
3 3679 00054 1906 

KINEMATIC ANALYSIS OF MODULAR, TRUSS-BASED 
MANIPULATOR UNITS 

Robert James Salerno 
Virginia Polytechnic Institute and State University 
Blacksburg, Virginia 

R. S. Stoughton, PNL Project Manager 

June, 1994 

Prepared for 
the U.s. Department of Energy 
under Contract DE-AC06-76RLO 1830 

Pacific Northwest Laboratory 
Richland, Washington 993S2 

PNL-9819 
UC-SI0 



Distribution 

OFFSITE 

2 DOE/Office of Scientific and Technical Information 

Dr. William R. Hamel 
Oak Ridge National Laboratory 
Robotics and Process Systems Division 
Oak Ridge, Tennessee 36831 

ONSITE 

DOE Richland Operations Office 

Deborah Trader, K8-S0 

Westinghouse Hanford Company 

William Joel Millsap, HS-68 

11 Pacific Northwest Laboratory 

Sharon Bailey 
Carl Baker 
Christina Mendoza 
Bob Stoughton (2) 
Publishing Coordination 
Technical Report Files (S) 

PNL-9819 
UC-SI0 



Summary 

Decontamination and Dismantling (D&D) activities within the U.s. Department of 
Energy (DOE) require a long reach manipulator with a large load capacity. Variable 
Geometry Trusses (VGTs) are a unique class of mechanical structures which allow 
the advantages of truss structures for large scale applications to be applied to large 
robotic manipulators. Individual VGT units may be assembled to create a modular, 
long-reach, truss-type manipulator. Each module of such a manipulator system is 
either a static truss section or one of several possible VGT geometries. While many 
potential applications exist for this technology, the present work is largely 
motivated by the need for generic robotic systems for remote manipulation. 

A manipulator system based on VGT modules provides several advantages. The 
reconfigurable nature of the manipulator system allows it to be adapted on site to 
unforeseen conditions. The kinematic redundancy of the manipulator enables it to 
work effectively even in a highly obstructed workspace. The parallel structure of the 
truss modules enables the manipulator to be withdrawn in the event of a structural 
failure. Finally, the open framework of the modules provides a clear, protected 
passageway for control and power cabling, waste conveyance, or other services 
required at the end effector. 

As is implied in a truss structure, all primary members of a VGT are ideally loaded 
in pure tension or compression. This results in an extremely stiff and strong 
manipulator system with minimal overall weight. Careful design of the joints of a 
VGT is very important to the overall stiffness and accuracy of the structure, as 
several links (as many as six) are joined together at each joint. 

The greatest disadvantage to this approach to manipulator design has traditionally 
been that the kinematics of VGT structures are complex and poorly understood. 
This report specifically addresses the kinematics of several possible geometries for 
the individual VGT units. Equations and solution techniques are developed for 
solving the "forward" or "direct" and "inverse" kinematic problems for these 
geometries. The" forward" kinematic problem is that of finding the position and 
orientation of the distal end of the VGT relative to the proximal end, given the 
specific displacements of the (linear) actuators. This problem is rarely solvable in 
closed form. However, powerful iterative algorithms capable of solution in real 
time on typical modern robot control hardware are presented. The "inverse" 
kinematic problem is that of finding the required actuator displacements given the 
position and orientation of the distal end of the VGT relative to the proximal end. 
For specific VGT geometries, closed-form solutions are presented. For the more 
general problem, iterative algorithms capable of solution in real time are again 
derived and presented. 
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Abstract 

Decontamination and Dismantling (D&D) activities within the U.S. Depart­
ment of Energy (DOE) require a long reach manipulator with a large load capac­
ity. This report discusses the kinematics of a new type of modular, long-reach, 
truss-type manipulator. Variable Geometry Trusses (VGTs) are used to construct 
a reconfigurable manipulator system in which all primary members are loaded in 
pure tension or compression. Each module of the manipulator system is either 
a static truss link or one of several possible VGT actuators, resulting in an ex­
tremely stiff and strong manipulator system with minimal overall weight. While 
many potential applications e.'Cist for this technology, the present work is largely 
motivated by the need for generic robotic systems for remote manipulation. This . 
new manipulator system provides several advantages when used for this applica­
tion. The reconfigurable nature of the proposed system allows the manipulator to 
be adapted on site to unforeseen .conditions. Additionally, the kinematic redun­
dancy of the manipulator ensures that solutions can be accomplished even in a 
highly obstructed workspace. The parallel structure of the truss modules enables 
the manipulator to be withdrawn in the event of a structural failure. Finally, of 
particular importance to these tasks, the open framework of the modules provides 
a passageway for waste conveyance, or can act as a shielded conduit for control 
and power cabling. . 

This work formalizes the concept of a canonical input specification set. The 
application of this concept results in greatly simplified analyses of many parallel 
manipulators. Although the manipulator system discussed was specifically devel­
oped for robotic handling of radioactive waste, the final resulting methodology is 
suited to a much broader class of problems - general underconstrained, redundant 
manipulator systems. 
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1. Introduction 

Tbis report focuses on the kinematic analysis of truss-based manipulators. Al­
though this type of manipulator is applicable to many tasks, this work is mo­
tivated by the need to develop robotic systems for use in Decontamination and 
Dismantling (D&D) of contaminated facilities within the many U.S. Department 
of Energy (DOE) sites nationwide .. 

1.1 Background 

The scheduled cleanup operations throughout DOE will require a rugged, reliable 
retrieval system sufficiently adaptive to the variety of waste types and equipment 
present. The physical requirements for accomplishing these tasks are demanding. 
The manipulator must be constructed to provide for a long reach, while maintaining 
the positioning accuracy of a payload as large as 2000 pounds [51J. 

1.2 The Proposed Manipulator System 

A truss-based manipulator system (the proposed system) consists of relatively 
long, static links and compact, actuated joints. The major difference between the 
proposed system and conventional systems is the extensive use of truss technol­
ogy. In terms of mechanical design, the joints for long-reach, large-load capacity 
manipulators present the single greatest difficulty in their construction, as these 
joints are subjected to enormous forces and torques while in service. Therefore, 
it is proposed that Variable Geometry Trusses (VGTs) be utilized to realize these 
joints. Hydraulically actuated VGT modules offer an ideal solution to the joint 
actuation problem posed by massive manipulators. In addition to utilizing VGTs 
for the joints, the links can also be constructed from truss elements. A typical pair 
of active and static modules is shown in Figure 1.1. 
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Figure 1.1; Typical Static and Active Tmss Modules 
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1.2.1 Overview of VGT Technology 
Robotic manipulators in use today are generally serially connected devices possess­
ing six or fewer degrees of freedom. Purely serial manipulators are composed of a 
series of links connected to form an open chain. Each link of the manipulator is, 
in effect, a cantilever beam carrying the full load of all the links further out in the 
chain. The individual members of this chain may be subjected to all possible types 
of loads - bending, torsional, axial, and shear. The design is usually limited by the 
effects of torsional and bending loads. Consequently, most purely serial manipu­
lators are inherently compliant and have relatively poor load-carrying capacities 
compared to their overall weight. 

