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Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional in-

crease in failure rate relative to today’s machines. Systems software for exascale machines must provide

the infrastructure to support existing applications while simultaneously enabling efficient execution of new

programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations;

and massive data analysis in a highly unreliable hardware environment with billions of threads of execution.

The FOX project explored systems software and runtime support for a new approach to the data and

work distribution for fault oblivious application execution. Our major OS work at Boston University focused

on developing a new light-weight operating systems model that provides an appropriate context for both

multi-core and multi-node application development. This work is discussed in section 1.

Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in

which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was

an extension of the Kittyhawk project and is discussed in section 2.

Section 3 documents the publications and software repositories that we have produced.

To put our work in context of the complete FOX project contribution we include in section 4 an extended

version of a paper that documents the complete work of the FOX team.
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Figure 1: Runtime structure of an Elastic Building Block
(Ebb). An Ebb is a programmer defined object that: 1)Can
have a distributed internal structure 2)Enables both inter-node
and inter-core locality optimizations 2)Allows Access at any
physical location through a unique id 3)Transparently directs
calls to local representative 4)Uses indirection to enable addi-
tional dynamic behavior (e.g, lazy initiation, hot-swapping)

What role, structure and mechanisms

should operating systems serve, take and

incorporate at Exascale? In particular, how

can operating systems help with the com-

plexity and challenges of achieving fault

oblivious computation? The Boston Uni-

versity team explored the conjecture that

an Exascale operating systems should be

a runtime that enables system functional-

ity and overheads to be selected and com-

posed on per-application basis through the

use of libraries of components called Elastic

Building Blocks (Ebbs). An Ebb encapsu-

lates: 1) how a particular system compo-

nent is distributed across the resources of

the system, 2) how its behavior is optimized

for both the application’s needs and specific

hardware features , and 3) how it behaves

in the face of dynamic changes, such as the

loss of nodes due to faults.

Figures 1 and 2 illustrate the structure

of an Ebb and how software is realized as

a composition of Ebbs. Ebbs are an out-

growth of our prior work on Clustered Ob-

jects [1, 2], a method for constructing per-

formance sensitive software on large scale multiprocessors [3, 4].

The development of high-performance, parallel systems software is non-trivial. The concurrency and

locality management needed for good performance can add considerable complexity. Fine-grain locking in

traditional systems results in complex and subtle locking protocols. Adding per-processor data structures in

traditional systems leads to obscure code paths that index per-processor data structures in ad-hoc manners.

Clustered Objects were developed as a model of partitioned objects to simplify the task of designing high-

performance SMP systems software [5]. In the partitioned object model, an externally visible object is

internally composed of a set of Representative objects. Each Representative object locally services requests,

possibly collaborating with one or more other Representatives of the same Clustered Object. Cooperatively,

all the Representatives of the Clustered Object implement the complete functionality of the Clustered Object.

To the clients of the Clustered Object, the Clustered Object appears and behaves like a traditional object.

The distributed nature of Clustered Objects made them ideally suited for the design of multi-processor system

software, which often requires a high degree of modularity and yet benefits from the sharing, replicating and

partitioning of data on a per-resource (object) basis. Clustered Objects are conceptually similar to design

patterns such as facade [6]; however, they have been carefully constructed to avoid any shared front end, and
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are primarily used for achieving data distribution. Some distributed systems have explored similar object

models. Specifically, Clustered Objects are similar to other partitioned object models, such as Fragmented

Objects [7,8] and Distributed Shared Objects [9,10], although the latter have focused on the requirements of

(loosely coupled) distributed environments. In contrast, Clustered Objects are designed for (tightly coupled)

shared memory systems.
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Figure 2: Software runtime as a composition of Ebb’s. Inter-
nally Ebb’s can optimize their structure based on where and
how they are accessed. The dashed lines represent how these
specific Ebb instances are connected to each other by holding
references. Execution flows between connected ebbs as meth-
ods calls one to the other. Internally we see how a particular
ebb creates a local representative at each location a call to its
interface has occurred. The path highlighted by the solid par-
allel arrows illustrates execution that crosses three ebb’s on all
four nodes. In this case each ebb has constructed a local rep-
resentative and execution across theses Ebb’s can proceed in
a completely local fashion. A given Ebb may internally access
or coordinate with one or more of its remote representatives if
necessary.

Our use of the word distributed in the

context of Clustered Objects referred to the

division of data across a shared memory

multi-processor complex. Distribution did

not imply message passing, but rather, dis-

tribution across multiple memory locations

all of which can be accessed via hardware

supported shared memory.

A key to achieving high performance on

a multi-processor is to use per-processor

data structures whenever possible, so as to

minimize inter-processor coordination and

shared memory access. Clustered Objects

provided a natural way to develop and op-

timize the software so that in the common

case operations occur on data structures as-

sociated with the processor on which the

software is executing. Using Clustered Ob-

jects we were able to construct a new op-

erating system, K42. Clustered Objects al-

lowed K42 developers to deploy complex lo-

cality optimization in a tractable fashion.

Given the hybrid nature of future sys-

tems, Ebbs naturally extend the Clustered

Object research. The goal is to marry the

ability to enact both intra-node locality aware shared memory optimizations and inter-node locality aware

optimizations by encapsulating distribution and dynamic behaviour. In this way programmers are encour-

aged to develop libraries of reusable software that decompose functionality into components that can have

implementations that are tuned for particular access patterns and hardware tradeoffs. Applications and their

supporting software can draw upon existing libraries of Ebbs and/or implement their own as needed. As

illustrated in figure 2 execution proceeds as concurrent calls through a set of instantiated Ebbs. Based on

programmer defined behavior, each Ebb internally constructs representative portions of itself for the nodes

and cores on which it is accessed . Each Ebb can thus be optimized for the particular needs of the path it

is accessed on. As demonstrated in our prior work, this type of decomposition can allow parallel software to

adapt to runtime communication over-heads through a combination of tuned implementations and dynamic

hot-swapping [11].

Ebb software rests on a thin portable library based runtime called libEbbRT (or simply EbbRT). EbbRT
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provides the basic interfaces and language bindings to allow developers to instantiate and manage Ebb

instances both externally and internally. EbbRT provides a binding of an execution context for calls to a

specific core and resources that are local to it.
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Figure 3: EbbRT application level structure.

While Ebbs provide a path for new sys-

tem software, future Exascale applications

are still likely to be a conglomerate of lan-

guages and libraries that vary in their re-

liance on existing OS interfaces. To this

end EbbRT does not employ a traditional

operating system structure. From an exist-

ing applications perspective it appears as

a library that can be integrated into a pro-

cess of the supporting OS. The EbbRT run-

time is built around a generalization of the

IBM compute node kernel (CNK) model.

An application runs on a collection of nodes

where many nodes are running only a thin

“bare-metal” EbbRT standalone runtime

that is customized for the high-performance

needs of the application in a manner that

is similar to CNK applications.

In the IBM model an application is also assigned a set of physical I/O nodes that run a full linux kernel.

CNK transparently offloads work to the linux instances as needed to implement functionality and interfaces

it does not support with the primary focus being external I/O. EbbRT generalizes this approach allowing

applications to be composed of an arbitrary mix of bare-metal and full kernel nodes. An application has

direct control over the function and relationship between the linux and bare-metal nodes.

Unlike the IBM model, arbitrary application code can be run on any number of linux nodes. As such,

this code has access to any existing bodies of libraries and runtime supported by the linux distribution being

used. This allows an application to exploit standard software and communication protocols for the sake

of simplifying development and ensuring compatibility. At the same time, we can specialize and optimize

high-performance aspects of the application by hoisting these portions on to customized bare-metal nodes.

A key focus of the EbbRT model is providing the mechanisms for achieving and controlling this partitioning

in a flexible and application driven composition.

All instances of the EbbRT base library form a distributed structure that allows Ebb instances to cross

the boundaries between the bare-metal nodes and the linux nodes. To concretely understand this, consider

an Ebb that implements an file system interface (eg. open, fstat, mkdir, etc) that can be used directly by

application code or behind a libc wrapping. When invoked by an application process on a linux node the Ebb

will use a unique local representation of itself that utilizes the underlying linux interfaces. On bare-metal

nodes, however, when invoked the Ebb employes a specialized bare-metal representation that function and

data ships as necessary to one of the linux representatives . The distributed bare-metal representative and

linux representative structure and relationships is hidden from the callers. Furthermore, the representatives

can optimize various interactions for the sake of improving performance and or fault-tolerance. This can
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be done via any appropriate methods as needed (eg. partitioning and replicating data, exploiting hardware

features, optimizing read vs write access ratios, etc).

It is important to note that a critical design point of the EbbRT model is exploiting this heterogeneity

and flexibility in a richer manner than just for external I/O offloading and optimization. Given the library

nature of EbbRT, it is just as natural to provide an application that is running python code on a linux node

with calls to create Ebbs that distribute critical data and operations onto bare-metal nodes.

The Ebb runtime and associated development software is designed to facilitate and ease the development

of libraries of Ebbs that can be customized and used for various applications. The base runtime provides

basic facilities for Ebb allocation, Ebb invocation, management of the representatives of an Ebb instance,

basic memory allocation and an event driven execution model for running Ebb invocations. On top of this

base we expect a spectrum of application environments to be constructed. From some applications being

predominately built from legacy software that incrementally integrate calls to Ebbs to other applications

which are composed predominately from Ebbs. In the latter case we further expect there to be families

of layered Ebb based runtimes which exploit Ebbs to construct particular application programming and

execution environments. An example of the later would be a task/data flow Ebb-based runtime.

