.14294210
-6

. For 0 < p < peq(111), the active state displaces the 

vacuum state and V(p)>0. For peq(111) < p < ps(pair)=1/6, the vacuum state displaces the 
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active state and V(p)<0. Deviating from a skew (111) orientation produces continuous 

deviations from the above behavior with peq shifting to lower values. This behavior is 

entirely analogous to the MF predictions. 

 

6.2 Diagonal (110) orientation  

Analysis of the pair approximation dRDE reveals a unique stationary point 

peq(110) = 0.14250810
-6

. For 0 < p < peq(110), the active state displaces the vacuum 

state and V(p)>0. For peq(110) < p < ps(pair)=1/6, the vacuum state displaces the active 

state and V(p)<0. Note that the narrow regime of propagation failure observed in the MF 

treatment has disappeared in the pair approximation. 

 

6.3 Vertical (100) and near-vertical orientations  

Analysis of the pair approximation dRDE reveals propagation failure for p < 

peq(100) = 0.14123. This feature which mimics exact behavior is clear from the structure 

of the pair dRDE. For peq(100) < p < ps(pair)=1/6, the vacuum state displaces the active 

state and V(p)<0. The interface for p just above peq(100) exhibits a stop-and-go motion.  

Deviation from a vertical orientation with rare steps. Orientations defined by 

Si1+i2=m with large S correspond to a vertical interface i=0 misoriented by occasional 

horizontal steps. See Fig.6b. If peq(S) denotes the stationarity value of p, then numerical 

analysis reveals that peq(100H) = limS peq(S) = 0.1391 which is strictly below the 

peq(100) = 0.14123 for the pair approximation. This limiting value corresponds to 

stationarity of an isolated horizontal or vertical step on a vertical interface. See Table 4 
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and Sec.7 for further discussion. One can of course consider deviations from a vertical 

interface with rare steps of other orientations. From analysis above at the MF level, we 

anticipate only a weak dependence of the stationarity on this step orientation the pair 

level, so that, e.g., peq(100D)  0.1391 for rare diagonal steps in the pair approximation. 

 

7. Relating dRDE and KMC Resluts 

Mean-field (MF) type treatments of stochastic lattice-gas models with 

discontinuous transitions are expected to predict bistability. One must perform a 

Maxwell construction to locate the transition for equilibrium models, or a kinetic 

analogue of this construction for non-equilibrium steady-states of reaction models. A 

kinetic Maxwell construction follows from applying MF type dRDE’s to determine the 

condition for stationary interfaces between coexisting phases. In general, such an 

analysis for lattice models would predict an orientation dependence of the stationary 

point, a feature not seen in traditional equilibrium Hamiltonian systems. However, for 

Schloegl’s second model, such orientation dependence does occur and underlies 2PC. 

Thus, the MF-type dRDE do produce at least qualitatively the appropriate behavior. 

However, these dRDE can also produce propagation failure not seen in the stochastic 

lattice-gas models. Thus, the correspondence of behavior in MF-type dRDE to that in the 

stochastic model not transparent. However, we show here that an appropriate 

correspondence can be made, as is summarized schematically in Fig.7. 

For a detailed correspondence between MF-type dRDE predictions and stochastic 

reaction model behavior for the d=3 cubic lattice, it is instructive to focus on the three 
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principal orientations (skew, diagonal, and vertical) and nearby orientations. For skew 

(111) interfaces, the situation is unambiguous as there is no propagation failure for the 

MF-type dRDE, so the predicted stationary peq(111) corresponds to that in the stochastic 

model. A large discrepancy occurs at the MF level (as expected), but there is good 

agreement between peq(111)  0.14294 (pair approx.) and peq(111)  0.13939 (KMC). 

For diagonal (110) interfaces, the lowest MF-level treatment predicts “artificial” 

propagation failure not seen in the stochastic model. One could argue that fluctuations in 

the stochastic model mean that one never has a perfectly flat (110) interface as in MF 

treatments, but rather an interface with steps. From this perspective, the condition for 

stationarity of a slightly misoriented (110) interface in the MF treatment would better 

reflect the situation in the stochastic model. Thus, one might identify the (almost 

identical) MF peq(110H) or peq(110D) with the KMC peq(110). Significantly, propagation 

failure disappears at the pair-level treatment, and we unambiguously identify peq(110)  

0.14251 (pair approx.) with peq(110)  0.13903 (KMC).  

Finally, for vertical (100) interfaces, recall that propagation failure is expected 

for p below some critical value as the active state cannot displace the vacuum state for 

any p0. This feature applies to both the stochastic model and to various MF-type 

dRDE’s. However, we claim that peq(100) from the MF or pair approximation does not 

correspond to the KMC peq(100) since MF type formulations “artificially extend” the 

regime of propagation failure. Analogous to the discussion of diagonal interfaces, we 

argue that fluctuations in the stochastic models always produce a roughened (100) 

interface with steps, a feature not reflected in MF-type analysis of a perfectly vertical 
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interface. Thus, peq for stationarity of a slightly misoriented (100) interface in the MF-

type treatments better reflects the KMC peq(100). Specifically, we identify peq(110D) 

from MF or pair approximations, which corresponds to stationarity of a (100) interface 

with rare diagonal steps, with the KMC peq(110). Why?  If peq(100H) < p < peq(100D), 

2D vacuum islands in the layer adjacent to the vacuum state might initially expand their 

horizontal and vertical steps, but then they will convert to a shrinking diamond shape 

bordered by diagonal steps. Thus, p > peq(100D) is required for expansion of the vacuum 

state. A large discrepancy occurs between these quantities at the MF level (as expected), 

but there is good agreement between peq(100D) 0.1391 (pair approx.) and peq(100) 

0.1353 (KMC).  

In the above picture, the extent of artificial propagation failure (apf) for vertical 

interfaces in MF-type treatments is measured by papf(100) = peq(100) - peq(100D). This 

difference decreases from papf(100) = 0.0044 for the MF treatment to papf(100) = 

0.0021 for a pair treatment. This trend is reminiscent of the disappearance of artificial 

propagation failure for (110) interfaces going from the MF to the pair treatment.  

Finally, we summarize the effectiveness of MF-type dRDE analysis. While 

absolute values of various stationary points are dramatically shifted from KMC values at 

the lowest MF level, there is only a slight shift at the pair level. Furthermore, 

considering only the relative positions of these stationary points and the extent of 2PC 

regime, trends are already described in the MF treatment. Specifically, consider KMC 

values for peq(111-110) = peq(111)-peq(110), peq(110-100) = peq(110)-peq(100), and the 

sum of these peq = peq(111)-peq(100) corresponding to the width of the 2PC regime. In 
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Table 5, these quantities are compared with the corresponding MF-type predictions. This 

comparison demonstrates the success of our MF-type dRDE analysis, especially at the 

pair-level, in capturing exact KMC behavior. 

 

8. Conclusions 

Our stochastic lattice-gas realization of Schloegl’s second model for 

autocatalysis on a d=3 cubic lattice exhibits generic 2PC associated with an orientation 

dependence of the stationary point for planar interfaces separating coexisting active and 

vacuum states.  We have demonstrated that dRDE associated with MF-type 

approximations to the master equations for spatially non-uniform states of the reaction 

model are effective in capturing and elucidating this behavior. The higher-order pair-

approximation exhibits quantitative predictive capability.  

A broader range of phenomena could be analyzed for the dRDE associated with 

our reaction model on a d=3 cubic lattice. Just considering time-independent solutions, 

in addition to stationary planar interfaces, one could consider “critical” planar, tubular, 

or droplet like perturbations from uniform states. Consider “planar” solutions to the 

dRDE for a d-dimensional hypercubic lattice where Ci1,i2,i3 depends only on m = a i1 +  

bi2 + c i3. For p below the corresponding peq, the active state is more stable in the sense 

that it displaces the vacuum state separated by an appropriately oriented planar interface. 

However, a “small localized perturbation” with non-zero particle population of the 

vacuum state will not necessarily grow, but rather shrink. There is a critical size and 

profile (which is a stationary solution) above which growth and spreading occurs 



35 

 

[23,28]. Likewise, one can consider critical planar perturbations of the active state for peq 

< p < ps. Furthermore, one could explore stationary solutions where Ci1,i2,i3 = Ci1,i2 is 

independent of i3, say, which correspond to a critical tubular perturbation deviating from 

a uniform stable state for a restricted range of i1 and i2. There are also stationary 

solutions correspond to critical droplets and where Ci1,i2,i3 deviates from a uniform stable 

state only in a region localized in d=3. Preliminary investigations reveal a rich 

phenomenology.   

 Finally, it is appropriate to comment on whether the phenomenology and dRDE 

methodology discussed here apply for broader classes of reaction models. As noted in 

Sec.1, previous analysis of Schloegl’s second model on a d=2 square lattice [23,29] 

reveals analogous behavior to d=3. MF-type dRDE analysis shows that diagonal (11) 

interfaces exhibit no propagation failure so, e.g., peq(11) = 0.1083 (pair approx.) 

corresponds to peq(11) = 0.0944 (KMC). MF dRDE analysis for near-vertical interfaces 

with slope S shows that limS peq(S) (= 0.1056 in the pair approximation) lies strictly 

below peq(10) (= 0.1060 in the pair approximation) for an exactly vertical interface. The 

former corresponds to the p-value where an isolated kink on a vertical interface is 

stationary, and we associate this value with the KMC peq(10) =0.0869. 

 We can also extend Schloegl’s second model in any dimension to include particle 

hopping to adjacent empty sites [11,19] and/or spontaneous particle creation [7,30]. 

Generic 2PC and orientation dependence of interface propagation is preserved at least 

for small hop rate or creation rate, and this behavior has been successfully described by 

MF-type dRDE including hopping [19]. We have speculated that 2PC phenomenon 
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could be quite general for non-equilibrium lattice-gas reaction models exhibiting 

discontinuous phase transitions. However, additional studies are required to support this 

claim. The Ziff-Gulari-Barshad (ZGB) model is a well-known two-species monomer-

dimer reaction model which exhibits a discontinuous transition [4], although there is 

some debate about the detailed nature of the transition [5,6]. Stationarity or equistability 

of coexisting phases in the ZGB model has been assessed for this model via MF-type 

dRDE of the type described here [24]. Previous limited analysis of interface propagation 

for the ZGB model and its generalizations with particle hopping [8,9] have not reported 

orientation dependence or 2PC. However, further detailed analysis is required. 
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Appendix A: Exact Reduction in Hierarchical Master Equations 

Consider general spatially inhomogeneous states of the reaction model on a d-

dimensional hypercubic lattice. For the loss terms due to particle creation in the rate 

equation for P[oi] = P[oi1,i2,…,id], we enumerate all configurations of neighboring sites 

which include a specific diagonal pair of particles: (i) One such configuration has all 

other 2d-2 neighboring sites empty so k=1, yielding a creation rate of 1/kmax. (ii) Two 
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other configurations have one extra particle (and the remaining 2d-3 sites empty) which 

creates exactly one additional diagonal pair, so k=2 with creation rate 2/kmax. We 

associate one half of this contribution with the specific pair under consideration, and the 

other half with the second pair. (iii) There are multiple other configurations with one 

extra particle which create two additional diagonal pairs, so k=3 with creation rate 

3/kmax. One third of this contribution is associated with the specific pair under 

consideration, and the rest is equally divided between the other two pairs. (iv) The 

general term has k-1 additional pairs with creation rate k/kmax. We associate a fraction 

1/k of this contribution with the specific pair under consideration, and the rest is equally 

distributed between the other pairs. Summing all contributions associated with the 

specific pair thus yields 1/kmax times the probability that site i is empty and the specific 

diagonal pair is occupied (with all other neighbors of the empty site unspecified).  This 

result is illustrated in (12) for d=3.  

Derivation of the autocatalytic particle creation terms in the rate equation for  

P[oi1,i2,…,id oi1+1,i2,…,id] follows a similar strategy. Each term corresponds to a sum of 

contributions associated with different configurations of the 2d-1 sites at one end of the 

empty pair oi1,i2,…,id oi1+1,i2,…,id which all include a specific diagonal pair of particles. 

Summing all contributions associated with the specific pair yields 1/kmax times the 

probability that the pair is empty and the specific diagonal pair is occupied (with other 

neighbors of the empty pair unspecified).  In 4(d-1) of these terms, one filled site forms a 

linear triple with the empty pair. In the other 4(d-1)(d-2) terms, this is not the case. 
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Appendix B: dRDE in the Pair Approximation: d=3 Cubic Lattice 

For planar interfaces with a skew orientation, so that Ci1,i2,i3 = Cm=i1+i2+i3, we let 

m = 1-Cm denote the probability that a site  on the skew plane m=i1+i2+i3 is empty. The 

probability of a nearest-neighbor empty pair with one site in plane m and the other in 

plane m+1 is denoted by m+1/2. Note that all nearest-neighbor empty pairs can be 

described by these ’s. The corresponding dRDE have the form 

d/dt m = p(1-m) - (2m - m+1/2 - m-1/2)
2
/(4m),   (18a) 

d/dt m-1/2 = p(m + m-1 -2m-1/2)-m-1/2[3(m - m+1/2)
2
 + 4(m - m+1/2)(m - m-1/2)  

         + (m - m-1/2)
2
/[12(m)

2
]-m-1/2[3(m-1 - m-3/2)

2
 + 4(m-1 - m-3/2)(m - m-1/2) 

        + (m - m-1/2)
2
/[12(m-1)

2
].      (18b) 

For a diagonal interface where Ci1,i2,i3 = Cm=i1+i2, we let m = 1-Cm denote the 

probability that a site on the vertical plane m=i1 is empty. The probability of nearest-

neighbor empty pair with one site in plane m and the other in plane m+1 [i.e., sites 

(i1,i2,i3) and (i1,i2+1,i3) or (i1+1,i2,i3)] is denoted by m+1/2. In addition, we must consider 

the probability of a nearest-neighbor empty pair with both sites in plane m [i.e., sites 

(i1,i2,i3) and (i1+1,i2-1,i3) or (i1-1,i2+1,i3) or (i1,i2,i31)] which is denoted by m. The 

corresponding dRDE have the form 

d/dt m = p(1-m) - (2m - m+1/2 - m-1/2)(6m - 4m - m+1/2 - m-1/2)
2
/(12m),  (19a) 

d/dt m-1/2 = p(m + m-1 -2m-1/2)-m-1/2 [(m - m-1/2)(3m - 2m - m+1/2) + (m - m+1/2)  

         (5m - 4m - m+1/2)]/[12(m)
2
] - m-1/2 [(m-1 - m-1/2)(3m-1 - 2m-1 - m-3/2) 

         +(m-1 - m-3/2)(5m-1 - 4m-1 - m-3/2)]/[12(m-1)
2
],    (19b) 
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d/dt m = 2p(m - m) -m(m - m)(8m - 2m - 3m+1/2 - 3m-1/2)/[6(m)
2
].  (19c) 

For a vertical interface where Ci1,i2,i3 = Cm=i1, we let m = 1-Cm denote the 

probability that a site on the vertical plane m=i1 is empty. The probability of a nearest-

neighbor empty pair with one site in plane m and the other in plane m+1 [i.e., sites 

(i1,i2,i3) and (i1+1,i2,i3)] is denoted by m+1/2. In addition, we must consider the 

probability of nearest-neighbor empty pair with both sites in plane m [i.e., sites (i1,i2,i3) 

and (i1,i21,i3) or (i1,i2,i31)] which is denoted by m. The corresponding dRDE have the 

form 

d/dt m = p(1-m) - (3m - m - m+1/2 - m-1/2)
2
/(3m),   (20a) 

d/dt m-1/2 = p(m + m-1 -2m-1/2)-m-1/2(m - m)(2m - m - m+1/2)/[3(m)
2
] 

       -m-1/2(m-1 - m-1)(2m-1 - m-1 - m-3/2)/[3(m-1)
2
], (20b) 

d/dt m = 2p(m - m)-m(m - m)(8m - 2m - 3m+1/2 - 3m-1/2)/[6(m)
2
].

          (20c) 

 

Appendix C: Iterated Map Analysis of Steady-States: d=3 MF dRDE 

To characterize stationarity and propagation failure for planar interfaces with 

orientation ai1+bi2+ci3 =m in d=3, it suffices to analyze the steady-state form of (13) 

which corresponds to a second-order recurrence relation. This relation can be converted 

to an iterated map for [um, vm] = [Cm-1, Cm] of the form [23,26] 

um+1 = vm and vm+1 = F(um, vm, p).     (21) 

The uniform active and vacuum steady-states correspond to fixed points of the map, 

[u,v] = [Cact(p), Cact(p)], with Cact(p)= 1/2 + 1/2(1-4p)
1/2

, and [u,v] = [0,0], respectively. 
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Except for vertical interface, the stationary concentration profiles smoothly approach the 

active and vacuum state away from the interface. Correspondingly, orbits of the above 

map smoothly connect the fixed points, while remaining within the physical domain 0 

u, v 1. For a vertical interface, the concentration profile does not smoothly approach the 

vacuum state. The orbit goes through the active fixed point and intersects physical 

domain boundary for ppeq(100), tangentially for p=peq(100) (cf. [23]). 

Near the active state fixed point, behavior of the orbit is determined by the 

asymptotic form of the solution 

Cm  Cact + 
m

, where 
+a

 +
-a

 +
+b

 +
-b

 +
+c

 +
-c

 = 3/(1-Cact). (22) 

Thus, one has that  = 1/2 r – 1/2 (r
2
-4)

1/2
 with r = (1-Cact)

-1
, 3(1-Cact)

-1
/2 – 1, 3(1-Cact)

-1
 -

4 (2) for skew, diagonal, and vertical interfaces, respectively. Thus, we consistently 

choose an initial point [u1, v1] = [Cact + , Cact + ] for small , iterate the map for a 

selected value of p, and determine whether the orbit has the desired form. For example, 

in the case of a skew interface, if one chooses p>peq(111), the orbit remains within the 

physical domain (see Fig.8a), and for p<peq(111), the orbit exits this domain (see 

Fig.8b). At the unique value of p=peq(100), the orbit will smoothly approach [0,0] (see 

Fig.9a). For a diagonal interface, the orbit smoothly approaches [0,0] for any p in the 

propagation failure regime, p-(110) < p < p+(110) (see Fig.9b). The vertical interface, we 

show the orbit for p=peq(100) in Fig.9c. 
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Figures 

 

Fig.1.  Schematic of spontaneous particle annihilation (at rate p) and configurations for 

autocatalytic particle creation (at rate k/12) for our realization of Schloegl’s second 

model on a d=3 cubic lattice. k is the number of diagonal neighboring pairs of particles, 

and # is the configurational degeneracy. 
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Fig. 2.  KMC simulation results for the steady-state particle concentration, C, versus 

annihilation rate, p, for the active state in Schloegl’s second model on a d=3 cubic 

lattice. The grey vertical band represents the regime of generic two-phase coexistence. 

Inset: schematic indicating values of p for stationary planar interfaces separating active 

and vacuum states of different orientations. The ill-defined spinodal point terminating 

the metastable active state (thick dashed line) is also indicated. 
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Fig. 3.  (a) Configurations relevant for particle creation in the d/dt P[o o]-equation for 

Schloegl’s second model on a d=3 cubic lattice. Here, a thicker red bond is drawn to 

indicate the empty pair for which particle creation occurs on the right site. Also, k/12 

gives creation rate and # the configurational degeneracy. In (b), we show the reduced 

forms 









o

x
P   (top) and 










xoo

x
P   (bottom) obtained from summing these terms. 
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Fig. 4.  MF dRDE predictions for planar interface propagation velocity, V(p), versus p in 

the d=3 reaction model for: (a) skew; (b) diagonal; (c) vertical orientations. 

Corresponding examples (d-f) of stationary interface profiles for the p-values indicated.  
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Fig. 5. Stop-and-go motion of planar interfaces near regimes of MF dRDE propagation 

failure. Location of a vertical interface versus t: (a) p = 0.210380, (b) p = 0.210377 

versus peq(100) = 0.2103767. Location of a diagonal interface versus t: (d) p=0.210377; 

(e) p=0.210369 versus p+(110)=0.210363. V(p) versus p for vertical (c) and diagonal (f) 

interfaces. 

 

 
Fig. 6.  Schematics for: near diagonal interfaces with isolated horizontal steps (a); and 

near vertical interfaces with isolated vertical (b), and diagonal (c) steps. 
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Fig. 7.  Schematic summary of results for propagation velocity, V(p), versus particle 

annihilation rate, p, of planar interfaces separating the active and vacuum states for 

various orientations: comparison of MF dRDE, pair dRDE, and KMC predictions. 

 

Fig. 8.  Orbits of the iterated map associated with the MF dRDE for a skew interface in 

d=3 with: (a) p = 0.220 > peq(111)  0.211377; (b) p = 0.210 < peq(111).  

 

 

Fig. 9.  Orbits of the iterated map associated with the MF dRDE for planar interfaces in 

d=3 for: (a) a skew orientation with p = 0.21137770  peq(111); (b) a diagonal 

orientation with p = 0.21035 in the middle of the propagation failure regime; (c) a 

vertical orientation with p  = 0.2103767  peq(100). 
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Tables 

Table 1.  MF peq versus S for near-diagonal interfaces with orientation S(i1+i2)i3=m  
S(i1+i2)i3=m S=1 S=4 S=16 S64 

MF peq(S) 0.21138 0.21053 0.21031 0.21030 

 

Table 2.  MF peq versus S for near-vertical interfaces with orientation Si1+i2=m  
Si1+i2=m S=1 S=4 S=16 S64 

MF peq(S) 0.21023-0.21037 0.20729 0.20602 0.20602 

 

Table 3.  MF peq versus S for near-vertical interfaces with orientation Si1+i2+i3=m  
Si1+i2+i3=m S=1 S=4 S=16 S≥64 

MF peq(S) 0.21138 0.20843 0.20606 0.20605 

 

Table 4.  Pair peq versus S for near-vertical interfaces with orientation Si1+i2=m  
Si1+i2=m S=1 S=4 S=16 S=1024 S=4096 

pair peq(S) 0.14251 0.14097 0.13989 0.1395 0.1391 

 

Table 5.  Differences in stationary values for p for various interface orientations. 
Treatment MF Pair KMC 

peq(111-110) 0.0011 0.00043 0.00036 

peq(110-100) 0.0043 0.0034 0.0037 

peq (2PC width) 0.0054 0.0038 0.0041 
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Abstract 

Schloegl’s second model on a d2 dimensional hypercubic lattice involves: (i) 

spontaneous annihilation of particles with rate p; and (ii) autocatalytic creation of 

particles at vacant sites at a rate proportional to the number of suitable pairs of 

neighboring particles. This model provides a prototype for non-equilibrium 

discontinuous phase transitions. However, it also exhibits non-trivial generic two-phase 

coexistence: stable populated and vacuum states coexist for a finite range, 

pf(d)<p<pe(d), spanned by the orientation-dependent stationary points for planar 

interfaces separating these states. Analysis of interface dynamics from Kinetic Monte 

Carlo (KMC) simulation, and from discrete reaction-diffusion equations (dRDE) 

obtained from truncation of the exact master equation, reveals that pe(f) ~ 0.2113765 + 

ce(f)/d, as d, where c = ce – cf  0.014. An metastable populated state persists above 

pe(d) up to a spinodal p = ps(d), which has a well-defined limit ps(d) = ¼. The dRDE 
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display artificial propagation failure, absent in the stochastic model due to fluctuations, a 

feature which is amplified for increasing d thus complicating our analysis. 

 

1. Introduction 

Stochastic lattice-gas reaction and reaction-diffusion models prescribe kinetic 

rules and rates for the creation and annihilation of various species residing on a lattice 

[1,2]. The reaction steps are often cooperative and sometimes irreversible. The lack of 

detailed-balance condition on the governing rates means that these systems may evolve 

to non-equilibrium steady-states which are not characterized by a Gibbs measure 

familiar for thermodynamic equilibrium in Hamiltonian models. However, these steady 

states can display phase transitions somewhat analogous to those in thermodynamic 

systems [1,2]. For both equilibrium [3] and non-equilibrium [1] lattice-gas models, it can 

be instructive to consider behavior as a function of lattice dimension, d. For models 

exhibiting continuous transitions or criticality, an upper critical dimension exists above 

which fluctuations are weak and mean-field (MF) behavior applies [1,3]. One also 

expects that either equilibrium or non-equilibrium discontinuous transitions may be 

erased due to strong fluctuations below some critical d = d* [1-3]. 

A candidate for non-equilibrium discontinuous transitions is Schloegl’s second 

model for autocatalysis [4-13] on a hypercubic lattice which involves: (i) spontaneous 

annihilation of particles, X, at occupied sites at rate p; and (ii) autocatalytic creation of 

particles at vacant sites, , induced by suitable nearby pairs of particles [8,9-13]. 

Schematically, the reaction steps are: 
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X  (spontaneous annihilation @ rate p); 

       +2X3X (autocatalytic creation). 

MF analysis suggests the existence of a discontinuous transition between an 

active state with particle concentration C>0, for 0<p<pe, and an absorbing vacuum state 

C=0, for all p>0. However, Kinetic Monte Carlo (KMC) analysis of Grassberger’s 

version of this model found only a continuous transition for d<4 suggesting a critical d* 

= 4 [5]. In contrast, our KMC analysis for a version of the model based on Durrett’s 

Quadratic Contact Process or QCP (see below) revealed a discontinuous transition for 

d=2 [9] and d=3 [13], suggesting that d* =2.  

In addition, our analysis of the QCP version revealed a non-trivial generic two-

phase coexistence (2PC) for d=2 and d=3 wherein the stable populated and vacuum 

phases coexist for a finite range of annihilation rate, p [9-13]. (Trivial 2PC occurs due to 

a “quirk” in the QCP rules. For any p>0, the vacuum state can always resist the growth 

of active droplets which cannot escape any rectangular region containing them [8]. 

Trivial 2PC disappears upon perturbing the model, e.g., to include particle hopping or 

spontaneous creation.) The non-trivial 2PC derives from an orientation-dependence of 

the value of the annihilation rate p=peq corresponding to a stationary planar interface 

separating the two phases. This non-trivial generic 2PC feature may persist for d>3. This 

behavior contrasts phase coexistence in an equilibrium Hamiltonian system where planar 

interface separating phases is stationary at a unique point corresponding to equality of 

chemical potentials. As an aside, generic 2PC was first explored in Toom’s model for 

voter dynamics [14,15] where the kinetic rules have an unappealing [16] asymmetry. 
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Our goal here is to elucidate fundamental aspects of the dependence on 

dimension, d, of discontinuous transitions in lattice-gas reaction models which display 

generic 2PC. In this paper, we consider only our QCP version of Schloegl’s second 

model, but the features displayed and issues analyzed will undoubtedly have broad 

applicability. Analogous studies for equilibrium systems would be performed using the 

ferromagnetic Ising model. One might expect the kinetics to approach mean-field 

behavior, and also enhanced metastability, as d. However, the d-dependence of 

features related to equistability of distinct phases is perhaps less clear, and is the focus of 

the current contribution. Although contentious [22], we claim that equistability for 

infinite lattices should be determined by stationarity of planar interfaces separating 

coexisting states (cf. [4,17-21]). Consideration of equistability is complicated by the 

presence of generic 2PC for which we provide the first analysis of its d-dependence and 

disappearance as d.  

With regard to development and application of general methodologies, we apply 

discrete reaction-diffusion equations (dRDE) to elucidate interface dynamics. dRDE are 

derived from truncation approximations to the exact master equations for spatially 

inhomogeneous states. This approach has received little attention previously, and then 

only for d=1-3 and mainly using the lowest-order mean-field truncation approximation. 

We exploit the dRDE to obtain exact limiting behavior as d. However, we find that 

these dRDE can display artificial propagation failure (APF), an effect which is absent 

due to fluctuations in the stochastic model and which is strongly amplified with 

increasing d. Nonetheless, dRDE analysis of suitable interface orientations avoiding 
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APF is shown to still capture behavior in the stochastic model. While we treat only our 

QCP model, this dRDE methodology and the observed APF behavior and its resolution 

should have broad applicability. 

In Sec.2, we provide a detailed description of our stochastic reaction model for 

general d2. New KMC simulation results are reported for d = 2-5. In Sec.3, we present 

the exact master equations for general d, and develop dRDE for spatially heterogeneous 

states by applying the MF and pair approximations. The dRDE are used to assess the 

propagation of planar interfaces between active and vacuum states, specifically 

stationarity and artificial propagation failure (APF), in Sec.4. The interpretation of the 

dRDE results and their relationship to exact behavior of the stochastic reaction model is 

described in Sec.5. Conclusions are provided in Sec.6. 