In contrast, parallel manipulators are composed of links connected to form one 
or several closed loops. A VGT manipulator is a special subset of parallel manipu­
lators. Simply stated, an ideal VGT" is a statically determinant truss that contains 
some number of variable-length members. These extensible members allow the 
truss to change shape in a precise, controllable manner. If properly designed, the 
primary members of a VGT manipulator will be predominantly loaded as two-force 
(pure tension/compression) members. There are negligible bending loads imposed 
by the mass of the individual links. This structural characteristic results in an 
extremely high stiffness-to-weight ratio, which enables some relatively light VGT 
manipulators to carry heavy payloads. These VGT modules are capable of sup­
porting and manipulating several other modules, static or active, extended in a 
serial manner. Note that connecting these parallel structures in a serial manner 
imposes no bending or torsional loads on the individual truss members. 

1.2.2 Benefits of Utilizing a Truss Structure 
Most large-scale truss structures are composed of a repeating pattern of basic 
truss cells. This inherent modular structure has several advantages. It is possible 
to change the geometry of the manipulator by substituting different geometries of 
static or active modules, altering the order in which the modules are connected, 
or by changing the total number of modules present in the chain. In short, the 
manipulator may be reconfigured on site to adapt to unforeseen obstacles or other 
complications. Further, the modular structure ensures that damaged or worn com­
ponents may be quickly exchanged to avoid a prolonged maintenance downtime. 

The open framework of the truss structure is a great advantage over conven­
tional manipulators. The open framework can be used for materials delivery, waste 
removal, or instrumentation and control cabling. Essentially, the exterior of the 
truss structure shields the more vulnerable components from abrasion and other 
hazards. The open framework allows the possibility of designing an integrated, in­
ternal waste conveyance system while still allowing easy access to the conveyance 
system. In this way, the conveyance system is not only protected, but does not 
restrict the manipulator's workspace in any way. 
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1.2.3 Kinematic Complications 
There are disadvantages associated with the use of truss-type manipulators. The 
positional control strategies, which are relatively simple for conventional manip­
ulators, become much more complicated. Not only are they complicated by the 
kinematic properties of the VGT modules, but also by the very general, modu­
lar nature of the system. If the manipulator is to be truly reconfigurable, there 
must be provisions for solving the kinematics of a new configuration without prior 
knowledge of how it will be assembled. The remainder of this report focuses on 
resolving the kinematic complications of the individual truss units. 

1.3 Outline of Contents 

Section 2 reviews the existing literature and appropriate background information. 
In Section 3, kinematic analyses of the individual modules is accomplished, with 
emphasis on the information required for conducting similar analyses on multi­
module systems. Closed-form solutions are given for some truss geometries. For 
the remainder, computationally efficient iterative algorithms are presented. 



2. Literature Review 

The material presented within this report relies heavily on the fundamentals of 
kinematics, robotics, numerical analysis and geometric modeling. This literature 
review does not contain references to texts that contain these fundamental con­
cepts. Instead, when appropriate, these texts will be referenced within the body 
of the report. This literature review presents publications that represent the past 
and current research on parallel, redundant and long-reach manipulators. To fa­
cilitate the organization of this material, the literature review is divided into three 
sections - kinematics of parallel manipulators, variable geometry truss research, 
and redundant and long-reach manipulator research. 

2.1 Kinematics of Parallel Manipulators 
Much of the early research conducted in robotics centered. around the use of seri­
ally connected manipulators. Little attention was given to parallel manipulators 
until 1965, when Stewart [56J proposed the idea of a platform-type manipulator. 
This initial proposal showed that very rigid six degree-of-freedom (DOF) manipu­
lators could be developed, but unfortunately, they had very restricted workspaces. 
Other than their practical implementation as ·flight and vehicle simulators, these 
devices remained somewhat of a novelty for many years. Perhaps one reason for 
this was the la.ck of adequate computing facilities to quickly solve the iterative 
kinematic constraint equations. The next decade witnessed tremendous advances 
in the field of robotics, but practically all the research was concerned solely with 
serial manipulators. 

Further advances in parallel manipulators were put forth by Tesar and Cox [61] 
in 1981, Hunt [19] in 1983, Yang and Lee [65] in 1984, and Fichter [15] in 1985. 
Tesar and Cox performed the kinematic and dynamic analysis of a three DOF 
parallel manipulator. Hunt was concerned with the general analysis techniques 
for approaching the kinematics of parallel devices. Yang and Lee conducted a 
feasibility study on several geometrical variations of Stewart platforms. Fichter 
concentrated on the analysis and design of a Stewart platform based manipulator. 

Research concerned. with the dynamic analysis of parallel manipulators has been 
conducted by Sklar and Tesar [54] and Lee and Chao [25]. The work by Sklar and 
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Tesar was concerned with the dynamic analysis techniques for hybrid serial/parallel 
manipulators. This included several useful geometries for industrial manipulators. 
Lee and Chao focused on the kinematic and dynamic analysis of one particular 
geometry of a spatial three DOF manipulator. Sugimoto [58, 59] developed general 
computational methods for the dynamic analysis of parallel manipulators. 

The papers cited above are all concerned with the analysis of parallel manipula­
tors. Although none of these papers addresses the concept of a truss manipulator, 
many of the analysis techniques presented are applicable to VGTs. 

2.2 Variable Geometry Truss Research 
Simple VGTs are actually quite common and have been employed in engineering 
applications for decades. Many common configurations of construction cranes, 
draw-bridges, and similar devices can be classified as VGTs. However, most of 
these common applications utilize a VGT element as a single DOF mechanism. 
Stewart's early work, although technically not a truss structure, illustrated that it 
was possible to construct a fully parallel manipulator capable of positioning and 
orienting a platform in six dimensional space. 

In the early eighties, the National Aeronautics and Space Administration (NASA) 
became interested in the development of "deployable" space structures [14]. NASA 
had many applications in space that required very large, stiff structures. A natural 
choice for such structures is a static truss. However, because of transport prob­
lems, these large structures must ei ther be assembled in space or be transported 
in a compact form for later automatic deployment. Typically, these deployable 
structures become static once locked into their extended position. 

While investi~ating possible geometries for these deployable structures, Rhodes 
and Mikulas [46 J discovered that one certain geometry of deployable truss (a 
double-octahedral) had properties th'at' made -it suitable to act as a three DOF 
spatial manipula.tor.> This was' the first true VGT manipulator concept. Refine­
ments were later made by Rhodes and Mikulas, in conjunction with Sincarsin [52], 
that led to the development of a working proof-of-concept model. This model not 
only solved many of the complex joint geometry problems, but also successfully 
demonstrated the potential usefulness of these devices. This insight made pos­
sible the work of Miura and Furuya [31], and Miura, et al. [30J, who analyzed 
the kinematics of a double-octahedral VGT. This early analysis work was later 
extended by Gokhale and Reinholtz [45J, and Padmanabhan, et aL [41]. The re­
search of Padmanabhan is particularly interesting in that it identified several tasks 
for which a symmetric double-octahedral truss was well suited. This work then 
presents closed-form solutions to these tasks. Further refinements of the physical 
manipulator design were achieved by Tidwell, et al. in 1990 [62, 63]. This work 
included the development of design-curves that enabled quick evaluation of the 
potential motion of a double octahedral VGT. 
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Simultaneous with the development of the double-octahedral truss model, Sin­
carsin and Hughes [53] also explored the characteristics of four other candidate 
geometries. Their evaluations concluded that the double-octahedral geometry was 
indeed the most favorable geometry. Of primary interest in this study was the issue 
of collapsibility. Therefore, it should not be assumed that this is the best geom­
etry for all applications. Jain and Kramer [20] also investigated another possible 
geometry and completed the design of a tetrahedral/tetrahedral VGT. 