Given the aggressive nature of the entire EbbRT project the work done for the FOX project focused on

developing prototype EbbRT runtimes and Ebbs that explored one of the core FOX conjecture – exascale

fault obliviousness can be achieved by adopting a task model of computation and the use of a distributed

fault-tolerant data-store. The remainder of our this section describes this work in detail and what we have

learnt from it.

1.0.1 EbbRT Internals

At the on-set of the FOX project we began developing a prototype of EbbRT which used no specific

object-oriented language support. It was written in ’C’ and the focus was on adding only the mechanisms

for allowing distributed data structure instances (Ebbs) to be hidden behind an interface. An Ebb was

composed of function pointers and distributed data. We developed a set of distributed tables that were

to collectively form a dynamic and consistent namespace for locating local fragments of the Ebb instance

when it was accessed on a particular node and core. The goal was to prototype the basic mechanisms for

supporting Ebbs in a base library that could be implemented for Linux and as a standalone bare-metal

runtime.

We made considerable systems progress in constructing a version of the runtime for both Linux and

bare-metal (x86 and PPC). The runtime provided a event driven execution model and allowed Ebbs to:

1) dynamically adjust their internal distribution in response to dynamic access, 2) hot-swap one instance

for another at runtime, and 3) implement multi-core optimization behind their interface. However, we soon

found that the lack of object-oriented language support had hindered the ability to naturally construct Ebbs.

Partially motivated by the increasing popularity of BOOST for HPC applications, we decided to construct

a C++ based EbbRT runtime https://github.com/SESA/EbbRT.
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Figure 4: BG/Q EbbRT prototype

BG/Q Prototype Though our research,

we have develop EbbRT targets for x86-

64 bare-metal, x86-64 Linux, BG/P bare-

metal, and PPC32 Linux. Additionally, our

work for FOX focused on a PPC64 BG/Q

CNK target. The per-node address space

structure of the BG/Q prototype is illus-

trated in figure 4. Common to all runtimes

is a C++ based library, libEbbRT, and as-

sociated tool chain that permits program-

mers to define Ebbs as C++ classes. An

event driven execution environment man-

ages and directs calls to and from the Ebbs.

Layered about the base is a set of optional

application specific Ebbs that can be loaded

and initiated on-demand. The libEbbRT and optional Ebb based modules are colored yellow in the figure and

in totality is referred to as the EbbRT of the application. The EbbRT software requires an implementation

of the C++ standard library and an associated standard C library. In the case of the BG/Q prototype we

are using these components which are provided as part of the LLVM/clang on BG/Q tool chain developed

at Argonne National Labs. These components are colored green in the figure. Finally, the BG/Q prototype

is neither bare-metal nor Linux based. Rather it uses IBM’s CNK and MPI software (colored blue). While a

BG/Q SPI, bare-metal and Linux port is part of our future targets, the FOX work does not depend on these.

A key feature of EbbRT is easy integration and mixing of Ebb based code and non-Ebb based application

and library code (colored gray in the figure.)

1.0.2 MCPhoton and EbbRT

A Monte Carlo based photon simulation (mcphoton) was chosen by the FOX team as a target application

used to study how a simple yet existing HPC computation might be implemented using a distributed data-

store, thus potentially enabling the opportunity to introduce fault-tolerant data-store and task models. Our

work at Boston University focused exploring how EbbRT could be leveraged in implementing mcphoton.

We explored two approaches: 1) porting the provided FOX data-store version to use an Ebb-based imple-

mentation of the data-store with minimal application changes and 2) the construction of an Ebb runtime

that permits a reimplementation of mcphoton to exploit both a task model and a data-store that achieves

application-level oblivious fault tolerance. Both these approaches are discussed below.

The libFOX library was developed, outside of our research group, to act as a generic HPC centric ap-

plication interface to a distributed data store implementation. As such, it provides a natural separation

between application code and the software implementing the underlying data store. LibFOX-based applica-

tions provide an ideal setting to explore and contrast the EbbRT model for HPC programs compared to how

one might naturally develop a libFOX program using a commodity distributed data-store and associated OS

infrastructure.

A critical aspect of the EbbRT approach is to allow for the easy elimination of overheads by exploiting

the dedicated nature of HPC applications, while tailoring the solution to existing application code. Our first

approach focuses on preserving the application code and injecting calls to Ebbs behind the libFOX API that
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reimplemented the DHT. This would allow the application to run on the BG/Q MIRA with only a recompile.

This work was also used to bootstrap our BG/Q prototype of the base libEbbRT, including 1) developing

BG/Q assembly code that implements our call handling mechanism 2) porting our C++ layers to the Argonne

BG/Q llvm tool chain (this involved interactions with the Argonne BG/Q llvm team to help resolve issues

on both sides), and 3) porting our event and messaging facilities to CNK.
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lib
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Figure 5: Elastic Building Block Runtime Application level
structure.

On top of this we constructed a trans-

parent runtime which permits the mcpho-

ton application (with only required a re-

link) to run on BG/Q and exploit a peer-to-

peer distributed hash table. Specifically, we

worked on the mcphoton app from the FOX

project that is written against a generic

key value store library interface (libFOX).

Prior to this effort the FOX mcphoton app

had been run on 256 node x86 based with

an implementation of the libFOX library

that uses memcached [12]. Memcached is

a generic TCP/IP based key-value store used to distributed data objects across the memory of several

servers. We constructed a version of the libFOX library which directly uses an Ebb-based distributed hash

table (DHT) . In this way, the mcphoton app no longer requires a robust OS to supports rich multiprocessing

environment composed of clients and servers on a TCP/IP network. Rather the EbbRT DHT component

directly links into the mcphoton app and cooperatively implements the data store across all the work nodes

of mcphoton. The DHT component we constructed encapsulates the distribution, provides an interface to

enable the construction of libFOX (without the need to modify the mcphoton code) and permits a seamless

path for executing on the BG/Q MIRA.

We evaluated this version on runs from 1-16 racks of MIRA (see figure 7. Ideal scaling was observed to 8

racks, at which point the overheads of the less-scalable portions of the libFOX interface (e.g., implementation

of collective operations) began to dominate the performance. Our goal for this task was not the absolute

performance, or to explore fault tolerance, instead, it was to bring up our EbbRT runtime, attempt to port

an application with minimal application change, and demonstrate increased levels of performance and scale.

From this perspective we found that our approach does permit encapsulation for distributed structure and

function in our system level components that can be directly linked into the application with appropriate li-

brary and component design. It was not surprising to us that the DHT collective operations would eventually

limit the application performance given its implementation on naive point-to-point communication.

Based on this experience we decided to explore an alternative way of using EbbRT in the context of

mcphoton with the goal of providing true fault oblivious execution. Specifically, we developed a custom

EbbRT task runtime and associated data-store that encapsulates fault-tolerant behavior, and yet allows us

to easily implement the mcphoton application.
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Figure 6: Elastic Building Block Runtime for Task based ver-
sion of mcphoton.

We implemented a new version of the

mcphoton app around a Ebb runtime con-

structed specifically for task-driven pro-

gramming that allows us to explore en-

capsulation of fault-tolerance and improved

scalability properties as illustrated in fig-

ure 6.

We constructed a run-time suitable for

data dependent computations in a fault tol-

erant manner. Our objective was not to de-

sign the ideal fault tolerant run-time, but

instead evaluate the ability for EbbRT to

compose functionality to provide a higher

level run-time.

We modified the mcphoton application to give a data flow graph representing the computation to a

DataflowCoordinator Ebb. The graph expresses the dependencies between fine grained tasks (which outputs

are inputs to which tasks). Figure 8 documents the performance of this version. The DataflowCoordinator

Ebb schedules individual tasks whose inputs have been produced. The individual tasks can run on any node

in the system and the generated outputs are stored locally. If a node is detected to have failed then the

DataflowCoordinator can reschedule any tasks whose data needs to be reproduced and the computation can

proceed without the failed node. We implemented a centralized DataflowCoordinator that stores all task and

data location information (but not the actual data) on one node and uses a distributed hash table ebb to store

the actual data. We detect failures using an unreliable failure detector (which can give false positives) called

the Phi Accrual Failure Detector [13]. Our implemented runtime was able to run the mcphoton computation

with perfect weak scaling up until 4096 nodes with no failures. The computation tolerates multiple failures

to nodes which do not store the task and data location information (i.e., the dedicated DataflowCoordinator

node.)

We discussed a number of potential improvements to our data dependent runtime to improve both fault

tolerance and scalability. One could design a DataflowCoordinator that replicates the task and data location

information to multiple nodes in order to provide additional fault tolerance. Additionally the information

could be partitioned (having portions of the data flow graph managed by separate nodes or groups of nodes)

to provide better scalability. We felt that these improvements were outside the scope of our current research

and so they have not been pursued. Our goal was to demonstrate the ability to build higher level run-times

using EbbRT by building reusable systems software components. Our construction of distributed hash tables

and failure detectors gives us confidence that this is a fruitful approach.
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Figure 7: Performance of Ebb-based libFOX compatible version of mcphoton on BG/Q 1-16 Racks.