 

2. Model Prescription for General Dimension and KMC Analysis 

Our model involves particle annihilation and creation at the sites of an infinite d-

dimensional hyper-cubic lattice with sites labeled by i = (i1, i2, i3,…, id). Note that the 

total number of pairs of sites selected from the 2d nearest-neighbors (NN) of any site 

satisfies ktot = (2d)(2d-1)/2! = d(2d-1). We divide all such pairs into two subsets: linear 

pairs where one site is (i1, i2,…, ij +1,…, id) and the other is (i1, i2,…, ij-1,…, id); and 

“diagonal” pairs with one site is at one of (i1, i2,…, ij 1,…, id) and another at one of (i1, 

i2,…, ik 1,…, id) and where jk. The number of linear pairs satisfies klin = d, and thus the 

number of diagonal pairs satisfies kmax =   ktot - klin = 2d(d-1). Our QCP version of 

Schloegl’s second model for any d2 generalizes Durrett’s prescription [18] for a d=2. It 
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involves: (i) spontaneous creation of particles at unoccupied sites at rate p; (ii) 

autocatalytic annihilation of particles at empty sites at rate k/kmax, where k is the number 

of “diagonal” pairs of particles on neighboring sites. This prescription produces a simple 

d-independent form for the mean-field kinetics of the model. Furthermore, it enables an 

exact simplification of the master equations, as described in Sec.3. 

For spatially homogeneous states, we define the particle concentration, C, as the 

mean probability that a site is occupied, so that 0  C  1. We find that a stable 

populated steady-state with concentration C>0 exists for a range of annihilation rates, 0 

 p  pe(d). Previous KMC studies found pe(d=2) = 0.09443 [9] and pe(d=3) = 0.13939 

[13]. Below we report behavior for d>3. In the “active” populated state, particles are 

continually created and annihilated. Increasing p to higher p > pe(d) results in a 

discontinuous transition to a stable absorbing “vacuum” state with C=0. An ill-defined 

metastable extension of the active state exists for a small range of pe(d) < p < ps(d), 

where ps(d) denotes the spinodal with ps(d=2)0.101 [12] and ps(d=3)0.15 [13].  

Previous studies for d=2 and 3 [9,12] found non-trivial generic 2PC wherein 

stable active and vacuum states coexist for a finite range pf(d)  p  pe(d). This range is 

spanned by the orientation-dependent “equistability” values p = peq for stationary planar 

interfaces separating these states, where pe(d) = max peq corresponds to a diagonal (d=2) 

or skew (d=3) interface. For a general orientation, when 0  p < peq, the active state 

displaces the vacuum state. For peq < p < pe(d), the vacuum state displaces the active 

state. For pe(d) < p < ps, the vacuum state transiently displaces the metastable active 

state until the latter spontaneously converts to the vacuum. One caveat is that for an 
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exactly vertical interface (i1=0), the active state can never propagate into the vacuum 

(empty sites in this vacuum state have at most one occupied neighbor). More precisely, a 

vertical interface is stationary for all p  pf(d), but the vacuum state expands for p > 

pf(d). See [9-13] and Fig.1. As noted above, trivial 2PC occurs for all p  pe(d) as the 

vacuum state is stable against expansion of droplets of the active state. These features 

are shown to persist for d>3. 

Model behavior is characterized by performing KMC simulations on finite 

hypercubic lattices of L
d
 sites with periodic boundary conditions. In conventional 

constant-p ensemble simulations, processes are implemented with probabilities 

proportional to their rates. However, to assess peq, we implement alternative constant-C 

ensemble simulations [9,23]. System sizes were typically L = 1024, 128, 48, and 20, for 

d = 2, 3, 4, and 5, respectively. Simulation data was collected over times ~10
6
 Monte 

Carlo steps (MCS) for d = 2 - 4 and ~10
4
 MCS for d=5. 

For d2 dimensions, the interface orientation where a i1 + b i2 + c i3 +… = m is 

constant (with a, b, c,…, and m as integers) is labeled by (abc…). Vertical interfaces 

correspond to a=1 and b=c=…=0 (so i1 = m) are (10), (100), (1000), etc. for d=2, 3, 

4,…, respectively, and have peq(d) = pf(d) defined us the upper boundary of the region of 

propagation failure 0<p<pf(d). We define a “hyperskew” orientations as that where 

a=b=c=…=1 (so i1+i2+i3+…+id=m) which constitutes the furthest-from-vertical 

orientation. This hyperskew orientation corresponds to diagonal (11), skew (111), 4
th

-

order skew (1111),…, for d=2, 3, 4,…, respectively, and have peq(d) = pe(d), i.e., peq is 

highest for orientations furthest-from-vertical where the active state can most easily 
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displace the vacuum state. New results for peq(d=2-5) for various interface orientations 

are shown in Table I. In Sec.5, we show that peq(d)=0.2113765 for all orientations. 

Our data suggests that peq(d)  peq(d) + c/d, where c depends weakly on orientation. 

See Fig.2. The width of the 2PC region satisfies peq(d) = pe(d) – pf(d)  0.014/d. 

 

3. Master Equations for Homogeneous and Inhomogeneous States 

Let x (o) denote a filled (empty) site, and let P’s denote the probabilities for 

various configurations of clusters of sites. For general spatially inhomogeneous states, 

the probability that a site is occupied or vacant depends on its location. Thus, we let Ci = 

P[xi] denote the probability that site i = (i1, i2,…, id) is occupied. Then, P[oi] = 1 - P[xi] 

is the probability that site i is empty. Let e1 = (1,0,0,…), e2 = (0,1,0,…), etc., denotes 

vectors between NN sites. Then P[xi xi+e1] (P[oi oi+e1]) denotes the probability that sites 

in the NN pair i, i+e1 are both occupied (empty). Also, P[xi oi+e1] and P[oi xi+e1] denote 

the probabilities of mixed occupied-empty pairs. Conservation of probability implies that 

P[xi] + P[oi] = 1, P[xi oi+e1] + P[xi xi+e1] = P[xi], P[oi xi+e1] + P[oi oi+e1] = P[oi], etc. 

For the special case of spatially homogeneous states, these quantities do not depend on 

site location, so P[xi] = P[x] = C, P[oi] = P[o] = 1-C (= C ), etc. 

The exact master equations for our reaction model can be written as a coupled 

hierarchy for the evolution of the probabilities for empty single sites, empty pairs, etc. 

[24]. Terms in these equations simply account for all possible gain pathways due to 

spontaneous particle annihilation, and all possible loss pathways associated with 

autocatalytic particle creation.  
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3A. Lowest-order hierarchical equation for single-site probabilities 

For spatially inhomogeneous states, the equations for single empty sites have the 

exact form 

  d/dt P[oi] = p P[xi] – (1/kmax){P[oi xi+e1 xi+e2] + P[oi xi+e1 xi-e2] + P[oi xi+e1 xi+e3] +…}. 

(1) 

The first gain term on the right-hand-side (RHS) of (1) corresponds to spontaneous 

particle annihilation at site i at rate p. The other loss terms correspond to autocatalytic 

particle creation at empty site i where one term appears for each of the kmax possible 

configurations of diagonal pairs of particles on sites NN to i. We have shown explicitly 

only three out of these kmax creation terms. From (1), it is clear that for a spatially 

homogeneous state, the evolution equation for the probability of a single empty site has 

the d-independent exact form 

d/dt P[o] = p P[x] – 









xo

x
P .    (2) 

The loss term on the right-hand-side denotes the probability of a filled site with a 

specific diagonal pair of filled sites, where the state of the 2d-2 other neighboring sites is 

unspecified. 

In deriving the loss terms in (1), P[oi xi+e1 xi+e2] corresponds to a sum of 

contributions for different configurations of the 2d sites surrounding oi, but all including 

a diagonal pair of particles at sites i+e1 and i+e2. One case is the configuration with all 

other 2d-2 neighboring sites empty so k=1, associated with a creation rate of 1/kmax. The 
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general case has k-1 additional diagonal pairs with creation rate k/kmax. We associate a 

fraction 1/k of this contribution with the term P[oi xi+e1 xi+e2], and the rest is equally 

distributed between the other terms. Summing all contributions associated with P[oi xi+e1 

xi+e2] thus yields 1/kmax times the probability that site i is empty and the indicated 

diagonal pair is occupied (with all other neighbors of the empty site in an unspecified 

state). A similar analysis generates P[oi xi+e1 xi-e2] and the other terms. 

For spatially inhomogeneous states corresponding to planar interfaces between 

populated and vacuum states, (1) adopt a simpler form. For specific orientations, the Ci1 

i2,…,id and related probabilities can be independent of some ik or dependent only on 

certain combinations of them. Also, some probabilities for configurations of clusters of 

sites become identical. For example, for vertical interfaces where Ci1,i2,…,id = Ci1, the first 

two particle creation terms in (1) are equivalent.  

 

3B. Hierarchical equation for pair probabilities 

One can also obtain equations for probabilities of adjacent empty pairs of sites, 

and for larger clusters of empty sites. For a spatially inhomogeneous state, the evolution 

equation for the pair probability P[oi oi+e1] has the exact form 

d/dt P[oi oi+e1] = p {P[xi oi+e1] + P[oi xi+e1]} - (1/kmax) {P[oi oi+e1 xi+2e1 xi+e1+e2] +… } 

    - (1/kmax) {P[xi+e1+e2 xi-e1 oi oi+e1] +… }.    (3) 

The first two gain terms on the RHS corresponds to spontaneous particle annihilation at 

site i and i+e1 at rate p. The next group of loss terms correspond to autocatalytic particle 

creation at empty site i+e1 where one term appears for each of the 2(d-1) possible 
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configurations of diagonal pairs of particles NN to this site, where neither particle is on 

the neighboring site i.  We have shown explicitly only one out of the subset of 2(d-1) 

configurations where one particle forms a linear triple with the empty pair. There is 

another larger subset of 2(d-1)(d-2) configurations where neither particle forms a linear 

triple with the empty pair. The analogous last group of loss terms correspond to 

autocatalytic particle creation at empty site i, where one term appears for each of the 

total of 2(d-1)
2
 possible configurations of diagonal pairs of particles NN to this site. 

From (3), it follows that for a spatially homogeneous state, the equation for 

evolution of the probability of an empty pair has the exact form 

d/dt P[o o] = 2pP[x o] -  {4(d-1)/kmax} 









xoo

x
P  –{4(d-1)(d-2)/kmax} 










o

x
P , 

           (4) 

where 









xoo

x
P   and 










o

x
P  represent probabilities of an empty pair where the 

right site in this pair has a diagonal neighboring pair of particles. In the first, one filled 

site forms a linear triple with the empty pair. In the second, both filled sites form bent 

triples with the empty pair. 

Derivation of the loss terms in (3) due to autocatalytic particle creation follows a 

similar strategy to that for (1) above. Each term corresponds to a sum of contributions 

associated with different configurations of the 2d-1 sites at the relevant end the empty 

pair oi oi+e1 but which all include the diagonal pair of particles indicated explicitly in (3). 

Summing all contributions associated with the specific pair thus yields 1/kmax times the 
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probability that the pair is empty and the specific diagonal pair is occupied (with other 

neighbors of the empty pair unspecified).  

 

4. Approximations and Discrete Reaction-Diffusion Equations 

4A. Truncation approximations 

In the simplest mean-field (MF) or site approximation, one neglects all 

correlations in the occupancy of different sites. Thus, for example, one has that  

    P[oi xi+e1 xi+e2]  P[oi] P[xi+e1] P[xi+e2]   (reducing to 









xo

x
P   P[o] P[x]

2
), (5) 

for inhomogeneous (homogeneous) states. In the next higher-order pair approximation, 

probabilities configurations of clusters of sites are factorized in terms of those for all 

constituent pairs where one also compensates for double-counting of some sites. Thus, 

one has that  

P[oi xi+e1 xi+e2]  P[oi xi+e1] P[oi xi+e2]/ P[oi], and 

        P[oi oi+e1 xi+2e1 xi+e1+e2]  P[oi oi+e1] P[oi+e1 xi+2e1] P[oi+e1 xi+e1+e2]/ P[oi+e1]
2 
  (6) 

(reducing to 









xo

x
P   P[xo]

2
/P[o]  and  










xoo

x
P   










o

x
P   P[o o]P[x 

o]
2
/P[o]

2
), for inhomogeneous (homogenous) states. 

 

4B. Mean-field type kinetics for homogeneous states 

The MF site-approximation to (2) yields the d-independent MF kinetics 

d/dt C = -p C + C
2
(1-C)  R(C), so d/dt ln C  = (C/C)[p - CC],  (7) 
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where C = 1-C gives the probability of an empty site. Steady-state analysis reveals a 

stable vacuum state with C=0 for all p>0, and a stable active state with C = Cact(MF) = 

½ + ½(1 - 4p)
1/2

 for a bistability regime 0  p  ps(MF) = ¼ [4,8-10]. In the pair 

approximation, a natural variable is the conditional concentration, K = P[x o]/P[o], 

representing the probability of finding a particle next to a site specified empty. Setting K 

= 1-K (the conditional probability of an empty site) and cd = (d-1)/d, the pair kinetics can 

be instructively formulated as 

    d/dt ln C = (C/C)[p - CC(K/C)
2
] and d/dt ln K + d/dt ln C = 2(K/K)[p - cd KK]. 

           (8) 

A steady-state analysis yields a stable vacuum state with C = K = 0 for all p>0, and a 

stable active state K = Kact(pair) = ½ + ½(1 - 4p/cd)
1/2

 for a bistability regime 0  p  

ps(pair) = cd/4.  Since cd1 as d, it is clear comparing (7) and (8) that site and pair 

approximations converge. 

 More generally, consider the evolution of the probability, P[{o}n], of finite 

connected cluster of n vacant sites, {o}n. The key observation is that as d, all sites are 

on the perimeter and almost fully coordinated with sites not in the cluster. More 

precisely, the fractional deficit from full coordination scales like 1/d. Thus, the structure 

of the evolution equation is similar to that for the probability, (P[o])
n
, for n isolated far 

separated sites. It follows that P[{o}n]  (P[o])
n
, as d, a general feature applying for 

any lattice-gas reaction model. 

  

4C. Mean-field-type discrete reaction-diffusion equations (dRDE) 
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We will consider only spatially inhomogeneous states corresponding to planar 

interfaces between active and vacuum states. As in Sec.2, interface orientations where a 

i1 + b i2 + c i3 +… = m is constant is labeled by (abc…) for d2 dimensions. In these 

case, the concentrations Ci1,i2,…,id = Cai1+bi2+ci3…=m = Cm are labeled by a single integer m. 

Applying MF factorization to (1) produces closed discrete reaction-diffusion (dRDE) 

type equations for the Cm. The “diffusion” type terms reflect spatial coupling in the 

reaction model rather than particle hopping. These type of MF dRDE have been 

explored previously for other reaction-diffusion models, but just for d3 [25-27]. It is 

convenient to define a pseudo-diffusion coefficient Dj(C)=C(1-C)/j, and the discrete 

Laplacian 

    Cm = Cm+1 -2Cm +Cm-1,  so that (Cm+1+Cm-1)
2
 – (2Cm)

2
 = 4Cm Cm + (Cm)

2
.   (9) 

For hyper-skew (1111…) interfaces where Ci1,i2,…,id = Ci1+i2+…+id=m, one obtains 

the MF dRDE 

d/dt Cm = -pCm + ¼ (1-Cm)(Cm+1 + Cm-1)
2
 

  = R(Cm) + D1(Cm) Cm + ¼ (1-Cm) (Cm)
2
,    (10) 

which have a form independent of d. As a consequence, the MF-value of peq for the d=2 

diagonal, d=3 skew, and d>3 hyperskew orientations will identical. It should be noted 

that the physical Euclidean distance between adjacent planes, m and m+1, equals d
-1/2

, 

and thus the physical width of the concentration profile across the interface also scales 

like d
-1/2

. 

For vertical (1000…) interfaces where Ci1,i2,…,id = Ci1=m, one obtains the distinct 

MF dRDE 
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d/dt Cm = R(Cm) + Dd(Cm) Cm,    (11) 

incorporating weak spatial coupling for large d due to small Dd ~ 1/d. Since R(0) = 0 and 

Dd(0) = 0, (10) appropriately ensures that the active state cannot displace the vacuum 

state. 

Next, consider more general low-index interfaces including diagonal (11000…) 

interfaces where Ci1,i2,…,id = Ci1+i2=m, skew (11100…) interfaces Ci1,i2,…,id = Ci1+i2+i3=m, 

and the natural generalization to n
th

-order skew interfaces where Ci1,i2,…,id = 

Ci1+i2+i3+…+in=m. For the general n
th

-order skew case, one obtains the MF RDE 

d/dt Cm = R(Cm) + n Dd(Cm) Cm + ¼ n(n-1)d
-1

(d-1)
-1

 (Cm)
2
. (12) 

This result includes vertical (n=1), diagonal (n=2), skew (n=3) orientations as special 

cases, and reveals weak spatial coupling in all cases with n=O(1) and large d, in contrast 

to (9). 

For reasons discussed below, it will also be instructive to consider near-vertical 

orientations. When Si1 + i2 = m, corresponding to a near-vertical interface with large 

slope S and far-spaced rare “horizontal steps” (see Fig.3a), one obtains the MF dRDE 

d/dt Cm = -pCm + d
-1

(d-1)
-1

(d-2)(d-3)(1-Cm)(Cm)
2 

+ d
-1

(d-1)
-1

(d-2)(1-Cm)Cm(Cm-1+Cm+1+Cm-S+Cm+S) 

+ ½ d
-1

(d-1)
-1

(1-Cm)(Cm-1+Cm+1)(Cm-S+Cm+S).  (13) 

When Si1 + i2 +… +id = m, corresponding to a near-vertical interface with large slope S 

and far-spaced rare “maximally kinked” or hyperskew steps” (see Fig.3b), one obtains 

the MF dRDE 

d/dt Cm = -pCm + ¼ d
-1

(d-2)(1-Cm)(Cm-1+Cm+1)
2
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  + ½ d
-1

(1-Cm)(Cm-1+Cm+1)(Cm-S+Cm+S).   (14) 

Writing (13) and (14) in the form d/dt Cm = R(Cm) + “diffusion-type terms”, these 

diffusion terms are of order 1/d in (13), but of order unity in (14) (which reduces to (9) 

as d). 

One can also apply the pair approximation to (1) and (3) for planar interfaces 

between active and vacuum states to obtain pair dRDE for Cm and related pair 

probabilities. See Appendix A for the special cases of hyperskew (1111…) and vertical 

(1000…) interfaces. 

 

5. Discrete RDE Analysis: Mean-Field and Pair Results 

We now present results from numerical integration of the dRDE’s for evolution 

of planar interfaces between the active and vacuum states. The initial data are chosen as 

a sharp interface between the active state Cm = Cact, for m<m*, and the vacuum state Cm 

= 0, for mm*. In the pair approximation, we also specify certain pair occupations 

determined from Kact(pair). The interface location is determined from <m> = m Cm/Cact 

for a large finite system of ~1000 sites. The interface velocity, V(p) = d/dt <m>, is 

determined for long times t  410
4
. Our focus is on assessing variation of V(p) with p to 

determine stationarity and propagation failure. 

 

5A. Hyperskew (1111…) orientation 

The MF dRDE for the hyperskew orientation where m = i1+i2+…+id  have the 

special feature of being independent of d. Analysis of interface propagation reveals that 
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V(p) vanishes at a single stationary point which has the d-independent MF value 

peq(111…) = 0.2113765(4). See Table II. The pair dRDE for the hyperskew orientation 

predict qualitatively similar interface evolution with V(p) vanishing at a single stationary 

point. However, the pair peq(111…) depends on dimension and increases smoothly to 

converge to the MF value as d. See Table III. Continuously deviating from a 

hyperskew orientation produces continuous deviations from the above behavior either at 

the MF or pair level with peq shifting to lower values. 

 

5B. Vertical (1000…) and near-vertical orientations  

The MF dRDE for vertical interfaces where m = i1 predict propagation failure for 

0 < p < peq(100…) where MF peq(100…) increases with d. In fact, MF peq(100..)  

ps(MF) = ¼, as d, where the interface is stationary over the entire bistability regime. 

See Table II. Additional analysis elucidates the sharpening of the stationary interface at 

p = peq as d increases. See Appendix B. Analysis of the pair dRDE (15) reveals the 

same qualitative behavior where the pair peq(100…)  ps(MF) = ¼, as d, but the 

rate of convergence is slower. See Table III.  

Deviation from a vertical orientation with rare horizontal (H) “steps” (cf. Fig.3a). 

Both MF and pair analysis for near-vertical orientations with rare horizontal steps 

(Si1+i2=m with large S =1024) indicates a unique stationary point peq(100…H) for d=2-

5 which shifts upward  with d. For d6, a finite range of propagation failure emerges 

over a regime p-(100…H) < p < p+(100…H). This regime expands with increasing d to 
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cover the entire region of bistability, i.e., p-(100…H)  0 and p+(100…H)  ps(MF) = 

¼, as d. See Tables II-III. 

Deviation from a vertical orientation with rare hyperskew (HS) steps (cf. Fig.3b). 

Orientations defined by Si1+i2+…+id = m with large S correspond to a vertical interface 

i1=0 mis-oriented by occasional hyperskew (maximally kinked) “steps” separated by 

vertically S lattice constants. Analysis based on both the MF and pair dRDE for S=1024 

indicates a unique stationary point for which peq(100..HS)  limd peq(111…) = 

0.2113765, as d. See Tables II-III. 

 

5C. Diagonal (11000…), skew (11100..), and other orientatons  

Analysis of the MF and pair dRDE for diagonal (11000…) interfaces where m = 

i1+i2 reveals that except for small d, one has propagation failure over a regime p-

(1100…) < p < p+(1100…). The regime of propagation failure expands with increasing d 

to cover the entire region of bistability, i.e., p-(1100…)  0 and p+(1100…)  ps(MF) 

= ¼, as d. See Tables II-III. Motivated by the analysis of near-vertical interfaces, 

we also consider deviations from diagonal orientations associated with rare hyperskew 

(maximally kinked) steps as a route to eliminate propagation failure. These orientations 

are described by S(i1+i2)+i3+i4+…+id = m, where we choose S=1024. Analysis for the 

MF and pair dRDE reveals a lack of propagation failure with stationary point 

peq(1100..HS)  limd peq(111…) = 0.2113765, as d. See Tables II-III. 

 Analysis of both MF and pair dRDE for skew (11100…) interfaces reveals that 

except for small d, one has propagation failure over a regime p-(1110…) < p < 
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p+(1110…).  Again, the regime of propagation failure expands with increasing d to cover 

the entire region of bistability, i.e., p-(1110…)  0 and p+(1110…)  ps(MF) = ¼, as 

d. It is also the case that propagation failure can be eliminated by deviating from 

skew orientations with rare hyperskew steps. These orientations are described by 

S(i1+i2+i3)+i4+…+id = m, where we choose S=1024. The stationary point peq(1110..HS) 

 limd peq(111…) = 0.2113765, as d. See Table II-III. 

 One can extend the above investigations to consider n
th

-order skew orientations 

as defined in Sec.4B. One anticipates analogous behavior, i.e., development of 

propagation failure with increasing d which engulfs the entire bistable regime as d. It 

is also anticipated that deviating from these orientation with rare hyperskew steps will 

eliminate propagation failure. 

 

6. Relating dRDE Predictions to Stochastic Model Behavior 

In relating MF-type dRDE predictions to stochastic reaction model behavior, it is 

instructive to first focus on two key interface orientations, hyperskew and vertical.  

For hyperskew (111…) interfaces, the correspondence is unambiguous: there is 

no propagation failure for MF or pair dRDE, and the predicted peq(111…) corresponds to 

that in the stochastic model. The large discrepancy between the d-independent MF 

predictions and KMC values of peq(111…) for smaller d is largely removed in the pair 

approximation. As noted previously, the simple form peq(111…)  0.2113765 + c/d 

describe well observed d-dependence. 
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For vertical (100…) interfaces, recall that propagation failure is expected for p 

below some critical value, peq(1000…) as the active state cannot displace the vacuum 

state for any p0. For p > peq(1000…), the vacuum state displaces the populated state. 

This feature applies to both the stochastic model and to various MF-type dRDE. 

However, peq(1000…) from MF-type treatments does not correspond to that for the 

stochastic model as estimated by KMC simulations. Specifically, MF-type formulations 

“artificially extend” the regime of propagation failure. This feature is amplified for 

increasing d, recalling that MF-type peq(1000…)  ps(MF) = ¼, as d.  

Artificial propagation failure (APF) in MF-type dRDE treatments can be 

understood as follows. For smooth vertical interfaces in the stochastic lattice-gas 

reaction model, propagation of the vacuum state into the populated state for p>peq is 

associated with fluctuation-mediated nucleation and growth of (d-1)-dimensional 

droplets of the vacuum state in the layer adjacent to the completely empty edge layer of 

the vacuum state. This feature not reflected in MF-type treatments where more difficult 

“spatially homogeneous propagation” of the vacuum state into the next layer is required. 

Considering near-vertical interfaces in MF-type treatments, i.e., vertical interfaces with 

far-separated “steps”, could potentially avoid APF. However, introducing “smooth” 

horizontal steps does not avoid APF. Why? Step propagation must still occur “spatially 

homogeneous” propagation rather than by fluctuation-mediated nucleation and growth of 

new rows of empty sites adjacent to the step as in the stochastic reaction model. 

However, introducing more easily-propagating maximally-kinked hyperskew step avoids 

APF. 
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The amplification of APF with increasing d follows from the form of the MF-

type dRDE. For vertical interfaces, the spatial coupling in MF-type dRDE is ~1/d [cf. 

(11)]. The diminution of this coupling with increasing d produces an amplification of 

APF. The same diminution of coupling persists upon introducing rare horizontal steps to 

a vertical interface [cf. (13)], thus preserving APF. However, introduction of rare 

hyperskew steps results in strong spatial coupling [cf. (14)], as for the hyperskew 

interface orientation [cf. (10)], thus avoiding APF. 

Next, consider the d-dependence of the boundaries of the regime of 2PC. As 

noted above, there is a direct correspondence between peq(111…) = pe (the upper 

boundary) in KMC analysis and MF-type treatments. However, due to APF, peq(100…) 

in MF-type treatments does not correspond to the lower boundary, pf, of the 2PC regime 

(as it does in KMC analysis). We claim that pf can be estimated in MF-type treatments 

from the stationary point for near vertical interfaces with rare hyperskew steps, i.e., pf = 

limS peq(1000…HS), as such steps eliminate APF. Support for this claim comes from 

the results in Table IV. The behavior pe(f) ~ 0.2113765 + ce(f)/d, as d, as determined 

from KMC analysis, is confirmed from the MF-type analysis where the 1/d-scaling is 

seen as a natural consequence of the form of the spatial coupling. As an aside, this 

strategy allows comparison of KMC and MF dRDE results for other orientations [25]. 

 

7. Conclusions 

Our analysis indicates shrinking of the width, peq(d)  0.014/d, of the regime of 

generic 2PC associated with the discontinuous transition in our QCP version of 
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Schloegl’s second model on a hypercubic lattice with increasing dimension d. 

Appropriate application of MF-type dRDE is shown to be effective in elucidating this 

behavior particularly the scaling with d. These features and the utility of the dRDE 

analysis are expected to be general for non-equilibrium reaction models displaying 

discontinuous transitions. One could extend this analysis to consider nucleation of the 

more stable phase from the less stable one just outside the 2PC region. The orientation-

dependence of interface propagation will be reflected in the shapes of evolving droplets 

[10,11], a feature which again can be elucidated by a MF-type dRDE analysis.  

 A significant feature of the MF-type dRDE treatment is the appearance of 

artificial propagation failure (APF). APF is artificial in the sense that it does not occur in 

the stochastic lattice-gas model due to fluctuations at the interface. Propagation failure in 

dRDE’s of interest in its own right [26-28]. Studies often identify a critical value in 

spatial coupling below which there exists propagation failure, behavior which is 

amplified upon further reducing this coupling [28]. These observations are consistent 

with our observations, e.g., amplified APF for increasing d. 
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Appendix A: Pair Discrete Reaction-Diffusion Equations (dRDE) 

The pair approximation is applied to (1) and (3) for spatially inhomogeneous 

states corresponding to planar interfaces between active and vacuum states. For planar 

interfaces with a hyper-skew (1111…) orientation, so that Ci1,i2,…,id = Ci1+i2+…+id =Cm, 

we let m = 1-Cm denote the probability that a site on the hyper-skew plane 

m=i1+i2+…+id is empty. The probability of a NN empty pair with one site in plane m 

and the other in plane m+1 is denoted by m+1/2. Then, the corresponding dRDE have the 

form 

d/dt m = p(1-m) - (2m - m+1/2 - m-1/2)
2
/(4m),   (15a) 

d/dt m-1/2 = p(m + m-1 -2m-1/2) 

  -m-1/2[d(m - m+1/2)
2
 + 2(d-1)(m - m+1/2)(m - m-1/2) + (d-2)(m - m-1/2)

2
]/[4d(m)

2
] 

  -m-1/2[d(m-1 - m-3/2)
2
 + 2(d-1)(m-1 - m-3/2)(m - m-1/2) + (d-2)(m - m-1/2)

2
]/[4d(m-1)

2
]. 

         (15b) 

These pair dRDE reduce to those of the MF dRDE in the limit as d. 

For a vertical (1000…) interface where Ci1,i2,…,id = Ci1 = Cm, we let m = 1-Cm. 