Other research concerning the use of a VGT cell as a replacement for more con­
ventional devices has been conducted by Nayfeh [36], Clark and Robertshaw [10] 
and Wynn and Robertshaw [64]. Nayfeh investigated the kinematics of a foldable, 
revolute jointed space crane composed of several essentially planar VGT cells. The 
analysis undertaken was limited to only one of the proposed cells. Clark investi­
gated the use of these VGT modules for actively damping vibration in large truss 
structures. This study dramatically illustrates the superiority of VGT actuators 
over conventional proof-mass type actuators for vibration control. This work was 
extended to the control of vibrations in spatial structures by Wynn in 1990. This 
last work included an impressive experimental demonstration of vibrations being 
actively controlled by a spatial VGT manipulator. 

Natori, Iwasaki and Kuwao [35] have also investigated the vibration character­
istics of long-chain planar trusses. 

2.3 Redundant and Long-Reach Manipulator 
Research 

Prior to 1988, interest in the concept of using VGTs for robotic manipulation 
remained somewhat limited. One primary reason for this lack of interest was the 
fact that these devices possessed relatively limited workspaces. This drawback 
can be overcome by joining several VGTs together end-to-end. This produces a 
long-chain manipulator whose workspace can be quite substantial. Miura, Furuya, 
and Suzuki [30, 31] were among the first to propose this long-chain structure in 
1985. However, their solutions were limited by the assumption that all cells mimic 
the same motion. For their selected double-octahedral geometry, this constrained 
the motion of the manipulator to only three DOFs, regardless of the number of 
actuators present. This illustrates perhaps the second primary reason for the 
lack of interest in VGT manipulators. In short, these long-chain manipulators 
posed problems that were unheard of from the standpoint of conventional robotics. 
Most conventional manipulators are limited to six DOFs. Practical long-chain 
truss manipulators require from nine to sixty DOFs. No algorithms had yet been 
developed to satisfactorily solve the kinematics of these under-constrained systems. 
Shape control concepts provided a solution to this problem. These methods were 
introduced for planar VGT manipulators by Salerno and Reinholtz [49] in 1988, and 
were later refined to include an n DOF spatial manipulator system in 1989 [48,50]. 



2. LITERATURE REVIEW 8 

A simultaneous research effort, which yielded similar results, was accomplished by 
Chirikijan and Burdick [8, 9]. Naccarato and Hughes [33] have also developed 
similar algorithms. Of particular interest to the present application is the work 
done by Padmanabhan in 1989 [40]. This research addressed the design of a VGT­
jointed, four DOF planar manipulator. The VGT joints replaced the revolute 
joints of a traditional manipulator structure. This work closely parallels the work 
presented here. 

The concept of using curves or surfaces to determine the shape of a structure 
was briefly addressed by Natori, Iwasaki and Kuwao [35]. In their research, shape 
control concepts were utilized to yield an "adaptive planar truss structure" capable 
of forming a variety of parabolic shapes for large space antennae. 

In recent years, much attention has been focused on redundant manipulators. 
As industrial manipulators find applications beyond the structured environment 
of the factory floor, redundancy provides these machines with the ability to adapt 
to unforeseen conditions. Many researchers [39, 22, 23J have sought methods that 
"resolve" the redundancy. Typically, these approaches sought to utilize the extra 
DOFs to control parameters other than the end-effector position. This is accom­
plished by adding constraints to the system until it is no longer under-constrained. 
Often, solutions can then be found in closed-form. An example of this is specify­
ing not only an end-effector position but also an elbow position to ensure obstacle 
avoidance. Other approaches introduced kinetic constraints in addition to geomet­
ric constraints. Limiting or specifying characteristics of the joint velocities is an 
example of this method. Although these methods are appropriate to many situ­
ations, they eliminate many possible solutions in order to achieve fast processing 
times. 

Another approach to resolving kinematic redundancy is to utilize the redundant 
DOFs to optimize some objective function. This is the approach used by Arnau­
tovic [1], Mayorga and Wong [29], Sub and Hollerbach [601, and Carignan [6J. 
In this case, the necessary conditions of the optimization procedure provide the 
required constraints to identify a unique solution. The challenge to this task is 
identifying the optimum solution quickly. 

Other related works of interest are Colbaugh and Jamshidi [11J, Kelmar and 
Khosla [22J, and Blume, et al. [5J. Colbaugh and Jamshidi specifically addressed 
the use of robotic manipulators for hazardous waste handling. Kelmar and Khosla 
proposed a fully serial, reconfigurable, modular manipulator system. Blume pre­
sented research on another large-scale manipulator system. This manipulator has 
a 22 meter reach and a 1.4 metric-ton payload. 



3. Kinematics of Individual Truss 
Modules 

To obtain a more detailed understanding of the complex motion characteristics 
associated with long-reach VGT manipulators, it is first necessary to gain a famil­
iarity with the fundamental elements used in their construction. The science of 
kinematics provides a methodical way of analyzing the position, velocity, acceler­
ation, and all higher-order derivatives of motion of these complex truss configura­
tions. One definition of kinematics that is particularly appropriate to the study of 
VGT manipulators is as follows: kinematics is the study of constrained motion of 
interconnected rigid links. In this definition, the term "rigid" is used to describe 
the non-elastic behavior of the links and does not preclude the use of intentionally 
extensible links. 

From a robotics viewpoint there are two distinct types of kinematic analyses: 
forward kinematic analysis and inverse kinematic analysis. Forward kinematic 
analysis (sometimes referred to as direct kinematic analysis) is concerned with 
finding the position and orientation of any or all members of a device, given only 
the geometric constraints of the individual links, the order and manner in which 
these links are assembled, and a set values for the control variables (typically either 
joint angles or extensible link lengths). Forward kinematic analysis could also be 
conducted to find the linear and angular velocities or accelerations of any member. 
This is often referred to as forward rate analysis, as opposed to forward position 
analysis. 

Inverse kinematic analysis of a given device is concerned with finding a set 
control variable values that yields a desired position and/or orientation of a set of 
members. As a practical matter, in most useful devices, it is not possible to control 
the position and orientation of all members simultaneously. Again, the inverse rate 
analysis may be solved for any higher. order derivative of motion, given a specified 
control variable input. 

In the following sections, these concepts will be further developed for several 
different geometries of active truss modules. A comprehensive kinematic descrip­
tion of the static truss modules will also be developed. 
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Many geometric configurations, both planar and spatial, are possible candidates 
for use as a VGT manipulator. This section will enumerate some of the possible 
geometries, introduce a convention for naming the links of a truss, and describe 
the notational conventions that will be used for analysis throughout this report. 

The geometric structure on which all statically determinant planar trusses' are 
based is the triangle. The triangle can therefore be thought of as the basic unit 
structure, or cell, used to construct all planar trusses. Spatial trusses present 
several possible cell structures that could be used to form a statically determinant 
truss. Four simple geometries are shown in Figure 3.1. The tetrahedron is the 
simplest geometry. More complicated geometries can be formed by connecting 
all vertices of a planar polygon to a pair of out-of-plane points, as illustrated 
in Figure 3.1. This type of geometric construction is referred to as di-pyramidal. 
Large-scale, statically determinant truss structures are commonly constructed with 
a replicating pattern of these basic unit cells. 