Figure 8: Performance results of an Ebb DataFlow implementation of mcphoton on BG/Q 1-4 Racks.
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2 Kittyhawk Failure Testbed (Boston University and IBM Re-

search)
Kittyhawk is an HPC oriented hardware-as-a-service system prototyped on the IBM Blue Gene/P systems.

It was originally developed by the BU PI at IBM and was released as open source in 2009 (http://kittyhawk.bu.edu).

Its goal is to construct a public utility cloud-like supercomputing platform. Kittyhawk provides a flexible

environment for developing new software models that react to dynamic changes at runtime while exploiting

the scale and communication facilities of Blue Gene. The key abstraction of Kittyhawk is the dynamic

provisioning of compute nodes in a cloud-like fashion where an application can elastically grow and shrink

the nodes it uses from and to a large common free pool of nodes.

Originally BU was going to solely use Kittyhawk as a base to explore and develop its EbbRT runtime, as

discussed in section 1. However, in year one of the FOX project it became clear that Kittyhawk could serve as

a useful development environment for other members of the FOX project. In particular, a large investment

had been made in Kittyhawk to provide developers with a view of Blue Gene as a flexible Linux-based

open-source Cloud Computing environment. The environment permits both commodity network software

and Blue Gene specific communications software to coexist and be developed while allowing researchers to

dynamically change the set of nodes that is allocated to their application.

There were three main contributions with respect to Kittyhawk and the FOX project.

(a) The development of a FOX fault injection test-bed. There was no simple way to systematically study

how large scale Linux based cluster applications would react to removal of nodes from an application

due to fail-stop system level crashes. The design of communication hardware on large-scale systems

such as Blue Gene results complete loss of all communication if a single node fails. Our new Kittyhawk

based test-bed allows us to explore how applications behave in the presence of node failure and study

the impact FOX resiliency methods and approaches in isolating the application from such failures.

(b) The construction of a FOX oriented Linux Blue Gene based development environment for migrating

FOX applications composed of commodity cluster software. Kittyhawk was originally designed for

researchers and developers to explore the construction of cloud services out of trimmed down customized

software stacks and not directly by application developers who are use to rich and complete commodity

OS and middle-ware stacks. To address this we constructed a reusable user-centric cluster development

environment. Each user is provided with a dynamic linux cluster that he or she can easily develop and

test Linux based cluster applications while benefiting from the scale of a Blue Gene system, its advance

communication facilities and the above mentioned fault injection testbed capabilities. This work was

to provide a path forward for other FOX team members to migrate their applications and techniques

to the Argonne Blue Gene systems for testing and study at larger scales.

(c) The redesign and implementation of Kittyhawk infrastructure for use in restricted networks environ-

ments (as typified by ALCFs Challenger and Intrepid). Kittyhawks original cloud design assumed that

a Blue Gene site would be able to provide a common block of public externally accessible TCP/IP

addresses that a user could assign to nodes at his or her discretion. Unfortunately this is not always

possible on large installations such as ALCFs Intrepid system. Thus to enable large scale usage of

Kittyhawk on Intrepid, BU re-implemented the external networking infrastructure of Kittyhawk to
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function in such environments while preserving its flexibility and function. This resulted in the largest

functioning Kittyhawk environment demonstrated and permitted larger scale testing of FOX software

using Kittyhawk.

In addition to the above three contributions, effort was also put into improving the stability and function

of the Kittyhawk prototype. Work was done as bugs or need for few features were identified – such as

improvement of scalable application image loading and user oriented multi-node management. All of the

Kittyhawk developments of the FOX project have been contributed back to open source public repositories

(http://www.github.com/kittyhawk). The work resulted in interest from other groups who wanted to use

Kittyhawk for their research both at Argonne and on other Blue Gene installations. Of specific note the

FOX work for Kittyhawk enabled the VCL integration of BG/P:

• https://www.alcf.anl.gov/articles/researchers-describe-project-merge-cloud-computing-and-supercomputing

• http://repository.lib.ncsu.edu/ir/bitstream/1840.16/8545/1/etd.pdf

3 Publications and Software

3.1 Publications

Scalable Elastic Systems Architecture; Dan Schatzberg, Jonathan Appavoo, Orran Krieger, Eric Van

Hensbergen, ASPLOS RESoLVE Workshop, ACM, 2011.

FOX: A Fault-oblivious Extreme-scale Execution Environment; Ron Minnich, Curtis L. Janssen, Sriram

Krishnamoorthy, Maya Gokhale, P. Sadayappan, Jonathan Appavoo, Eric Van Hensbergen, Jim Mckie,

Charles Forsyth,Proceedings of ASCR Exascale Research Kickoff, Department of Energy Office of Science,

2011.

Fault Oblivious eXascale Whitepaper; Ron Minnich, Curtis L. Janssen, Sriram Krishnamoorthy, An-

dres Marquez, Maya Gokhale, P. Sadayappan, Jonathan Appavoo, Eric Van Hensbergen, Jim Mckie, in

Proceedings of the International Workshop on Runtime and Operating Systems for Supercomputers, 2011

A Fault-oblivious Extreme-scale Execution Environment (FOX), FOX Team: LLNL, SNL CA, PNNL,

IBM Research, Boston U., Ohio State U., Bell Labs, DOE ASCR/NNSA Exascale Research Conference,

April 2012

Why Elasticity Matters, Dan Schatzberg, Jonathan Appavoo, Orran Krieger, Eric Van Hensbergen,

BUCS-RT-2012-006, Boston University.

Schatzberg et al., POSTER: A Library OS for Cloud Computing, USENIX ATC 2012, Boston, June

13-15, 2012

Schatzberg et al., POSTER: First Class Event-Driven Software Primitives, USENIX ATC 2012, Boston,

June 13-15, 2012

Amos Waterland, Elaine Angelino, Ekin D. Cubuk, Efthimios Kaxiras, Ryan P. Adams, Jonathan Ap-

pavoo, and Margo Seltzer, ”Computational caches””in proceedings of the sixed International Systems and

Storage Conference (SYSTOR ’13). ACM, New York, NY

Schatzberg et al., ”POSTER: EbbRT: Building a Distributed Library OS for Datacenter Scale Systems”,

SOSP 2013, Nov 3, 2013.

3.2 Software

• git@github.com:SESA/EbbRT.git See old branch for FOX work (inluding BG/Q CNK work) and see

the master and development for how this work is evolving.
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• git@github.com:SESA/EBBlib.git Older C version that includes a BG/P baremetal.

3.2.1 Kittyhawk

• git@github.com:kittyhawk/khdev.git

• git@github.com:kittyhawk/scripts.git

• git@github.com:kittyhawk/uboot.git

• git@github.com:kittyhawk/appliances.git

• git@github.com:kittyhawk/dashboard.git

• git@github.com:kittyhawk/khfoxdemo.git

• git@github.com:kittyhawk/linux.git
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Abstract—Future exascale computing systems will have the raw capability to enable new dimensions of scientific discovery. However,
due to extreme scale challenges in power, heterogeneity of resources, and system resilience, it has become evident that innovation in
system software infrastructure must also occur for applications to actually benefit from the hundred-fold increase in hardware.
In this paper, we describe research we have done on the Fault-Oblivous eXascale (FOX) environment, in which we explore new
operating systems and runtime libraries to address the challenges of exascale systems. Our OS research has prototyped new methods to
provide efficient resource sharing, synchronization, and protection in a many-core compute node. We have experimented with alternative
task/dataflow programming models and shown scalability in some cases to hundreds of thousands of cores. Much of our software is in
active development through open source projects. Concepts from FOX are being pursued in next generation exascale operating systems.

Keywords—exascale, operating systems, task library, many-core processors, reliability, key/value store

F

1 INTRODUCTION
As the High Performance Computing community pre-
pares for the extreme scale of execution to be provided
by exascale computing systems, many HPC experts [1]
believe that far reaching changes in hardware required
for the exascale will require corresponding innovation in
system software, runtime libraries, and applications.

Each new generation of HPC systems has presented
difficult but manageable challenges. Power for tera- and
petascale systems was managed by adding more money
to the power budget; scalable performance involved
using an existing tool set to measure and modify existing
libraries so that existing applications could directly drive
the network. The envisioned reliability problems1 were
resolved with careful design and fabrication, such that
even petascale systems stay up for many days. Even the
perceived need for a custom kernel turned out to be
wrong, as Linux can be used off-the-shelf, when built
with enough configuration tweaks.

However, exascale systems will be hitting several walls
at the same time. Nodes will have many cores, and
each node will run many different processes in support
of a single application. These processes will compete
for memory, network, and power resources, and must
be kept from interfering with one another by running
in an unprivileged mode. Power management will be
highly dynamic, no longer simply powering up all the

• E-mail: gokhale2@llnl.gov

1. The LANL Q, a 30T machine, was projected to have a failure every
20 minutes. The projections were off by a factor of at least 100.

nodes at full clock rate. It is expected that due to scale,
failure will be more the norm than the exception. As
a consequence, the operating system will have a much
larger role to play in memory protection, resource alloca-
tion, power management, and resilience. For applications
to actually benefit from the hundred-fold increase in
parallelism relative to today’s multi-petaflop machines
the community must create new capabilities in system
software infrastructure, supporting the evolution from
single process per node “MPI+X” to new programming
models that naturally express the application’s dynamic,
adaptive, irregular execution patterns (e.g. Figure 1) in an
unreliable hardware environment with billions of threads
of execution.