The probability of a NN empty pair with one site in plane m and the other in plane m+1 

[i.e., sites (i1,i2,…,id) and (i1+1,i2,…,id)] is denoted by m+1/2. In addition, we must 

consider the distinct probability, m, of NN empty pair with both sites in plane m. The 

corresponding dRDE have the form 

d/dt m = p[1-m] – [m -m][dm – (d-2)m - m+1/2 - m-1/2]/[dm],  (16a) 
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d/dt m-1/2 = p[m + m-1 -2m-1/2] 

          -m-1/2[m - m][(d-1)m – (d-1)m - m+1/2]/[d(m)
2
] 

         -m-1/2[m-1 - m-1][(d-1)m-1 – (d-1)m-1 - m-3/2]/[d(m-1)
2
], (16b) 

d/dt m = 2p[m - m]-m[m - m][2(d-1)
2m – 2(d-2)

2m 

         – (2d-3)(m+1/2 +m-1/2)]/[d(d-1)(m)
2
].    (16c) 

Examination of the form of (16) reveals that the active state cannot displace the vacuum 

state, consistent with exact behavior in the stochastic model. 

 

Appendix B: dRDE Perturbation Analysis Vertical Interfaces as d 

For a stationary planar vertical interface between the vacuum state on the left for 

m = 0, -1, -2,…and a populated state on the right for m=1, 2,…, the MF dRDE (11) 

imply that 

p – Cm(1-Cm) = d
-1

(1-Cm)(Cm+1 – 2Cm + Cm-1), for m1,  (17) 

where C0 = 0. For large d, the RHS is small which forces p – Cm(1-Cm)  0 or Cm  Cact. 

Thus, it is natural to write Cm = Cact - m for m1 where m <<1 from which one obtains 

(2Cact -1)1 – d
-1

Cact(1-Cact) – (1)
2
 - d

-1
(2-3Cact)1 - d

-1
(1-Cact)2 - d

-1 1(2 - 21) = 0,

           (18a) 

(2Cact -1)m - d
-1

(1-Cact)(m+1 - 2m + m-1) – (m)
2
 - d

-1 m(m+1 - 2m + m-1) = 0, for 

m>1.           (18b) 

 First, we consider the general case of a stationary interface for fixed p < peq(d) 

where    2Cact -1 = (1-4p)
1/2

 = O(1). It follows from (18a) where the first two terms 
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dominate that 1  d
-1

Cact(1-Cact)(2Cact -1)
-1

 = O(d
-1

). Then, considering the first two 

dominant terms in (18b) implies that m  d
-1

(1-Cact)(2Cact -1)
-1

 m-1, which in turn yields 

m  Cact(1-Cact)
m
(2Cact -1)

-m
 d

-m
, for m1.     (19) 

Second, in the special case of a stationary interface for p=peq(d), one might 

anticipate distinct scaling behavior in the situation where peq(d)  ¼, as d. Indeed 

analysis of numerical data in Table II indicates that ¼ - peq(d)  A/d where A  0.25, so 

that 2Cact -1 =      (1-4p)
1/2

  B/d
1/2

 where B  1.0. This forces modified scaling from (18) 

above. Now, the first three terms in (18a) dominate, and one concludes that B1 and 1  

E/d
1/2

 where E = ½[B(B
2
-1)

1/2
]. Then, considering the first two dominant terms in (18b) 

implies that m  ½ d
-1/2

 B
-1m-1 for m>1, which in turn yields 

m  (2B)
-m+1

E d
-m/2

,  for m1.     (20) 

Data from numerical analysis of the MF dRDE’s supports this analysis. See Table V.  
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Figures 

 

Fig.1. (Color online) Steady-state C versus p for: (a) d=2; (b) d MF behavior. pe (pf) 

= upper (lower) 2PC boundaries; ps = spinodal. Inset to (a): dependence of equistability 

peq on interface orientation. Inset to (b): profile of a hyperskew interface for d at pe = 

pf = 0.2113765. 
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Fig.2. KMC results for peq versus 1/d for hyperskew (filled square) and vertical (open 

square) interfaces, where the exact result is also shown for d. 

 

 

Fig.3. (Color online) Schematic for d=3 of a rare horizontal (a) and hyperskew (b) step 

on a vertical interface. 

 

Tables 

Table I. KMC values of p=peq for stationary planar interfaces separating populated and 

vacuum states for orientations indicated before the colon; peq  0.211377, as d, for 

all orientations. 
d=2 10: 0.0871 11: 0.09440 (2)    

d=3 100: 0.1353 110: 0.139027(7) 111: 0.139386(7)   

d=4 1000: 0.1548 1100: 1110: 1111:  
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0.157593(9) 0.158091(8) 0.158284(8) 

d=5 10000: 0.1664 11000: 

0.16824(1) 

11100: 

0.168847(7) 

11110: 

0.169055(6) 

11111: 

0.169137(6) 

 

Table II. MF results for stationary points p=peq or for regimes of propagation failure for 

planar interfaces separating populated and vacuum states. 
 Vertical 

1000… 

Si1+i2 Si1+i2+

…+id 

Diagona 

l11000… 

S(i1+i2)+

i3+…+id 

Skew 

11100.. 

S(i1+i2+i

3)+i4+…

+id 

Hyper-

skew 

111… 

d=2 0.207106

8 

0.20505      0.211376

5 

d=3 0.21038 0.20602 0.20605 0.21023-

0.21037 

0.21030   0.211376

5 

d=4 0.21514 0.20720 0.20732 0.20949- 

0.21027 

0.20990 0.21093 0.21092 0.211376

5 

d=5 0.21953 0.20782- 

0.20829 

0.20834 0.20820- 

0.21099 

0.20974 0.21060- 

0.21075 

0.21068 0.211376

5 

d=6 0.22312 0.20717- 

0.20974 

0.20906 0.20583- 

0.21246 

0.20971 0.21024- 

0.21081 

0.21053 0.211376

5 

d=7 0.22600 0.20468- 

0.21175 

0.20957 0.20222- 

0.21437 

0.20977 0.20959- 

0.21120 

0.21045 0.211376

5 

d=10 0.23188 0.18816- 

0.21845 

0.21039 0.18559- 

0.22035 

0.21015 0.20496- 

0.21414 

0.21039 0.211376

5 

d=100 0.24774 0.03235- 

0.24558 

0.211365 0.03234- 

0.24566 

0.21135 0.04977- 

0.24370 

0.21134 0.211376

5 

d=1000 0.24976 0.00339- 0.211376 0.00340- 0.211376 0.00531- 0.211376 0.211376
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0.24952 4 0.24952 3 0.24929 5 5 

d= 0-0.25 0-0.25  0-0.25  0-0.25  0.211376

5 

 

Table III. Pair approximation results for stationary points p=peq or for regimes of 

propagation failure for planar interfaces separating populated and vacuum states. Results 

shown for S=1024. 
 Vertical 

100… 

Si1+i2 Si1+i2+

…+id 

Diagonal 

11000… 

S(i1+i2)+

i3+…+id 

Skew 

11100… 

S(i1+i2+i

3)+i4+…

+id 

Hyper-

skew 

111… 

d=2 0.106016 0.105596  0.108312    0.108312 

d=3 0.14123 0.13989 0.13989 0.14251 0.14251   0.14295 

d=4 0.16084 0.15714 0.15716 0.15930- 

0.15941 

0.15936 0.15990 0.15990 0.16014 

d=5 0.17471 0.16784 0.16794 0.16902- 

0.16972 

0.16939 0.17002 0.17001 0.17042 

d=6 0.18500 0.17476- 

0.17533 

0.17527 0.17460- 

0.17726 

0.17608 0.17664- 

0.17677 

0.17671 0.17726 

d=7 0.19288 0.17860- 

0.18138 

0.18055 0.17713- 

0.18349 

0.18090 0.18120- 

0.18175 

0.18149 0.18215 

d=10 0.20814 0.17446- 

0.19593 

0.19003 0.17204- 

0.19769 

0.18985 0.18683- 

0.19256 

0.19012 0.19093 

d=100 0.24525 0.03219- 

0.24310 

0.20932 0.03218- 

0.24318 

0.20931 0.04952- 

0.24124 

0.20930 0.20933 

d=1000 0.24951 0.00339- 

0.24926 

0.21117 0.00339- 

0.24927 

0.21117 0.00539- 

0.24904 

0.21117 0.21117 

d= 0-0.25 0-0.25  0-0.25  0-0.25  0.211376
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5 

 

Table IV. KMC and pair estimates of pe and pf, and small errors pe(f) = pe(f)(pair) - 

pe(f)(KMC).  
 KMC pe Pair pe pe  KMC pf  Pair pf pf 

d=2 0.09440 0.1083 0.0139  0.0871 0.1056 0.0185 

d=3 0.13939 0.14295 0.0036  0.1353 0.1399 0.0046 

d=4 0.15828 0.16014 0.0019  0.1548 0.1572 0.0024 

d=5 0.16914 0.17042 0.0013  0.1664 0.1679 0.0015 

 

Table V. Behavior of m versus m and versus d from a MF dRDE analysis for vertical 

interfaces at p = peq. 
d 1 2 3 4 5 6 6 

10 0.1687 2.0210
-2 

22.010
-4 

2.3910
-4 

2.5810
-5 

2.7810
-6 

3.0110
-7 

100 0.0504 2.2510
-3 

9.7910
-5 

4.2610
-6 

1.8510
-7   

1000 0.0161 2.4410
-4 

3.6910
-6 

5.5710
-8    

10000 0.0077 3.5610
-5 

1.6710
-7     
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1. Introduction 

 Stochastic lattice-gas reaction and reaction-diffusion models prescribe kinetic 

rules and rates for the annihilation, creation, and possibly hopping of diffusion of various 

species located at the sites of a periodic lattice [1]. The non-equilibrium steady states in 

these systems display phase transitions analogous to those in thermodynamic systems [1, 

2]. A candidate for non-equilibrium discontinuous transitions is Schloegl’s second model 

(S2M) for autocatalysis [3-13] (which also corresponds to a so-called quadratic contact 

process or QCP) on a lattice which involves: (i) spontaneous annihilation of particles at 

occupied sites, X, at rate p; and (ii) autocatalytic creation of particles at vacant sites, , 

induced by nearby pairs of particles [7-12]. Schematically, the reaction steps are: 

X  (spontaneous annihilation @ rate p); 

        +2X3X (autocatalytic creation). 
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Mean-field (MF) analysis of the S2M or QCP suggests the existence of a 

discontinuous transition as the annihilation rate p increases through some peq from an 

active state with particle concentration C>0 for smaller p to an absorbing vacuum state 

C=0 for larger p. At the special equistability value p = peq, the two phases coexist and are 

equally stable. However, Kinetic Monte Carlo (KMC) analysis of Grassberger’s version 

of S2M found only a continuous transition for a 2D lattice [4]. In contrast, analysis of a 

modified QCP version on a square lattice revealed a non-trivial generic two-phase 

coexistence (2PC) wherein the stable populated and vacuum phases coexist for a finite 

range of annihilation rate, p [8-12]. One quirk of standard QCP type models on a square 

lattice is that the vacuum state can always resist the growth of active droplets which 

cannot escape from any rectangular region containing them [7]. (One might describe this 

as trivial 2PC.) Similarly, the active state can never displace the vacuum state separated 

from it by a vertical interface. By perturbing the model (include particle hopping or 

spontaneous particle creation), this quirk and trivial 2PC disappear.  

Non-trivial generic 2PC derives from an orientation-dependence of p=peq for a 

stationary planar interface separating the two phases. This behavior contrasts phase 

coexistence in an equilibrium Hamiltonian system where planar interface separating 

phases is stationary at a unique point corresponding to equality of chemical potentials. 

As an aside, generic 2PC was first explored in Toom’s model for voter dynamics [15,16] 

where the kinetic rules have an unappealing [17] asymmetry. 

Our goal here is to analyze generic 2PC of discontinuous transitions in the 

“threshold” version [14] of the S2M or QCP on a square lattice [7, 8]. In Sec.2, we give 
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a detailed description of our stochastic gas-realization of this threshold version of 

Schloegl’s second model on a 2D lattice, and present basic KMC simulation results. In 

Sec.3, we present the exact master equations describing spatially homogeneous and 

inhomogeneous states of the model, and perform MF and pair truncation analyses.  From 

these approximations to the master equations for spatially heterogeneous states, we 

develop discrete reaction-diffusion equations (dRDE) in Sec.4. The interpretation of the 

dRDE results and their relationship to exact behavior of the stochastic reaction model is 

described in Sec.5. Further discussion and conclusions are provided in Sec.6. 

 

2. Model Prescription and KMC Simulation 

Various lattice-gas realizations of Schloegl’s second model on a square lattice 

involve a spontaneous annihilation of particles at rate p and an autocatalytic creation at 

empty site given by nearby pairs of particles at rate dependent on the details of the local 

environment. The threshold version sets the creation rate of empty sites be a fixed rate 1 

for two or more particles adjacent to the empty site [14]. It is instructive to note that 

previous studies considered an alternative specification or version known as Durrett’s 

model which used k/4 as the creation rate of particles at empty sites where k is the 

number of “diagonal” pairs of particles on neighboring sites [7-13]. 

For spatially homogeneous states, we define the particle concentration, C, as the 

mean probability that a site is occupied, so 0  C  1. We find that a stable “active” 

populated steady-state with concentration C>0 exists for a range of 0  p  pe, and a 

vacuum state C=0 exists for all p. In the active populated state, particles are continually 
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created and annihilated, increasing p above pe results in a discontinuous transition to a 

stable absorbing vacuum state with C=0. An ill-defined metastable extension of the 

active state exists for a small range, pe < p < ps, where ps denotes the spinodal point. Our 

KMC studies found pe = 0.352 for threshold model [14] (which should be compared with 

pe = 0.09443 [8] for Durrett’s model). 

More detailed KMC studies of the threshold model for a square lattice [8,11] find 

non-trivial generic 2PC wherein stable active and vacuum states coexist for a finite 

range pf  p  pe.. Specifically, we report that pf = 0.316 and pe = 0.3518. (For contrast, 

previous KMC simulation studies for Durrett’s model revealed that pf  = 0.0871 and pe= 

0.09443.) This range is spanned by the orientation-dependent “equistability” values p = 

peq corresponding to stationary planar interfaces separating these two states, and here pe 

= max peq corresponds to a diagonal interface. For a general orientation, for 0  p < peq, 

the active state displaces the vacuum state. For peq < p < pe, the vacuum state displaces 

the active state. For pe < p < ps, the vacuum state transiently displaces the metastable 

active state until the latter spontaneously converts to the vacuum. One caveat is that for 

an exactly vertical interface, the active state can never propagate into the vacuum, 

because empty sites on the boundary of vacuum state have at most one occupied 

neighbor. More precisely, a vertical interface is stationary for all p  pf, but the vacuum 

state expands for p > pf, see [8-12].  

From the above discussion, it is clear that the discontinuous phase transition 

behavior, and more generally the 2PC behavior, of threshold model is qualitatively 

similar to that of Durrett’s model. However, because the autocatalytic creation rates are 
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generally higher in threshold model, all equistability values for p are much larger than in 

Durrett’s model. Finally, as noted in the introduction, trivial 2PC occurs for all p  pe as 

the vacuum state is stable against expansion of droplets of the active state. We relegate 

an analysis of droplet dynamics, including a comparison between threshold and Durrett’s 

model, to the Appendix A. 

 

3. Master Equations for Homogeneous and Inhomogeneous States 

Let x (o) denote a filled (empty) site on the square lattice, and let P’s denote the 

probabilities for various configurations of site clusters. For the general cases of spatially 

inhomogeneous states, the probability that a site is occupied or empty depends on its 

location. Thus, we let Ci,j = P[xi,j] denote the probability that the site (i, j) is occupied. 

Then, P[oi,j] (= 1 - P[xi,j] by conservation of probability) is the probability that site (i, j) 

is empty. Let P[xi,j xi,j+1] (P[oi, j oi,j+1]) denotes the probability that sites (i, j) and (i, j+1)  

are both occupied (empty). Also, P[xi,j oi,j+1] and P[oi,j xi,j+1] denote the probabilities of 

mixed occupied-empty pairs. Conservation of probability implies that P[xi,j oi,j+1] +     

P[xi,j xi,j+1] = P[xi,j], P[oi,j oi,j+1] + P[oi,j xi,j+1] = P[oi,j], etc. For spatially homogeneous 

case, these quantities do not depend on their locations, so P[xi,j] = P[x] = C, P[oi,j] = 

P[o] = 1-C, etc. 

The exact master equations for our reaction model can be written as a coupled 

hierarchy for the evolution of the probabilities for empty single sites, empty pairs, etc. 

[18]. (We choose empty rather than occupied configurations, although the opposite 

choice is also possible.) In these equations for empty configurations, all gain terms are 
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associated with spontaneous particle annihilation, and all loss terms are associated with 

autocatalytic particle creation. Then, in terms of probabilities for empty configurations, 

the exact master equations for the threshold model have the form 

    d/dt P[oi,j] = p·P[xi,j] – (P[oi,j]  – P          

      

    

      

          – P          

      

    

      

           

            – P          

      

    

      

          – P          

      

    

      

          – P          

      

    

      

          ). (1) 

One can also develop a similar equation for d/dt P[oi, j oi,j+1], and more complicated 

equations for the evolution of probabilities of larger configurations. 

In order to analyze the infinite hierarchy including (1), a truncation 

approximation is needed which takes the form of a suitable factorization approximation 

for deriving the loss terms in (1), e.g., P          

      

    

      

          in terms of probabilities 

for simpler quantities. The site and pair approximations described below constitute the 

most natural lowest order factorization procedures. Taking the quantity 

P          

      

    

      

           as an example, the Mean-field (or site) truncation neglects all 

spatial correlations, so this treatment applies the following approximation  

P          

      

    

      

           P[xi-1,j] P[oi,j-1] P[oi,j] P[oi+1,j] P[oi,j+1]. 
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The pair truncation attempts to account for correlation in the occupancy of the site (i,j) 

with its neighbors (and compensates for over-counting of this site), so this treatment 

applies the following approximation 

P          

      

    

      

            P[xi-1,j  oi,j] · P[oi,j-1  oi,j] · P[oi+1,j  oi,j] · P[oi,j-1  oi,j] / P[oi,j]
3
. 

Because of accounting for correlations in the occupancy of the neighboring sites, 

predictions of pair approximation are closer to the precise KMC simulation results than 

those of the MF approximation.  

 

3.1 Rate equations describing homogeneous states in the threshold model  

Analysis of homogeneous states, where the probability of a site being occupied 

are the same for all site (i,j), provide an understanding of the basic behavior of S2M or 

QCP models on a 2D lattice. One can set P[x] = C in the master equation (1), and use 

Mean-field and pair approximations for the loss terms. 

Mean-field approximation. Let P[x] = C, so P[o] =1- C. It follows from the 

master equation that 

dC/dt= –pC+(1–C)(C
2
)(6–8C+3C

2
).    (2) 

The steady state C satisfies p=(1–C)C(6–8C+3C
2
). The nonzero stable “active” state Cact 

has the following exact expression Cact =11/12 –(1/2)(1/4+q)
1/2

+(1/2)(1/2-

q+85/(108(1/4+q)
1/2

))
1/2

, where q=2
4/3

(-1+18p)/(9w)+w/(9(2)
1/3

), and w=(88+243p-

(3)
3/2

(288+1520p+3339p
2
-6912p

3
)
1/2

)
1/3

. We deduce that the spinodal point ps=0.815423. 

(ps is the root of 288+1520p+3339p
2
-6912p

3
=0.) For p≤ ps, Cact (>0) is a stable active 
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state and C=0 is a stable vacuum state. For p> ps the vacuum state C=0 is the only steady 

state, see Fig. 1(a).  

Pair approximation. The simplest MF analysis for homogeneous states gives us a 

general qualitative idea of the steady state behavior, but in order to achieve at least a 

semi-quantitative picture capturing spatial correlations in the autocatalytic creation 

terms, we can consider the pair approximations. Let ε=P[o] and =P[o o] be the 

probability of both nearest-neighbor empty pair are empty. For a spatially homogeneous 

state, these two quantities ε, satisfy the following evolution equations 

d/dt ε = p(1-ε)-(ε-)
2
(ε

2
+2ε+3

2
)/(ε

3
), 

d/dt  = 2p(ε-)-2(ε-)
2
(ε+2)/(ε

3
).    (3) 

Stationary solutions satfies ε= σ(1+2σ)/(1+2σ+3σ
2
-3σ

3
) and p=(1-σ)σ(1+2σ), where σ = 

/ε. It follows that ps(pair)=(10+7
3/2

)/54 (~0.528153) at σ = (1+7
1/2

)/6 (~0.607625), see 

Fig. 1(b). 

 

3.2 Discrete RDE for inhomogeneous states in the site approximation:  

For spatially inhomogeneous states, the equations of describing the evolution of 

the probabilities of single empty sites within the MF or site approximation have the form  

d/dtP[oi,j] = p·(P[xi,j]) – P[oi,j] ( 1 – P[oi-1,j] P[oi+1,j] P[oi,j-1] P[oi,j+1] – P[xi-1,j] P[oi+1,j] 

        P[oi,j-1] P[oi,j+1] – P[oi-1,j] P[xi+1,j] P[oi,j-1] P[oi,j+1] – P[oi-1,j] P[oi+1,j] P[xi,j-1] 

        P[oi,j+1] – P[oi-1,j] P[oi+1,j] P[oi,j-1] P[xi,j+1]).     (4) 

The detailed analysis of orientation-dependent equistability within this approximation is 

provided in section 4. We report that pe(MF)= 0.70284 and pf(MF)= 0.68468. 
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3.3 Discrete RDE for inhomogeneous states in the pair approximation:  

For spatially inhomogeneous states, the pair approximation produces a coupled 

set of equations for the probabilities of single empty sites, and for the horizontal pair 

probabilities P[oi-1,j oi,j] and vertical pair probabilities P[oi,j-1 oi,j]. These evolution 

equations have the following form 

d/dt P[oi,j] = p·(P[xi,j]) – P[oi,j] +( P[oi-1,j  oi,j] P[oi+1,j  oi,j] P[oi,j-1  oi,j] P[oi,j+1  oi,j] 

       + P[xi-1,j  oi,j] P[oi+1,j  oi,j] P[oi,j-1  oi,j] P[oi,j+1  oi,j]+ P[oi-1,j  oi,j] P[xi+1,j  oi,j] 

       P[oi,j-1  oi,j] P[oi,j+1  oi,j]+ P[oi-1,j  oi,j] P[oi+1,j  oi,j] P[xi,j-1  oi,j] P[oi,j+1  oi,j] 

       + P[oi-1,j  oi,j] P[oi+1,j  oi,j] P[oi,j-1  oi,j] P[xi,j+1  oi,j]) / (P[oi,j])
3
.   

d/dt P[oi-1,j  oi,j] = p· (P[oi-1,j  xi,j] +P[xi-1,j  oi,j]) – P[oi-1,j  oi,j] (1 –P[oi+1,j  oi,j] P[oi,j-1  oi,j] 

         P[oi,j+1  oi,j] – P[xi+1,j  oi,j] P[oi,j-1  oi,j] P[oi,j+1  oi,j] – P[oi+1,j  oi,j] P[xi,j-1  oi,j] 

         P[oi,j+1  oi,j] – P[oi+1,j  oi,j] P[oi,j-1  oi,j] P[xi,j+1  oi,j])/ (P[oi,j])
3
– P[oi-1,j  oi,j]  

 
        (1 –P[oi-2,j  oi-1,j] P[oi-1,j-1  oi-1,j] P[oi-1,j+1  oi-1,j] –P[xi-2,j  oi-1,j] P[oi-1,j-1  oi-1,j]  

          P[oi-1,j+1  oi-1,j]–P[oi-2,j  oi-1,j] P[xi-1,j-1  oi-1,j] P[oi-1,j+1  oi-1,j] – P[oi-2,j  oi-1,j] 

        P[oi-1,j-1  oi-1,j] P[xi-1,j+1  oi-1,j])/ (P[oi-1,j])
3
.   

d/dt P[oi,j-1  oi,j] = p· (P[oi,j-1  xi,j] +P[xi,j-1  oi,j]) – P[oi,j-1  oi,j] (1 –P[oi+1,j  oi,j] P[oi-1,j  oi,j] 

         P[oi,j+1  oi,j] – P[xi+1,j  oi,j] P[oi-1,j  oi,j] P[oi,j+1  oi,j] – P[oi+1,j  oi,j] P[xi-1,j  oi,j] 

         P[oi,j+1  oi,j] – P[oi+1,j  oi,j] P[oi-1,j  oi,j] P[xi,j+1  oi,j])/ (P[oi,j])
3
– P[oi,j-1  oi,j]  

 
        (1 –P[oi,j-2  oi,j-1] P[oi-1,j-1  oi,j-1] P[oi+1,j-1  oi,j-1] – P[xi,j-2  oi,j-1] P[oi-1,j-1  oi,j-1] 

        P[oi+1,j-1  oi,j-1]– P[oi,j-2  oi,j-1] P[xi-1,j-1  oi,j-1] P[oi+1,j-1  oi,j-1] – P[oi,j-2  oi,j-1] 

        P[oi-1,j-1  oi,j-1] P[xi+1,j-1  oi,j-1])/ (P[oi,j-1])
3
.    (5) 
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The analysis of orientation-dependent equistability within this pair approximation will 

be presented in section 4. We find that pe(pair)= 0.44253 and pf(pair)= 0.41872. 

 

4. Detailed Discrete RDE Analysis: Site and Pair Approximations 

We consider the evolution of planar interfaces separating the active and vacuum 

states with orientations such that site probabilities only depend on the combination 

m=ai+bj. Thus, a0 and b=0 corresponds to a vertical interface, etc. Below, interface 

orientation is labeled by (a b). Results presented below are obtained from numerical 

integration of the MF and Pair dRDE’s. The initial evolution data corresponds to a sharp 

interface with the active state Cm = Cact = [1+ (1-4p)
1/2

]/2 on the left m<m* and the 

vacuum state Cm = 0 on the right m>m*. The mean interface location during subsequent 

motion is determined by the center of mass, <m> = m Cm/Cact for a large finite system 

about 1000 sites. The asymptotic interface velocity, V(p) = d/dt <m>, for large t is 

determine by integrating the dRDE’s up to time t  410
4
. Note that V(p) < 0 

corresponds to the vacuum state displacing the active state for larger p < ps.  

Our focus is on determining stationarity and propagation failure by assessing 

variation of V(p) versus p. Since these features correspond to time-independent steady-

states of the dRDE’s, one could anticipate that direct analysis is possible without 

consideration of interface evolution. This can be achieved using iterated map techniques 

described in Appendix B. Results are consistent with those from numerical integration in 

time of the dRDE. 
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The inhomogenuous analysis allows us to assess the concentration profiles across 

the interfaces and equistability or propagation failure features of interface propagation as 

a function of orientation. Next, we will analyze three special orientations: diagonal, 

vertical, and near-vertical. 

 

4.1. dRDE: mean-field results  

Diagonal (11) interface. Here the probability P[xi, j] are the same for the site (i,j) 

located on diagonal lines with i+j constant. Thus, we set Cm=Ci+j= P[xi, j], and from (4) it 

follows that 

d/dt Cm= -pCm+(1-Cm)[1-(1-Cm-1)(1-Cm+1)(1+Cm+1+Cm-1-3Cm+1Cm-1)]. (6) 

From numerical integration of (6) with initial data Cm=Cact, for m < m*, and Cm=0, for m 

> m*, we find that peq(11, MF)= 0.70284. Additional analysis below reveals that this 

value constitutes the maximum of peq for all orientations. 

Vertical(10) interface. Here the P[xi, j] only depend on i. Thus, we set Cm=Ci=   

P[xi, j], and then Cm satisfies  

d/dt Cm= -pCm+(1-Cm)[1-2(1-Cm-1)(1-Cm+1)(1-Cm)Cm-(1-Cm)
2
(1-Cm+1Cm-1)].(7) 

Analysis of these equations yields peq(10, MF)= 0.69131. Propagation failure occurs for 

this vertical orientation for p<peq(10, MF) due to the impossibility of particle creation at 

the vertical boundary of the vacuum state (i.e., the vertical interface is stationary in this 

regime). However, for p>peq(10, MF), the vacuum states expands displacing the active 

state. In order to remove this trivial propagation failure in vertical orientation, we can 
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mis-orient the interface slightly so that P[xi, j] = CSi+j with large S depends only on Si+j. 

This orientation tends towards vertical as S -> ∞, so we describe it as “near vertical”. 

Near vertical interface. Adding a small amount of misorientation to a vertical 

interface, now allows particle creation on the boundary of vaccuum state. Let Cm = CSi+j 

= P[xi, j] for some large integer S, so then Cm satisfies  

d/dt Cm= -pCm+(1-Cm)[1-(1-Cm-1)(1-Cm+1)(1-Cm-S)(1-Cm+S) -Cm-1(1-Cm+1)(1-Cm-S) 

  (1- Cm+S)-(1-Cm-1)Cm+1(1-Cm-S)(1-Cm+S)-(1-Cm-1)(1-Cm+1)Cm-S(1-Cm+S)- 

  (1-Cm-1)(1-Cm+1)(1-Cm-S)Cm+S].     (8) 

Numerical analysis reveals that as S, one has peq(near-vert, MF)=0.68468, see Table 

1. This value corresponds to the minimum of peq for all orientations. 

 

4.2. dRDE: pair results 

In the higher-order pair approximation, one accounts for spatial correlations by 

factorizing probabilities larger configurations of clusters of sites in terms of pairs 

(compensating for over-counting of some sites. Below we analyze special cases of the 

corresponding dRDE. 