A common static truss is shown in Figure 3.2. This truss is composed of three 
types of members. Those members that are oriented transverse to the truss axis 
are called battens. Those members that lie parallel to the truss axis are referred to 
as longerons. The remaining members, which lie neither parallel nor perpendicular 
to the truss axis, are identified as cross-longerons. In applying this nomenclature 
to variable-geometry trusses, it is often difficult, if not impossible, to distinguish 
between longerons and cross-longerons. For some geometries, a single member 
could fit both descriptions, depending on the length of the extensible members. 
For this reason, this report will refer to both groups simply as longerons. The 
points at which the truss members are joined will be called nodes. 

To simplify notation, vectors expressed in a frame F will be identified by a 
leading-superscript F (for example, FV). The length of fixed-length members will 
always be denoted by uppercase L's (for example L3 or L5)' The length of all 
extensible members will be identified by lower case l's (for example 13 or I,,). Some 
analyses may contain both L3 and 13 • These lengths are not, in general, equal. 
Also, all position vectors will be described using spatial homogeneous coordinates 
and thus will be represented with 4 x 1 matrices. 
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Tetrahedron 
Octahedron 

Decahedron Dodecahedron 

Figure 3.1: Four Simple Spatial Unit Cells 
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~-- Cross-Longerons 

Ba t tens 

Longerons 

Figure 3.2: A Typical Spatial Truss 
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The goal of kinematic analysis, in general, is to develop motion input/output re­
lationships for the devices studied. In the case of forward kinematics, the goal is 
to determine the system output given the system input. In tenns of conventional 
forward kinematic analysis, the input is almost always interpreted as those param­
eters that are directly controlled. In other words, the same parameters that are 
adjusted by the physical actuators and measured by the instrumentation system. 
For most manipulators these inputs are either angular motions of a revolute joint 
or linear displacements of a prismatic joint. These seem to be natural parameters 
to specify as the input to the forward kinematics. These are, however, not the 
only possible input parameters. Some input specifications will be more convenient 
than others. The following simple examples will show that for some parallel ma­
nipulators these conventional input specifications may not necessarily be the most 
appropriate. 

First, it must be understood that any set of independent parameters could be 
considered an input specification set, provided that the chosen parameters, when 
fixed, completely define the positional state of the manipulator - meaning that no 
further motion of the manipulator is possible. This does not mean that only one 
possible position of the manipulator exists for the given values. It is possible that 
other branches may satisfy the specified values. Naturally, an n degree-of-freedom 
device will require that n parameters be specified. 

As an example, consider the simple planar two-link serial manipulator shown 
in Figure 3.3-A. It is easy to see ho"w the two joint angles 81 and ()2 could be 
used to control the XY position of point P. The conventional input specification 
would be ()1 and 82• If 81 and 82 are fixed, no motion is possible. Also note that, 

. the set of ()1 and: 82 has the property that it uniquely defines the position of the 
manipulator. This uniqueness is desirable, since it dictates that the solution will 
be closed-form and linear. Other valid specification sets are d and '1j;, or the X 
coordinate of point A and ()2. Although valid, neither is desirable because they do 
not uniquely define the position of the manipulator. Both result in two solutions 
to the forward kinematics. These solutions are depicted in Figure 3.4. Since no 
single unique solution results, the forward solution will be non-linear. 

For most serial manipulators the conventional input specification set is the 
simplest, or canonical, input specification set. 

Now, contrast these results with those of the parallel manipulator shown in Fig­
ure 3.3-B. It is easy to verify that the XY position of point P can be controlled, 
within a limited workspace, by changing 11 and 12 • If the conventional input pa­
rameters, 11 and 12 , are utilized, there are four solutions to the forward kinematics. 
These are illustrated in Figure 3.5. For this parallel manipulator, the conventional 



3. KINEjWATICS OF INDNID UAL TRUSS MOD ULES 

I 

d " 

I 
I 

(A) 

p 

(B) 
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Figure 3.4: Solutions for Alternative Input Specifica.tion Sets 
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Figure 3.5: Four Solutions to the Conventional Forward Kinematic Analysis of a 
Simple Parallel Manipulator. 
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input specification set results in a non-linear forward solution. Consider the follow­
ing canonical input parameter set. If it is assumed that the input to the system is 
1/;1 and 1/;2, then a unique closed-form solution to the forward kinematics problem 
is obtained. If it is ever required to iteratively solve the forward kinematics in 
search of a particular result, it is logical to chose the parameter-specification set 
that results in linear solutions. Once the solution is found it is easy to calculate 
the corresponding unique values of II and 12 • 

Note that, if the conventional input specification set is used, the partial deriva-
tives of the outputs with respect- to the inputs (~~-, ~~;, ~~', and ~~/) cannot 
be expressed in closed form.. The output parameters are not differentiable with 
respect to the inputs because of the non-linearities present in this forward prob­
lem. However, it is possible to use the alternate input specification set to find 
ap; ap_ ap./ d ap./· I d £, S' 'I I ~ ~ a~l d a'h al 
aTjJl' a.;; , aTjJl' an ath In c ose orm. lml ar y, all' a12' all' an al2 may so 
be expressed in closed form. It is now trivial to use the chain rule to compute 
the partial derivatives of goal positions with respect to changes in link lengths in 
closed form. 

Although the method of utilizing a canonical input specification will not be 
necessary for all of the parallel geometries, it will be employed as part of the 
solution method for the inverse solution of the double-octahedral geometries. 

3.3 Analysis of a Tetrahedral Module 
The tetrahedral unit cell of Figure 3.1 represents the simplest possible spatial 
truss configuration. The basic unit cell consists of four non-coplanar nodes, each 
of which is joined to all other nodes by a side member. Thus, a tetrahedron has 
four triangular facets. Each facet shares one side member with all other facets. 
Imposing the restriction that all active modules must have two static triangular 
faces (this is necessary to provide an attachment surface) leaves only one remaining 
side member as a candidate for actuation. This essentially produces a single degree­
of-freedom "hingell

, or revolute actuator. The chosen geometry for the modular 
manipulator is illustrated in Figure 3.6. It consists of five static-length members 
and one variable-length member joined together with spheric joints at the four 
non-coplanar nodes, nl,n2,n3, and n4. For this work, it is assumed that all of the 
static length members except n2 - n3 are of length L1, nz - n3 is of length L2, 
and the length of the actuated member will be denoted by l. This configuration 
was chosen to produce isosceles fixed triangles to which sta.tic trusses, with the 
same end condition, may be attached. A more general case, with scalene triangles 
could be analyzed; however, this geometry tends to produce forces that shear the 
two static trusses in opposite directions. This occurs anytime the line between 
nl and n4 is not perpendicular to the hinge line nz - n3' This shearing action is 
detrimental to the specified objective of the manipulator system. 

A configuration with equilateral triangles is addressed by the present analysis 
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Figure 3.6: Active Tetrahedral Truss Module 
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3.3.1 Forward and Inverse Kinematic Analysis 
The forward kinematic problem for the tetrahedral truss can be stated as follows: 
given the fixed lengths, L1 and L2, and the input length, I, find the angle (J that 
describes the relative rotation between the two fixed triangles. 

Likewise, the corresponding inverse kinematic problem may be summarized as: 
given the desired rotation between the two fixed triangles, find the extensible link 
length I that produces this rotation. 