In this work, we have developed system software
and runtime support for the massively parallel, dynamic
application execution that we expect at the exascale.
Figure 2 illustrates a many-core node and our sys-
tem software stack. The hybrid runtime consists of a
general purpose Service OS along with a light-weight
library OS (if needed). A variety of runtime libraries
support a wide granularity of parallel tasks within a
node and within collections of nodes. We report on our
experience in prototyping and evaluating performance
and resilience of these advanced operating systems and
runtime mechanisms from single node level experiments
up to petaflop systems. Much of this OS and runtime
software was developed under the Fault Oblivious Ex-
treme Scale Execution Environment (FOX) project funded
by DOE ASCR X-Stack and tested on DOE Office of
Science supercomputers. Most of the software discussed
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scale execution

is available as open source, and some components are
being incorporated into next generation experimental OS
projects.

2 OPERATING SYSTEMS

Our operating system design targets a node architec-
ture comprising many, possibly heterogenous cores. We
optimize for a hardware environment in which cores
have different roles, as exemplified by (perhaps) different
instruction set architectures, different clock frequencies,
and differing ability to run supervisor level code.

An implication of this change of node architecture
is that exascale systems are expected to run multiple
processes, not just at the whole machine level, but at
the node or socket level. Some of the processes might
perform different parts of the computation, while others
might monitor and steer it. The effects of this change are

hard to overstate. Most production HPC applications run
in SPMD mode. Instances of the same program run as
single processes, one per node, and each user process
has direct access to memory and I/O devices. Many
lightweight kernels for HPC systems cannot support
multiple processes or enforce standard memory protec-
tions. Network interface code is managed in libraries, not
in the kernel, to achieve optimum performance.

Our work on HPC operating systems anticipates the
change to multiple, heterogeneous processes that need
OS services. We consider the operating system an im-
portant component of the exascale software stack, rather
than something to be shunted out of the way once the
application has started. Application I/O is managed by
the operating system rather than by OS bypass. The
decision to keep the operating system involved in I/O
has performance impact, and we describe below some of
the ways we overcome those issues. In the course of our
research, we developed two OS variants based on the
Plan 9 kernel [2], HARE and NIX. In the HARE OS [3]
on the Blue Gene/P (Section 2.1), we developed novel
OS techniques to optimize OS servicing of user process
communication. In the NIX kernel[4], prototyped on x86
nodes (Section 2.2), we designed and implemented core
specialization in the OS.

2.1 Improving operating system efficiency
Our goal was to replace OS bypass (in which an appli-
cation interacts directly with a device such as network
interface) with kernel-based mechanisms. OS bypass was
implemented to provide a way to avoid the performance
impact of OS involvement in I/O, especially the latency
the OS adds for small messages. Small message perfor-
mance is crucial to the global performance of applica-
tions, since small messages are used in synchronization,
barriers, and other time-critical operations.

We focused on small message performance first. The
first problem was to be able to send them with very low
latency; the second was how to respond to them with
very low overhead.
Reducing Send Overhead with Customized, Per-
Process System Calls. For the small messages used
in barriers and reductions, we found that in practice
only a small number of different parameter values are
used. We provided a mechanism for the application to
optimize device I/O by creating a new system call in
which constant parameters are eliminated (a form of
currying): Given a system call with constant parameters,
a process can create its own private system call, with the
parameters pre-computed. The kernel has a fast path for
recognizing these private system calls, which connects
to a fast path in the driver. The new system call is
private to the process and its children. Validation of
system call parameters is done when the call is created,
instead of each time. On Blue Gene/P, we were able to
get the data to the wire in 700 nanoseconds, or roughly
600 instructions. Comparison with existing software is
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tricky, but this was at most one half the time it took
with existing high performance user-mode libraries on
that platform. One study[5] shows around 2000 cycles
of overhead just to enter and leave the message I/O
functions. We feel it is safe to say we are no worse than
MPI for short message sends.

Sending packets quickly is not useful if the receiving
end adds large latency. Since we are involving the op-
erating system in I/O, the remote process is no longer
spinlooping on a network interface register, but is rather
blocked on a read system call. Even a process private
system call may not be fast enough in this case.

What is required is operating system involvement in
the implementation of the message operation, not just
moving data to the process.
Active Message Support in the Interrupt Handler.
Active Messages[6] are Remote Procedure Call (RPC)-
like messages that are processed asynchronously to the
destination process. In the original design, Active Mes-
sages were tightly coupled to use of the SPMD model
and contained the address of a function to run in the
process. In some later systems, in which not all processes
on all nodes have an identical address space, the function
address changed to an integer defining the operation to
run. In many applications the set of message types is
limited to a small number of simple operations, such as
fetch and add, compare and swap, and so on. The key
different between Active Messages and RPC is that with
an active message, the Active Message Handler receives
the message and executes the function call rather than
the application process.

To support low-latency OS involvement in message
receiving, we implemented active messages in the in-
terrupt handler. In order for this to work, the interrupt
handler has to be able to access memory in the process.
In standard systems, such access is not possible because
an interrupt context operates outside the context of any
process. In order to allow interrupt handlers to access
process memory, the kernel must support a common
address space between processes, the kernel, and the
interrupt handler. We implemented such support via
Single Address Space segments.
Single Address Space Segment. In the Single Address
Space Segment (SAS) pointers are unique across all pro-
cesses, the kernel, and the interrupt handler. In other
words, in this address space, a pointer referenced in a
process, kernel, or interrupt handler maps to the same
physical address. Therefore, when two processes share
memory in the SAS, they use the same pointer values.
Sharing pointers is not related to any particular program-
ming model, so that different processes running different
code can share memory through the SAS. Access control
rules apply in SAS just as they do for any other part of
the process address space, allowing processes to control
who sees data in the shared segment. The availability of the
SAS does not imply any diminution of standard OS memory
protection mechanisms.

Since an address in the SAS has the same meaning

in all modes, including interrupt mode, higher level
operations can now be processed in a very low level part
of the network stack. We can implement very low latency
message handling.

We combined the process private system calls, SAS,
and Active Message Support to provide processes on
Blue Gene with a high performance synchronization
primitive. A basic ping-pong using this mechanism took
about 2.5 microseconds on Blue Gene, or about 1/2
the time of MPI. We also implemented ’active rings’,
in which the packets are dequeued directly into a ring
buffer in user space. Active rings are equivalent in func-
tion to the Infiniband queue pairs, but do not require the
significant offload processing that Infiniband requires.
Transparent large page size. Translation Lookaside
Buffer (TLB) overheads can have a significant impact on
performance [7]. The TLB hides the cost of virtual to
physical address translation by caching the most recently
used page table entries. With small (4KiB) page size,
TLB misses are more likely, requiring a costly walk of
a multi-level page table. To reduce the number of pages
and thereby increase the likelihood of a TLB hit, modern
CPUs support large page TLBs, making it possible for the
OS to provide multiple page sizes. We implemented large
page support to reduce TLB overhead. On the Blue Gene,
all heap pages were mapped to 1 MiB pages rather than
the more standard 4KiB pages. On x86, our minimum
page size is 2 MiB; in heaps larger than 1 GiB all pages
above the 1 GiB boundary are 1 GiB. On x86, using 2 MiB
pages makes the page table walk 33% faster and reduces
the number of page table pages by a factor of 512.

2.2 Core specialization
We implemented role-based execution in NIX for ho-
mogenous and heterogenous SMPs, an idea motivated
by our talks with CPU vendors about future directions
in many-core architectures. For power and space reasons,
some future many-core CPUs might have a large set of
cores which only run user-mode. Further, it is possible
that cores will have disjoint memory spaces – not all
cores reference the same memory. To support role-based
execution, NIX differentiates between cores that run full
OS services and those that run dedicated application
processes. Cores are designated as time-sharing, which
are general purpose cores that can run multiple processes
as well as OS kernel code; application, that can run only
application code; or kernel, that are dedicated to running
the OS kernel. Cores can be partitioned at boot time,
which is natural for architectures with heterogeneous
hardware cores, or dynamically, to accommodate homo-
geneous cores that are partitioned for performance. Par-
titioning cores based on hardware capability is needed in
the case that cores are not able to run general purpose
code or an OS. Dedicating a set of cores from a homoge-
neous pool to an application eliminates OS interference,
which has been a continuing issue in HPC systems.
When application code executes a system call, control
is transferred to a kernel core.
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Fig. 3. Comparative performance of FTQ on Linux, NIX
timesharing core, and NIX application core. The flatter the
line, the lower the interference.

On HPC node measurements, NIX showed very good
performance, as discussed in [3]. We show results for
FTQ[8] in Figure 3. FTQ is part of the Sequoia benchmark
set [9] and measures the variation in amount of work
achieved over time; the lower the variation, the better.
In this case, the Linux performance, shown in red, is
the worst. The NIX timesharing performance (green) is
better, but hardly ideal. The application core (flat purple
line) achieves theoretically perfect performance; there is
no measurable OS noise, which makes sense as no OS
code, and no interrupts, are active on application cores.
Similar experiments performed with FusedOS showed
the same behavior, validating our premise that core spe-
cialization with homogeneous cores maximizes compute-
intensive application execution by eliminating OS noise.