Diagonal interface. Let εm=1-Cm=1-Ci+j =1-P[xi,j]=P[oi,j] and m+1/2  is the 

probability of a nearest-neighbor empty pair with one site in plane m and the other in 

plane m+1. Notice that, for diagonal interface, m+1/2 = (2i+2j+1)/2 =  horizontal pairs     

P[oi,j oi+1,j] = vertical pairs P[oi,j oi,j+1].  From (5),  εm and m+1/2 satisfy the following 

equations  

d/dt εm= p(1-εm)-[((εm-m+1/2)
2
+(εm-m-1/2)

2
)(εm)

2
+(εm-m+1/2)(εm-m-1/2) 
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(4m+1/2m-1/2-(εm-m+1/2)(εm-m-1/2))] /(εm)
3
, 

d/dt m-1/2 = p(εm-1+εm-2m-1/2)-m-1/2((εm-m+1/2)
2
εm+2m+1/2(εm-m+1/2)

 

                         
(εm-m-1/2))/(εm)

3
-m-1/2((εm-1-m-3/2)

2
εm-1+2m-3/2(εm-1-m-3/2)  

         (εm-1-m-1/2))/(m-1)
3
.      (9) 

Analysis of these equations yields peq(11, pair)=0.442525. 

Vertical interface. Let εm=1-Cm=1-Ci =1-P[xi,j]=P[oi,j], ψm be the probability of a 

empty pair with both sites in the plane i+j= m, and m+1/2  be the probability of a nearest-

neighbor empty pair with one site in the plane i+j =m and the other in the plane i+j 

=m+1. Then εm , ψm, and m+1/2 satisfy the equations: 

d/dt εm= p(1-εm)-((εm)
4
-(ψm)

2
m-1/2m+1/2-2(εm-ψm) ψm m-1/2m+1/2-(ψm)

2
 

(εm-m-1/2)m+1/2- (ψm)
2
m-1/2(εm-m+1/2))/(εm)

3
; 

d/dt ψm=2p(εm-ψm)-2ψm(εm-m-1/2)(εm-m+1/2)/(εm)
2
-2ψm(εm-ψm)(εm(m-1/2+m+1/2) 

-2m-1/2m+1/2)/(εm)
3
; 

d/dt m-1/2= p(εm-1+εm-2m-1/2)-m-1/2(εm-ψm)((εm-ψm)
2
+2ψm(εm-m+1/2))/(εm)

3 

         -m-1/2(εm-1-ψm-1)((εm-1-ψm-1)
2
+2ψm-1(εm-1-m-3/2))/(εm-1)

3
;  (10) 

Analysis of these equations yields peq(10, pair)=0.421254.  

Near vertical interface. We let εm=1-Cm=1-Ci =1-P[xi,j]=P[oi,j], m+1/2 be the 

probability of a nearest-neighbor empty pair with one site in the plane m and the other in 

the plane m+1, and m+S/2  is the probability of a nearest-neighbor empty pair with one 

site in the plane m and the other in plane the m+S. We report these particularly 
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complicated equations in Appendix C. Numerical analysis reveals that as S, one 

obtains peq(near-vert, pair)= 0.418723, see Table 2.  

 

5. dRDE Predictions Versus Precise Stochastic Model Behavior (from KMC) 

Mean-field type treatments of stochastic lattice-gas models with discontinuous 

transitions are expected to predict bistability, and furthermore will also produce generic 

2PC as illustrated by the above analyses. For a comparison between MF-type dRDE 

predictions and stochastic reaction model behavior, it is instructive to focus on 

equistability for the principal diagonal and vertical orientations and a near-vertical 

orientation. 

For a diagonal (11) interface, there is no propagation failure for the MF-type 

dRDE, so the predicted stationary peq(11) corresponds to that in the stochastic model. A 

large discrepancy occurs at the MF level where peq(11, MF)= 0.70284 (as expected), but 

there is much better (although still not quantitative) agreement between peq(11, pair)  

0.44253 and peq(11, KMC)  0.3518. 

For a vertical (10) interface, propagation failure is expected for p below some 

critical value as the active state cannot displace the vacuum state. This feature applies to 

both the stochastic model and to various dRDE’s. However, we claim that peq(10) from 

the MF or pair approximation does not correspond to the peq(10, KMC) since these MF 

type formulations “artificially extend” the propagation failure regime. The stochastic 

models always produce a roughened (10) interface with steps, a feature not reflected in 

MF analysis of a perfectly vertical interface in MF analysis. Thus, peq for stationarity of 
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a slightly misoriented interface better reflects the peq(10, KMC). Specifically, we 

identify peq(near-vert) from MF or pair approximations, which corresponds to 

stationarity of a (10) interface with rare diagonal steps, to compare with the peq(10, 

KMC). A large discrepancy occurs between these quantities at the MF level where 

peq(near-vert, MF)=0.68468 (as expected), but there is much better (although still not 

quantitative)  agreement between peq(near-vert, pair) 0.41872 and peq(10, KMC) 

0.316. We show an appropriate schematic summary in Fig. 1. 

In the above analysis, absolute values of various equistabilty points are 

dramatically shifted from KMC values at the lowest MF level, and still significantly 

shifted at the pair level. However, it is instructive to also compare KMC versus MF type 

predictions for differences between these points, as these describe the width of the 2PC 

regime which is of particular interest. For a precise estimate of the width of the 2PC 

regime, we consider KMC values for peq(2PC width) = peq(11) - peq(10). Furthermore, 

rather than just comparing KMC and MF type predictions for absolute values of the 2PC 

width, it is also natural to compare rescaled values (where one for example rescales by 

pe). See Table 3 for a summary of these comparisons. For the threshold model, the pair 

approximation estimates improve those of the simplest MF approximation. Given the 

subtle nature of the orientation-dependence of interface propagation, we regard the pair 

approximation is being quite effective reflecting behavior in the stochastic model. 

Finally, it is instructive to consider the extent of artificial propagation failure 

(APF) for vertical interfaces occurring in the MF type treatments as measured by 
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papf(10) = peq(10) - peq(10D). This difference decreases from papf(10) = 0.0066 for the 

MF treatment to papf(10) = 0.0025 for the higher-order pair treatment.  

 

6. Conclusions 

Our stochastic lattice-gas realization of a threshold version of Schloegl’s second 

model for autocatalysis on a square lattice exhibits generic 2PC associated with an 

orientation dependence of the stationary point for planar interfaces separating coexisting 

active and vacuum states.  We have demonstrated that dRDE associated with MF 

approximations to the master equations for spatially non-uniform states of the reaction 

model are effective in capturing and elucidating this behavior. The higher-order pair 

approximation exhibits improved predictive capability.  

One subtlety in making this comparison is that MF-type dRDE analysis reveals 

artificial propagation failure (APF) for vertical interfaces. MF dRDE analysis for near-

vertical interfaces shows that peq(near-vert) lies strictly below peq(vert) for an exactly 

vertical interface. We claim that peq(near-vert) which corresponds to pf(KMC) as the 

presence of kinks on the near-vertical interface is needed to mimic a vertical interface in 

KMC simulations where kinks are formed spontaneously. Diagonal interfaces exhibit no 

propagation failure in MF type treatments, and peq(diag) corresponds to pe(KMC). 

Previous limited analysis of the threshold version of the S2M or QCP [14] did 

not report orientation dependence or 2PC, rather incorrectly claiming that there was a 

unique equistability point. This study also claimed a lack of metastability for the model, 

in contrast to our expectations.  
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It is appropriate to comment on whether the phenomenology and dRDE 

methodology discussed here apply for broader classes of reaction models. Threshold 

modification of QCP and Schloegl’s second model reveals analogous behavior to 

Durrett’s model square lattice [9, 19]. We expect other modifications also reveal similar 

behavior.  

 

Appendix A: Droplet Dynamics in the Threshold and Durrett Models 

Stability of a state in a system with two states is usually taken to mean that 

embedded droplets of the other phase will always shrink. In contrast, a droplet of the 

more stable phase embedded in the less stable phase will grow provided it exceeds a 

critical size. For the models described here, the active state is more stable than vacuum 

state for small p. (However, a quirk is that trivial 2PC occurs for all p  pe as the vacuum 

state is stable against expansion of droplets of the active state.) The vacuum state is more 

stable than active state for large p.  

Specifically, here we consider the situation for p larger than pe where a vacuum 

droplet embedded in active state will shrink for small initial area, and grow for large 

initial area. There is a critical vacuum droplet that remains unchanged in the active state.  

Let Rc(p) be the critical radius of vacuum droplet embedded in active state, and 

the radius is defined as R=(A/π)
1/2

, where A is the area of vacuum droplet. For p well 

above pe (but still below ps), the vacuum state is much more stable than the active state 

and the vacuum droplet grows easily, therefore the critical droplet is small. When p is 

closer to pe, the vacuum droplet shrinks easily, so the corresponding critical droplet must 
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be very big. We have analyzed the asymptotic divergence of Rc(p) as p→pe+ by 

assessing the relation between 1/Rc and p1, where p1=(p–pe)/pe is the rescaled p value. 

See Fig. 3.   

 

Appendix B: Iterated Map for MF Treatment of Stationary Interfaces 

The time-independent discrete RDE describing stationary planar interfaces can 

be converted to an iterated map for [um, vm] = [Cm-1, Cm] of the form  

um+1 = vm and vm+1 = F(um, vm, p).  

The uniform active and vacuum steady-states correspond to fixed points of the map, 

[u,v] = [Cact(p), Cact(p)], with Cact(p)= (1+(1-4p)
1/2

)/2, and [u,v] = [0,0], respectively. 

Except for a vertical interface, the stationary concentration profiles smoothly approach 

the active and vacuum state away from the interface. Correspondingly, orbits of the 

above map smoothly connect the fixed points, while remaining within the physical 

domain 0 u, v 1. The orbit goes through the active fixed point and intersects physical 

domain boundary for ppeq(10), tangentially for p=peq(10). 

To generate these orbits, we choose an initial point [u1, v1] = [Cact + , Cact + ] 

for small , where the exact value of  can be determined by stationary evolution 

equation (and describes the asymptotic form of the interface).  Then, we iterate the map 

for a selected value of p, and determine whether the orbit has the desired form. For 

example, in the case of a diagonal interface, if one chooses p<peq(11), the orbit exits the 

physical domain (see Fig. 4a). At the unique value of p=peq(11), the orbit will smoothly 
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approach [0,0] (see Fig. 4b). For p>peq(11), the orbit remains within this domain (see 

Fig. 4c). The vertical interface, we show the orbit for p<peq(10) in Fig. 5a; p=peq(10) in 

Fig. 5b; p>peq(10) in Fig. 5c. 

To provide one example of the function F(um, vm, p), we consider a vertical 

interface. If we let (um, vm) = (Cm, Cm+1) in (7), then the stationary states um, vm, vm+1 

satisfy the equation 

0= -pvm+ (1-vm)[1-2(1-um)(1-vm+1)(1-vm)vm-(1-vm)
2
(1-vm+1um)]. 

So we can rewrite the term vm+1 as a function of the quantities (um, vm, p), that is, 

  vm+1=F(um, vm, p)= (1+vm-2umvm-1/(1-vm)+pvm/(1-vm)
2
)/(um+2vm-3umvm). 

 

Appendix C: dRDE for Near-Vertical Planar Interfaces in the Pair Approximation 

For a pair approximation treatment of near-vertical interface orientation, we let 

εm=1-Cm=1-Ci =1- P[xi,j]=P[oi,j], m+1/2  is the probability of a nearest-neighbor empty 

pair with one site in plane m and the other in plane m+1, and m+S/2  is the probability of 

a nearest-neighbor empty pair with one site in plane m and the other in plane m+S. Then, 

one has that 

d/dt εm= p(1-εm)-((εm)
4
-m+1/2m-1/2m+S/2m-S/2-(εm-m+1/2)m-1/2m+S/2m-S/2 

              -m+1/2(εm-m-1/2)m+S/2m-S/2-m+1/2m-1/2(εm-m+S/2)m-S/2-m+1/2m-1/2m+S/2 

   (εm-m-S/2))/(εm)
3
; 

d/dt m-1/2= p(εm-1+εm-2m-1/2)-m-1/2((εm-m+1/2)(εm-m-S/2)(εm-m+S/2)+m+1/2  

                  (εm-m-S/2) (εm-m+S/2)+(εm-m+1/2)m-S/2(εm-m+S/2)+(εm-m+1/2)  
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                  (εm-m-S/2)m+S/2)/(εm)
3
-m-1/2 ((εm-1-m-3/2)(εm-1-m-1+S/2)(εm-1-m-1-S/2)+  

                  m-3/2(εm-1-m-1+S/2)(εm-1-m-1-S/2)+ (εm-1-m-3/2)m-1+S/2(εm-1-m-1-S/2)+(εm-1- 

       m-3/2)(εm-1-m-1+S/2) m-1-S/2)/(εm-1)
3
; 

d/dt m-S/2= p(εm-S+εm-2m-S/2)-m-S/2((εm-m+S/2)(εm-m-1/2)(εm-m+1/2)+m+S/2 

                  (εm-m-1/2)(εm-m+1/2)+(εm-m+S/2)m-1/2(εm-m+1/2)+(εm-m+S/2)  

                  (εm-m-1/2)m+1/2)/(εm)
3
-m-S/2((εm-S-m-3S/2)(εm-S-m-S+1/2)(εm-S-m-S-1/2)+  

                  m-3S/2(εm-S-m-S+1/2)(εm-S-m-S-1/2)+ (εm-S-m-3S/2)m-S+1/2(εm-S-m-S-1/2)+ 

                  (εm-S-m-3S/2)(εm-S-m-S+1/2)m-S-1/2)/(εm-S)
3
; 

Numerical analysis of these equations yields peq(near-vert, pair)=0.418723. 
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Figures 

 

 

Fig.1. The steady states C versus the annihilation rate p. The dashed curve is the curve of 

the unstable solution; the solid curve is the stable active steady state Cact(p) of the master 

equation for (a) MF (b) pair approximations. 
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Fig.2. Schematic summary of MF dRDE, pair dRDE, and KMC results for propagation 

velocity, V(p), versus particle annihilation rate, p, of planar interfaces separating the 

active and vacuum states for various orientations. 

 

 

Fig.3. Schematic 1/Rc  behavior of MF and pair results in threshold and Durrett’s 

models as p1→0.  
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(a) p=0.65 (b) p=0.7028434 (c) p=0.75 

Fig.4. Orbits of the iterated map associated with the MF dRDE for a diagonal interface 

with: (a) p = 0.65 < peq(11)  0.70284; (b) p = peq(11); (c) p =0.75 > peq(11). 

 

   

(a) p=0.65 (b) p=0.6913078 (c) p=0.75 

Fig.5. Orbits of the iterated map associated with the MF dRDE for a vertical interface 

with: (a p) = 0.65 < peq(10)  0.69131; (b) p = peq(10); (c) p =0.75 > peq(10).  

 

Tables 

Table 1. The equistability value peq of MF approximation for the orientation 64i+j, 

256i+j, and 1024i+j. 
S= 64 256 1024 

peq(MF, Si+j)= 0.6846768 0.6846768 0.6846768 

 

Table 2. The equistability value peq of pair approximation for the orientation 64i+j, 

256i+j, and 1024i+j. 
S= 64 256 1024 

u 

v 

u 

v 

u 

v 

vacuum 

active 

vacuum 

active 

u 

v 

u 

v 

u 

v 

vacuum 

active 

vacuum 

active 

active 

vacuum 

vacuum 
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peq(pair, Si+j)= 0.418723 0.418723 0.418723 

 

Table 3. Differences in stationary values for p for various interface orientations. 
Treatment Threshold 

MF 

Threshold 

Pair 

Threshold 

KMC 

 Durrett 

MF 

Durrett 

Pair 

Durrett 

KMC 

peq(2PC width) 0.0182 0.0238 0.0358  0.0063 0.0027 0.0073 

peq(2PC width) /pe 0.0259 0.0538 0.1018  0.0298 0.0249 0.0773 
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1. Introduction 

Stochastic lattice-gas reaction and reaction-diffusion models prescribe kinetic 

rules and rates for the annihilation, creation, and possibly hopping of diffusion of various 

species located at the sites of a periodic lattice [1]. The non-equilibrium steady states in 

these systems display phase transitions analogous to those in thermodynamic systems [1, 

2]. A candidate for non-equilibrium discontinuous transitions is Schloegl’s second model 

(S2M) for autocatalysis [3-13] (which also corresponds to a so-called quadratic contact 

process or QCP) on a square or cubic lattice. The simplest version of the model involves 

just: (i) spontaneous annihilation of particles at occupied sites, X, at rate p; and (ii) 

autocatalytic creation of particles at vacant sites, , induced by nearby particles [7,8-

12]. These reaction steps can be represented schematically as: X  (spontaneous 

annihilation @ rate p) and +2X3X (autocatalytic creation). More general versions of 
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the model can include: (iii) spontaneous creation of particles at rate k; and (iv) diffusive 

hopping of particles to adjacent empty sites at rate h (per direction). These steps can be 

represented as:   X (spontaneous creation @ rate k) and +XX+ (hopping @ 

rate h). 

Mean-field (MF) analysis of the S2M or QCP suggests the existence of a 

discontinuous transition as p increases through some equistability peq from an active 

state with particle concentration C>0 for smaller p to an inactive state with small C (or 

C=0 for k=0) for larger p. However, Kinetic Monte Carlo (KMC) analysis of 

Grassberger’s version of S2M found only a continuous transition for 2D and 3D lattices 

[4]. In contrast, analysis of basic QCP version on a square lattice excluding (iii) 

spontaneous creation  and (iv) hopping revealed a non-trivial generic two-phase 

coexistence (2PC) wherein the stable populated and inactive phases coexist for a finite 

range of annihilation rate, p [8-12]. The non-trivial 2PC derives from an orientation-

dependence of p=peq for a stationary planar interface separating the two phases. This 

behavior contrasts phase coexistence in an equilibrium Hamiltonian system where planar 

interface separating phases is stationary at a unique point corresponding to equality of 

chemical potentials. One quirk of basic QCP type models [excluding mechanisms (iii) 

and (iv)] on a square or cubic lattice is that the active state can never displace the 

inactive vacuum state separated from it by a vertical interface. “Perturbing” the basic 

model to include spontaneous particle creation (iii) or particle hopping (iv) removes this 

quirk.  
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Our goal here is to analyze generic 2PC associated with the discontinuous 

transition in the perturbed model with either autocatalytic creation at a small rate k<<1 

or hopping at a small rate h<<1. This will be done just at the level of the simplest MF 

approximation. In Sec.2, we give a detailed description of our stochastic gas-realization 

of Schloegl’s second model on a square lattice, and present the exact master equations 

for spatially homogeneous states. In Sec.3, we use MF truncation analyses for spatially 

heterogeneous states to develop orientation-dependent discrete reaction-diffusion 

equation (dRDE). The interpretation of propagation failure and the asymptote behavior 

of the interface velocity are in Sec.4. The stability of states analysis is described in 

Sec.5. Further discussion and conclusions are provided in Sec.6. 

 

2. Model Prescription and Mean-Field Analysis for Homogeneous States 

Our Schloegl’s second model in the square lattice involves: (i) a spontaneous 

annihilation rate p; (ii) an autocatalytic creation of particles at empty sites at rate r/4, 

where r is the number of diagonal pairs of particles on neighboring sites; and either (iii) 

spontaneous creation small rate k at empty sites [8, 14], or (iv) hopping to neighboring 

empty sites at small rate h [10, 11]. A schematic of these steps is shown in Fig. 1. 

Previous studies of this Schloegl’s second model for h=k=0 [15, 16] found a non-

trivial generic two phase coexistence (2PC) wherein stable active and inactive vacuum 

states coexist for a finite range pf  p  pe.. This range is spanned by the orientation-

dependent “equistability” values p = peq for stationary planar interfaces separating these 

states. The max peq (defined as pe) corresponds to a diagonal interface, and min peq 
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(defined as ps) corresponds to a near-vertical interface. For a general (non-vertical) 

orientation, when 0  p < peq, the active state displaces the poisoned state. For peq < p < 

pe, the poisoned state displaces the active state. For pe < p < ps, the poisoned state 

transiently displaces the metastable active state until the latter spontaneously converts to 

the poisoned.  

For the exactly vertical interface when h=k=0, the active state can never 

propagate into the inactive vacuum state (empty sites in this poisoned state have at most 

one occupied neighbor). The trivial 2PC occurs for all p  pe as the vacuum state is 

stable against expansion of droplets of the active state. By adding “perturbations” of 

spontaneous creation k>0 or hopping h>0, particles can now be formed at the vertical 

boundary of the inactive state (which is no longer a vacuum state for k>0). Thus, we 

might expect that the region of propagation failure where a vertical interface is stationary 

when h=k=0 is completely removed (as the active state can now displace the inactive 

state). However, the analysis below shows that it is not completely removed but just 

becomes narrower.  

Let x(o) denote a filled (empty) site, and let P’s denote probabilities of various 

configurations of such sites. For spatially homogeneous states, we define the particle 

concentration, C=P[x], as the mean probability that a site is occupied, so P[o] = 1-C. 

Then, for spatially homogeneous states, the lowest-order equations in the exact master 

equations have the form: 

with hopping: d/dtP[o] = p·P[x] – ¼ ( P    
  

   + P   
  
 

   + P   
  

 
   + 
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          P    
  

  ) + (– h·P[o x]+ other hopping terms), (1) 

with spontaneous creation: d/dtP[o] = p·P[x] – ¼ ( P    
  

   + P   
  
 

   +  

             P   
  

 
   +P    

  
  ) – k·P[o].   (2) 

The first gain terms in (1) and (2) correspond to spontaneous the particle annihilation 

producing desired empty configurations. The second loss terms correspond to 

autocatalytic particle creation destroying the empty configurations under consideration, 

and involve summing contributions over various relevant configurations multiplied by 

the appropriate rates. The last term corresponds to the hopping or spontaneous particle 

creation perturbations. 

 

2.1 Mean-field type equations with hopping h. 

The simplest mean-field (MF) approximation ignores all spatial correlations in 

occupancy of different sites and thus factors multi-site probabilities in terms of P[x] and 

P[o]. Applying factorization directly to the exact equation (1), and noting that d/dtP[o] = 

–dC/dt yields the MF kinetic equation 

 d/dtC = – p·C + (1-C)C
2
. 

This homogeneous equation is independent of h and exactly the same with the 

previous analysis of the model without adding the perturbation terms. We find that there 

is a stable active state Cact = [1+(1-4p)
1/2

]/2 for p<ps and a vacuum state C=0, where ps= 

0.25 is the spinodal point. 
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2.2 Mean-field type equations with spontaneous creation rate k 

Using the same Mean-Field approximation as in 2.1, the master equation (2) 

yields the following equation  

d/dtC =  – p·C + k·(1-C) + (1-C)C
2
. 

In the model including small spontaneous creation rate k, the vacuum state C=0 

is not a steady state, instead there exists a nonzero low-concentration stable “inactive” 

steady-state C ~ k/(p+k) for p≥ps−, where ps−  is a spinodal point. Also another stable 

high-concentration active steady state Cact>0 exists for p≤ ps+, where ps+ is the other 

spinodal point.  

  More specifically, for k in [0, 1/27), there are two spinodal points ps− and ps+, 

where 0< ps− < ps+ <1. If p< ps−, there is only one active steady state; ps−≤p≤ ps+, there 

are two stable states; p> ps+, there is only one low-concentration steady state, see Fig. 2 

(a) for k=0.001 and (b) for k=0.01. For k ≥1/27, there is only one stable state for all p, 

e.g. k=0.05 in Fig. 2(c). The bistability of stationary states disappears in the model with 

higher spontaneous creation rate k>1/27. 

 

3. Inhomogeneous States: Hierarchical Equations and Discrete Reaction-Diffusion 

Equations (dRDE) Analysis 

The homogeneous master equation and the associated MF analysis provide basic 

insight into the behavior of the S2M or QCP models. However, considerable additional 

insight comes from consideration of spatially inhomogeneous states including planar 
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interfaces separating the active and inactive states. The lowest-order equations in the 

exact master equations for these states have the form 

with hopping: d/dtP[oi,j] = p·P[xi,j] – ¼(P 
      

          
  + P 

          

      
  +  

    P 
          

      
  + P 

      

          
 ) + (– h·P[oi,j xi+1,j] +  

   h·P[xi,j oi+1,j]+ other hopping terms),  

with spontaneous creation: d/dtP[oi,j] = p·P[xi,j] – k·P[oi,j] – ¼(P 
      

          
  +  

     P 
          

      
  +P 

          

      
  + P 

      

          
 )  

In order to analyze the above infinite hierarchy, a truncation approximation is 

needed which takes the form of a suitable factorization approximation for deriving the 

terms of multiple sites, e.g., P  
      

          
   in terms of probabilities for simpler 

quantities. The mean-field (or site) approximations described below constitute the most 

natural lowest order factorization procedures. Taking the quantity P 
      

          
   as 

an example, the MF truncation neglects all spatial correlations, so this treatment applies 

the following approximation  

P   
      

          
   P[oi,j] P[xi+1,j] P[xi,j+1]. 

A MF-type treatment of these equations can provide qualitative insight into the 

basic behavior of their solutions. It is a suitable candidate to catch the site dependent 
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model. For spatially inhomogeneous states, these MF equations for single empty sites 

have the following form: 

with hopping h:  d/dtP[oi,j] = p·P[xi,j] – ¼ P[oi,j] (P[xi-1,j] +P[xi+1,j])(P[xi,j-1] +P[xi,j+1] )  

             +h· P[xi,j](P[oi-1,j] + P[oi+1,j] + P[oi,j-1] + P[oi,j+1] )  

              –  h· P[oi,j] (P[xi-1,j] +P[xi+1,j] + P[xi,j-1] + P[xi,j+1] ), (3) 

with spontaneous creation k:   d/dtP[oi,j] = p·P[xi,j] – k·P[oi,j]– ¼ P[oi,j] (P[xi-1,j]  

         +P[xi+1,j]) (P[xi,j-1] +P[xi,j+1]).   (4) 

This MF approximation applied to assess equistability of planar interfaces reveals an 

orientation dependence of the value of the annihilation rate p=peq corresponding to a 

stationary planar interface separating the two states. The upper bound of peq corresponds 

to the diagonal orientation, and we might expect the lower bound of peq corresponds to 

the near vertical interface. 

  We now present results from numerical integration of the dRDE’s for evolution 

of planar interfaces between two steady states. The initial data are chosen as a sharp 

interface between the active state Cm = Cact for m<m*, and the inactive state Cm=Cinact 

=0 in hopping model; Cm = Cinact ~k/(p+k) in the model with spontaneous creation) for 

mm*. The interface location is determined from <m> = m Cm/(Cact+Cinact) for a 1000 

sites system. The interface velocity, V(p) = d/dt <m>, is determined for long times t  

410
4
. Our focus is on assessing variation of V(p) with p to determine stationarity and 

propagation failure. 

 

3.1. Mean-field dRDE with hopping rate h >0 
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Diagonal(11) interface. Assume the probability P[xi,j] are the same for the site 

(i,j) located on the same diagonal line i+j=constant. We let Cm=Ci+j= P[xi, j], from (3) it 

follows that  

d/dt Cm= -pCm+¼ (1-Cm)(Cm-1+Cm+1)
2
+2h(Cm-1+Cm+1-2Cm). 

Taking h=0.01 as an example, peq(11)= 0.21273 (versus peq(11)=0.21138 for h=0). 

Vertical(10) interface. Assume the P[xi,j] only deponds on i. We let Cm=Ci = 

P[xi,j], then Cm satisfies  

d/dt Cm= -pCm+½ (1-Cm)Cm(Cm-1+Cm+1)+h(Cm-1+Cm+1-2Cm). 

The propagation failure occurs over a finite range of p, i.e., the interface separating 

active and inactive states is stationary. When h=0.01, the “artificial” propagation failure 

region (APF) is [0.20708, 0.20972]. If we misorientate the interface a slighly away from 

vertical, then propagation failure disappears. 

Near vertical interface. We set Cm=CSi+j=P[xi,j] for large S, so then Cm satisfies  

d/dt Cm=  -pCm+ ¼ (1-Cm) (Cm-S + Cm+S)( Cm-1 + Cm+1 ) 

         + h(Cm-S + Cm+S + Cm-1 + Cm+1 -4Cm ) 

When h=0.01, peq(near-vert)= 0.209034. The summary of these various stationary values 

of p for h=0.01 is given in Fig. 3 (a). 