Figure 3.7 schematically illustrates an active tetrahedral truss module with 
the parameters needed to compute the forward and inverse kinematics. First, the 
height, or altitude, of the static triangles must be calculated as follows: 

h = /L1- :1 (3.1) 

Now the angle (J can be found from the law of cosines as: 

[2 12 
(J = arccos(l - h2 ) == arccos(l - L2 _ 1 L2 ) 

2 2 1 2 2 
(3.2) 

Rearranging this same equation yields a solution to the inverse kinematic prob­
lem. 

I = V2h2(1 - cos 0) = 
1 

(2Lr - 2L~)(1 - cos 0) (3.3) 

Note that this single degree-of-freedom device has both a closed form forward 
and inverse solution. The forward solution is non-linear, and hence results in two 
possible solutions (±(}). The inverse solution is linear and therefore results in a 
unique solution. 

To efficiently utilize this result in solving a multi-module truss requires that 
the input/output relationship of all geometries be specified in the same manner. 
Although this last step appears to unnecessarily complicate the tetrahedral solu­
tion, it is fundamental to the development of a general multi-module kinematics 
algorithm. To establish this input/output relationship, a base coordinate frame, 
5, will always be attached at the centroid of one fixed triangle. The X and Yaxes 
of frame 8 are constrained to lie within the plane defined by ~nln2n3, with the 
X axis parallel to n2n3. A second coordinate frame, T, is attached in a similar 
manner to ~nln2n4. The positional relationship between these two frames is com­
pletely described by a homogeneous transform, !fT. For this particular geometry, 
this is only a function of (J, and may be written as: 



3. KINEMATICS OF INDNIDUAL TRUSS MODULES 

-------

z e 
1110 tw ~~~ 
0~~~~ 

~ ~ ~ h . 

Figure 3.7: Schematic Tetrahedral Module with Analysis Parameters 

20· 



3. KINEMATICS OF INDNIDUAL TRUSS MODULES 
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o 0 

cos 0 - sin () 
sin 0 cos 0 
o 0 

-~(l ~ cos 0) ] 
~sinO 

1 

3.4 Analysis of a Longeron-Actuated, 
Octahedral Module 
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(3.4) 

The most general form of a longeron-actuated, octahedral-based VGT module is 
illustrated in Figure 3.8. This specific geometry is often referred to as a Stewart 
platform manipulator. This active truss consists of six static-length members and 
six variable-length members which are joined together at six nodes (nt, n2, ... , n6) 
with spheric joints. The fixed-length members are joined together in sets of three 
to form two triangles. For convenience, it can be assumed without loss of generality 
that the static-length members are of equal lengths, and thus form two equilateral 
triangles. These two equilateral triangles will form the interface between the static 
and active truss modules. Other geometries for these two triangles are possible. 
These cases can be analyzed using the same procedures outlined below, with only 
slight notational modifications. One of the static triangles is used to define the 
base plane and has coordinate frame B at its centroid. The other triangle will 
form the top plane, with frame T at its centroid. The length of the extensible 
members will be denoted by the control variables It, 12 , ••• , [6. In this analysis, all 
fixed length members are assumed to be of length 1. By assigning different values 
to the six control variables, the position and orientation of frame T relative to 
frame E can be altered. This relative position and orientation is described with 
six parameters. Three will be reserved for the x,y, and z position of frame T in 
frame E as described by the vector B PT. The three remaining parameters will 
describe the orientation of T relative to E. This is done by utilizing the standard 
roll-pitch-yaw notation; where roll is a rotation about the X -axis of frame E by 
I, pitch is a rotation about the Y-axis of frame E by /3, and yaw is a rotation 
about the Z-axis of frame E by a. This rotation of frame T relative to B can 
be compactly expressed as ~.R..y!3a, a 3 x 3 matrix possessing three independent 
variables. 

It should be noted that it is also possible to construct a longeron-actuated, 
octahedral module with fewer than six extensible links. This is the case where one 
or more actuated longeron members are substituted with static-length members. 
For this degenerate Stewart platform case, the forward kinematics proceed as usual. 
However, the inverse problem is somewhat complicated, since the specified goal 
position and orientation must first be constrained to lie within the subspace of the 
manipulator. 
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Figure 3.8: General, Longeron-Actuated, VGT Module (A Stewart Platform.) 
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The following sections will present solutions to the forward and inverse kine­
matics of this manipulator. 

3.4.1 Forward Kinematic Analysis 
The forward kinematic analysis problem for the longeron-actuated, octahedral 
truss can be posed as follows: 

Given the lengths of the longeron members (static or extensible), [l1l2, ... , 16, 
solve for the position and orientation of frame T relative to frame B. 

In general, for this configuration of manipulator, this problem cannot be solved 
in closed form [17]. Instead, an iterative procedure has been developed that con­
verges to a solution in a small number of iterations. This solution is generally more 
accurate than can be physically measured or controlled. 

To assist in the forward kinematic analysis, it is helpful to employ the concept 
of kinematically equivalent devices. Two devices are said to be kinematically 
equivalent with respect to a point if both devices exhibit exactly the same motion 
characteristics for that point. Note that the two devices need not be structurally 
equivalent. This concept will simplify the mathematics involved and will aid in 
the visualization of the forward kinematic analysis. 

Figurere 3.9 depicts the kinematically equivalent device that will be substituted 
for the side triangle 6.n3nl n4. In this case, two spheric joints and two prismatic 
joints (Figure 3.9-A) have been replaced by one cylindric joint and one prismatic 
joint (Figure 3.9-B). The cylindric joint is positioned along its axis, 'Ill! at the point 
bl . An explicit expression for bl can be found as follows: 

(3.5) 

therefore, 
;;1 = n3 + 14 COS?/JI 'Ill' (3.6) 

Now hll the altitude of triangle 6n3nln4,can be found. 

(3.7) 

This is equivalent to the extension of the prismatic member that is shown in 
Figure 3.9-B. The unit vector VI is defined to be normal to 'Ill and is constrained 
to lie in the plane of 6.nln2n3. Now the point n4 can be located as follows: 

(3.8) 

where R[Ull~llvl represents a rotation of VI about 'Ill by an amount 1>1. Examination 
of the four previous equations reveals that n4 is a function dependent only on 
L, L1, l41 and 1>1' For the forward kinematics problem, L, 11, 12 , ••• ,16 are known. 
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Therefore, the vector n4 is only dependent on the unknown <Pl. Similar results can 
be obtained for the other two side triangles. These results are now summarized 
below: 

(3.9) 

where 

(3.10) 

(3.11) 

The distance between nodes of the top triangle can now be found for any 
assumed set of <p's as: 

DI - IIn4 - nsll - V(Ti4 - ns) . (Ti4 - ns), 

D'l, - Iins - n6/1 - v(ns- n6) . (ns - Ti6), (3.12) 

D3 - Il Ti6 - Ti4/1 -- v(n6 - n4) . (Ti6 - n4). 

It is now necessary to check for closure. In order to have a valid assembly, the 
nodes of the top triangle must be a distance L apart. Thus, the following three 
equations must be satisfied: 

(3.13) 

h( <P3, <PI) - D3 - L - o. 
This can be done simply by applying a Newton-Raphson root-finding algorithm 

that centers· around the following linearization: 
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o (3.14) 

ll.J.. 0 ll.J.. .~ A.3 r 
8cPl 8c/>3 <p - J3 

For any given iteration, ~<Pb ~<Pz, and ~<P3 can be found, and the current 
"guessed" position can be modified by: 

<PInew - <PImd + a( ~<PI)' 
<PZnew - <PZmd + a(~<pz), 
<P3new - <P3md + a(~<P3). 

where ()" is a damping factor added to avoid overshoot and speed convergence. In 
typical operation, with ()" = 0.90, this procedure converges within an acceptable 
range after only four iterations. Other more efficient non-linear equation-solving 
routines could also be implemented. Upon convergence of the routine outlined 
above, the posi tions of nodes n4, ns, and ns are known. The origin of frame T can 
now be described in frame E as the centroid of these three nodes. 

