skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stability Study of the RERTR Fuel Microstructure

Conference ·
OSTI ID:1148998

The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degrees C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
DOE - NA
DOE Contract Number:
DE-AC07-05ID14517
OSTI ID:
1148998
Report Number(s):
INL/CON-13-30690
Resource Relation:
Conference: Research Reactor Fuel Management (RRFM) 2014,Ljubljana, Slovenia,03/30/2014,04/03/2014
Country of Publication:
United States
Language:
English

Similar Records

RECENT DEVELOPMENT IN TEM CHARACTERIZATION OF IRRADIATED RERTR FUELS
Conference · Sat Oct 01 00:00:00 EDT 2011 · OSTI ID:1148998

Thermal stability of fission gas bubble superlattice in irradiated U–10Mo fuel
Journal Article · Tue Sep 01 00:00:00 EDT 2015 · Journal of Nuclear Materials · OSTI ID:1148998

Irradiated microstructure of U-10Mo monolithic fuel plate at very high fission density
Journal Article · Tue Aug 01 00:00:00 EDT 2017 · Journal of Nuclear Materials · OSTI ID:1148998