   

3.2. Mean-field dRDE with spontaneous creation rate k  

Diagonal(11) interface. Let Cm=Ci+j= P[xi, j], the corresponding dRDE is 

d/dt Cm= -pCm+ k(1-Cm)+¼ (1-Cm)(Cm-1+Cm+1)
2
. 

peq(diag, k=0.001)= 0.214100. 
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 Vertical(10) interface. Cm=Ci= P[xi, j], and Cm satisfies  

d/dt Cm= -pCm+ k(1-Cm)+ ½ (1-Cm)Cm(Cm-1+Cm+1) 

peq(vert, k=0.001)= 0.206062-0.210363. The APF still occurs for 0<k<1/27. 

Near vertical interface. We set Cm=CSi+j=P[xi,j] for large S, so then Cm satisfies  

d/dt Cm=  -pCm+ k(1-Cm)+ ¼ (1-Cm) (Cm-S + Cm+S)(Cm-1 + Cm+1 ) 

peq(near-vert, k=0.001)= 0.208932. The summary of these various stationary p values for 

k=0.001 is given in Fig. 3 (b). 

 For a perturbation of the standard QCP model introducing h(k) is small, APF 

occurs for interfaces between active and inactive states with a vertical orientation. 

However, increasing h(k), the width of the region of propagation failure is greatly 

reduced. Next, we explore in more detail APF with for very small perturbations.  

 

4. Asymptotic Behavior of Artificial Propagation Failure (APF) for Small k and h 

Introducing perturbations to the basic QCP removes extreme propagation failure 

for vertical interfaces where the active state can never displace the inactive state for the 

entire range 0 < p < 0.207107. Now for a perfect vertical interface with small 

annihilation rate p, the active state does displaces to the other state, so the corresponding 

interface velocity is positive. There is still artificial propagation failure but the width of 

the APF regime is smaller than 0.207107 (the width in the h=k=0 model).  

As h (or k) → 0, the corresponding APF does not tend to h=k=0 behavior, but 

converges to a fixed finite interval. Defining Peq(10)
−   

(Peq(10)
+ 

) as the lower (upper) 

bound of APF, we found that Peq(10)
−
 → 0.19613, and Peq(10)

+
 → 0.20711, so that the 
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width of APF → 0.011, as h (or k) →0. See Table 1. Further, we report that the 

asymptotic behavior of the APF width as h (k) →0 satisfies 

log(APF width) =  －4.513－13√h (or －4.513－23√k).  (5) 

See Fig. 4. 

 For p< Peq(10)
−
, the active state is more stable than and displaces the inactive 

state, the wave speed is roughly proportional to Peq(10)
−
−p. Fig. 5.  We assume the 

interface velocity V(p,h) is separable, that is V(p,h) = V(0,h) [1−p/Peq(10)
−
], where 

V(0,h)  is a nonlinear function of h. Numerical analysis indicates that V(0,h)= 0.515 

/|log(h)|
1.06

, Fig. 6(a). Similarly, for the model with spontaneous creation rate k, V(p,k)= 

V(0,k) [1- p/Peq(10)
−
], where V(0,k)= 1.95 /|log(k)|

1.34
. See Fig. 6(b).Therefore, as h (k) 

→0, we can write 

V(p,h) = 0.515 * [1
 —  

p/Peq(10)
−
] /|log(h)|

1.06
, 

V(p,k) = 1.95 * [1
 —  

p/Peq(10)
−
] /|log(k)|

1.34
. 

  

5. Droplet Dynamics in the Perturbed Models 

 The inactive state is more stable than the active state p>pe. Thus a sufficiently 

large droplet of the inactive state embedded in the active state will always grow. More 

precisely, an inactive droplet embedded in active state will shrink for small initial area, 

but grow for sufficiently large size. There is a critical size such that the droplet remains 

the same (i.e., is stationary).  

Let Rc(p) be the critical radius of inactive droplet embedded in active state, and 

the radius is defined as R=(A/π)
1/2

, where A is the area of the droplet. For large p, the 
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inactive droplet grows easily for most sizes of droplet, and therefore the critical droplet 

must be small. When p is close to pe+, the inactive droplet shrinks more easily, so the 

corresponding critical droplet must be very big. So by letting p1=(p–pe)/pe, 1/Rc(p1) → 0 

as p1→ 0
+
.  Fig. 7.   

 2PC occurs in the region  pf <p<pe. For small p, the active state is more stable 

than the inactive state. Without perturbations to the QCP, trivial 2PC occurs for all p  pe 

as the inactive vacuum state is stable against expansion of droplets of the active state. 

For the QCP with hopping h or spontaneous creation k, the trivial 2PC disappears, and 

the artificial propagation failure (APF) regime shrinks to a smaller region.  For active 

droplets for p below this APF regime, sufficiently large active droplets can expand. Here 

we just show behavior for the critical radius of these active droplets plotting 1/Rc versus 

p for the two different perturbations. In Fig. 8, we focus on behavior as p2→0, where 

p2=(p–pf)/pf. 

 

6. Conclusions 

Our perturbations of the basic Schloegl’s second model for autocatalysis (or the 

QCP) exhibits generic 2PC associated with an orientation dependence of the stationary 

point for planar interfaces separating coexisting active and poison states. We have 

demonstrated that MF dRDE for spatially non-uniform states do correctly capture the 

feature that the active state can displace the inactive state separated from it by vertical 

interfaces. However, they do predict a small regime of artificial propagation failure not 

seen the stochastic model. 
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Figures 

 

 

 

 

  

 

 

 

Fig. 1. Schematic of spontaneous particle annihilation (at rate p),  neighbor exchange (at 

rate h), spontaneous particle creation (at rate k),  and configurations for autocatalytic 

particle creation (at rate k/4) for our realization of Schloegl’s second model, where k is 

the number of diagonal neighboring pairs of particles. 
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Fig. 2. Steady-state C versus p for: (a) k=0.001(b) k=0.01(<1/27), where the bistabilities 

occurs and ps−, ps+ are the corresponding spinodal points; (c) k=0.05(>1/27), unique 

positive stable solution. 

 

 

 

 

(a)  

 

 

 

(b)  

 

Fig. 3. Schematic summary of results for propagation velocity, V(p), versus particle 

annihilation rate p for (a) h=0.01 (b) k=0.001. 

 

 

 

 

Fig. 4. For vertical interface, log(APF width) verse h (or k) (a) －4.513－13h^(0.487) 

(b) －4.513－23k^(0.491). 
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Fig. 5. The velocity of vertical interfaces V(p) vs p, especially focus on p<p-. 

 

 

 

 

 

Fig. 6. (a) V vs 1/|log(h)|, where h is from 10
-3

 to 10
-103

. Fit V(0, h) by 0.5145 

/|log(h)|
1.056

; (b) V vs 1/|log(k)|, where k is from 10
-7

 to 10
-105

. Fit V(0, k) by 1.95 

/|log(k)|
1.343
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Fig. 7. Schematic 1/Rc  behavior of different models as p1→0. 

 

 

 

 

 

 

 

Fig. 8. Schematic of 1/Rc behavior of two different perturbations as p1(p2)→0.Where p1 

= (p-pe)/pe, p2 = (p-pf)/pf. For h=0.01, pe=0.212730 and pf=0.209034. For k=0.001, 

pe=0.214100 and pf=0.208932. 

 

 

Tables 

Table 1. Artificial Propagation Failure (APF) Region and its width versus h or k for 

vertical interfaces. (The upper limit on k of 1/27 corresponds to the disappearance of 

bistability.) 

---  Threshold, h=0, MF  

---  h=0, MF 

---  k=0.001, MF 

---  h=0.01, MF 

---  h*=0.001 

---  Threshold, h=0, PAIR  

---  h=0, PAIR   

 k=0.001, MF  

 h=0.01, MF 

p2      p1 

1/Rc 
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   APF (p− < p < p+) APF width 

 

h= 0  

k= 0.000000000000001 0.196134-0.207107 0.010973 

k= 0.00000000000001 0.196136-0.207107 0.010971 

k= 0.0000000000001 0.196141-0.207107 0.010966 

k= 0.000000000001 0.196144-0.207107 0.010963 

k= 0.00000000001 0.196149-0.207107 0.010958 

k= 0.0000000001 0.196152-0.207107 0.010955 

k= 0.000000001 0.196160-0.207107 0.010947 

k= 0.00000001 0.196180-0.207107 0.010927 

k= 0.0000001 0.196240-0.207107 0.010867 

k= 0.000001 0.196431-0.207110 0.010679 

k= 0.00001 0.197041-0.207140 0.010099 

k= 0.0001 0.199038-0.207437 0.008399 

k= 0.001 0.206062-0.210363 0.004301 

k= 0.01 0.235978-0.236103 0.000125 

k= 0.02 0.260233 ~0 

k= 0.03703( ~1/27) 0.296282 ~0 

    

k= 0  h= 0.000000000000001 0.196133-0.207107 0.010974 

h= 0.00000000000001 0.196135-0.207107 0.010972 

h= 0.0000000000001 0.196140-0.207107 0.010967 

h= 0.000000000001 0.196144-0.207107 0.010963 

h= 0.00000000001 0.196146-0.207107 0.010961 

h= 0.0000000001 0.196150-0.207107 0.010957 

h= 0.000000001 0.196156-0.207107 0.010951 

h= 0.00000001 0.196169-0.207107 0.010938 
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h= 0.0000001 0.196207-0.207107 0.010900 

h= 0.000001 0.196325-0.207107 0.010782 

h= 0.00001 0.196695-0.207110 0.010415 

h= 0.0001 0.197821-0.207139 0.009318 

h= 0.001 0.200998-0.207420 0.006422 

h= 0.01 0.208085-0.209731 0.001636 

h= 0.02 0.210898-0.211529 0.000631 

h= 0.03703 0.213431-0.213607 0.000176 

h= 0.05 0.214624-0.214700 0.000076 
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1. Introduction 

Discontinuous phase transitions are common in the steady-states of diverse non-

equilibrium systems describing catalytic reaction-diffusion processes, biological 

transport and regulation, spatial epidemics, etc. These transitions often display 

similarities to those in thermodynamic equilibrium systems, such as hysteresis and 

metastability [1-3]. Such transitions are usually associated with equistability of two 

stable states, as can be determined by stationarity of a planar interface separating the 

states. For equilibrium systems, this criterion is equivalent to the Maxwell construction 

determining coexistence of two states at a unique equistability point. Analyses of 

nucleation phenomena near such transitions aims in part to characterize critical droplets 

of the more stable state embedded in the less stable metastable state, where these 

droplets correspond to stationary curved interfaces between the two states. The critical 
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droplet size is expected to diverge approaching the transition. A general dynamically-

based derivation of this result follows from analysis of the non-conserved phase-field or 

Cahn-Allen equations for thermodynamic systems or the reaction-diffusion type 

equations (RDE) for non-equilibrium systems, most clearly by taking the sharp interface 

limit for isotropic systems. This analysis shows that propagation of an advancing 

interface is retarded linearly by curvature. The critical curvature which arrests 

propagation should vanish linearly approaching the transition.  

However, analysis of discontinuous transitions in spatially discrete non-

equilibrium systems, which are of interest here, also reveals a richer variety of behavior 

than in equilibrium systems. This includes interface propagation failure at the mean-field 

(MF) level, and orientation-dependent equistability producing generic two-phase 

coexistence over a finite range of some control parameter [4-10]. As a non-equilibrium 

counterpart to the classic Ising model, we consider stochastic lattice-versions of 

Schloegl’s 2
nd

 model (S2M) [11] involving spontaneous annihilation X of particles 

X residing at the sites of a periodic lattice, and autocatalytic creation of particles at 

empty sites induced by nearby particle pairs +2X3X [10,12-14]. This model is 

equivalent to a quadratic contact process (QCP) [13] describing spatial epidemics where 

sick individuals (S) residing at households arranged on a regular lattice or grid 

spontaneously recover SH, and healthy individuals (H) are infected by sick pairs of 

neighbors H+2S3S. A MF treatment of the homogeneous steady-states of the S2M or 

QCP produces bistability [11], analogous to a Bragg-Williams treatment of the Ising 

model. Our focus is on MF treatments of spatially inhomogeneous states based on 
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discrete RDE [15] or lattice differential equations [16], which reveal propagation failure, 

generic two-phase coexistence, and an unprecedented richness in critical or stationary 

droplet behavior. 

 

2. Reaction Model, Discrete RDE, and Planar Interface Propagation 

We analyze behavior for a class of S2M with particles X residing on a 2D square 

lattice. Spontaneous annihilation of particles occurs at rate p, and autocatalytic creation 

of particles at empty sites  occurs provided there exist two or more suitably-configured 

nearby particles. The standard requirement is that these particles be on nearest-neighbor 

(NN) sites, but this leaves many choices of creation rates k: the “threshold” choice sets k 

= 1 for all configurations with two or more NN particles, and k=0 otherwise [14]; the 

more restrictive Durrett choice sets k = m/4 for configurations with m=0, 1, 2, or 4 

diagonal NN particle pairs [13]; etc. Below, we will actually focus on various 

“perturbations” of these basic models. See Fig.1.  

If Ci,j denotes the probability that site (i,j) is occupied by a particle, i.e., the 

concentration at (i,j), then one has d/dt Ci,j = -pCi,j + gain terms. The gain terms involve 

sum over configurations contributing to autocatalytic creation of the configuration 

probability times the relevant rate. These configuration probabilities involve spatial 

correlations between the occupancy of distinct sites, so the d/dt Ci,j equations are not 

closed but constitute the lowest-order entries in an infinite hierarchy of exact master 

equations. However, our MF-level analysis of spatially heterogeneous states closes the 

hierarchy by neglecting these correlations. Thus, e.g., the probability of a configuration 
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allowing particle creation at empty site (i,j), where (i+1,j) & (i,j+1) are occupied, and 

(i,j-1) & (i,j-1) are empty is set to (1-Ci,j)Ci+1,jCi-1,j(1-Ci,j+1)(1-Ci,j-1). Accounting for all 

creation terms produces a set of lattice differential equations, which given the spatial 

coupling may be regarded as discrete RDE. For example, for Durrett’s choice of rates, 

one obtains after reduction using the binomial summation formula (cf. [15]) 

d/dt Ci,j = -pCi,j +¼(1-Ci,j)[Ci+1,jCi,j+1 +Ci,j+1Ci-1,j +Ci-1,jCi,j-1 +Ci,j-1Ci+1,,j]  

 = R(Ci,j) +D(Ci,j)Ci,j +… 

where R(C) = -pC+C
2
(1-C), D(C) = ½ C(1-C), Ci,j = Ci+1,j+Ci,j+1+Ci-1,j+Ci,j-1 -4Ci,j is the 

discrete Laplacian. The terms … [17] are quadratic in discrete gradients i

Ci,j = Ci1,j – 

Ci,j.  

For homogeneous states where Ci,j=C, for all (i,j), where d/dt C = R(C), analysis 

of steady-states reveals bistability between a higher-concentration “active” populated 

state and a static vacuum state for 0=ps- < p < ps+ [10,11,13]. See Fig.2a. Analysis of the 

discrete RDE for the evolution of planar interfaces separating these states reveals that 

interface propagation depends on orientation or slope S. Generally, the active state 

displaces the vacuum state with velocity Vp >0 for ps- < p < peq(S), and the opposite 

applies so Vp <0 for peq(S) < p < ps+. The equistability peq(S) is maximum for diagonal 

interfaces S=1, so the propensity of the active state to displace the vacuum state is 

highest for S= 1. However, the active state cannot displace the vacuum state for vertical 

interfaces orientations S= , as empty sites in the vacuum state have at most one 

neighboring particle and thus are inaccessible to autocatalytic particle creation. Thus, 
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vertical interfaces are stationary (Vp =0) for all of 0 < p < peq(), but still have Vp <0 for 

p>peq(S).  

To remove the “extreme” propagation failure of vertical interfaces, we consider 

“perturbations” of the basic model to include either: (a) hopping of particles to adjacent 

empty sites at small rate h [18]; or (b) spontaneous creation at small rate  [19], in which 

case the vacuum state is replaced by a low-concentration state and ps- becomes non-zero 

[20]. However, for vertical interfaces, we find that propagation failure still occurs for a 

finite range p-(S=) < p < p+(S=). As h or  0+, one finds that p+()peq() as 

expected, but p-() does not vanish. Fig.2b summarizes this interface propagation 

behavior showing the propagation velocity, Vp, versus p, for S1 in the Durrett model 

with small h=0.01. Table 1 summarizes of key p-values for this and related models. One 

subtle feature is that near-vertical interfaces for S do not exhibit propagation failure, 

and have a unique equistability point p=peq(S) between p-() and p+(). To explain 

this feature, we note that near-vertical interfaces can be regarded as vertical interfaces 

decorated with far-separated kinks which flow so as to expand the active (vacuum) state 

for p<peq(S) (p>peq(S)). Kinks are stationarity for p= peq(S). See again 

Fig.2b. 

Extensive analyses of lattice differential equations in the mathematics literature 

[16] have been motived by reaction-diffusion systems. This work invariably adopts the 

simpler traditional form d/dt Ci,j == R(Ci,j) + DCi,j with constant D, rather than the 

more complex forms deriving from hierarchical master equations. Non-trivial 

propagation failure is often found, so such behavior for vertical interfaces [21] should 
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not be regarded as a quirk of our model. However these mathematical analyses have not 

considered curvature effects on interface propagation, a central issue in this study. 

 

3. Overview of Droplet Dynamics and Stationarity 

We now provide a brief but comprehensive summary of evolving and stationary 

of droplet-like solutions to the discrete RDE for the perturbed SCM models. Here, we 

consider only the case where droplets have the 4-fold rotational symmetry of the 

underlying square lattice. First, it is appropriate to make some general comments on 

droplet shape. In thermodynamic lattice-gas models, shapes of equilibrium droplets of 

specified size are determined by a Wulff construction from their orientation-dependent 

line tension so as to minimize energy cost. While 2D equilibrium droplets do not exhibit 

true straight facets, for the square lattice considered here, it is instructive to discuss 

shape in terms of the appearance of near-diagonal and near-horizontal/vertical segments 

of their edges (for convenience described here as =(11) and =(10) facets, 

respectively). The Wulff construction shows that the distance, d, from the island center 

to the middle of a facet  is proportional to the line tension, , of that facet, i.e., d = ceq 

.  Thus, facets with high line tension are further from the droplet center, and constitute 

a correspondingly smaller fraction of the periphery. The Wulff construction also 

determines periphery curvature, , so that radius of curvature, R=
-1

, is proportional to 

the stiffness (which is related to ), and ensures that edge orientation varies smoothly. 

Note that the Wulff construction also determines the shape of critical droplets which 

minimize excess energy at the critical size.  
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For growing droplets in non-equilibrium systems, where facet  has growth 

velocity V, the above is naturally replaced by a kinetic Wulff construction which gives 

d = cg V. Thus, faster growing facets are further from the droplet center, and are a 

smaller fraction of the periphery. In non-equilibrium systems, there is no generic 

prescription for edge curvature, an issue to which we return later. Extending these ideas, 

it is appropriate to also note that for shrinking droplets, shape is primarily controlled by 

the fastest receding orientation.  

Typical droplet behavior is summarized for the Durrett model perturbed with 

particle hopping with h=0.01 in Fig.3 and perturbed with spontaneous particle creation 

with =0.001 in Fig.4. It is instructive to divide description of behavior is separated into 

four p-regimes:  

(i) For “higher” peq(S=1) < p < ps+, the vacuum (or low-concentration) state is 

unambiguously more stable than the active state and displaces the latter separated from it 

by any planar interface. However, the expansion of a vacuum droplets embedded in the 

active state is inhibited by the curvature at the droplet interface. Vacuum droplets only 

grow above a critical size, Ac, with smaller ones shrinking. The growing droplets are 

limited by the slowest growing diagonal orientation, so these are predominantly diamond 

shaped. Ac diverges as p  peq(S=1). 

(ii) For ps- < p < p-(S=), the active state is unambiguously more stable than the 

vacuum (or low-concentration) state. Analogous to the above case, active droplets 

embedded in the vacuum state only grow above a critical size Ac
+
 which diverges as 

pp-(S=). Their shapes reflect the slowest growing horizontal/vertical orientations, 
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and are predominantly square. However, only active droplets below a distinct smaller 

critical size Ac
-
 shrink, and we find an entire discrete family of droplets which are 

stationary between these limits. 

(iii) For p-(S=) < p < peq(S), again small droplets of the active state 

embedded in the vacuum state shrink below the critical size Ac
-
, which diverges as 

ppeq(S). All larger droplets evolve to one of an infinite discrete set of stationary 

active droplets, with no droplets growing indefinitely. This behavior is readily 

understood as stationarity of vertical and horizontal interfaces in this regime blocks 

active droplet growth. 

(iv) For peq(S) < p < peq(S=1), both vacuum and active droplets embedded in 

the other state always shrink. The shapes of shrinking droplets controlled by fastest 

shrinking orientations. Thus, shrinking vacuum droplets are always diamond shaped. 

Shrinking active droplets are effectively square at least for higher p in this regime. 

As a result of this analysis, we identify the latter regime, peq(S) < p < 

peq(S=1), as “generic two-phase coexistence (2PC)” since each state is stable against 

local perturbations of the other state in this regime, and furthermore such perturbations 

dissipate. [The latter standard feature for 2PC does not apply for p-(S=) < p < 

peq(S).] 

 

4. Detailed Droplet Analysis 

Below we consider only the Durrett model perturbed by particle hopping with 

h=0.01. Results are obtained from numerical integration of the dRDE’s for evolution of 
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droplet-like solutions separating the active and vacuum states. The initial data in Sec.4.1 

are chosen as four-fold symmetric vacuum (active) embedded in the active (vacuum) 

state. This symmetry constraint is relaxed in Sec.4.2. We select various sizes of initial 

droplet, and explore evolution as a function of initial size. For droplets of the more stable 

state embedded in a less stable state, one generally expects large initial droplets expand, 

small ones shrink, and for a special initial size evolution to a stationary critical droplet 

for long times. To assess whether a stationary droplet is actually achieved, we perform 

numerical integration up to times t  510
4
. However, more complex behavior is 

sometimes found, as described below. For a (large) finite simulation system of N
2
 sites, 

the area and radius of active droplets droplet are determined from A=πR
2
= i,j Ci,j/Cact), 

and of vacuum droplets from A=πR
2
 = N

2
−i,j Ci,j/Cact . The critical droplet area (radius) 

is denoted as Ac (Rc). One issue of particular interest is the variation of Rc(p) with p. 

 

4.1 Analysis for four-fold symmetric initial droplets  

Here, we use a four-fold symmetric droplet shape as the initial data in our studies 

of droplet evolution, where this shape can be that of an octagon, diamond, or square. We 

find that the long time behavior does not depend on the specific initial shape within this 

symmetry class. 

(i) Vacuum droplets for 0.21273 = peq(S=1) < p < ps+ = 0.25000. Fig.5a-c shows 

the examples of the evolution of 4-fold symmetric vacuum droplets for p=0.214. As 

noted in Sec.3, large growing droplets are predominantly diamond shaped for p just 

above peq(S=1), being limited by the slowest-advancing diagonal orientations. See 
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Fig.5c. Discussion in following sections shows that the same applies for the critical 

droplet. See Fig.5b. Smaller shrinking droplets also tend to be diamond shaped, as 

curved diagonal orientations are the fastest receding orientation. See Fig.5a. Finally, in 

Fig.6, we provide R versus t curves showing evolution to the unique critical droplet only 

for a unique initial size. 

(ii) Active droplets for ps- < p < p-(S=) = 0.20809. Fig.7a-c present the 

examples of the evolution of 4-fold symmetric active droplets for p=0.206, and Fig.8a-e 

present examples for p=0.207. As noted in Sec.3, large growing droplets are 

predominantly square, being limited by the slowest-advancing horizontal/vertical 

orientations. See Fig.7c and Fig.8e. Smaller shrinking droplets also tend to be square, as 

curved horizontal/vertical orientations are the fastest receding orientation. See Fig.7a 

and Fig.8a. For p=0.206, there is a unique critical droplet of size Rc =15.4877. See 

Fig.7b. However, for p=0.207 there are three distinct stationary sizes Rc
-
 = 19.6266, Rc = 

20.9199, and Rc
+
 = 22.1870. See Fig.8b-d. The former and latter correspond to the upper 

and lower limits on critical areas, Ac

, described in Sec.3. All these stationary droplets 

tend to have a square shape. Finally, we provide R versus t curves showing evolution to 

the unique critical droplet for p=0.206 in Fig.9, and to the family of three stationary 

solutions for p=0.207 in Fig.10a. We should also emphasize that as pp-(vert) from 

below, the number of stationary droplets diverges. 

(iii) Active droplets for 0.20809 = p-(S=) < p < peq(S) = 0.20903. Fig.11a-

d present the examples of the evolution of 4-fold symmetric active droplets for 

p=0.2085. The behavior is similar to case (ii) above in that small droplets shrink, and 
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there exists a well-defined minimum size of stationary droplets corresponding here to Rc 

= 38.9322. However, now there is an infinite discrete set of larger stationary active 

droplets and there are no droplets which grow indefinitely. The shrinking droplets and 

all of the stationary droplets tend to be square. Finally, we provide R versus t curves 

showing evolution to the smallest few dozen stationary solutions in Fig.12a. 

(iv) Vacuum and active droplets in the regime of generic two-phase coexistence 

for 0.20903 = peq(S) < p < peq(S=1) = 0.21273. Fig.13 provides examples for 

p=0.2093 [< p+(S=) = 0.20973] and p= 0.211 [> p+(S=) = 0.20973]. For vacuum 

droplets, in either case, the fastest receding orientation is diagonal, so these droplets tend 

to be diamond shaped. For active droplets, the fastest receding orientation is 

horizontal/vertical at least for p= 0.211, so these droplets tend to be square. For lower p 

around p=0.2093 where orientations with slope S~ 16 or 1/16 shrink fastest (see Fig.2b), 

these can instead be 8-sided (although this feature is difficult to discern). 

 

 

4.2 Analysis for asymmetric initial droplets 

For peq(S=1) < p < ps+, it appears that a unique diamond-shaped critical droplet is 

achieved irrespective of whether one starts with 4-fold symmetric or asymmetric initial 

conditions.  Fig.5d-f provide examples for p=0.214 for various asymmetric initial shapes 

where the final stationary critical droplet matches that obtained in Fig.5a-c. 

For p < p-(S=) = 0.20809 but sufficiently close to this value, numerical 

simulations indicate that in addition to the finite family of stationary droplets with 4-fold 
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symmetry, there is another finite family of stationary droplets which can have 2-fold 

symmetry with a rectangular-like shape. Fig.7d-f and Fig.8f-h provides examples for 

p=0.206 and p=0.207, respectively (although for p=0.206 just one asymmetric droplet is 

found). Analogous to the 4-fold symmetric family, the number of members in the 

asymmetric family and their maximum size diverges as p  p-(S=). Fig.7b and Fig.9b 

show the corresponding R versus t plots for p=0.206 and 0.207.  

For 0.20809 = p-(S=) < p < peq(S) = 0.209034, the same applies except that 

now there are distinct infinite families of 4-fold symmetric and asymmetric stationary 

droplets. Fig.11e-g provides examples for p=0.2085. Fig.12b show the corresponding R 

versus t plots for p=0.2085.  

 

5. Detailed Analysis of Critical Vacuum Droplets for peq(S=1) < p < ps+ 

5.1 Behavior of critical droplet curvature and size 

For peq(S=1) < p < ps+, our analysis indicates that there is a unique critical 

vacuum droplet analogous to traditional equilibrium systems for which there are 

extensive studies of nucleation phenomena. As indicated in the introduction, in a 

traditional isotropic analysis for these systems, it is expected that the propagation 

velocity, V(), of advancing interfaces is inhibited linearly by curvature . The critical 

curvature c is given by V(c)=0 which determines the critical radius Rc = 1/c. If Vp 

denotes the velocity of a planar interface (as above), then one expects that Vp  ap, 

where p denotes the distance to the equistability point (i.e., the distance to the phase  

transition) in terms of a control parameter p. Then, it follows that 
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V()  Vp - b, so that c  Vp/b and Rc = 1/c  b/Vp  ba
-1

/p, 

so that c = 1/Rc  ab
-1

 p vanishes linearly as p 0. 

However, results for the perturbed Durrett model with h=0.01 shown in Fig.14 

reveal a different more complicated behavior for critical vacuum droplets. In fact for a 

broad range of p > peq(S=1), not too close to peq(S=1), one has linear behavior c = 1/Rc 

 (p – p*) where p*  0.2111 is between peq(S) = 0.209034 and peq(S=1) =0.21273. 

This is perhaps not too surprising if one recognizes that in this p-regime, the velocities of 

diagonal and vertical interfaces roughly satisfy Vp(S=1)  [p-peq(S=1)] and Vp(S=)  

[p-peq(S)] (see Fig.15), and that the critical droplet periphery includes significant 

portions of diagonal and horizontal/vertical orientations. Thus, the growth of Rc reflects 

and average of contributing effects from these orientations, and one can think of p* as an 

effective average of peq(S=1) and peq(S). As p  peq(S=1), it is clear from Fig.14 

that the influence of the S=1 orientations begins to dominate causing a transition in the 

behavior of c = 1/Rc which vanishes in this limit. 