(3.15) 

The three unit vectors which form the coordinate axes of frame T can be 
described in frame B as follows: 

(3.16) 

(3.17) 

(3.18) 
Note that each of the above expressions is a vector quantity and, as such, each 

has three components. Now a rotation matrix describing the orientation of frame 
T with respect to frame B is given by: 

B ~ 

XT~ 
B~ 

·YT:z: 
B ~ 
ZT~ 

B R., -T ,p,a-
B ~ 

XTy 
By

Ty 
B ~ 

ZTy . (3.19) 

B ~ 

XTz 
B~ 

YTz 
B ~ 

ZTz 
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where each column of the matrix contains the x, y, and z components of each 
coordinate axis that composes frame T. If desired, this expression can now be 
equated to the standard roll-pitch-yaw representation of the rotation matrix as 
presented below: 

[ 

cacj3 casj3:;",! - sacy casj3cy + sas, ] 
~'&',lJla =. sacj3 sasj3s, + cacy sasj3cy - 005, ; 

-sj3 cj3s, cj3Cf 

where cj3 = cosj3,sj3 = sinj3, etc. 

(3.20) 

The roll-pitch-yaw description can now be obtained uniquely from one of the 
three following sets of relations [12, pages 41-42] . 

• Case 1. if liB XTz II rf 1, 

, - ATAN2 YTz, ZTz (B A B A ) 

j3 - ATAN2( _BXTz, JBXi-r +B Xi-v) (3.21) 

a - (B A B A ) ATAN2 XTv, XTr 

.Case 2. 
• B A 

If XTz = +1, 

(
BA BA ) , - ATAN2 YTr, YTy 

j3 _ 900 (3.22) 

a - 0 

.Case 3. 
B A 

if XTz = -1, 

(
BA BA ) , - -ATAN2 YTr, YTy 

j3 _ -900 (3.23) 

ex = 0 

The results of the forward kinematic solution just presented are non-linear and 
hence no unique solution exists. In fact, for this particular truss, sixteen distinct 
assemblies, or branches, exist [2, 3}. These solutions represent mathematically 
acceptable solutions, some of which the truss could physically obtain, but only 
after unpinning the joints and reassembling the truss within a new branch. From 
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an operational standpoint, none of these solutions is practical. To result in a 
practical solution, this mathematical solution technique must somehow be tailored 
to omit all but the desired solution. This is most efficiently done by limiting the 
range of <PI, rP2, and rP3 in the iterative procedure. 

Historically, manipulators in which the kinematics must be solved iteratively 
have been avoided. This can primarily be attributed to convergence problems and, 
to a lesser degree, the speed at which these algorithms could be executed. It is 
true that for large moves, convergence of the proposed algorithms might present a 
problem. However, at the speed at which modern controllers can update a position, 
there is no need to move the system a great distance in one step. For small moves 
the values of rPI, rP2, and rP3 are known relatively accurately to start with. Thus, 
convergence is not a problem unless singularities are present. Singularity points 
can be identified by forming a Jacobian matrix and setting its determinate equal 
to zero. However, this particular configuration can easily be designed such that 
the singularity points occur outside of the physical workspace, which is limited by 
the range of the extensible longerons. . 

3.4.2 Inverse Kinematic Analysis 
The inverse kinematic analysis of the longeron-actuated, octahedral truss is both 
closed-form and linear. The inverse kinematic analysis problem can be stated as 
follows: _ 

Given the position vector, PI, and a, {3, I, solve for the set of longeron lengths 
{ 11, 12 , ••• , 16} .. . 

Since a, {3, and 'Y are known, the rotation from E to T can be described by the 
rotation matrix' 

[ 

cac{3 cas{3s'Y - saCf cas{3c-y + sas'Y ] 
~R."IJ,a = sacf3 sas{3s'Y + caCf sas{3c-y - cas'Y . 

-s{3 c{3s'Y c{3c-y 
(3.24) 

A transform can now be defined that encompasses both the rotation and trans­
lation of T relative to B. This transform is defined as: 

~T = [ [~R] [B PI] ] . 
o a a 1 

(3.25) 

Nodes n4, ns, and n6, which are known in T, can now be described in B. 

B- arr-n4 - T n4, 

B- Brr- (3.26) ns - T ns, 

B- arr-n6 - T n6· 
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~inally, .the length of the extens~ble members can be solved for directly as the 
euclidean distance between appropnate nodes. . 

[1 - IIBn4 _15 nlll - j(Bn4 _15 nd . (Bn4 _15 nd, 

[2 - IIBns _15 n211 - j(Bns _15 n2) . (Bns _15 n2), 

[3 IIBns _15 n311 - j(Bns _15 n3) . (Bn6 _15 n3), 
(3.27) 

[4 - /l Bn4 _15 n3/1 - j(Bn4 _15 n3) . (Bn4 _15 n3), 

[5 - /lBns _15 nl/1 - V(Bns _15 nd . (Bns _15 nl), 

[6 - IIBns _15 n2/! - j(Biis _15 n2) . (Bn6 ~B n2)' 

Note that there can only be one solution for the euclidean distance between two 
points. This means that in the absence of any other constraints, a unique solution 
for any specified position and orientation always exists. In reality, of course, other 
constraints do exist. The primary constraint for this device is the range of its 
variable-length members. The inverse kinematic results must be checked to ensure 
that they are within the physical range of the extensible links. IT not, the given 
goal position is outside of the manipulators workspace and cannot be reached. To 
address the case where a truss may contain k static-length longerons, the inverse 
solution can proceed as usual. However, the final results (link lengths) must be 
checked to ensure that inverse analysis produces corresponding values acceptably 
close to the true static lengths. IT. not, the given goal position does not lie within 
the (6 - k)-dimensional subspace of the manipulator. 

3.5 Analysis of a General, Batten-Actuated, 
Double-Octahedral Module 

Section 3.4 introduced an analysis procedure for a VGT geometry based on an 
octahedral unit cell structure. This section will examine an active truss geometry, 
again based on the octahedral unit cell structure. This structure consists simply 
of two octahedra sharing a common triangular facet. For this reason it is referred 
to as a double-octahedral geometry. Although many possible choices exist for how 
to actuate this truss structure, this work will address only trusses in which the 
midplane battens are actuated. This general class of VGT manipulator has been 
shown to posses a good compromise between high strength and useful workspace.[4] 
[62, 631 Figure 3.10 illustrates a batten-actuated VGT module. Note that the 
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I Link Identification I 
Link Between Nodes 

i1 n4 -n5 
iz ns -n6 
i3 n6 -n4 

. n 2 L1 n1- n4 

n 1 L2 n2 -n5 
L3 n3 - n6 
L4 n3 -n4 
Ls n1 - ns 
L6 nz - n6 
L7 n5 -n7 
Ls n6 -ng 
L9 n4 -n9 
L10 n4- n7 
Lll ns -ns 
L12 n6 - n9 

Figure 3.10: Batten Actuated, Double-Octahedral VGT Module 
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top and bottom batten triangles are defined by fixed-length members. These two 
triangles will serve as the attachment points for the static truss sections, The nodes 
of the truss are numbered nl, n2, ... , n9 as shown in Figure 3.10. The fixed length 
members of the base and top planes will be of length LB4$e and LTo'P respectively. 
The length of the extensible links will again be denoted by the lowercase variables 
III 12 , and 13 • For this general analysis, it will be assumed that the fixed-length 
longeron members can be of different lengths. These lengths will be identified as 
L1 , L2 , ••• , L12• 

Since this truss configuration is again based on an octahedral unit cell,' the 
kinematic analysis is similar to. the longeron-actuated octahedron previously pre­
sented. Because of this inherent similarity, the following forward and inverse kine­
matic discussions will be somewhat abbreviated. For further clarifications, refer 
back to Section 3.4. 