Linux system call support. In the HPC community,
Linux compatibility is no longer optional. As an extreme
example, even the Blue Gene CNK, a lightweight kernel,
provides extensive Linux system call support. It need not
be complete: on the CNK, not all system calls are sup-
ported, and of those that are supported not all possible
permutations will work. Nevertheless, the set of system
calls that has to be supported has grown over time.

While it is also possible to provide compatibility at the
library level, experience shows that it is much easier to
support Linux apps at the system call interface than to
write compatible libraries.

NIX supports a limited number of Linux system calls
on both Blue Gene and x86 systems. Linux processes are
run by a manager process which reads the ELF binary
into its address space, sets up context, and jumps to the
entry point. The manager manages the process in the
same way that the lguest hypervisor manages its guest

OS[10].
Supporting the entire Linux system call set in the

NIX kernel would be a massive undertaking. NIX pro-
vides support in one of two ways. For system calls
requiring high performance, we support them directly
in the kernel. System calls which are infrequent or very
complex are ‘bounced’ out to the manager process via a
signal. Because the process is mapped into the manager’s
address space, it can examine the process to see what it
is doing; hence, passing pointers in system calls is not a
problem.

2.3 FusedOS: core specialization with Linux and
Blue Gene
The ultimate way to provide Linux support, of course,
is to provide Linux. As part of an IBM Research team,
we also participated in development of FusedOS [11],
which follows the same basic principles as NIX, but
uses Linux and the BG/Q compute node kernel as the
foundation instead of Plan 9. The FusedOS prototype
leverages Linux with small modifications on the Kernel
Cores and implements a user-level light weight kernel
called Compute Library (CL) by leveraging CNK on the
Application Cores.

TABLE 1
LAAMPS Results

Environment 1 Thread 16 Threads 64 Threads
Linux 361.968 364.457 773.900
Standalone CNK 357.278 361.740 566.436
FusedOS Application Core 357.490 362.059 544.566

Table 1 shows the performance results from running
LAMMPS benchmarks in the three operating environ-
ments. The results are the run-time for a single thread in
seconds on the Bluegene/Q. As the table shows, all three
examples have similar performance with a single thread
(with CNK and Application Cores having a slight advan-
tage over Linux), but as the number of threads grows,
both native CNK and Application Cores demonstrate a
significant performance advantage over Linux.

FusedOS is now available as open source on github.
Discussion: NIX vs. FusedOS approaches. Both NIX
and FusedOS support the concept of application cores
(ACs). Probably the most significant difference is in the
way that ACs are managed. In NIX, while processes own
an AC, the NIX kernel still manages the resources that
the process uses, including memory and I/O; and, when
a process performs a system call, it is a NIX or Linux
system call. A NIX process is always a NIX process,
whether running on a timesharing core or application
core.

FusedOS implements a so-called cohabitation model,
in which two kernels exist on the same hardware. Fuse-
dOS removes resources (including memory) from the
domain of Linux completely: Linux can not even see
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most of the other kernel’s memory. FusedOS sets up
cores and starts applications running the CL on them.
Those applications use Linux system call support only
indirectly, via a control process which maps application
system calls to Linux requests, interpreting or mapping
them if need be. FusedOS provides more flexibility in the
application environment at the cost of having to write an
OS environment for non-native applications.

2.4 Related OS research
One of the earliest examples of core roles was in the
implementation of Sandia’s Puma operating system[12].
The authors point out that “Usability is provided by
creating node partitions specialized for user access, net-
working, and I/O.“ More recent work in this vein can
be found in Kitten[13], which allows Linux binaries
to run in a VM partition. However, the overhead in
this environment is inverted from our systems; Linux
binaries need a Linux kernel and VM under which to
run, increasing the overhead and possible interference;
whereas on our application cores, the overhead is greatly
reduced.

Our early thinking was also informed by the Barrelfish
work[14], which each socket runs a separate kernel.
This work swims against the tide of ever-increasing core
counts running under a separate image. Barrelfish does
not differentiate core roles, however, and all sockets have
at least one core dedicated to the OS.

Tesselation[15] advocates spatial partitioning as well,
although each core does run a kernel.

Cray has recently added support for core
specialization[16], and reports an improvement in
performance where it is used. Their approach is very
different from ours, however; they have observed that
not all applications scale to use all cores, and they allow
the application to assign MPI progress threads, running
under the Linux kernel, to unused cores. Cray Core
Specialization is the obverse of NIX and Fused-OS.

Lange[17] makes a case for a partitioned model much
like FusedOS, though it is not clear how much has been
implemented.

3 TASK MANAGEMENT WITH A RELIABLE, DIS-
TRIBUTED METADATA STORE
The hybrid runtime (Figure 2) provides basic OS services
such as protection, memory management, and safe ac-
cess to low level communication hardware and external
resources. To support fine grained, adaptive, dynamic,
and massively parallel computational tasks, we designed
and prototyped task management libraries that manage
work distribution and the flow of data in extreme-scale
systems. In prior work ([18], [19], [20]), we have demon-
strated a data-driven computational model: a computa-
tion is organized as a collection of tasks with each task
described by the data it requires from a global address
space and a sequential function to evaluate the tasks. The

scheduling of the tasks together with the communication
is automatically handled by the runtime system. The
data-driven model (Figure 1) combined with the global
address space make it possible for task schedulers to
migrate tasks during execution, which is required for
both reliability and load balancing. There are many
different ways to approach both global address space
and task management. We now report on experiments
with a variety of libraries. All these libraries are user
mode and run as part of the application, where the
application can run under an OS or, in some cases, as
“bare metal.” Several of the libraries additionally support
“fault oblivious” execution, in which the application runs
normally despite node failure or slowdown, with failure
management handled purely within the library.

3.1 Task queues in a reliable distributed hash table
with libFOX
Our first experiment built the libFOX API that uses an ef-
ficient, scalable, distributed hash table to store global task
metadata. We adapted an existing distributed key-value
store from the commercial sector to the HPC environ-
ment. Memcached [21] from the Couchbase project [22]
is one candidate of many NoSQL systems [23] in active
development based on key-value pairs. Memcached has
demonstrated scalability to tens of thousands of nodes
on enterprise servers. A useful feature of the Couchbase
version of Memcached is a pluggable storage engine
that is separated from the main TCP/IP server. This
feature facilitates experimentation with various storage
and caching implementations without affecting the main
server. Additionally, Memcached includes reliability ser-
vices such as replication and relocation of data store
servers. In addition to fast prototyping of a task manage-
ment API, we wanted to know whether a widely used,
highly efficient enterprise level distributed key/value
store was suitable as infrastructure on which to base HPC
services.

For the HPC environment, both task queues and data
can be represented in a key-value store (see Figure 4).
Even though keys and their associated values are funda-
mentally independent, they can be organized hierarchi-
cally by including references to other key-value pairs. For
example, a task queue is constructed with front and back
pointers stored in key-value pairs that reference work
units stored in other key-value pairs.

Counting semaphores for fast synchronization. A
fundamental feature that is absent from Memcached is
the ability to synchronize efficiently between producer
and consumer processes. Using the standard Memcached
interface, a worker needs to poll for a task to appear
in a task queue through repeated get operations on
a specific key. A solution to this problem is to intro-
duce distributed counting semaphores. With counting
semaphores, processes that write data on a key can
signal processes waiting for data on a key. Distributed
counting semaphores are implemented with the addition
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Fig. 4. Task queue implemented with key-value pairs in
memcached.

of a count field to key-values pairs. Synchronous set and
get operations pass a delta parameter that increments
or decrements the semaphore count. A synchronous get
operation waits until the count is at least equal to the
requested delta and then returns the data associated with
the key. Synchronizing through a key allows a replicated
server to support the semaphore operation in the advent
of failure.

We developed libFOX to provide Memcached clients
with a task queue abstraction and other parallel com-
munication patterns common to HPC. These patterns
include the broadcast of parameters to workers, work
distribution, and the collection of results. Enhancing the
Memcached interface to support distributed counting
semaphores made libFOX more efficient for task distri-
bution and management by reducing the need to poll.

MCphoton. A simple Monte Carlo radiative heat
transfer simulation called mcphoton was chosen to study
how an HPC application might interact with a dis-
tributed data store through a task model with the poten-
tial for resilience. A highly parallel version was devel-
oped that distributes tasks through the task queues pro-
vided by the libFOX interface. An implementation that
uses Memcached for all communication has shown near
linear performance scaling on a cluster up to 256 nodes
and 2KiB cores. The current implementation of Mem-
cached uses sockets for communication and encounters
scaling problems beyond 2KiB cores, highlighting the
differences in latency requirements for enterprise vs.
HPC. To improve efficiency, we developed a distributed
key-value store EbbRT using native HPC communication
primitives on the Blue Gene/Q.

3.2 Elastic Building Blocks (Ebb)
The libFOX library targets a global task queue using a
key/value store based on a distributed hash table to
store task metadata. To more generally support future
HPC applications that need a combination of customized
distributed runtimes and general purpose commodity

operating systems, we have constructed a prototype run-
time, the Elastic Building Block Runtime (EbbRT). EbbRT
provides the Elastic Build Block (Ebb) object model
which enables developers to encapsulate distributed
components of software and exploit distributed data
structures and associated communication optimizations
in the face of dynamic changes to the set of nodes. We
used the EbbRT infrastructure to implement the libFOX
API. Additionally we prototyped a fault tolerant, data
flow driven implementation of the mcphoton application
with EbbRT.