Any quantitative analysis of critical vacuum droplet size and shape for the 

perturbed Durrett model with h=0.01 will rely on a reliable characterization of the 

dependence of the critical curvature on planar interface velocity, c  f(Vp) for the two 

dominant interface orientations S=1 and S= (anticipating possible deviations from the 

classic behavior c  Vp/b).  

 

5.2 Detailed Analysis of Critical Curvature 
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First, we introduce a procedure to estimate the curvature at the edge of critical 

vacuum droplets for the two primary orientations S=1 and S=. The critical droplet is 

diamond-like shaped with rounded corners as shown in Sec.4.  Thus, the droplet 

boundary at the corners is a near-vertical (or near horizontal) interface. Given that 

concentration profiles across interfaces in two-phase systems typically have a hyperbolic 

tangent form, we use the hyperbolic tangent function to provide a local fit the Ci,j of the 

form 

Ci,j  Cact/2 * (1+tanh(
   ̅       ̅   

 
)), for |   |̅        |   |̅   , 

where Cact the value of active state,    ̅   ̅ is the effective vertex on the vertical boundary, 

and  = c(S=) is the desired curvature. These three parameters are obtained by least-

square fitting to the numerical data for Ci,j. Similarly, we fit the local concentration 

profile on the diagonal sides of critical droplets to the form 

Ci,j  Cact/2 * (1+tanh(

       ̅̅ ̅̅ ̅

√ 
    

   

√ 
   

 
)) for |   |̅        |   |̅    , 

where    ̅   ̅ is the vertex on the diagonal boundary,  = c(S=1) is the desired curvature. 

For various p values, the corresponding curvatures are listed in Table 2. Using this data 

to obtained the dependence of critical curvature c on corresponding planar interface 

velocity, Vp, shows a complete breakdown from the traditional proportionality described 

above. Instead, one finds that |c(S=) |  0.08023 + 21.6|Vp(S=)| in the narrow range 

of Vp(S=) analyzed here,  and that |c(S=1)|  0.05558 + 38.85|Vp(S=1)| at least 

provided that |Vp(S=1)| is not too small. We still expect that c(S=1)  f(Vp(S=1)) 

vanishes as Vp(S=1)0, but the cross-over must occur for small values of Vp(S=1) and 
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is difficult to assess numerically. This deviation fom traditional proportionality must 

impact the dependence of the c = 1/Rc on p in part contributing to the unusual form 

described above. 

 

6. Conclusions 

Discontinuous phase transitions and associated nucleation phenomena (i.e., 

analysis of the formation of droplets of the more stable phase embedded in a metastable 

phase) have been studies for decades. Usually this is done for thermodynamic systems 

and within a quasi-continuum framework. The general view from these studies is that 

there is a unique critical size above which droplets grow and below which they shrink. 

For the discrete non-equilibrium model analyze here, we find much richer as a result of 

both generic two-phase coexistence and propagation failure. In the two-phase 

coexistence region, droplets always shrink. Outside this region, sometimes entire 

families of stationary droplets exist.  
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Figures 

 

Fig. 1. Schematic of the Durrett version of Schloegl’s second model allowing with 

spontaneous annihilation and autocatalytic creation of particles, but also allowing for 

spontaneous creation and particle hopping. 
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Fig. 2. (a) Steady-state concentration versus p for Durrett’s model with h0, and =0.  

(b) Propagation velocity of planar interfaces, V, for Durrett’s model perturbed with 

h=0.01. V>0 corresponds to the active state displacing the inactive vacuum state. Slope 

S=1 diagonal interfaces have the highest equistability p=peq(S=1).  Slope S= vertical 

interfaces exhibit propagation failure for a range p-(S=) < p < p+(S=) below peq(S=1). 

Near-vertical interfaces do not exhibit propagation failure and have an equistability 

p=peq(S) .   

 

 

Fig. 3. Comprehensive summary of the evolution and stationarity of droplet-like 

solutions to the discrete RDE for the perturbed Durrett model with h=0.01. 
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Fig. 4. Comprehensive summary of the evolution and stationarity of droplet-like 

solutions to the discrete RDE for the perturbed Durrett model with =0.001. 

 

 

Fig. 5. Evolution of vacuum droplets of different initial sizes embedded in the active 

steady state for p=0.214 [> peq(S=1)]. For 4-fold symmetric initial data: (a) Small initial 

droplet shrinks; (b) stationary droplet with Rc =27.8822; (c) large initial droplet grows. 

For asymmetric initial data:  (d) stationary droplet with Rc=27.8822 from 2x1 rectangle; 

(e) stationary droplet with Rc=27.8822 from oblique rectangle; (f) stationary droplet with 

Rc=27.8822 from 3x1 rectangle. Note that all critical vacuum droplets are the same. 
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Fig. 6. R versus t for 4-fold symmetric vacuum droplets for p=0.214 for various initial 

sizes showing selection of unique critical vacuum droplet. The stationary solution has 

Rc=27.8822. 

 

 

Fig. 7. Evolution of active droplets of different initial sizes embedded in the vacuum 

steady state for p=0.206 [< p-(S=) = 0.20809]. For 4-fold symmetric initial data: (a) 

small initial droplet shrinks; (b) stationary droplet with Rc=15.4877; (c) large initial 

droplet grows. For asymmetric initial data:  (d) stationary droplet with Rc=15.5026 from 

2x1 rectangle; (e) stationary droplet with Rc=15.4877 from oblique 2x1 rectangle; (f) 

stationary droplet with Rc=15.8363 from 3x1 rectangle. Notice that the stationary sizes 

for (d) and (f) differs from (b), but that of  (c) matches (b). 
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Fig. 8. Evolution of active droplets of different initial sizes embedded in the vacuum 

steady state p=0.207 [< p-(S=) = 0.20809]. For 4-fold symmetric initial data: (a) small 

initial droplet shrinks; (b) stationary droplet with minimum Rc
-
 = 19.6266; (c) stationary 

droplet with Rc = 20.9199; (d) stationary droplet with maximum Rc
+
 = 22.1870;  (e) 

large initial droplet grows. For asymmetric initial data: (f) stationary droplet with 

Rc=20.8862 from 2x1 rectangle; (g) stationary droplet with Rc =19.6266 from oblique 

2x1 rectangle; (h) stationary droplet with Rc=20.8862 from 3x1 rectangle initials. Notice 

that stationary droplets in (f) and (h) differ from (b)-(d), but (g) matches (b). 

 

 

Fig. 9. R versus t for 4-fold symmetric active droplets for p=0.206 for various initial 

sizes showing selection of unique critical vacuum droplet. The stationary solution has 

Rc=15.4877. 
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Fig. 10. R versus t for active droplets for p=0.207. (a) 4-fold symmetric initial condition; 

(b) 2x1 rectangular initial condition. There are three stationary solutions in (a) with Rc = 

19.6266, 20.9199, 22.1870, but only one stationary solution in (b) with Rc=20.8862 

which is distinct from those in (a). 

 

 

Fig. 11. Evolution of active droplets of different initial sizes embedded in the vacuum 

steady state for p=0.2085 [where 0.20809 = p-(S=) < p < peq(S) = 0.20903]: For 4-

fold symmetric initial data: (a) small initial droplet shrinks; (b) stationary droplet with 

minimum Rc
-
 = 38.9322; (c) stationary droplet with Rc = 40.1661; (d) stationary droplet 

with Rc = 41.3758. For asymmetric initial data: (e) stationary droplet with Rc=57.0258 

from 2x1 rectangle; (f) stationary droplet with Rc =38.9322 from oblique 2x1 rectangle; 
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(g) stationary droplet with Rc=69.9412 from 3x1 rectangle. Notice that stationary 

droplets in (e) and (g) differ from (b)-(d), but (f) matches (b). 

 

 

Fig. 12. R versus t for active droplets for p=0.2085. (a) 4-fold symmetric initial 

condition; (b) 3x1 rectangular initial condition. The infinite discrete set of stationary 

solutions in (a) has Rc = 38.9322, 40.1661, 41.3758,...  The different infinite discrete set 

of stationary solutions in (b) has Rc = 69.9412, 70.2753, 70.6079,…  

 

 

Fig. 13. Shrinking vacuum and active droplets in the 2PC region 0.20903 = peq(S) < 

p < peq(S=1) = 0.21273. Vacuum droplets for: (a) p=0.211 [> p+(S=) = 0.20973]; (b) 

p=0.2093 [< p+(S=)]. Active droplet for: (c) p=0.211 [>p+(S=)]; (d) p=0.2093 [< 

p+(S=)]. 
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Fig. 14. c = 1/Rc VS p/peq(S=1): (a) 0 < p/peq(S=1) <0.05; and expanded views for (b) 

0 < p/peq(S=1) <0.01 (c) 0 < p/peq(S=1) <0.001.  

 

 

Fig. 15. Propagation velocity of planar interfaces, V, for Durrett’s model perturbed with 

h=0.01. V>0 corresponds to the active state displacing the inactive vacuum state. Slope 

S=1 diagonal interfaces have the highest equistability p=peq(S=1).  Slope S= vertical 

interfaces exhibit propagation failure for a range p-(S=) < p < p+(S=) below peq(S=1). 

Near-vertical interfaces do not exhibit propagation failure and have an equistability 

p=peq(S) .   
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Fig. 16.  versus Vp plots for: (a) vertical-oriented; (b) diagonally-oriented portions of 

the interface of the critical vacuum droplet. The blue straight line is the best-fit curve 

than the red straight line gives the poor “traditional” fit   Vp. (a) |c(S=) |= 0.08023 

+ 21.6|Vp(S=)|  or 41.37|Vp(S=)| (b) |c(S=1)|= 0.05558 + 38.85|Vp(S=1)| or 

82.41|Vp(S=1)|.   

 

Tables 

Table 1. Results the upper and lower limits of the regime of propagation failure, 

p(vert), for vertical interfaces, and the stationary point, peq(~vert), for a near vertical 

interface. For h==0, p-(vert) =0  ps denote upper and lower (spinodal) limits of the 

bistable region. For the perturbed models, we find p(vert)  p(vert)|h=0 + c h
1/2

 (c 
1/2

) 

for small h () where c+ - c-  0.252 (0.143) for Durrett. Higher p-values for the 

threshold model simply reflect higher typical autocatalytic creation rates.  
 ps- p-(S=) peq(S) p+ (S=) peq(S=1) ps+ 

Threshold (,h=0+) 0 0.657108 0.684667 0.691308 0.702843 0.815423 

Threshold (=0.001,h=0)       

Threshold (=0, h=0.01) 0 0.682019 0.690245 0.694729 0.704709 0.815423 

Durrett (,h=0+) 0 0.196134 0.205051 0.207107 0.211377 0.250000 

Durrett (=0.001,h=0) 0.061212 0.206062 0.208932 0.210363 0.214100 0.251004 

Durrett (=0, h=0.01) 0 0.208085 0.209034 0.209731 0.212730 0.250000 
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Table 2. The curvatures c(S=) and c(S=1) for vertical and diagonal portions of the 

periphery of critical vacuum droplets. 

p c(S=) Vp(S=) c(S=1) Vp(S=1) 

0.2150 0.1946 0.00522 0.1450 0.01702 

0.2140 0.1701 0.00438 0.1131 0.01221 

0.2139 0.1766 0.00429 0.1055 0.01206 

0.2138 0.1730 0.00421 0.1036 0.01123 

0.2137 0.1722 0.00412 0.1015 0.01039 

0.2136 0.1615 0.00404 0.09492 0.00996 

0.2135 0.1574 0.00395 0.08745 0.00957 

0.2134 0.1652 0.00387 0.08689 0.00923 

0.2133 0.1668 0.00378 0.07892 0.00785 

0.2132 0.1635 0.00370 0.07736 0.00660 

0.2131 0.1609 0.00361 0.06755 0.00595 

0.2130 0.1501 0.00353 0.06413 0.00458 

0.2129 0.1579 0.00344 0.05736 0.00322 
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Abstract 

  Submonolayer homoepitaxial fcc(110) systems display behavior reflecting strong 

anisotropy at lower temperatures, including one-dimensional decay during Ostwald 

ripening of rectangular islands. This decay process preserves a constant island width in 

the 〈   〉 direction. We develop appropriate analytic formulations to describe this 

behavior. First, a refined continuum Burton-Cabrera-Frank formalism is described 

which accounts for a lack of equilibration of island shape, and importantly also for 

inhibited incorporation of adatoms at almost-facetted 〈 ̅  〉 island edges. Second, a 

further refined formalism is developed which incorporates separate terrace and edge 

adatom density fields in a continuum setting, or alternatively captures these distinct 
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densities utilizing spatially-discrete diffusion equations (i.e., lattice differential 

equations). The second approach allows more flexibility in accounting for edge diffusion 

kinetics including corner rounding, and in treating any lack of equilibration of the edge 

adatom density at 〈 ̅  〉 island edges. These approaches are implemented to describe net 

adatom detachment fluxes from the 〈   〉 ends of islands, and thus island evolution in 

various local environments. 

 

1.  Introduction 

Submonolayer homoepitaxial films consist of arrays of single-atom-high two-

dimensional (2D) islands on perfectly flat terraces of extended single crystal surfaces. 

These provide ideal systems for analysis of the details of 2D coarsening processes [1,2]. 

The most common scenario for coarsening is Ostwald Ripening (OR) [3] wherein 

smaller than average islands shrink, transferring their adatoms by terrace diffusion to 

larger islands. Typically, equilibration of island shape is facile during the coarsening 

process, individual islands maintaining their equilibrium shape which is determined 

according to the Wulff construction by the orientation-dependent edge energies for 2D 

clusters [4]. The thermodynamic driving force for coarsening process derives from the 

reduction in the energy cost associated with broken bonds at island edges which is 

achieved by reducing in overall island perimeter length [5]. The preferential dissolution 

of smaller clusters with higher average edge curvatures reflects their higher chemical 

potential, a quantity which is well-defined given the assumed equilibrium island shapes.  
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  A basic understanding of island evolution during OR is often provided by a 

continuum Burton-Cabrera-Franck (BCF) [6] type “step dynamics” formulation [4,7]. 

This formulation involves analysis of a boundary value problem for the diffusion 

equation describing the density of mobile adatoms on the terraces between islands with 

appropriate boundary conditions (BCs) at island edges. These BCs account for both the 

island chemical potentials and for the ease or difficulty of adatom attachment-

detachment through so-called kinetic coefficients. It suffices to adopt a steady-state 

approximation since the adatom density relaxes quickly to the local island configuration. 

Solution of this boundary value problem gives net fluxes for attachment-detachment, and 

thus island growth or decay rates. Thus, the island configuration is incrementally 

updated using these rates, the boundary value problem is resolved to obtain new rates, 

the island configuration is further evolved, etc. Often instead of analyzing this many-

island problem, just the evolution of a single island within a “typical environment” is 

determined to provide input to the continuity equation for evolution of the island size 

distribution in a Lifshitz-Slyozov-Wagner theory [5,2]. 

  The above picture applies to isotropic systems, and also to mildly anisotropic 

systems. However, for strongly anisotropic systems, one might anticipate qualitatively 

different behavior. The traditional expectation is for a complete absence of deterministic 

OR in purely one-dimensional (1D) systems where all islands have the same chemical 

potential [8]. In contrast, coarsening does occur in strongly anisotropic 2D systems. For 

example, Scanning tunneling microscopy (STM) studies by Morgenstern et al. [9,10] 

revealed coarsening for rectangular Ag islands on an Ag(110) surface at a lower 
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temperature ( ) of around 220 K or below, but via an unusual 1D decay mode. Smaller 

islands shrank in length while retaining fixed width in the 〈   〉 direction, and thus were 

unequivocally not shape equilibrated [11,12]. Our goal here is to develop appropriate 

analytical formalisms to describe this 1D decay behavior. 

   In Sec. II, we provide a brief atomistic-level description of the thermodynamics 

and surface diffusion kinetics for submonolayer fcc(110) homoepitaxial systems. 

Experimental observations for 1D decay of Ag islands on Ag(110), and kinetic Monte 

Carlo (KMC) simulation results for an atomistic model for this process, are also 

presented. Then, in Sec. III, we refine the standard continuum BCF formulation to treat 

these strongly anisotropic systems. Refined BCF predictions for decay rates of islands in 

strongly anisotropic fcc(110) homoepitaxial systems are presented various local 

environments, demonstrating that this formalism captures the key dependencies on 

geometry and temperature. However, this refined BCF approach does not have the 

flexibility to describe the details of edge diffusion kinetics and neglects any lack of local 

equilibration of edge adatoms. Thus, in Sec. IV, we present a further refined formalism 

with multiple adatom density fields to better capture edge diffusion kinetics first within a 

continuum framework, and then through an alternative spatially-discrete diffusion 

equation (or lattice differential equation) formalism [13]. A comparison with the refined 

BCF formalism is also presented. 

 

2. Review of Homoepitaxial FCC(110) Surface Dynamics and 1D Island Decay 

2A. Atomistic models for surface diffusion kinetics 
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  An fcc(110) surface consists of an array of parallel channels as shown in Fig. 1. 

The surface unit cell is rectangular with shorter side length   in the 〈 ̅  〉 direction, and 

longer side length   √   in the 〈   〉 direction, so its area is given by     . 

Adatoms hop between the preferred in-channel adsorption sites (supported by four atoms 

in the underlying surface layer) through bridge-site transition states (TS). These bridge 

sites differ for in-channel and cross-channel hopping, and correspondingly there are 

different diffusion barriers   
  and   

 , respectively. These barriers just correspond to the 

difference between the energy,     , at adsorption site and the TS energy for an isolated 

adatom. Here, one caveat is that cross-channel diffusion could instead occur 

preferentially via exchange for some homoepitaxial fcc(110) systems. 

  A complete characterization of surface diffusion kinetics, including edge 

diffusion and detachment, requires specification of “conventional” interactions between 

adatoms on preferred adsorption sites. We assume nearest-neighbor pairwise attractions 

with a larger (smaller) magnitude   
    (  

   ), for atoms separated   ( ) in the 

〈 ̅  〉 (〈   〉) direction. In addition, for our multisite lattice-gas (msLG) models 

[14,15,16], we prescribe as second set of “unconventional” interactions between one 

adatom at a TS and others at nearby adsorption sites. Again, just short range pairwise 

attractions are assumed (   
    and    

   ). See Fig. 1. These unconventional 

interactions are set to zero in common initial value approximation (IVA) models [17,18]. 

However, allowing non-zero    
  and    

  provides additional flexibility and accuracy in 

simultaneously describing both thermodynamics and edge diffusion kinetics [19]. The 

total energy    in the initial state before hopping, and the total TS energy     can be 
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determined as the sum of the relevant adsorption energy and pairwise interactions; then 

the activation barrier for hopping is simply determined as             [14,15,16]. 

Hop rates are described by an Arrhenius form,           , with common prefactor 

      /s and inverse temperature           (   is the Boltzmann constant). For 

Ag/Ag(110), an appropriate choice of energetics is described in Ref. [11]. For this study, 

the parameters of most importance are   
       eV,   

       eV,   
        eV, 

  
         eV, and a fast corner rounding barrier          eV. See Fig. 1. Here, 

we also should mention that earlier IVA modeling used a low value of   
        eV, 

which is not consistent with observed equilibrium island shapes. However, later this 

value was increased in IVA modeling to   
        eV [20], which is similar to our 

choice [11]. 

  The key features proposed to produce the type of 1D island decay for 

Ag/Ag(110) at lower temperatures described in Sec. I are [9,11]:  (i) Detachment of 

atoms almost exclusively from the short 〈   〉 ends of islands.  (ii) A lack of detachment 

from the long 〈 ̅  〉 sides, and a lack of corner rounding from the 〈   〉 ends to the 

〈 ̅  〉 sides (but see Sec. IV B). (iii) Inhibited nucleation of new layers on the 〈 ̅  〉 

sides, and facile corner rounding of edge atoms from the 〈 ̅  〉 sides to the 〈   〉 ends. 

See Fig. 1 for our notation. We expect that 1D island decay is a general phenomenon for 

fcc(110) homoepitaxial systems, and for other systems with strong anisotropy. 

 

2B. Key experimental observations for Ag/Ag(110) 
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  The key experimental STM observations for coarsening of rectangular Ag islands 

on the anisotropic Ag(110) surface have been described in Morgenstern et al. [9,10] and 

Han et al. [11]. Details of the experimental setup and procedures can be found in those 

publications. Above about 220 K, classic OR behavior is observed with individual 

islands retaining their equilibrium shapes during growth or decay [9]. If    (  ) denotes 

the length (width) of rectangular islands in the 〈 ̅  〉 (〈   〉) direction, then the area 

satisfies        and the aspect ratio is given by        . For equilibrated island 

shapes, one has that         [9].  However, at 220 K and below, a 1D decay mode 

is observed: smaller (and narrower) islands shrink in length,   , while retaining constant 

width,   . This behavior is observed down to about 175 K at which point the coarsening 

process becomes too slow to be readily observed. To motivate subsequent analysis, in 

Figs. 2 and 3 we provide examples of this 1D island decay process with time  . Detailed 

images for the selected examples have not been shown previously. It is clear that the 

island decay rate          increases with  . Indeed, a more comprehensive analysis 

which better captures typical decay behavior shows that          defining the 

Arrhenius energy which here adopts the value          eV [11]. 

 

2C. KMC simulation results for 1D island decay on Ag/Ag(110) 

  Fig. 4. shows the results of extensive simulations of the 1D decay process for the 

island shown in Fig. 2(a) at 190 K. These simulations were performed using our 

atomistic msLG model described in Sec. II A and in Ref. [11]. Input to the simulations is 

the multi-island configuration mimicking the local environment of the decaying island. 
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In addition, we perform “atom-tracking” KMC simulations where we label the adatoms 

originally in the decaying island with a different color so as to track their transfer to 

other islands. Given the small island size and low temperature, there are significant 

fluctuations in the decay process. As a consequence, to reliably assess typical or average 

behavior, we perform ~100 trials and average the results. From the decrease of the 

average area of the decaying island, we extract an initial decay rate of              

nm
2
/s. However, after a transient period of ~750 s, there appears to be a slight increase 

in rate to              nm
2
/s (measured between ~750 s and ~1500 s). This may 

reflect the “idealized” initial conditions in our simulations with perfect rectangular 

islands. The apparent discrepancy between the average msLG rates and the experimental 

rate             nm
2
/s is expected given the very large fluctuations in the results for 

individual simulation trials.  

 

3. Refined BCF Theory for Anisotropic Systems without Island Equilibration 

Here, we show how traditional continuum BCF type formulations might be 

refined to better describe coarsening in strongly anisotropic systems, and specifically 1D 

island decay corresponding to a large deviation from island shape equilibration. Our 

focus is on determining for the decay rate,             , of smaller narrower islands 

from our refined-BCF (rBCF) theory. 

 

3A. Constrained thermodynamics 
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  For fcc(110) homoepitaxial systems with rectangular monolayer islands, the key 

thermodynamic parameters in our atomistic model are: the chemical potential for an 

infinite island              where           and        
    

 ; and the higher 

(lower) step energy per unit length      |  
 |    ) (  ̅   |  

 |     ) for steps 

aligned in the 〈   〉 (〈 ̅  〉) direction. See Fig. 1. The energy of an island with linear 

dimension    (  ) in the 〈 ̅  〉 (〈   〉) direction and area        can be written as 

     
 

 
       ̅   

        
  .                                               (1) 

  Given the lack of island shape equilibration, we introduce partial chemical 

potentials,   , for different possible modes,  , of island evolution [11,21, 22]. For this 

study, the most relevant mode       involves changing length    with constant width 

  
. Then,                obtained using          with fixed    yields 

            ̅    
 .                                                           (2) 

  The introduction of      assumes a degree of local equilibration which should 

also apply for the dilute ideal 2D adatom gas at the 〈   〉 island edge. If     denotes the 

locally equilibrated gas density per site at the 〈   〉 island edge, then its chemical 

potential is given by                   . Since      must match     , it follows 

that     equals [11,23] 

             ̅     
.                                                         (3) 

  Here,           denotes the equilibrium adatom density at an extended straight 

step. Finally, for the observed 1D decay mode      , Eqs. (2) and (3) indicate that 
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narrower islands with smaller    and therefore higher      and      should shrink, 

while wider islands with bigger    and therefore lower      and      grow. 

Similarly, defining a mode    ̅   for changing width    with fixed length   , 

one has that   ̅              
  and   ̅                

 at 〈 ̅  〉 island edges. 

Now, for equilibrated island shapes (occurring at higher  ), one must have that      

  ̅   which yields the equilibrium aspect ratio        
     

         ̅  , a result 

traditionally obtained by minimizing energy      for constant area  . 

 

3B. Refined BCF formulation for kinetics 

As noted in Sec. I, analytic BCF formulations of OR are based on a steady-state 

analysis of the diffusion equation for the adatom density,  , which for fcc(110) 

homoepitaxial systems has the form 

 

  
      

         

      ,                                              (4) 

where      
      

 
  (     

      
 
)  is the larger (smaller) diffusion coefficient in 

the 〈 ̅  〉 (〈   〉)  - ( -) direction given that     
    

  
. In this work, we will 

assume a common attempt frequency for hopping,  , so that   
      and   

     . 

Appropriate BCs must be imposed at island edges. The lack of island shape equilibration 

might be addressed by assigning separate partial chemical potentials and equilibrium 

adatom densities to the 〈 ̅  〉 and 〈   〉 edges (cf. Sec. III A). 

In a general Chernov formulation, the boundary conditions are written as [7] 

     

  
                                                                      5(a) 
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at 〈   〉 edges, and 

     

  
   ̅       ̅                                                            5(b) 

at 〈 ̅  〉 edges. The      sign applies for the right (left) edge of the island in Eq. 5(a), 

and the upper (lower) edge in Eq. 5(b).  In a traditional “macroscopic setting” [24], the 

kinetic coefficients,      and   ̅  , which describe the ease of attachment, would 

traditionally be taken as     
         (        ) and   ̅  

         (    ̅    ) 

where      and   ̅   denote the additional energy barriers for attachment at 〈   〉 and 

〈 ̅  〉 steps, respectively [25,13]. Such barriers are generally zero for homoepitaxial 

systems, and thus the kinetic coefficients are generally taken as infinite for so-called 

terrace-diffusion limited coarsening. Then, Eqs. (5a) and (5b) reduce to simple Dirichlet 

BCs:        at 〈   〉 edges, and     ̅   at 〈 ̅  〉 edges, respectively. 

  Solution of this Dirichlet boundary value problem allows determination of the 

integrated net detachment flux for each edge of each island. These determine the rate at 

which the island dimensions change if one assumes negligible transfer of adatoms by 

edge diffusion between different island edges. However, even for small   , these 

traditional Dirichlet BCs would lead to a tendency for widening of islands for aspect 

ratio       where   ̅       . Likewise, there is a tendency for narrowing when 

      and        ̅  . This is not consistent with the 1D decay observed in 

experiment. 

  Our resolution to this dilemma is to argue that the traditional macroscale 

Chernov-type kinetic coefficients in a BCF formulation must be modified for analysis of 
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nanoscale evolution. Specifically, this modification is required when the characteristic 

length scale of the decaying objects does not greatly exceed the characteristic separation, 

     , between kinks at island edges [13]. The underlying concept is that true attachment 

at steps requires incorporation at kink sites, and is thus inhibited for low kink densities 

even in the absence of an additional energetic barrier for attachment. This is the case for 

the smooth almost-facetted 〈 ̅  〉 island edges. As a result, we introduce a more 

appropriate “very small” effective kinetic coefficient,   ̅           
  for attachment to 

the 〈 ̅  〉 step edge [13], which would be negligible for an almost-facetted step edge 

with large      . The kinetic coefficient      can reasonably be taken as infinite since 

〈   〉 steps are highly kinked. Within this formalism incorporating   ̅    , it is 

immediately clear that one recovers 1D decay which is independent of the value of   ̅  . 

  In closing, we note a previous BCF-type treatment by Yao et al. [23] for Ag 

island decay on Ag(110). They incorporated finite kinetic coefficients      , based 

on the inequality      , although this only follows in the traditional macroscopic 

theory for non-zero      and    ̅  , However, Yao et al. did not discuss the assignment 

of finite    and    in the absence of energetic barriers to attachment. They also 

predicted a different scaling in time for the island decay rate from the behavior which we 

describe below. 

 

3C. Refined BCF analysis for benchmark aligned island configurations 

  Here, we perform an analysis of the diffusion problem in Sec. III B for a 

“benchmark” island configuration motivated by the observation that islands in 
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experimental distributions are often reasonably well aligned end-to-end with their 

neighbors in the 〈 ̅  〉 direction [11]. Thus, we consider a configuration with just two 

aligned islands of differing widths in a rectangular simulation cell with periodic 

boundary conditions. See Fig. 5. This enables more systematic analysis and elucidation 

of the fundamental behavior. We set   
    

      eV for Ag/Ag(110), and set the 

temperature to 190 K unless otherwise stated. This implies that                 . 