3.5.1 Forward Kinematic Analysis 
The forward kinematic problem for this active module may be summarized as 
follows: given the lengths of the fixed length members (L1I ••• , L 12), and the lengths 
of the extensible members (Ill 12, and 13), find the position and orientation of frame 
T relative to frame B. 

Again, the concept of a kinematically equivalent device will greatly simplify 
the analysis of the octahedron. The kinematic equivalent to the first octahedral 
cell of the double-octahedral truss is shown in Figure 3.11-A. 

By analogy to the previous octahedral analysis, the positions of the midplane 
nodes(n4, ns, ns),can be identified as a function of the unknowns <PI, <P2, and <P3. 

n4 - n3 + L4 cos -rPIU.l + L4 sin -rPIR[Ul,q;dV1l 

(3.28) 

where 

.,pI = arccos (L1a$e + L; - Li) , 
2LBtueL4 

(3.29) 

.1. _ (L1a$e + L~ - L~) 
~2 - arccos 2L L ' Ba$e S 

(3.30) 

(
L1a$e + L~ - L5) 

.,p3 = arccos 2L Ba$eLS . (3.31) 
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Figure 3.11: Kinematic Equivalent to the Batten-Actuated, Double-Octahedral 
VGT 
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The distance between nodes of the midplane triangle can now be found for any 
given (h, <P2, and <P3 as: . 

DI - IIn4 - nsll - v(n4 - ns) . (n4 - ns), 

D2 - II ns - n611 - v(ns - ns) . (ns - n6), (3.32) 

D3 - IIn6 - n411 - v(n6 - n4) . (n6 - n4)' 
It is now necessary to check for closure. In order to have a valid assembly, the 

nodes of the midplane triangle must be the specified distance apart. Thus, the 
following three equations must be satisfied: 

(3.33) 

The Newton-Raphson root-finding algorithm may now be applied exactly as it 
was for the longeron-actuated truss. Upon convergence, a feasible set of <PI, <P2, 
and <P3 is obtained. These must be checked to ensure that the solution is in the 
proper branch. 

At this stage of the analysis, the positions of the three midp~ane nodes are 
known. As a practical consideration, all of the double-octahedral VGT cells con­
structed to date have contained a ·mid-plane joint offset. This deviation from 
ideal truss design. is necessary to ensure an adequate range of motion for the truss 
joint. In addition, incorporating this offset into the design avoids the complica­
tions involved in having five co-located spheric joints. If a mid-plane joint offset is 
present, this distance can easily be included in the analysis by forming three addi­
tional midplane nodes (n~, n~, and n~) that are displaced the amount of the offset 
in a direction normal to the midplane. The solution for the second octahedron 
is obtained by essentially repeating the solution procedure above. One possible 
kinematic equivalent to the second octahedral cell is shown in Figure 3.11-B. Note 
that U4, Us, and Us are defined by the position of the midplane nodes. These unit 
vectors may be described in the base coordinate frame, B, as: 

ns - n4 
(3.34) U4 = 

h 
- -ns - ns 

(3.35) Us = 
12 
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(3.36) 

The unit vectors U4, U5, and U6 must also be defined such that they lie within 
the midplane, perpendicular to the corresponding actuated member. This is most 
easily accomplished by defining another uni t vector, W, that is normal to the 
midplane. Using the vector cross product, 

A Us X (-U4) 
w = Ilus x (-u4)lr (3.37) 

Now 

(3.38) 

(3.39) 

(3.40) 

The position of the top plane nodes may now be identified solely as a function 
of the unknowns <P4, <Ps, and <P6. 

(3.41) 

where 

(3.42) 

(3.43) 

(3.44) 

The distance between nodes of the top plane triangle can now be found for any 
given <P4, <Ps, and <P6 as: 
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D4 - linT - ngll - . j(nT - ng) . (nT - ng), 

Ds - ling - n9/! - j(ng - n9) . (ng - n9), (3.45) 

D6 - II n9 - nTIl - j(ng - nT)· (n12 - nT). 
Again, it is necessary to check for closure. In order to have a. valid assembly, 

the nodes of the top plane triangle must be the specified distance apart. Thus, the 
following three equations must be satisfied: 

(3.46) 

!J( <P3, <PI) - D3 - LTop - o. 
The Newton-Raphson root-finding algorithm may again be applied. Upon con­

vergence, a feasible set of <P4, <Ps, and <P6 is obtained. These must be checked to 
ensure the solution is in the proper branch. 

The origin of frame T can now be described in frame B as the centroid of the 
top plane triangle. 

(3.4 7) 

The three unit vectors that form· the coordinate axes of frame T can be de­
scribed in frame B as follows: 

(3.48) 

(3.49) 

(3.50) 
Now, the transformation matrix that describes frame T with respect to frame 

B is given by: 

(3.51) 
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3.5.2 Inverse Kinematic Analysis 
The inverse kinematic problem for the general batten-actuated VGT module may 
be stated as follows: given the desired end condition 0/ the active module, find the 
extensible link lengths, ll' 12, and 13 • 

This poses a slightly different problem from the other geometries discussed 
thus far. Note that, if a general six DOF position and orientation is specified, 
a solution is only possible if the goal lies within the three DOF subspace of the 
manipulator. Another possibility is to specify only three parameters. For example, 
the X, Y, and Z position of frame T relative to B, 0 fir, could be specified. Or the 
angular displacement about the :ko and Yo axes may be specified in conjunction 
with a third positional parameter; either the X, Y, or Z position of T relative to 
B; As a subtlety of this particular geometric con:fi~ation, a single truss module 
cannot effect any angular displacements about the Zo axis. For this reason, an 
advantageous way of specifying a goal orientation is to specify only a unit vector 
normal to the top plane, 0Q. 

To solve the inverse kinematic problem for any of the above goal specifications, 
the forward solution must be iteratively solved until convergence is achieved. It 
would appear that a logical method for accomplishing this is to follow the algo­
rithmic steps enumerated below. 

1. Assume a set of ['s. 
2. Use the forward kinematics solution to calculate the resulting end condition. 
3. Compare this to the desired end position. If converged, proceed to step 7. 
4. Evaluate the effect of each l on each end parameter (e.g. :~). This again 

requires solving the forward kinematics problem three times. 
5. Comp-ute a set of D..l's. 
6. Modify the assumed set of l's and return to step 2. 
7. Verify solution feasibility. . 