Given a system wide identifier for an instance of an
Ebb called an EbbId, a client can invoke an Ebb through
a well defined interface. For example, a hash table Ebb
may provide get(key) and put(key, value) func-
tions. Hidden from the client and based on programmer
defined behavior, an Ebb internally constructs representa-
tives of itself on nodes and cores on which it is accessed.
The Ebb programmer must then have representatives
communicate with each other as necessary to satisfy
client requests. This model enables Ebb programmers
to design highly tuned implementations of common
interfaces and allows application developers to select
appropriate implementations.

EbbRT is a thin portable library which provides the
basic interfaces and language bindings to allow devel-
opers to instantiate and manage Ebb instances. We have
developed an implementation that can be linked with
Linux applications as well as an implementation that
can run bare metal on x86-64 and PowerPC64 machines
(including Blue Gene). EbbRT is open-source, written
in C++11, and is under active development at https:
//github.com/SESA/EbbRT.

All instances of EbbRT form a distributed structure
that allows Ebb instances to cross the boundaries be-
tween the bare metal nodes and the Linux nodes. To con-
cretely understand this, consider an Ebb that implements
a file system interface (eg. open, fstat, mkdir, etc.) that
can be used directly by application code or behind a libc
wrapping. When invoked by an application process on
a Linux node the Ebb will use a local representation of
itself that utilizes the underlying Linux interfaces. On
bare metal nodes, however, the Ebb employs a special-
ized bare metal representative that serializes the opera-
tion and data as necessary and sends them to a Linux
representative. The distributed bare metal representative
and Linux representative structure and relationships are
hidden from the callers. Furthermore, the representa-
tives can optimize various interactions for the sake of
improving performance and or fault-tolerance. This can
be done via any appropriate methods as needed (eg.
partitioning and replicating data, exploiting hardware
features, optimizing read vs write access ratios, etc.).

In addition to the object model EbbRT provides a non-
blocking event-driven execution model. External events
due to machine failures, network traffic, timers, etc. exe-
cute programmer-specified event handlers to completion
before further events are processed. In the context of bare
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Fig. 5. Performance of Ebb-based libFOX compatible
version of mcphoton on BG/Q 1-16 Racks.

metal execution, these events execute at supervisor level
and therefore allow for software to react efficiently and
with low latency to asynchronous behavior.

A critical aspect of the EbbRT approach is to allow
for the easy elimination of overheads by exploiting the
dedicated nature of HPC applications while tailoring
the solution to existing application code. Our work has
focused on exploring how EbbRT could be leveraged
in implementing the mcphoton simulation code. We ex-
plored two approaches: 1) porting the FOX memcached
data store version to use an Ebb-based implementation
of the data store with minimal application changes and
2) the construction of an Ebb runtime that permits a
re-implementation of mcphoton to exploit both a task
model and a data-store that achieves application-level
fault oblivious execution. Both these approaches are dis-
cussed below.
mcphoton in EbbRT. The libFOX library was developed
to act as a generic HPC centric application interface to
a distributed data store. As such, it provides a natural
separation between application code and the software
implementing the underlying data store. LibFOX based
applications provide an ideal setting to explore and
contrast the EbbRT model for HPC programs compared
to how one might naturally develop a libFOX program
using a commodity distributed data-store and associated
OS infrastructure.

Our first approach focused on preserving the applica-
tion code and injecting calls to Ebbs behind the libFOX
API. The existing mcphoton application used libFOX
implemented on top of memcached. We re-implemented
libFOX on top of an Ebb distributed hash table developed
for and tuned to use the network of a supercomputer.
This allowed the mcphoton application to run on the
Bluegene/Q Mira without any application modifications.

We evaluated this version on runs from 1-16 racks of

Data Flow Coordinator

EbbMgr EventMgrMsgMgr

libEbbRT

Single Address Space Per Node

MPI

mcphoton
Task Graph

mcphoton
Task Code Distributed 

Hash Table
Failure Detector

Timer

Fig. 6. Elastic Building Block Runtime for libFOX based
version of mcphoton.

Mira, The Argonne Blue Gene/Q (see Figure 5). Ideal
scaling was observed to 8 racks (8192 nodes), at which
point the overheads of the less-scalable portions of the
libFOX interface (e.g., implementation of collective op-
erations) began to dominate the performance. Our goal
for this task was to port an application with minimal
application change, and demonstrate increased levels
of performance and scale. From this perspective we
found that the Ebb approach (with appropriate library
and component design) does permit encapsulation of
distributed system level components that can be directly
linked into the application. Scalability greatly improved
over the initial fast prototype build using memcached,
but we eventually encountered scalability limitations due
to the libFOX implementation of collective operations
that used naive point-to-point communication.
Fault-tolerant mcphoton. We next built a fault oblivious
mcphoton application in which the application contin-
ued to operate normally in the presence of faults, with
the underlying Ebbs providing fault management. To
this end, we developed a custom EbbRT task runtime
and associated data-store that encapsulates fault-tolerant
behavior, and yet allows us to easily implement the
mcphoton application. We implemented a new version of
mcphoton using an Ebb runtime constructed specifically
for task-driven programming that allowed us to explore
encapsulation of fault-tolerance and improved scalability
properties as illustrated in figure 6.

We modified the mcphoton application to generate
a data flow graph representing the computation to a
DataflowCoordinator Ebb. The graph expresses the de-
pendencies between fine grained tasks (which outputs
are inputs to which tasks). Figure 7 shows the perfor-
mance characteristics of this version. The DataflowCo-
ordinator Ebb schedules individual tasks whose inputs
have been produced. The individual tasks can run on any
node in the system and the generated outputs are stored
locally. If a node is detected to have failed, then the
DataflowCoordinator can reschedule any tasks whose
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Fig. 7. Performance results of fault tolerant dataflow
implementation of mcphoton on BG/Q 1-4 Racks.

data needs to be reproduced and the computation can
proceed without the failed node. We implemented a
centralized DataflowCoordinator that stores all task and
data location information (but not the actual data) on one
node and uses a distributed hash table Ebb to store the
actual data. We detect failures using an unreliable failure
detector (which can give false positives) called the Phi
Accrual Failure Detector[24]. To stress our implementa-
tion we configured mcphoton with very fine grain tasks
(on the order of one second each). Our implemented
runtime was able to run the mcphoton computation with
perfect weak scaling up to 4096 nodes with no failures.
The computation tolerates multiple failures to nodes
which do not store the task and data location information
(i.e., the dedicated DataflowCoordinator node.)

Our goal was to demonstrate the ability to build higher
level run-times using EbbRT by building reusable system
software components. Our construction of the libFOX
key/value store, task library, dataflow coordinator, and
failure detectors, all within the Ebb framework, gives us
confidence that this is a fruitful approach.

For future work, there are a number of potential im-
provements to our data dependent runtime to improve
both fault tolerance and scalability. One could design a
DataflowCoordinator that replicates the task and data lo-
cation information to multiple nodes in order to provide
additional fault tolerance. Additionally the information
could be partitioned (having portions of the data flow
graph managed by separate nodes or groups of nodes)
to provide better scalability.

3.3 Tuple space task library
Another aspect of our research into fault oblivious
task management shifted from imperative to declarative
programming interface. Traditional imperative frame-

Tuple(‘X’,0,1,2)/

Tuple/space/Put(‘X’,0,1,2)/ Read(‘X’,0,i?,j?)/
//=/(‘X’,0,1,2)/

Fig. 8. Basic tuple operations showing use of wildcard
operators.

works give more control to the application program-
mer, potentially allowing tighter optimizations to be
applied. As fault-tolerance becomes a greater concern for
HPC, declarative styles become more appealing. Using a
declarative interface, the programmer merely prescribes
the work to be done, and responsibility for scheduling
and doing the work is handled by a runtime library.

Our work is inspired by the tuple-based frameworks
Linda [25] and Concurrent Collections (CnC) [26], ex-
amples of “coordination languages.” Rather than using
explicit message passing, processes coordinate through a
globally visible key-value store. Workers are decoupled
in space and time. MPI may seem more intuitive for
certain tightly-coupled physics problems. However, the
model of decoupled workers not only provides obvious
advantages for resilience, it gives the runtime a chance to
optimize performance in ways that might be very diffi-
cult to code by hand for each application. In tuple-space
systems a small set of primitive operation (read, pull,
put) are available, simplifying the underlying runtime.
For example, in Linda, process 0 “puts” data, which is
eventually “pulled” by process 1 (Figure 8). The tuples
are arbitrarily typed. A powerful feature in Linda are
wildcard reads, shown by a question mark, allowing any
matching tuple to be returned. Linda thus intrinsically
supports data-flow execution, operating on data that are
ready.