Below,      
  will denote the width of the simulation cell, and        

  (     
 ) the width 

of the narrow (wide) island in the 〈   〉 direction. Also,      
               

  

     
  denotes the length of the simulation cell in terms of the length of the narrow 

(wide) island,         
  (     

 ), and the separation,     , between them in the 〈 ̅  〉 

direction. 

  Precise determination of the decay rate,      , for the narrower island from our 

refined-BCF theory, and its dependence on various geometric and model parameters, is 

achieved from numerical analysis of the diffusion problem using FEMLAB software 

[26]. An example of the results from such an analysis is shown in Fig. 5, where we 

define         
       
 

       
     

     
 

       
 ,   

    

       
 ,   

     
 

       
 , and   

     
 

       
 . If 

“narrow” (“wide”) denotes quantities for the narrower (wider) island, then the bottom 

frame shows results for the rescaled adatom density,            
           

       

    
     . Thus,     takes values of 1 (0) at the end of the narrower (wider) island. From 

these results, we can calculate the net detachment fluxes integrated along 〈   〉 island 
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ends after multiplying integrated rescaled fluxes, ∫
 

  
     , by        

           
     . 

Selected results are shown in Table I. 

For this aligned island geometry, given the strong anisotropy in terrace diffusion 

at 190 K, it is natural to assess the effectiveness of a quasi-1D estimate,    , of the 

island decay rate. This estimate corresponds to the diffusion flux in the 〈 ̅  〉 ( -) 

direction rate for      (and therefore     ), and has the form 

              
 

    
(    

           
    )  

         ̅  

    
(  

       
 

     
 ).                  (6) 

The latter expression follows after adopting an approximation for the adatom density 

             ̅     
           ̅    

 . 

  Results shown in Table I directly compare       and    . The agreement is 

particularly good if the separation,     , between the islands is comparable to the island 

length. For larger     , the agreement is better for narrower simulation cells.  A key 

feature reflecting quasi-1D behavior is the dependence of               on      where 

all other parameters are fixed. This inverse proportionality is satisfied best for narrow 

simulation cells with width not much greater than the wider island. Such a decrease in 

      with increasing      is much stronger than the logarithmic dependence found in 

isotropic systems [11]. This feature impacts the temperature-dependence of island decay, 

as discussed in Sec. III F. 

  We can also assess the dependence of       on other model parameters. First, 

we recall the feature that the thermodynamic driving force for island decay derives from 

the difference in width between islands. Thus, it is natural to analyze the change in       
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upon varying      
 . We choose      

              
  and increase  . In this analysis, 

we fix          ,      ,    ,      , and          . If we define       

    
           

    , then results from this analysis are instructively presented as 

                                                                                 (7) 

with          0.97, 1.02, and 0.98 for    ,    , and     (i.e.,    is roughly 

independent of  ). Thus, the enhanced decay rate for wider islands primarily results 

from the increased thermodynamic driving force. The limiting value for     

corresponds to decay of an island between two infinite steps. 

  Second, consistent with the quasi-1D estimate, we find a negligible dependence 

of       on the length,      
          

 , of the larger island: 
        

          
  , 1.000, 

0.981, 0.969 for    , 2, 4, and 8, respectively,  fixing other parameters:          , 

   ,      ,      , and          . 

  Third, we explore how the dependence of       on              
  varies with 

the degree of anisotropy   in terrace diffusion. For the benchmark geometry with fixed 

         ,      ,    , and      , we find that the dependence,           

    , does not degrade upon increasing   from 0.00445 to  0.0102 (i.e., increasing   

from 190 K to 220 K for Ag/Ag(110)) to     (isotropic diffusion). See Table II. The 

key point is that quasi-1D behavior is induced not just by small  , but also by the “quasi-

1D channel” geometry in which we solve boundary value problem for the diffusion 

equation. This feature of our benchmark geometry for larger      reflects experimental 
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geometries given the presence of highly elongated large islands formed during 

deposition [11]. See Fig. 2. 

 

3D. Refined BCF analysis for non-aligned island configurations 

  Certainly, there are examples in experimental island distributions where 

neighboring islands in the 〈 ̅  〉 direction are completely misaligned. It is clear that the 

net flux of diffusing adatoms between such islands (which is mediated by slow cross-

channel diffusion) will be relatively small. There are also cases, as shown in Sec. III E, 

where neighboring islands are marginally misaligned, so that the top 〈 ̅  〉 edge of one 

island is aligned with the bottom 〈 ̅  〉 edge of the neighbor. The net flux between such 

islands for large anisotropy,     should be significantly higher than for completely 

misaligned islands. Separate analysis for the simpler benchmark configurations shown in 

Fig. 6 reflecting these possibilities for misalignment will help elucidate evolution for 

general arrays of islands. 

  The FEMLAB results for island decay rates,      , are shown in Table III 

comparing behavior for marginally misaligned and completely misaligned islands in Fig. 

6 with that for aligned islands in Fig. 5. We vary   to check for scaling of the form 

         , as    , where  is an exponent to be determined. For aligned islands, one 

has             (the 1D estimate), as    .  For marginally aligned islands, data 

in Table III together with more extensive analysis shows that             , as    , a 

feature clarified in Sec. III F. Note that       in this case is a significant fraction (    

 ) of that for aligned islands despite the strong diffusional anisotropy of           
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corresponding to       K for Ag/Ag(110). For completely misaligned islands,       

decreases much more quickly with  , so the flux becomes substantially smaller than that 

for marginally aligned islands. From Table III supplemented by additional analysis, one 

finds that           , as    . See also Sec. III F. 

 

3E. Refined BCF analysis for an experimental island configuration 

  For configurations of multiple islands, including those extracted from 

experimental STM images, it is also viable to solve the rBCF boundary value problem 

numerically using FEMLAB software. In this way, one can compare theoretical 

predictions for island evolution, and particularly the 1D decay of narrower islands, with 

experimental observations or corresponding KMC simulations. To this end, we input to 

our numerical analysis a configuration of several islands shown in Fig. 7 (top) which 

constitute the local environment of the narrow decaying island tracked in Fig. 2(a). One 

constraint for our FEMLAB analysis is that we choose the boundary of the simulation 

region to roughly correspond at least approximately to a zero flux boundary.  Note 

however that the specific treatment of the outer boundary will not greatly affect the 

evolution of the “far removed” small narrow central island. For each of the islands, we 

impose a zero-flux boundary condition on the top and bottom 〈 ̅  〉 edges, and a 

suitable Dirichlet BC on the 〈   〉 ends. From Eq. (3), the latter BC sets the adatom 

densities,  , to 

             ̅     
      |  

 |   
            

                                   (8) 

at 190 K, with |  
 |        eV for Ag/Ag(110) [11] and with    in nm. 
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  Results of our FEMLAB analysis for the rescaled density field         are 

shown in Fig. 7 (bottom). From these results, we can calculate the net detachment fluxes 

integrated along 〈   〉 island ends after multiplying integrated rescaled fluxes ∫
 

  
     

by             nm
2
/s at 190 K using parameters for Ag/Ag(100) in Ref. [11]. The 

calculated net detachment rate from the right side of the small central island 1 is 

                 nm
2
/s, and from the left side is                  nm

2
/s. Thus, 

the total rate of decay of the area of island 1 is                nm
2
/s. 

It is natural to compare the value of          with a simple 1D estimate. We note 

that a segment of length         nm on the right end of island 1 (with   
      nm) is 

directly aligned with the left end of the island 5 to the right (with   
      nm) which is 

separated from island 1 by a distance     
        nm. Thus, it follows that 

           (         
 

          
 
)        

           nm
2
/s.                    (9) 

       is somewhat below         , as expected from the results in Sec. III C. 

We also emphasize that the left end of island 1 provides an example of “marginal 

alignment” with the neighboring island to the left. Despite only marginal alignment, 

         is still significant relative to         , as might also be anticipated from the 

results in Sec. III D. 

  From the FEMLAB analysis, one can also extract integrated diffusional fluxes at 

the ends of all islands. The results are as expected. For example, the largest fluxes, 

                 nm
2
/s and                   nm

2
/s, are associated with the 

smallest island 4. 
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  Next, we compare the above results with the experimental observations in Sec. II 

B. The effective comparison is complicated by two factors. First, the island decay 

process has significant stochastic nature as shown in Sec. II, especially for small islands 

at 190 K. Thus, experimentally observed behavior may not be typical. Second, the actual 

shapes of islands neighboring the decaying island 1 are not perfect rectangles or even 

rectangles with rounded corners. The feature that these islands often do not have straight 

〈 ̅  〉 sides means that there are significantly more traps for diffusing adatoms than for 

more perfect islands such as those in our rBCF analysis. This is consistent with the high 

experimental decay rate,               nm
2
/s (with large uncertainty) relative to the 

rBCF analysis. 

  Finally, we compare the rBCF results with those from KMC simulation of our 

msLG model in Sec. II C for the experimental island configuration. This avoids some of 

the above complications in comparing with experiment. First, by repeating the 

simulation multiple times for a single initial configuration of island 1 and its local 

environment, we not only assess the extent of fluctuations in decay, but also obtain 

precise results for the mean decay rate. Second, we can choose the initial shapes of the 

islands to match the perfect rectangular rBCF shapes rather than including the 

experimental imperfections. Comparing the initial decay rate for island 1 from our msLG 

model averaging over 99 trials (see Sec. II C) with the rBCF result yields the good 

agreement 

               nm
2
/s versus                nm

2
/s.                      (10) 



169 

 

However, complications include possible initial transients in our KMC simulations as 

noted in Sec. II C, and limitations of the rBCF theory as discussed in Sec. IV. 

 

3F. Discussion of rBCF analysis 

Our rBCF analysis has been effective in characterizing dependence of the island 

decay rate on geometry. However, a simple observation further elucidates the results in 

Secs. III C and III D, including the effectiveness of the quasi-1D analysis: expanding the 

 -axis by a (large) factor of                              
    

     converts the 

boundary value problem into one with isotropic diffusion. Since          √       

(here and later,   is always in eV
−1

 for any similar expression) is large for Ag/Ag(110) at 

190 K, our benchmark geometry with two aligned islands in the simulation cell 

transforms into a geometry with two closely-spaced wide islands with long parallel 

nearby edges. Thus, one naturally expects quasi-1D behavior. To obtain the island decay 

rate,      , for misaligned islands, one solves for rate,     , in the rescaled isotropic 

problem, and then multiplies by     (accounting for expanded 〈   〉 island edge 

lengths) to recover the flux in the original problem. Then, for the marginally misaligned 

case, it is clear that      achieves a finite limiting value as    , and thus 

                     , as    . For the completely misaligned case, one has that 

          , so that                 , as    . 

            The rBCF formalism also elucidates basic dependencies of the decay rate,      , 

on time and temperature. The form of     indicates that       should be roughly 

constant, or even decrease with time if      increases, consistent with experiment and 
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simulation in Sec. II. Previous studies proposed that            , where    is the time 

of island disappearance, disagreeing on whether       [9] or 1/2 [23]. In either case, 

since    , it follows that               diverges as    . However, these fits were 

applied to both to the 1D decay regime, and a subsequent 2D late-stage regime which 

occurs for            [11]. Thus, their analysis was skewed by the latter regime. This 

regime is described by       just as for terrace-diffusion limited coarsening in 

isotropic systems [11].  

    Finally, we consider the effective Arrhenius energy       
 

  
    for 1D 

island decay at lower   versus conventional 2D decay at higher  . We assign a 

Arrhenius dependence,               , for the typical distance between 〈   〉 island 

ends [11], and write               for the energy cost to form a 2D gas adatom by 

extraction of an adatom from a large 2D island. Then, since roughly speaking, one has 

that                versus                         for 2D decay [23,11], it 

follows that 

         
             versus           

    
          .                   (11) 

The low value of        using          eV is consistent with experiment [11]. 

 

4. Multi-Density Field and Spatially Discrete Analytic Formalisms 

  More detailed analytic treatment of the 1D island decay processes requires 

incorporation into the modeling of edge diffusion kinetics which is missing in the 

refined-BCF formulation of Sec. III. In Sec. IV A below, we suggest a possible 
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formalism still within a continuum BCF-type framework, but which includes an 

additional diffusion field for edge adatoms. However, in any system with nanoscale 

island dimensions of  (10
1
) lattice constants, one could argue that it is more appropriate 

to retain a spatially discrete model. Then, BCF-type diffusion equations are replaced by 

so-called lattice differential (diffusion) equations. In fact, such a discrete framework is 

extremely versatile being readily amenable to including details of edge diffusion 

kinetics, e.g., associated with the above edge adatom diffusion field, as well as other 

features of nanoscale geometry [13]. Thus, this approach is developed in Sec. IV B, and 

results are presented in Secs. IV C and IV D. 

 

4A. Analytic continuum formalism 

To account for the lack of equilibration of edge adatoms at 〈 ̅  〉 step edges and 

to capture the details of edge diffusion kinetics, we introduce a separate diffusion field, 

     , to describe the density per site of edge adatoms at the 〈 ̅  〉 edges (in addition to 

the adatom density,  , on terraces). See Ref. [27,28,29] for somewhat related 

formalisms. The terrace adatom density,  , satisfies the BCF diffusion equation Eq. (4) 

together with a Dirichlet BC,       , at 〈   〉 islands ends (as in Sec. III), and now 

another Dirichlet BC,       
 
     , on 〈 ̅  〉 island edges. The latter condition 

reflects the feature that       is enhanced relative to the nearby adatom density on 

terraces due to bonding to the step edge with strength determined by   
   . 
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  Let              

  
  denote the net flux of terrace adatoms per unit length 

attaching at position   along the 〈 ̅  〉 edge of an island, where the      sign applies 

for the lower (upper) 〈 ̅  〉 edge. Then, it follows that 

 

  
        

   

                ,                                                    (12) 

where   
      

  is the edge diffusion coefficient with   
        

 
. To complete this 

formulation for      , we must impose BCs at the corners of the island. To this end, we 

introduce an effective rate,             (see Fig. 1) for corner rounding from 〈 ̅  〉 to 

〈   〉 edges. The rate for corner rounding in the reverse direction is determined by 

detailed-balance, a feature incorporated in the following treatment. Then, by matching 

edge diffusion flux and the net corner rounding flux,    , from 〈 ̅  〉 to 〈   〉 edges, this 

BC becomes 

  
  

  
                 (           

 
)     ,                              (13) 

the      sign applies for left (right) island corners. The first (second) term on the right 

hand side corresponds to corner rounding from 〈 ̅  〉 to 〈   〉 edges (from 〈   〉 to 

〈 ̅  〉 edges).  The extra factor of      
 

 in the negative contribution to     ensures that 

for a single island, the equilibrated 〈 ̅  〉 edge density satisfies            
 
    , i.e., 

nedge is enhanced relative to      which also corresponds to the local adatom density on 

terraces consistent with the above Dirichlet BC for   at 〈 ̅  〉 step edges. 
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   For further analysis, it is instructive to note that detachment from the 〈 ̅  〉 edge 

occurs with rate              
 

, where     
    

    
 . Consequently, the net 

attachment flux can be decomposed as 

                       ,                                                         (14) 

where                    . It is also useful to define    
             as a 

characteristic length for corner rounding in competition with detachment. Next, we note 

that if            and           are high (realistic values are ~10
3
 for Ag/Ag(110) at 

200 K), it follows that       is effectively uniform along the 〈 ̅  〉 edge. Then, 

integrating Eq. (12) along this edge and applying Eqs. (13) and (14) yields 

           
 (           

 
    )    〈         〉     ,                         (15) 

where 〈         〉 denotes the average of           along the step edge. 

A previous perspective on the kinetics of 1D island decay [9] assumed a 

significant       and implicitly that    
    . In this case, Eq. (15) indicates that 

         decreases with shrinking    suggesting enhanced rate of decay of the small 

island. In Sec. IV B, we will reassess this picture and analyze 1D island decay 

incorporating a detail description of edge diffusion kinetics utilizing the spatially 

discrete formalism. 

 

4B. Discrete diffusion equations (lattice differential equations) 

  Formalisms based on spatially-discrete diffusion equations (DDE), i.e., lattice 

differential equations, have great flexibility to describe the details of edge diffusion 
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kinetics and to capture nanoscale behavior [13]. Furthermore, one could argue that 

continuum formulations are inappropriate or misapplied when the spatial grid size for 

accurate numerical solution is below that of the physical surface lattice constant. To 

develop and illustrate the DDE formalism, we first consider the benchmark geometry of 

two aligned islands in a simulation cell with periodic BCs as described in Sec. III C. 

This geometry and the labeling of a spatially discrete grid of adsorption sites (   ) is 

shown in Fig. 8. The adatom density at site (   ) is denoted as     . 

The generic equation for the adatom densities,     , has the form 

 

  
           

              
              

              
        

      
      

      
      

      ,                (16) 

where     
 ,     

 ,     
 , and     

  denote the rates to hop left, right, down, up from site (   ), 

respectively. For sites in the middle of the terrace, one has that     
      

     

      
 
 and     

      
           

 
. For sites near 〈 ̅  〉 edges (i.e., for sites 

adjacent to those at the 〈 ̅  〉 edge), rates for hopping into those sites from edge sites are 

reduced by a factor of     
 

 relative to   , so this feature modifies certain terms in Eq. 

(16). For sites at 〈 ̅  〉 edges, a distinct edge diffusion rate is applied, i.e.,    is replaced 

by   
        

 
 [19]. Also, the rate to hop from such sites to near-edge terrace sites is 

reduced by a factor of     
 

  relative to   . Examples of the equations for edge, near-

edge, corner, and near-corner sites, as well as the generic equation for terrace sites, are 

given in Fig. 8. For boundaries across which there is no diffusion flux (such as 〈 ̅  〉 

island edges and the outer boundaries of the simulation cell), we simply set to zero the 
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rates for hops which would cross those boundaries. For sites at 〈   〉 island edges (in 

the light grey shaded region in Fig. 8), we impose a Dirichlet BC,          , where 

     is determined for the appropriate island width, and thus is higher for the left island 

than the right island [30].  

   Finally, for the corner sites just above or below the 〈   〉 edges, we introduce 

special equations and rates to capture corner-rounding diffusion kinetics. The rate to hop 

up or down from these corner sites to the 〈   〉 edge sites is taken as            , 

where we will set          eV (see Fig. 1) consistent with the model in Ref. [11]). 

The reverse rate is taken as    
    

 
    with     , reflecting the feature that the 

equilibrium edge density is enhanced by a factor of      
 

 relative to the equilibrium 

terrace density. We include the factor   , as it is instructive to compare behavior for 

     with that for      (artificially enforcing one-way corner rounding).  

  Deeper insight into the form of the solutions of Eq. (16) comes from a natural 

rescaling where we set     
       for all terrace sites, and     

      
 
     for 〈 ̅  〉 edge 

sites. Then, for all terrace sites including near 〈 ̅  〉 edge sites (but not for 〈 ̅  〉 edge 

sites), Eq. (16) adopts the generic form 

 

  
    

           
       

        
            

       
        

  .                 (17) 

  For the edge of the simulation cell, terms corresponding to crossing the boundary 

are removed. For most 〈 ̅  〉 edge sites, one has that 

 

  
    

    
        

       
        

       
 
         

      
  ,                         (18) 
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where the      applies for the upper (lower) 〈 ̅  〉 edge. For the edge sites just above 

the right 〈   〉 island end, one has the special equation 

 

  
    

    
 (      

      
 )      

 
  (      

      
 ) 

     
 
         

      
      

          
      

  .               (19) 

An analogous equation applies for edge sites just below the right 〈   〉 island end, as 

well as just above and below the left  〈   〉 end. 

   For the standard choice      (satisfying detailed-balance), each term in the 

rescaled equations just involves the difference between two densities of adjacent lattice 

sites. Thus, for the case where both islands have the same width and the same BC: 

         it is immediately clear that one recovers the correct equilibrium steady-state 

solution,     
      , for all sites. For different widths, one might introduce the quantity 

     
       

      
           

           
     , which satisfies the same equation as the     

 . 

Analogous to     in Secs. III C and III D, the      
  has BCs of 1 and 0 on the 〈   〉 ends 

of the narrow and wide islands, respectively. Instead, analogous to Sec. III E, we 

consider the variable     
      

     also satisfying the same equation as     
 . From Eq. 

(3), the BC on the end of an island of width        [where    is the difference 

between the coordinates (in units of  ) of upper and lower 〈 ̅  〉 edges of the island, see 

Fig. 8] is simply     
     |  

 |   
          for   

         eV matching 

Ag/Ag(110) at 190 K. Finally, note that for one-way corner rounding (    ), one never 

obtains a simple equilibrium steady-state solution. 
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4C. Lattice differential equations results for aligned islands 

We first assess 1D island decay behavior for the configuration of aligned islands 

shown in Fig. 8 with a realistic choice of parameters corresponding to the msLG model 

for Ag/Ag(110) at 190 K. In Fig. 9(a), we show sample simulation results for     
  

    
      with      and choosing geometric parameters:        

      nm and 

       
      nm for the small narrow island (     with the BC            

  

     );       
      nm and      

       nm for the wider island (      with the 

BC          
       );           nm. It is straightforward to determine the diffusion 

flux between islands summing differences in densities,      
        

      
 

, for adjacent 

columns of sites,           (∑      
 

        ). One can also evaluate the net 

corner rounding flux from the 〈 ̅  〉 to the 〈   〉 edge of the narrow island given the 

adatom density               
        at the sites just above the 〈   〉 ends relative to 

           
       . Using                

 
(              

             
 ), one 

finds that      , i.e., the net corner-rounding flux is from 〈   〉 to 〈 ̅  〉 edges, and 

that |   |            is small. As an aside,     is positive for the wider island. 

  These results present a different picture from that suggested previously [9] of 

effective one-way corner rounding (    ) with a significant positive corner rounding 

flux,       for the narrow decaying island. Such a flux could inhibit the overall 1D 

decay of the island by feeding detached adatoms back to the 〈   〉 end. We can mimic 

this picture by artificially setting      in our equations which does produce a 

significantly lower island decay rate to           (∑      
 

        ) and large 
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one-way corner rounding flux                determined from        
       . 

However, examination of the boundary value problem for our rescaled equations for the 

physical choice of      (consistent with detailed-balance) makes it clear that the 

rescaled densities at all sites on the surface, including those at corners,               
 

, 

cannot exceed the maximum value of            
 

 for the narrower island. Thus,     must 

always be negative [31]. 

  Another key comparison follows from adjusting the model parameters to mimic 

the rBCF treatment which does not incorporate binding to 〈 ̅  〉 edges and does not 

explicitly treat corner rounding. To this end, we simply set   
   ,      

 , and also set 

      to capture the feature of no direct corner rounding [32]. See Fig. 9(b). 

Analyzing the associated discrete diffusion equations for the same geometry as above 

yields ∑      
 

        . Consequently,      is somewhat reduced by a factor of 0.92 

relative to our above model with realistic treatment of edge diffusion for Ag/Ag(110) at 

190 K. This reduction is consistent with the observation in Sec. III that the rBCF 

prediction for the rate of decay of the island in Fig. 2(a) is slightly below the value 

obtained from KMC simulation. 

 

4D. Lattice differential equations results for different geometries 

  The discrete formulation can also be used to compare behavior for aligned 

islands and misaligned islands (not shown). To analyze the case of marginally 

misaligned islands, we start with the island geometry as in Fig. 8 but shift the two 
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islands relative to each other in the  -direction from perfect alignment to marginal 

misalignment and slightly increase the  -dimension of the simulation cell (so now 

     ,       ,       ,       , and      ). Retaining parameters for 

Ag/Ag(110) at 190 K with     , we find that ∑      
 

         for marginally aligned 

islands, well below ∑      
 

         for aligned islands. However,      is still 

significant, consistent with the results of Sec. III D. For completely misaligned islands 

(but with a small misalignment gap) where now      ,       ,       ,       , 

and      , we find the expected further reduction in ∑      
 

        . 

  Finally, we further highlight the versatility of the discrete diffusion equation 

formalism to capture features of nanoscale island geometry by refining the aligned island 

geometry shown in Fig. 8 to add kinks on the 〈 ̅  〉 edges of the wider island. See Fig. 

10. In our corresponding analysis, we retain all the geometric parameters used in Sec. IV 

C including      ,      , and       , but add the kinks at      . These kinks 

will act as additional traps for adatoms diffusing from the narrower island. This feature 

is reflected in the assignment      
             which is below the value     

  

  |  
 |    at the 〈   〉 end of either island. For this geometry and retaining parameters 

for Ag/Ag(110) at 190K with     , we find that ∑      
 

         has increased 

somewhat above the value of ∑      
 

         for the corresponding geometry without 

kink sites. This enhancement is also consistent with the observation in Sec. III that the 

rBCF prediction for the rate of decay of the island in Fig. 2(a) is slightly below the value 



180 

 

obtained from KMC simulation of our msLG model (noting that kinks can form 

spontaneously in the KMC simulations). 

 

5. Conclusions 

  Our rBCF modeling in Sec. III provides an effective and instructive modeling 

tool which captures the basic features of 1D decay of islands in strongly anisotropic 

fcc(110) homoepitaxial systems. This includes description of the unusual dependence of 

island decay rate on both island geometry and temperature. In particular, rBCF modeling 

obtains good agreement with (being only slightly below) precise results for the island 

decay rate obtained from extensive KMC simulations modeling experimentally observed 

1D decay of Ag islands on Ag(110) homoepitaxial at 190 K. However, the rBCF theory 

assumes equilibration of edge adatoms and does not incorporate edge diffusion kinetics, 

the details of which could have at least some influence on the decay rate. A modified 

treatment within the framework of discrete differential equations can account for these 

features. The result of this approach is to produce a slight enhancement of the island 

decay rates relative to the rBCF treatment. The discrete diffusion equation formalism 

also has the flexibility to allow incorporation of kinks on the 〈 ̅  〉 island edges. We 

note that such kinks are absent in the rBCF treatment which includes perfect rectangular 

islands, but formed spontaneously in KMC simulations of a msLG model. Incorporating 

kinks also slightly enhances the island decay rate. Both effects improve the already good 

agreement of the predictions of analytic theory with KMC simulation.  
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Figures 

Fig. 1. (Color online) Schematic of a 2D rectangular homoepitaxial island on an fcc(110) 

surface. Also indicated are: anisotropic terrace diffusion barriers (  
  and   

 ); 

conventional pairwise interactions (  
  and    

 ) and associated step energies (  ̅   and 

    ); unconventional interactions (   
  and    

 ) for an adatom at a transition state (TS) 

for edge diffusion; edge diffusion barriers (  
  and   

 ); corner rounding barriers (    and 

   
 ); examples of hopping adatoms on terrace and along edges. We also show the 

surface unit cell as well as notations for island dimensions and in-surface directions. 
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Fig. 2. (Color online) STM images for 1D decay of rectangular Ag islands on Ag(110) 

at: (a) 190 K with island decay rate             nm
2
/s for the central small island; (b) 

194 K with             - 0.013 nm
2
/s for both islands after exposure of 1.0 L oxygen 

(which does not affect behavior [11]); (c) 220 K with             nm
2
/s for the 

central island. The left column shows a larger region, and the other columns magnify the 

sub-region indicated of       nm
2
 for (a) and (b), and       nm

2
 for (c). Also 

shown are times since Ag deposition. 
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Fig. 3. (Color online) Island decay at (a) 190 K (left column); (b) 194 K (middle 

column); (c) 220 K (right column), for the islands shown in Fig. 2. Top row: island 

linear dimensions (   and   ) versus time since Ag deposition. Bottom row: island area 

versus time. 
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Fig. 4. (Color online) Results from KMC simulation of our atomistic msLG model [11] 

for decay at 190 K of the Ag island on Ag(110) shown in Fig. 2(a). The top frame shows 

a snapshot of the simulated island configuration early in the decay process. Atoms 

initially in the decaying island of interest are colored white. The bottom frame shows the 

area versus time averaged over 99 simulation trials. The areas for individual trials, 

illustrating very large fluctuations in the decay process, are shown in the inset. The noise 

in the average area for time        s reflects the limited number of trials with a 

surviving island. 
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Fig. 5. (Color online) Benchmark configuration with a pair of islands aligned end-to-end 

shown (top row), and rescaled adatom density            
           

           
      in 

the refined-BCF problem for the central portion of the benchmark configuration 

(FEMLAB results is shown in bottom row). Rescaled Dirichlet BCs at island ends are 

     
   1 and 0.  Geometric parameters for the above island configuration are defined 

as         
       
 

       
     

     
 

       
 ,   

    

       
 ,   

     
 

       
 , and   

     
 

       
 . In the 

adatom density field analysis of bottom row, we choose          
    

            at 

      K for Ag/Ag(110),           ,      ,      ,      , and      . 
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Fig. 6. (Color online) Benchmark configurations for (a) marginally misaligned islands 

with      , and (b) completely misaligned islands with    . FEMLAB results of 

rescaled adatom density field from            
           

           
      in the rBCF 

problem are shown in bottom rows of (a) and (b). We use rescaled Dirichlet BCs 

     
   1 and 0 at island ends, and           for Ag/Ag(110) at 190 K. 
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Fig. 7. (Color online) Top: Magnified STM image (          nm
2
) for the local 

environment of the small narrow island decaying shown in Fig. 2(a). Island dimensions 

are shown in yellow and separations in white (in nm). Bottom: FEMLAB results for the 

rescaled adatom density field,        , in the rBCF treatment for the island 

configuration (top). The simulation cell has zero-flux boundary conditions at the outer 

edges. 
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Fig. 8. (Color online) Discrete diffusion equations for the benchmark geometry with a 

pair of aligned islands. The region shown corresponds to the central portion of the top 

row, and all of bottom row in Fig. 5 (so only half the length of each island is shown). 