This procedure will indeed converge to an acceptable solution. However, the 
forward kinematics problem must be solved a total of four times for one iteration. 
The real problem here is that the forward kinematics problem is itself iterative. In 
the case of the general double-octahedral truss, solving both the first and second 
octahedra requires iterative loops. Thus, the above outlined procedure requires 
that eight iterative loops be processed with each pass. 

Although this method does perform well in many situations, it can be dramati­
cally improved by imposing some constraints on the design of the truss module. If, 
for example, the static-length links are all made the same length, a faster inverse 
kinematic analysis method can be employed. This design constraint may prove 
to be too restrictive for many applications. As a more general alternative, the 
restriction that will be exploited for this work is that of symmetry. Namely, that 
the fixed length members of the second octahedral cell must be the same length 
as their reflected members in the first octahedral cell. In this case,the plane of 
symmetry is the midplane. 
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3.5.3 Forward Kinematic Solutions with Symmetry 
Imposed 

The midplane of the symmetric double-octahedral truss described above may be 
identified as outlined previously for the general double-octahedral. This requires 
an iterative procedure to find the mid-plane nodes. After the midpIane is identified, 
the three base nodes may be projected through the midplane to form the three 
nodes of the top plane. See Figure 3.12. This projection process is closed-form 
and will be briefly discussed below. 

In general, a projection, or mirroring, process can be carried out in closed form 
if the plane of symmetry is defined and the coordinates of the point to be mirrored 
are known. For this particular c~e, the plane of symmetry is defined by nodes n4, 
ns, and ns, or, if appropriate, the midpoints of n4-n~, ns - n~, and ns -n~. Thus, 
a unit vector normal to this plane can be defined using the vector cross product. 

(;, _ (Tis - Ti4) x (Tis - n4) 
norm - II(Tis - Ti4) x (Tis - n4)11 (3.52) 

Since the base nodes must be projected perpendicular to the plane of symmetry, 
their mirror images must lie along a vector which passes through the base node 
in question and points in the direction of Unorm. Additionally, the mirrored node 
must lie the same distance away from the plane of symmetry. This distance may 
be calculated using the vector dot product as follows: 

i = 1. .. 3 (3.53) 

where, Psym represents a vector locating any point in the plane of symmetry (n4' 
for example). Now, the coordinates of the top plane nodes may be identified as: 

i = 1. .. 3 (3.54) 

where Ljo is the length of the midplane joint offset, if any is present. 
The forward kinematic procedure now requires only one iterative loop. 

3.5.4 Inverse Kinematic Solutions with Symmetry 
Imposed 

This section will discuss two general methods for arriving at a solution to the 
inverse problem: iterative and closed-form. The ultimate goal of this work is to 
develop algorithms that will be useful in solving a multi-module manipulator. This 
section will show that both iterative and closed-form inverse solutions to a single 
module are possible. The closed-form solution will be utilized in one of the multi­
module solution techniques to be discussed later. However, the iterative version 
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provides many insights and will be utilized extensively for other formulations of 
the multi-module inverse problem. 

Iterative Solutions 

It was stated earlier that the forward kinematic solution of the symmetric truss 
requires only one iterative loop. This implies that using the inverse solution out­
lined for the general double-octahedral geometry will require only four iterative 
processes per pass, one iteration to determine the present position and orientation 
given II, i2, and i3, and three iterations to evaluate the effects of varying 11, 12 , 

and 13 • This computational burden can be further reduced. Since the goal of the 
inverse kinematic problem is to identify the required extensible link lengths, it is 
not necessary to know the l's until a solution is found. As outlined, the first step 
in the inverse solution process was to assume values for the l's. This represents the 
conventional input specification. For this parallel, three DOF device a canonical 
specification set exists that results in a linear forward solution. If values are as­
sumed for the angles ¢>17 ¢>2, and ¢>3, the positional state of the truss is completely 
and uniquely defined. The following procedural outline may now be used: 

1. Assume a set of ¢>'s. 
2. Calculate in closed form the midplane nodes. 
3. Project the base nodes through the midplane to form the top plane. 
4. Compare this to the desired end position. If converged, proceed to step 8. 
5. Evaluate the effect of each ¢> on each end parameter (e.g. :~). These partials 

may now be evaluated in closed form. 
6. Comp-ute a set of ~¢>'s. . . 
7. Modify the assumed set of ¢>'s and return to step 2. 
8. Use the final set of ¢>'s to compute in closed-form the actuall's required. 

The inverse kinematics process now requires just the one main iterative loop. 
This was accomplished by iteratively solving the closed-form canonical input spec­
ification forward kinematic problem. 

Closed-Form Solutions 

This section summarizes the inverse kinematic research conducted by Padmanab­
han, et al.[41, 42], who identified closed-form inverse kinematic solutions for the 
symmetric, batten-actuated, double-octahedral truss. Since this is a three DOF 
device, the inverse goal specification can only possess three degrees-of-freedom. 
For this reason the inverse kinematic problem has been divided into two classes 
of problems. One class of problems is concerned with identifying the link lengths 
necessary to produce a given (X, Y, Z) position of the end-effector. This will be 
termed the inverse positioning problem. The other class of problems is concerned 
with identifying the link lengths required to produce a given extension and angular 
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rotation about two axes. This is termed the inverse gimbal problem. Both of theses 
tasks have been successfully solved in closed form. Figure 3.13 illustrates the two 
inverse goal concepts. Note that this figure also presents the more intuitive gimbal . 
model of the VGT. This module behaves much like a conventional Hooke's cou­
pling; however, it has the ability to alter the parameter shown as d in Figure 3.13. 
While these closed-form solutions are extremely useful for solving individual mod­
ules, they do not address the problem posed by the modular manipulator where 
additional DOFs would be chained to the three DOFs module. 

3.6 Description of the Static Truss Modules 
The static truss sections will be treated in the same manner as the active truss 
sections. Since there will be no change in geometry of the static sections, a full 
kinematic analysis is not required. However, each static section must have a known 
transformation that describes the relative position and orientation of the faces that 
are designed to accommodate attachment of other truss elements. This transfor­
mation can be calculated from the given geometry, or simply measured on the 
physical truss module. In general, the static sections are in the form of triangular 
prisms of various lengths and cross-sectional dimensions. A typical assortment of 
static truss sections is shown in Figure 3.14. Note that some static sections may 
be tapered and the two end faces may not be parallel. In all cases the critical 
information to be obtained is the transformation from B to T. 
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Figure 3.14: Possible Static Truss Sections 



4. Conclusion 

. Truss-based manipulator structures are designed so that the load sustained by 
each of the links is purely tension or compression. Thus, all of the links are . 
utilized in their strongest loading configuration. The result is an extremely stiff 
manipulator with a high strength-to-weight ratio. In addition, the modular nature 
and open framework of the manipulator make the system highly adaptable, rugged 
and reliable. The open framework is particularly well suited to waste conveyance 
systems, providing protection for the system while allowing easy access to the 
entire system. _ 

The kinematics of truss-based manipulators are considerably more complex 
than those of conventional manipulators. The limited workspace of truss-based 
manipulator units requires that a truss-based manipulator possess many more de­
grees of freedom than a conventional manipulator. This further complicates the 
kinematic analysis. 

This report addressed this critical issue in the realization of truss-based manip­
ulators. The kinematics of individual truss-based manipulator units were analyzed 
in detail, with specific relationships developed for a number of truss structures. 
These kinematic relationships, either closed-form or with computationally efficient 
iterative solutions, allow for real-time control of complex, multi-DOF truss-based 
mani pulators. 
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