FOX-tuple Building on the underlying data-flow ideas
of Linda, we have constructed a task-based coordination
framework. Linda has been the focus of significant fault-
tolerance research, with numerous methods already es-
tablished. Rather than design a system from scratch, we
sought to adapt Linda-like ideas into an asynchronous
task framework, thereby giving us a wealth of fault-
tolerance strategies on which to build. Tasks are created,
with inter-task dependencies being expressed as tuples in
a specific tuple space. In contrast to Linda, the FOX-tuple
framework has a more restricted, well-defined style.
However, it provides a rich set of semantics and library
functions. Tasks and dependencies are declared via sim-
ple API calls, here shown for matrix multiplication.

fox_dependency_declare(matrix_block,
char, int, int, int //label, iteration, row, column
ArrayData); //FOX array type

fox_tuple_task_declare(multiply,
int, matrix_block, matrix_block, matrix_block) ;

fox_append_migrate_dependency(multiple,matrix_block);
...
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Dependency tuples must be declared and the arguments
for the tasks declared. At runtime, dependencies are
appended to the tasks with a specific type. At the core,
only the three primitive operations are used. However,
they are wrapped inside higher level API calls, allowing
the user to simply declare dependency types - read,
migrate (systolic arrays), in-out (reduce). The runtime au-
tomatically performs the required sequence of primitive
operations.

The key performance obstacles are related to com-
munication. In MPI, data is exchanged directly between
processes. Using a distributed key/value store, processes
must indirectly exchange data via the store, increasing
communication cost. The FOX-tuple framework is im-
plemented as a distributed hash table, with tuples being
mapped to a node carrying the corresponding subset.
Large blocks of data are never transferred off-node. An
RDMA metadata handle is placed into the key-value
store instead. To retrieve large data blocks, the metadata
is first read from the distributed hash table, and the data
block is filled by an RDMA get directly from its location.
All these details are hidden from the programmer.

While the indirection might seem to increase commu-
nication costs relative to MPI, the extra cost is small. For
large data blocks, MPI uses a rendezvous protocol. A
sender must first send a metadata header from which
the receiver performs an RDMA get. The send/recv pair
is finished with an MPI ack. MPI, despite being direct
communication, therefore requires multiple message ex-
changes. FOX therefore directly transfers large blocks
with only minimal extra latency to negotiate the transfer.

For the case of matrix-matrix multiplication (Figure 9),
we compared the performance of FOX to MPI on the
Cray XE6 Hopper [27]. Despite being “declared” rather
than explicitly written step-by-step, the FOX framework
is very competitive with MPI. When certain nodes are
degraded, running at half speed, MPI has no ability to
rebalance around the faults. In contrast, the FOX-tuple
performance remains stable.

4 TASCEL WORK-STEALING TASK LIBRARY

Our final task library considered the design of a more
traditional task-parallel runtime system, pushed to ex-
treme scale. Specification of parallel tasks exposes the
computational cost and data-access relationships to the
runtime and system software. We considered runtime
approaches to automatically load balance a task-parallel
computation, track the actions of the scheduler, and
recover from faults in a scalable fashion.

In order to expedite our investigation, these were built
on top of an active message library implemented using
MPI. MPI allowed us to evaluate these ideas on today’s
systems at full-machine scales without requiring permis-
sions to deploy a new software stack. The active message
library allowed us to decouple our algorithms from the
specifics of MPI. The task-parallel runtime system can be
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Fig. 9. Performance of FOX-tuple framework and MPI for
matrix-matrix multiplication.

ported to the new software components described thus
far in this paper by porting the active message library.

The application begins execution as a multi-threaded
MPI program and enters a task-parallel phase (e.g. the
loop body of an iteration) with one or more tasks. We
support processing a fixed list of tasks or allowing tasks
to spawn additional tasks. The task-parallel phase ter-
minates when all initial tasks and any tasks transitively
spawned by them have been processed. Upon termina-
tion of a task-parallel phase, the computation returns to
the multi-threaded MPI mode. In this work, we used
the MPI mode to set up the task-parallel phase, and
focused on scalable fault-tolerant task execution within
each phase.

4.1 Dynamically Load Balancing Iterative Computa-
tions
Applications often involve repeated execution of calcu-
lations with identical or slowly evolving execution char-
acteristics. Such iterative applications often exhibit suffi-
cient variation across iterations to preclude efficient static
load balancing. This necessitates the use of dynamic load
balancing approaches that incrementally rebalance the
computation over successive iterations.

We studied the design of load balancers for task-
based iterative programs. We exploited the fact that the
execution characteristics of iterative applications evolve
over time, with significant persistence of such charac-
teristics between successive iterations. Persistence-based
load balancers measure task execution profiles in a given
iteration and use that to improve load balance in the
next iteration. We designed a hierarchical persistence-
based load balancing algorithm that attempts to localize
the rebalance operations and migration of tasks. The
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greedy algorithm rebalances “excess” load offered by a
processor rather than attempt an optimal partition. This
allows efficient implementation of the load balancing
algorithm at the cost of potentially increased load imbal-
ance. In addition, the greedy approach can potentially
better retain data locality and topology-awareness from
previous iterations.

Work stealing is an alternative dynamic load balancing
approach to fix load imbalance within an iteration or
a phase. In particular, under work stealing, a processor
without work attempts to steal excess work from other
processors until all execution terminates. This approach
is especially beneficial when a phase can incur significant
load imbalance and cannot be fixed through static or
profile-guided schemes. Work stealing algorithms em-
ploy random stealing to efficiently redistribute work.
While shown to be effective in theory and practice,
such stealing interferes with data locality and topology-
aware optimizations by dispersing work as the itera-
tions progress. We developed a work stealing algorithm
for distributed memory systems based on active mes-
sages. The algorithm acknowledges the costs incurred
on distributed memory systems by minimizing round
trip latencies, and the duration of locked operations. We
designed retentive work stealing so as to reuse the task
mappings resulting from work stealing in iterations. This
implicitly retains data locality optimizations from prior
iterations.

We demonstrated consistently high efficiencies on
ALCF Intrepid, NERSC Hopper, and OLCF Titan for the
Self Consistent Field (see Figure 10) and Tensor Con-
traction benchmarks on over 100K processor cores [28].
We observed that the hierarchical persistence-based load
balancer achieves load balance comparable to the opti-
mal centralized scheme in practice while incurring low
overheads. We demonstrated scalability of work stealing
at over an order of magnitude higher scale than prior
published work. Retentive work stealing is also shown
to further improve load balance while reducing steal-
ing overheads, as the execution becomes increasingly
balanced. Retentive stealing thus combines the benefits
of persistence-based load balancing with work stealing’s
ability to quickly react to load imbalance.

Based on the demonstration of scalable load balanc-
ing, we ported a homology detection framework on
TASCEL [29]. The implementation employed distributed
memory work stealing to effectively parallelize optimal
pairwise alignment computation tasks. This implementa-
tion was evaluated on up to 131,072 cores of the Intrepid
IBM BlueGene/P system.
Related work Persistence-based load balancers have
been extensively studied and employed in the context
of Charm++ [30], [31], [32], [33], [32]. Unlike these ef-
forts, we focus on the design of a greedy rebalancing
algorithm. Work-stealing based load balancers have been
extensively studied in Cilk [34], [35] and subsequent
efforts [36], [19], [37]. Unlike these efforts, we reuse the
scheduling information across iterations to demonstrate
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Fig. 10. Execution time for the Self Consistent Field
benchmark under traditional work stealing, retentive steal-
ing, and persistence-based load balancing after conver-
gence on OLCF Titan.

scaling at much larger core counts than in prior work.

4.2 Characterizing Work Stealing Schedulers
The flexibility inherent in work stealing when dealing
with load imbalance results in seemingly irregular com-
putation structures, complicating the study of its runtime
behavior. We developed an approach to efficiently trace
async-finish parallel programs scheduled using work
stealing [38].

We consider two scheduling policies for async-finish
[39] task-parallel programs. In the work-first policy, a
processor, upon encountering a task to execute, pushes
the currently executing task onto its local deque of tasks
and begins to execute the new task. A thief can steal
a partially-executed task pushed onto the deque. This
policy mirrors the sequential execution order. In the help-
first policy, the working thread continues to execute the
current task, pushing any encountered concurrent tasks
onto the deque. Once the current task’s execution has
finished, the processor extracts the task last enqueued
onto its local deque to continue execution.

We identified key properties of both schedulers that al-
low us to trace the execution of tasks with low space and
time overheads. These are used to construct a steal tree
that tracks the steal operations efficiently. Implementa-
tions of these algorithms were evaluated on both shared
and distributed memory systems. Figure 11 shows the
trace sizes per core for help-first (HF) and work-first
(WF) scheduling of SCF and TCE benchmarks on up to
32,000 cores. We observe that the trace sizes are small
enough, amounting to less than 1KB per core in most
cases, allowing effective storage and analysis of complete
traces even at large core counts.

We demonstrated the broader applicability of this
work, in addition to replay-based performance analysis,
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Fig. 11. Size of traces for the SCF and TCE bench-
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scheduling policies on OLCF Titan.

through two very different use cases: the optimization
of correctness tools that detect data races in async-finish
programs; the design of load balancing algorithms that
exploit past load balance information to incremental
adapt to changes.

Raman et al. [40] perform data race detection by build-
ing a dynamic program structure tree (DPST) at runtime
that captures the relationships between the tasks. The
DPST is built dynamically at runtime by inserting nodes
into the tree in parallel. To detect races, any two com-
putation steps that access the same memory location are
checked whether they could execute in parallel in any
possible schedule. If they do, a data-race is reported.
A key step in the data race detection process is the
determination of the lowest common ancestor to the
two computation steps being considered. We observe
that the steal tree that tracks the steal relationships
can be used to speedup this computation. Experimental
evaluation demonstrated that the cost of this operation
was reducing by up to 80%.