Examples of Eq. (16) are given for edge, near-edge, corner, and near-corner sites, as well 

as the generic equation for terrace sites. Arrows indicate the sites to which the equations 

correspond.  The positions of the island edges are given in terms of the coordinate 

system shown in the lower left. 
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Fig. 9. (Color online) Simulation results for rescaled adatom densities,     
      

    , 

near the right end of the narrower island for a simple geometry with two aligned islands. 

The top frame shows the island geometry and the sub-region for which rescaled densities 

are shown in (a) and (b). We choose              ,   
      , and set       K. 

The system size parameters:       and      . Narrow island parameters:       

and        so that        
                      nm;       so that 

       
                   nm. Wider island parameters:       and        

so that      
                       nm;       so that      

  
                   nm. Island separation:                          

nm.  (a) Realistic model for Ag/Ag(110) with     ,      
         , and   

  
       eV. (b) Simplified model mimicking rBCF theory with      

   , and   
   . 

Note the reduced edge adatom density in (b) relative to (a) is associated with a lack of 

binding to the 〈 ̅  〉 edge. 
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Fig. 10. (Color online) Portion of modified discrete diffusion equations geometry 

showing the addition of kinks on the 〈 ̅  〉 edges of the wider island. Examples are 

given of additional equations needed for adatom densities near the kink site. 

 

Tables 

Table I. Rescaled island decay rates 
           

         
 and 

           

             
  

 versus      

        
  for the configuration in Fig. 5 from FEMLAB analyses. Choice of parameters: 

           at 190 K for Ag/Ag(110),          ,      ,      , and various   

and  . For      , the wider island corresponds to a vertical strip. The complete 

adatom density field for       and       is shown in the bottom portion of Fig. 5. 

  
    

       
                                     

      
           

         
 1.121 1.153 1.195 1.271 1.310 1.330 
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 1 0.686 0.533 0.284 0.146 0.074 

      

           

         
 1.051 1.162 1.222 1.358 1.594 1.781 

           

             
  

 1 0.737 0.581 0.323 0.190 0.106 

    

           

         
 1.076 1.103 1.208 1.376 1.670 2.098 

           

             
  

 1 0.684 0.561 0.319 0.194 0.122 

 

Table II. Rescaled island decay rate 
           

             
  

  versus              
  for different 

diffusional anisotropies   for the configuration in Fig. 5 from FEMLAB analyses. 

  
    

       
                                     

          

         

1 0.737 0.581 0.323 0.190 0.106 

1 0.725 0.578 0.328 0.189 0.102 

    1 0.671 0.537 0.277 0.142 0.071 

 

Table III. Dependence of rescaled rBCF island decay rates            
  on the degree 

of diffusional anisotropy   from FEMLAB analyses for the configurations of aligned 

islands in Fig. 5, and marginally and completely misaligned islands in Fig. 6. Here 

     
  is the decay rate for aligned islands when     with fixed other parameters as in 

Fig.6. 

                                                    

Aligned  1 0.882 0.677 0.622 0.557 0.519 

Marginally misaligned 1.037 0.869 0.471 0.326 0.142 0.0275 

Completely misaligned  1.174 0.871 0.342 0.199 0.054 0.0050 
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Abstract 

The propensity for reactant and product molecules to pass each other within the 

pores of catalytic nanoporous materials strongly impacts reaction yield. For overdamped 

Langevin molecular dynamics, we describe the dependence of the passing propensity, P, 

on pore radius, R, including the scaling, P ~ (R-Rc)

, as R→ Rc (the critical radius below 

which passing is sterically blocked). The exponent, , is generally lower than transition 

state type theory predictions. Precise numerical analysis of the Langevin and equivalent 

Fokker-Planck equations is provided for rotationally symmetric molecules. This 

facilitates development of a general picture for the dependence of passing propensity on 

molecular degrees of freedom including shape and rotational motion.  
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1. Introduction 

It has long been recognized that in catalytically active nanoporous materials such 

as zeolites, the yield of conversion reactions is very low in the so-called single-file 

diffusion (SFD) regime [1]. SFD applies when reactant and product molecules cannot 

pass each other within narrow pores. In this regime, the reactant is restricted to near the 

pore openings, and the pore interior is exclusively populated by product which cannot be 

readily extruded. Increasing pore width to allow the onset of inhibited passing results in 

a strong increase in reactant penetration into the pore, and thus in the yield. 

The delicate interplay between reaction and inhibited transport in these systems 

has typically been described by spatially coarse-grained models wherein the pore is 

divided into cells with width d~1 nm matching the mean length of reactant and product 

molecules [1-6]. Then, transport subject to SFD is simply described by hopping to 

adjacent empty sites in cells at rate h for species . This corresponds to a low-

concentration diffusion coefficient of D =d
2
h. Passing can be incorporated by allowing 

exchange of species  and  in adjacent cells with rate h,pex, where h, is a suitable 

average of h and h, and the pex>0 reflects the passing propensity. Adsorption-

desorption at pore openings, as well as reaction, must also be specified. Then, model 

behavior can be analyzed precisely via Kinetic Monte Carlo simulation [1-5] or via a 

suitable “generalized hydrodynamic theory” capturing both fluctuation effects and 

restricted transport [6]. 

However, a key requirement for application of the model to specific systems is to 

reliably assess the key input parameter, pex. Clearly, pex will depend strongly on the size 
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of the molecules relative to the pore radius, R, and will vanish at a critical pore radius, 

Rc, where passing is sterically blocked. Close to this threshold, roughly spherical 

molecules must misalign on opposite sides of the pore in order to pass. For elongated 

rod-like molecules, orientational alignment will also be required both with the pore axis 

and with each other. Detailed behavior will depend on system details although some 

general features may exist.  

Despite the significance of passing propensity in determining catalytic yield, the 

only previous direct study of passing behavior is for spherical molecules utilizing a 

transition state theory (TST) type approximation [7]. Here, we apply overdamped 

Langevin molecular dynamics [8] to describe the motion of reactants and products 

through a solvent in the pore and to provide a basic assessment of passing processes 

controlled by steric effects. Numerical analysis of the appropriate Langevin equations 

quantifies the passing propensity, P, versus pore radius, R. However, for a more 

fundamental understanding, it is instructive to also consider an equivalent formulation in 

terms of a Fokker-Planck equation [9] (which corresponds to a high-dimensional 

diffusion equation). This also enables a particularly effective reformulation to explore 

asymptotic behavior as R→ Rc. Precise numerical analysis is provided for the case of 

rotationally symmetric molecules. Insights from this analysis provide a general picture 

for the dependence of passing propensity on molecular degrees of freedom including 

shape and rotational motion. Actual behavior differs in all cases from predictions of a 

transition state type theory formulation of passing. 
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2. Langevin Formulation and Analysis of Passing Propensity 

We consider overdamped Langevin dynamics for a pair of reactant and product 

molecules, i = 1, 2, inside a pore which is aligned with the z-axis. We treat only steric 

interactions between the pair of molecules, and between the molecules and the pore (i.e., 

we impose a no overlap condition).  The analysis is formulated for possibly non-

spherical elongated molecules in 3D which exhibit rotational symmetry about a long 

axis. Thus, each has three translation degrees of freedom (DOF) and two angular DOF. 

The passing of spherical molecules within a 3D cylindrical pore is analyzed in detail. To 

obtain broader insight into the effect on passing propensity of the number of molecular 

DOF, we consider analogous 2D cases, i.e., elongated molecules with two translational 

DOF and one additional rotational DOF, and analyze in detail the passing of circular 

molecules  

For an elongated molecule with mass m, it is convenient to implement 

incremental changes in coordinates in the body-fixed frame as follows. For translational 

motion, we assign drag forces F||
drag

 = -m|| d/dt x|| and F,i
drag

 = -m d/dt x,i for changes 

in position x|| and x,i  parallel to and orthogonal to the long axis, for translational drag 

coefficients || and , respectively. (The two orthogonal directions in 3D are labeled by 

i.) Translational induced by random forces F|| and F,i is implemented via [8,9] 

   m|| dx|| = F||(t) dt, where <F||(t)> = 0 and <F||(t)F||(t)> = 2kBTm|| (t-t), and (1a) 

   m dx,i = F,i(t) dt, where <F,i(t)> = 0 and <F,i(t)F,j(t)> = 2kBTm i,j(t-t),

           (1b) 
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consistent with the fluctuation-dissipation relation. This prescription induces diffusive 

dynamics, e.g., <dx||> = 0 and <(dx||)
2
> = 2DII dt, where D|| = kBT/(m||). We assign 

rotational drag torques i
drag

 = -I|| rot d/dt i for rotation about the long axis with 

rotational drag coefficient rot. Here, the i are most conveniently selected as polar 

rotations about the long axis in two orthogonal planes which include the long axis Also, 

I|| is the moment of inertia for the long axis. Re-orientation induced by random torques i 

is implemented via [10] 

        I|| rot di = i(t) dt where <i(t)> = 0 and <i(t) i(t)> = 2kBTI|| rot i,j (t-t), (2) 

resulting in orientational diffusive dynamics with <di>=0 and <(di)
2
> = 2Drot dt and 

Drot = kBT/(I||rot). [This specification of orientational dynamics neglects coupling of the 

i dynamics to spinning about the long axis.] Such spinning can produce an angular 

momentum in the direction of the long axis. After incremental motion, we accept the 

move only if it satisfies the non-overlap conditions, and the new coordinates are 

transformed back to a space-fixed frame which is used to track absolute and relative 

molecular locations. For the case of rotationally symmetric molecules, one has that || = 

 and there is no angular motion. In this case, one can use a space-fixed frame with z-

axis along the pore to implement translational motion, and naturally replaces two 

coordinates zi for the pair of molecules by z = z1 – z2. The associated drag coefficient 

for z-evolution is reduced by half, and the associated diffusivity is doubled. 

Next, we describe the setup of our Langevin simulations to obtain passing 

propensities, P. Since only steric interactions are included, results for P just depend on 
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geometric factors. As above, we let z = z1 – z2 denote the center-of-mass separation for 

the pair of molecules along the pore axis. We consider the initial value problem where 

adjacent molecules start with separation z = d and follow their evolution either until 

they separate (defined as reaching z=2d) or pass (defined as reaching z = -d). This 

specification of passing is compatible with the coarse-grained models described above. 

Note that in the initial configuration, there is no hindrance of rotation of one molecule by 

the other in the case of elongated molecules. We select all other initial translational and 

rotational coordinates randomly, subject to the constraint that the molecules are within 

the pore. From a large number N simulation trials with Npass passing and Nsep separation 

outcomes (so N = Npass+Nsep), we estimate P  Npass/N. For this definition, the maximum 

value of P is Pmax = 1/3 for very wide pores where molecules do not interact (reflecting 

the feature that z changes by -2d for passing and only +d for separation.) One can also 

show that P is related to the parameter, pex, in the coarse-grained models described above 

by P = pex/(2+pex) consistent with pex=1 corresponding to unhindered passing. 

First, we present a detailed analysis of passing for the case of rotationally 

symmetric molecules. For radius r and linear size is d=2r, the critical pore diameter is Rc 

= 2d.  It is useful to introduce a gap size, g = 2(R-Rc), anticipating that P ~ (g/r)

, as 

g0. Fig.1 shows a typically trajectories for two spheres separating (left) and passing 

(right) in a cylindrical pore.  The passing propensity, P, versus gap size, g, is shown in 

Fig.2 for spheres in a 3D cylindrical pore (left), and circles in a 2D rectangular pore 

(right). Fig.2 (top) show that P(spheres) exceeds P(circles) for all g/r above about 0.05. 

This is expected from a simple analysis (see below)? On the other hand, for small g, we 
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find from Fig.2 (bottom), together with the FPE analysis below, that 1.7 for spheres, 

and 1.4 for circles. Thus, P(circles) dominates P(spheres), as g0. Finally, we 

mention some challenges to obtaining precise P-values.  Firstly, large N is required 

particularly for small g and small P, e.g., we choose N up to 5x10
6
 for spheres. Another 

more subtle issue is the choice of time step dt. For large dt, molecules can artificially 

jump by each other, so P is overestimated. However, for suitable small dt, we find that P 

increases with decreasing dt towards its limiting exact value. This reflects the feature 

that small steps are required to negotiate narrow gaps. Thus, for gap sizes below about 

0.1r, our Langevin estimates of P are imprecise even for our smallest time step.  

 

3. Fokker-Planck Equation Analysis of Passing Propensity 

Langevin dynamics can be described by the equivalent Fokker-Plank equation 

(FPE), which for the above problems with steric blocking just corresponds to a diffusion 

equation in high dimensions. It is convenient to introduce coordinates in the space-fixed 

frame for the molecules Qi = (qi,zi) where zi is the center-of-mass z-coordinate, and qi is 

the collection of center-of-mass lateral coordinates orthogonal to the pore axis and 

angular coordinates. The relevant  time-dependent FPE problem considers the 

probability distribution f(q1,q2,z; t) for the probability of finding two molecules 

confined inside the pore aligned with a finite range of center-of-mass z-coordinate 

separations z. In our analysis of passing propensity, P, adjacent molecules start with 

center-of-mass separation along the pore axis z = z1 – z2 = d, so that  

f(q1,q2,z; t=0) =Vd
-1

 (z-d), where Vd = dq1dq2 d(z) (z – d) ,  (3) 
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is a normalization constant. Since we follow evolution either until the molecules separate 

(reaching z=2d) or pass (reaching z = -d), this corresponds to imposing adsorbing 

Dirichlet boundary conditions (BCs) f=0 for z = -d and +2d. We also impose zero-flux 

Neumann BCs at the boundary of the physically region for other coordinates. Evolution 

of f is described by a FPE incorporating these BCs of the form [9] 

/t f(q1,q2,z; t) = LFPE f(q1,q2,z; t)  with self-adjoint LFPE =   D . (4) 

The symmetric diffusion tensor D, has components reflecting the amplitude of the noise 

terms in the LE and the molecular orientation relative to the body-fixed frame. For 

rotationally invariant molecules, D is diagonal with entries D = D|| = D for lateral 

coordinates, and 2D for the coordinate z.  

The above constitutes a diffusion problem in a high-dimensional constricted 

channel as shown schematically in Fig.3 (center). From f(q1,q2,z; t) , one accumulates 

over time the probability flux reaching z = -d and +2d [see Fig.3 (right)], and thereby 

determines the probability of passing P=Ppass or separation Psep as 

    Ppass(sep)  =  0<t< dq1dq2 ez  D  f|z = 2d,-d, for unit vector ez in z-direction. (5) 

Numerical analysis of this FPE initial value problem was performed using a hypercubic 

mesh in (q1,q2,z)-space. Accuracy is limited by the mesh spacing which was varied 

from r to r/16. We find good agreement with Langevin results for large gap sizes, but 

deviations (see below) for the regime of smaller sizes which is of particular interest.  

To resolve the computational challenges for small gap size, we first note that 

there is an equivalent time-independent FPE formulation of the “passing problem” which 
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considers the steady-state probability, f
ss

, with probability continually fed into the 

system at z = d, i.e., 

0 = LFPE f
ss

(q1,q2, z)  + Vd
-1

 (z – d).   (6) 

Now the probability of passing P=Ppass or separation Psep are obtained from the steady-

state fluxes 

Ppass(sep)  = dq1dq2 n  D  f
ss

|z = 2d,-d.   (7) 

Proof of the equivalence of these formulations follows from an eigenfunction expansion 

of their solutions in terms of the orthonormal eigenfunctions of the self-adjoint LFPE. See 

the Appendix. 

While this steady-state problem is similar in complexity to the time-dependent 

problem, there is a natural simplification for very small gap size. It is clear that in this 

regime, fss should be roughly constant for 0 < z < d and decrease linearly in z for z>d 

to zero at z=2d. It should drop dramatically as z decreases through z=0 to small 

values for –d < z < 0. See Fig.3 (left) for a schematic of this behavior. Thus, it is clear 

that behavior in this regime can be determined from the simpler and more conventional 

Dirichlet boundary value problem, 0 = LFPE f
ss

(q1,q2, z)  for –d < z < d, with f
ss

 = 0 at 

z = -d and f
ss

 = c (constant) at z =d. Again, we impose zero flux BCs at the other 

boundaries. Flux at z = -d is determined non-trivially from this solution, and at z=+2d 

trivially given the linear profile of f
ss

 for  +d < z < +2d. Thus, analysis with standard 

(and precise) adaptive-grid finite-element methods and software is viable [11]. 

A detailed comparison of different approaches was made for two circular 

molecules passing in a 2D rectangular channel. Fig.4 shows estimates of P versus g/r. 
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Precise results are obtained small g/r utilizing FEMLAB analysis [11] of the steady-state 

problem (in a phase space with two lateral positions and z). These smoothly connect to 

results from the time-dependent analysis, which are accurate for large g/r above about 

unity. Thus, together, these approaches give an accurate global characterization of 

behavior. Langevin equation agree with the time-dependent FPE results for larger g/r 

above unity, and agree with the FEMLAB results d for smaller g/r down to below which 

they become inaccurate.  The FEMLAB analysis provides a precise estimate of the 

exponent   1.4 for circles. This supports our estimate of exponents from Langevin data 

in the regime of g/r from around 0.1 to 1 indicating 1.7 for spheres. 

 

4. TST Analysis and Effective 2-Variable FPE Analysis 

A broader perspective on passing behavior comes from consideration of a TST 

type analysis of the free energy barrier to be surmounted during passing. In these models 

with just steric interactions, free energy is purely entropic, Fz = -kT ln(Vz), where Vz 

is the volume of accessible (q1,q2) phase space for fixed z. Thus, the free energy barrier 

for passing satisfies F = kBT ln(V|z|>d/Vz*), where z* is the transition state 

corresponding to minimum  Vz. Thus, the TST estimate for the passing probability 

scales like PTST ~ exp[-F/(kBT)] ~ Vz*/ V|z|>d. For circular molecules, trivially one has 

z*=0 and PTST ~V0 ~ (g/r)
2
, as g0 (i.e., TST =2) since both molecules are confined to 

a distance of order g/r from the pore wall.  For spherical molecules in a cylindrical pore, 

orienting the configuration at z*=0 so that molecule 1 is on the vertical axis through the 

pore center, it is clear that both molecules are confined to a distance of order g/r from the 
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wall, and the center of molecule 2 is confined to an angle or order (g/r)
1/2

 from the 

vertical axis. Thus, one has that PTST ~V0 ~ (g/r)
2.5

 as g0 (i.e., TST =2.5). See Fig.5. 

Thus, in both cases, TST exceeds the actual value of , a feature which we claim is 

general. 

To elucidate the deviation of exact behavior from TST predictions, it is 

instructive to consider an effective reduced-dimensional FPE analysis of the passing 

process. It is natural to consider replacing all the variables (q1,q2) by a single effective 

variable qeff, and then considering 2-variable FPE problem in  (qeff,z)-space with an 

effective pore of width Vz at position z. See Fig.6. Detailed analysis of the passing 

propensity, Peff, for the effective 2-variable Dirichlet problem appropriate for the regime 

of small gap size (using FEMLAB) reveals that Peff ~ (Vz*)

 as Vz0, where  is not 

necessarily unity as in TST. In fact,  can vary from values as low as ~0.15 to unity. See 

Fig.6. The key point is that the solution of the FPE problem and the behavior of the 

passing propensity depends not just on the size at the smallest constriction in the 

effective pore, but on the entire shape of the constriction. This should be anticipated 

since the exact solution of the effective 2-variable Dirichlet problem can be obtain by 

applying a conformal mapping to transform the constricted pore into a rectangular pore 

(a transformation which requires increasing dilation in the z direction as the gap 

vanishes). The conformal mapping depends on the entire shape. 

Future work will explore in detail whether analysis of an effective 2-variable 

FPE can give a reasonable estimate of exact passing behavior, i.e., of the solution of the 

high-dimensional FPE). For the case of two circle in a rectangular channel where Vz* 
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=V0 ~ (g/r)
2
, a value of   0.7 would exactly recover the true scaling for small gap size 

(but the above comments and preliminary analysis suggest that  will be just above 0.5 

for this system). 

 

5. Extension to General Molecular Shapes 

The TST formulation naturally extends to general molecular shapes. For 

example, for an elliptical and circular molecule in a 2D rectangular channel, there is an 

additional angular DOF for the ellipse which is restricted to a range of order g for small 

gaps at the transition state z*=0 (see Fig.5). Thus, one has that PTST ~ g
3
. Similarly, for 

an ellipsoidal and spherical molecule in a 3D cylindrical channel, there are two 

additional angular DOF for the ellipsoid each of which is restricted to a range of order g 

for small gaps at the transition state z*=0. Thus, one has that PTST ~ g
4.5

. For a pair of 

elliptical or ellipsoidal molecules, additional rotational degrees of freedom will further 

increase the exponents in the above scaling relations. Based on the above analysis for 

rotationally symmetric molecules we expect that the actual exponents, , for these cases 

are smaller than the TST predictions.  

It should also be emphasized that the passing propensity, and in particular its 

scaling as g0, depends on molecular shape. The above results for elongated molecules 

are specific to their convex shape. For contrast, consider the case of a circular and 

dumbbell shaped molecule (composed of two joined spheres) in a 2D rectangular pore. It 

is clear that the transition state no longer occurs at z=0, but rather there are two 

transition states corresponding to when one of the spheres in the dimer aligns with the 
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spherical molecule. See Fig.5. In each of these, dumbbell orientation is not increasingly 

restricted as g0, and as a result the scaling corresponds to that for a pair of circular 

molecules (PTST ~ g
2
 and the exact P ~ g

1.4
). The actual value of P for substantial g 

should be significantly reduced from the latter case, and the onset of the scaling regime 

should be modified. Analogous comments apply for a spherical and dumbbell molecule 

in a 3D cylindrical pore where PTST ~ g
2.5

 and the exact P ~ g
1.7

. 

 

6. Conclusions 

We have successfully provided a general picture for the behavior of molecular 

passing processes in narrow pores. The passing propensity is not described by a simple 

transition state theory, but rather depends on more global features of the confined 

geometry during the passing process. Behavior also depends strongly on molecular 

shape. 

 

Appendix: Equivalence of Time-Dependent and Time-Independent FPE 

Approaches 

We consider solutions of FPE-type problems for the probability of finding two 

molecules with coordinates Qi = (qi,zi) for i=1,2 confined inside the pore aligned with a 

finite range of center-of-mass z-coordinate separations z between –d and +2d.  We 

impose adsorbing Dirichlet boundary conditions (BCs) for z = -d and +2d, and zero-

flux Neumann BCs at the boundary of the physically region for other coordinates. Then, 
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for these BC’s, the associated eigenvalue problem for the self-adjoint FPE operator, LFPE 

=   D , with symmetric diffusion tensor D, has the form 

LFPE un(q1,q2, z)  = - n un(q1,q2, z)  where dq1dq2 d(z) un*um = n,m. 

An eigenfunction expansion of the solution for the time-dependent initial value problem 

for the FPE described in the text yields 

    f(q1,q2, z; t) = n cn exp(-nt) un(q1,q2, z)  with cn = Vd
-1

 dq1dq2 un*(q1,q2, z=d), 

the coefficients cn being selected to recover the initial conditions. An eigenfunction 

expansion of the solution for the time-independent formulation of the “passing problem” 

yields 

f
ss

(q1,q2, z) = n bn un(q1,q2, z)  with bn = Vd
-1

 dq1dq2 un*(q1,q2, z=d)/n. 

Determination of the probabilities for separation and passing from either of these 

problems yields the same result 

    Ppass(sep)  = n Vd
-1

 dq1 dq2 un*(q1,q2, z=d) dq1dq2 n  D  un(q1,q2, z=2d,-d)/n. 
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Figures 

 

Fig.1. Simulated trajectories for separating spheres (left) and passing spheres (right) in a 

cylindrical pore for gap size g = 2r where P  0.20.   
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Fig.2. Passing probability, P, versus scaled gap size, g/r, for spheres in a 3D cylindrical 

pore (left: a, c) and circles in a 2D rectangular pore (right: b, d). Results for various 

numerical time steps, dt, are also shown. Note the convergence P1/3, as g. 

 

 

Fig.3. Schematics for FPE analysis of passing. Center: the region of (q1,q2,z)-phase 

space for the FPE problem with adsorbing BCs (f=0) on the left and right ends (z = -d, 

+2d), and zero flux BCs on the sides; note that the region generally has missing 

inclusions reflecting the feature than molecules center-of-mass cannot get close. Right: 

reduced time-dependent probability distributions f(z,t) = dq1dq2 f(q1,q2,z; t). Left: 

reduced steady-state probability distribution f
ss

(z) = dq1dq2 f
ss

(q1,q2,z). 
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Fig.4. Comparison of results for the passing probability for two circular molecules in a 

rectangular channel from solution of time-dependent and time-independent FPE 

problems.  

 

 

Fig.5. Restricted dynamics at the transition state for passing. Range of allowed 

translational and rotational motion in indicated in terms of the (small) gap size. 

 

 

Fig.6. Solution of the effective 2-variable Dirichlet problem for a reduced dimensional 

pore of width Vz at position z. Values for the effective exponent, , are shown, where 

Peff ~ (Vz)

, and Vz0. 
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CHAPTER 9 

GENERAL CONCLUSION 

 

The first part of this thesis focuses on analysis of a non-equilibrium stochastic 

model for reactions, specifically a realization of Schloegl’s second model for 

autocatalysis (or quadratic contact process) on lattices. The Durret’s model and other 

similar models exhibit some features with the equilibrium Hamiltonian systems, but 

there are still some differences. The most significant feature is the generic two-phase 

coexistence for a finite range of control parameter. This contrasts the behavior in the 

equilibrium systems which two-phases coexist only at a single parameter value. We 

present a detailed analysis of this novel phenomenon for the Schloegl’s second model 

and its generalizations. Another extended topic is the analysis of nucleation phenomena 

in these non-equilibrium systems where the standard tools and concepts of 

thermodynamics are not available to facilitate understanding. The behavior of the rich 

droplet dynamics has been successfully predicted and described. 

The second component of this thesis has focused on the spatially continuous 

diffusion equations or Fokker-Planck equations for transport problems on surfaces and in 

nanopores. One of the transport problems is a coarsening and decay problem in strongly 

anisotropic systems. Our rBCF modeling obtains good agreement with the results for the 

island decay rate obtained from extensive KMC simulations. A modified treatment can 

account for edge diffusion kinetics and allow the kinks on the 〈 ̅  〉 island edges which 

are absent in the rBCF theory. Our analysis successfully describes and elucidates 
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experimental scanning tunneling microscopy (STM) observations for the Ag/Ag(110) 

system. Another class of transport problems involves diffusion and passing of pairs of 

overdamped Langevin molecules in narrow nanopores. The passing propensity is not 

described by a simple transition state theory, but rather depends on more global features 

of the confined geometry during the passing process. Precise numerical analysis of the 

Langevin and equivalent Fokker-Planck equations are given for rotationally symmetric 

molecules. We have successfully provided a general picture for the dependence of 

passing propensity on molecular degrees of freedom including shape and rotational 

motion. 

To summarize the discoveries and developments presented in this thesis, we 

provide the following list of the main highlights: 

(A) Discontinuous phase-transitions in non-equilibrium systems 

1. Discovery utilizing kinetic Monte Carlo simulation of generic two-phase 

coexistence (2PC) in a stochastic realization of Schloegl’s second model for 

autocatalysis (or quadratic contact process) on cubic or hypercubic lattices. 

2. Development of exact master equations and approximate hierarchical 

truncations to provide an effective treatment of the above models. 

3. Analysis of the generic 2PC regions and propagation failure regions of the 

above models on hypercubic lattices. 

4. Comparison between the above models from the Durrett model to threshold 

model or models with particle diffusion. 
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5. Detailed analysis of metastability associated with the discontinuous phase 

transition in the above models at the level of the site-approximation.  

6. Discovery of droplet dynamics exhibiting a classical family of critical 

solutions for vacuum droplets and nonclassical family for active droplets.    

(B) Inhibited passing of overdamped Langevin particles in narrow pores and  

Coarsening and decay 

1. Development of an instructive modeling tool to capture the basic features of 

island decay in strongly anisotropic systems. 

2. Successful description and elucidation of experimental scanning tunneling 

microscopy (STM) observations. 

3. Agreement with precise results for the island decay rate obtained from 

extensive KMC simulations modeling and rBCF treatment. 

4. Interpretation of molecular shape-dependence passing behavior in narrow 

pores. 

5. Successful agreement with the numerical results from Langevin and equivalent 

Fokker-Planck equations.  