We also demonstrate that the traces enable retentive
stealing for recursive parallel programs. Our prior work
on retentive stealing, discussed above, relied on explicit
enumeration of tasks. This increases storage overheads
and becomes infeasible when dealing with tasks with
dependences. We exploit the fact that each node in the
steal tree corresponds to a working phase and can be
used as the starting schedule for subsequent execution
in an iterative application. We thus extend the replay
algorithms to allow further dynamic load balancing a
steal tree. This was shown to further reduce the memory
requirements of retentive work stealing.
Related work Series-parallel relationships in fork-join
parallel applications have been exploited to optimize

data-race detection [41], [42] and conflict detection in
transactional memory systems [43]. However, unlike our
scheme, these require global synchronization or locks to
track the relationships and only support the work-first
scheduling policy.

4.3 Selective Fault Recovery
Checkpoint-restart approaches to fault tolerance typically
roll back all the processes to the previous checkpoint in
the event of a failure, a heavyweight solution that will
not scale to exascale. We developed novel data-driven
resilience algorithms for work stealing schedulers that
minimize both the overhead in the absence of faults and
the performance penalty incurred by a fault [44]. We
tracked the data operations to construct an idempotent
data store. We simulated node failure by making all
threads on a node non-responsive to all incoming active
messages except termination of the task-parallel phase.
This allowed us to evaluate the behavior of selective fault
recovery without worrying about limitations of fault
tolerance support in MPI implementations on today’s
parallel computing platforms.

We presented three recovery schemes that present
distinct trade-offs: lazy recovery with potentially in-
creased re-execution cost, immediate collective recovery
with associated synchronization overheads, and non-
collective recovery enabled by additional communica-
tion. We demonstrated that the overheads (space and
time) of the fault tolerance mechanism are low, the costs
incurred due to failures are small, and the overheads
decrease with per-process work at scale. Figure 12 shows
the factor of reduction in the number of tasks to be re-
executed for the SCF and TCE benchmarks for various
points in execution at which all threads in a compute
node fail. We observe that selective recovery that exploits
the characteristics of the resilient data store and task-
parallel scheduler can significantly improve the penalty
of a fault as compared to recovery based on collective
rollback.
Related work Checkpoint and collective restart has been
extensively studied [45], [46], [47]. While broadly ap-
plicable and easy to integrate into existing applications,
these approaches typically incur the cost of coordination
or message logging, checkpoint storage costs, and lost
work from rollback. Alternatives such as shadow pro-
cesses [48] overcome these costs while requiring redun-
dant processes and communication.

Approaches to reduce these overheads employ tech-
niques that target specific layers of the software stack.
Fault tolerant MPI [49], [50] focuses on the development
of a resilient communication library. Algorithm-based
fault tolerance approaches target the development of
fault tolerant parallel computational libraries that exploit
the algorithmic properties of individual kernels, such
as matrix-matrix multiplication and one-sided factoriza-
tion [51], [52]. Our approach to selective fault recovery
exploits the properties of a computational idiom.
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Cilk-NOW [53] tolerates faults in recursive appli-
cations organized as return transactions with updates
passed as function return values. The recovery mech-
anism re-executes entire execution sub-trees of a failed
task. Our approach recovers individual tasks while sup-
porting direct updates to data in global address space.

5 CONCLUSIONS
Our work investigates the system software stack for
efficient exascale execution. On the OS front, we im-
plemented new capabilities in novel research Operating
Systems. Anticipating the need for OS involvement in
the exascale environment we developed optimizations
to make a general purpose OS competitive with library
or lightweight kernel performance. NIX aimed at get-
ting the kernel more, rather than less, involved in the
computation’s I/O activities. NIX explicitly excluded
OS bypass as a means of moving network data and
achieved performance competitive with OS bypass for
critical operations. We believe that to achieve power and
thermal management goals, the kernel must be included,
not bypassed.

Core specialization allows an operating system to as-
sign roles to cores, the most common use being partition-
ing cores to application only or timeshared. We presented
two implementations of core specialization. In each case,
core specialization improved application performance.
In NIX, cores could have timesharing, application, or
kernel roles. An application core ran as a NIX process.
In contrast, FusedOS ran Linux on a couple of cores
to manage at the CPU socket level and supported a
traditional HPC OS on the other cores, allowing CNK
programs to run unchanged under FusedOS.

Both systems supported Linux system calls because, in
today’s current HPC environment, some level of support

of the Linux system call ABI is required. NIX supported
a unique model in which some level of Linux system call
support is done in the kernel, and some in a user-mode
handler. FusedOS continued the Blue Gene tradition of
function shipping system calls to a Linux kernel. Of the
two, FusedOS provides more complete support, at cost of
having to run a full Linux kernel on each node. The ideas
prototyped by these research OSs are being incorporated
into next generation OS projects such as UC Berkeley
Akaros [54] and University of Tokyo IHK[55].

In the runtime area, we studied the use of four distinct
frameworks. Building on the substrate of a reliable data
store, we prototyped and evaluated a task manage-
ment library using enterprise key-value store; an object-
oriented framework for distributed HPC task and fault
management services; a declarative tuple space abstrac-
tion adapted to the HPC regime, and a highly scalable
and fault tolerant task library used by parallel phases of
traditional iterative computation. Each library provides
a different programming abstraction, yet they all follow
common themes of reliable data store, dynamic load
balancing, and fault oblivious execution. While there are
now a multitude of task management libraries available
in the HPC community, our approach integrated fault
oblivious execution into the library from the outset. We
quantitatively evaluated alternative fault management
strategies and implementations, and identified perfor-
mance overheads and scaling limits. The TASCEL library
scaled to hundreds of thousands of cores and to two very
different supercomputing architectures.

Much of our software is available as open source, and
concepts explored and evaluated in FOX are being pur-
sued in on-going advanced OS/Runtime projects such as
Argo [56] and Akaros [54].
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[14] A. Schüpbach, S. Peter, A. Baumann, T. Roscoe, P. Barham,
T. Harris, and R. Isaacs, “Embracing diversity in the barrelfish
manycore operating system,” in Proceedings of the Workshop on
Managed Many-Core Systems, 2008, p. 27.

[15] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanovic, and J. Ku-
biatowicz, “Tessellation: Space-time partitioning in a manycore
client os,” HotPar09, Berkeley, CA, vol. 3, p. 2009, 2009.

[16] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella, “Lever-
aging the cray linux environment core specialization feature to
realize mpi asynchronous progress on cray xe systems,” Proceed-
ings of Cray User Group, 2012.

[17] J. Lange, “Partitioned multistack evironments for exascale sys-
tems.”

[18] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanu-
jam, A. Rountev, and P. Sadayappan, “Automatic data movement
and computation mapping for multi-level parallel architectures
with explicitly managed memories,” in PPoPP ’08: Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and practice of
parallel programming. New York, NY, USA: ACM, 2008.

[19] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and
J. Nieplocha, “Scalable work stealing,” in SC ’09: Proceedings of the
2009 ACM/IEEE conference on Supercomputing, Portland, Oregon,
November 2009.

[20] G. Cong, S. B. Kodali, S. Krishnamoorthy, D. Lea, V. A. Saraswat,
and T. Wen, “Solving large, irregular graph problems using
adaptive work-stealing,” in ICPP, 2008, pp. 536–545.

[21] “Memcached,” retrieved 2013/12/13. [Online]. Available: http:
//memcached.org/

[22] “Couchbase server,” retrieved 2013/12/13. [Online]. Available:
http://www.couchbase.com/

[23] “Not only sql (nosql) databases,” retrieved 2013/12/13. [Online].
Available: http://nosql-database.org/

[24] N. Hayashibara, X. Defago, R. Yared, and T. Katayama, “The
ϕ accrual failure detector,” in Reliable Distributed Systems, 2004.
Proceedings of the 23rd IEEE International Symposium on. IEEE,
2004, pp. 66–78.

[25] N. J. Carriero, D. Gelernter, T. G. Mattson, and A. H. Sherman,
“The Linda Alternative to Message-Passing Systems,” Parallel
Comput., vol. 20, pp. 633–655, 1994.

[26] M. G. Burke, K. Knobe, R. Newton, and V. Sarkar, “The Concur-
rent Collections Programming Model,” Department of Computer
Science, Rice University, Tech. Rep. TR 10 12, 2010.

[27] H. Shan, N. J. Wright, J. Shalf, K. Yelick, M. Wagner, and
N. Wichmann, “A Preliminary Evaluation of the Hardware Accel-
eration of the Cray Gemini Interconnect for PGAS Languages and
Comparison with MPI,” in PMBS ’11: 2nd International Workshop
on Performance Modeling, Benchmarking and Simulation of High
Performance Computing Systems, 2011.

[28] J. Lifflander, S. Krishnamoorthy, and L. V. Kale, “Work steal-
ing and persistence-based load balancers for iterative overde-
composed applications,” in Proceedings of the 21st international
symposium on High-Performance Parallel and Distributed Computing.
ACM, 2012, pp. 137–148.

[29] J. Daily, S. Krishnamoorthy, and A. Kalyanaraman, “Towards
scalable optimal sequence homology detection,” in Workshop on
Parallel Algorithms and Software for Analysis of Massive Graphs
(ParGraph). IEEE, 2012, pp. 1–8.
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