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Abstract /

What is the minimal software infrastructure and what type of conventions are
needed to simplify development of soph~ticated parallel numerical application codes
using a variety of software components that are not necessarily available as source
code? We propose an opaque objecbbaaed model where the objects are dynamically
loadable from the file system or network. The microkernel required to manage such a
system needs to include, at most

● a few basic services, namely,

a mechanism for loading objects at run time via dynamic link libraries, and
—consistent schemes for error handling and memory management; and

● selected methods that all objects share, to deal with

object life (destruction, reference counting, relationships), and
— object observation (viewing, profiling, tracing).

We are experimenting with these ideas in the context of extensible numerical software
within che ALICE (Advanced Large-scale Integrated Computational Environment)
project. where we are building the microkernel to manage the interoperability among
various tools for large-scale scientific simulations. This paper presents some preliminary
observations and conclusions from our work with microkernel design.

1 Introduction

The complexity of large-scale scientific simulations , often collaborative efforts among
scientists and engineers, necessitates the combhed use of multiple software packages
developed by different groups. For example, several projects that motivate our current
work are the modeling of microstructural evolution in sintering [31, 32, 33], astrophysical
thermonuclear simulations [27], and multi-model aerodynamic computations [23, 16,
22]. These investigations involve a range of computational areas such as discretization,
partitioning. load balancing, adaptive mesh manipulations, scalable algebraic solvers,
optimization. parallel input/output, performance diagnostics, computational steering, and
visualization: moreover, the state-of-thr+art within each of these areas is constantly
evolving, necessitating frequent software updates within the lifetime of a given application.
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A pressing question now facing the computation~ science community is how to
effectively leverage..the -varying expertise of all team participants in such multidisciplinary
projects. The limitations of the current generation of software tools and infrastructure, even
those that employ modern software design techniques, cause us to fall short of where we
must move in order to have a hope of exploiting forthcoming teraflopscale computational
resources for meaningful scientific gains. The high-performance computational software
community is thus faced with the charge of developing more effective ways for multiple
groups with different areas of expertise to encapsulate their knowledge within extensible,
reusable, interoperable software tools, and thereby to raise the levels of abstraction used
by application scientists.

The mainstream computing community has developed interoperability mechanisms
(e.g., distributed object technology such as the COM family and CORBA, and portable
languages such as Java) to address similar levels of complexity within their applications.
Our approach is to leverage parts of this work when appropriate, recognizing that the
features of large-scale scientific computation present different challenges and thus demand
different solutions. One challenge is the need for efficient and scalable performance on
ever evolving distributed-memory architectures such as symmetric multi-processor and
workstation clusters. Also, the culture of research computing differs from that of the
business world; scientists need to be able to explore their ideas without requiring legions of
programmers to translate from scientific abstractions to actual code, and without becoming
overwhelmed with a myriad of details (e.g., security) that are not of primary interest. These
issues are further discussed in Section 2.2.

Many open research questions must be explored to determine good interoperable soft-
ware management techniques for high-performance numerical simulations. These questions
include: What are appropriate performance-sensitive abstractions and operations? What
are appropriate data exchange formats among particular components? How can we develop
bridges between data structures for performance optimization?

To enable exploration of these issues, we are building infrastructure within a microkernel
to manage tool coordination. Our approach focuses on a base object class coupled with
dynamic loading of software components. The remainder of this paper motivates these
choices and explains our design strategy. Section 2 defines in more detail the scope of the
issues under consideration, briefly surveys existing solution techniques, and discusses the
limits of our technical approach. Section 3 defines various terms used in the remainder of
the discussion and introduces our solution strategy. Section 4 presents an overview of the
microkernel design, including the core infrastructure it provides and the base object model.
Preliminary observations and directions of future work are discussed in Section 5.

2 Interoperability Issues

As we investigate techniques for dynamic component-based interactions in scientific
computing, we must bear in mind our target customers [14]. The microkernel work
presented here forms part of a flexible architecture within the Advanced Large-scale
Integrated Computational Environment (ALICE) [1], under development at Argonne
National Laboratory. We aim to provide low-overhead mechanisms to enable different
groups to contribute and maintain their own libraries (as painlessly as possible) in a
distributed fashion. The goal of ALICE is to leverage the strengths of different high-
performance toolkits, not to develop a single massive library into which everyone contributes
code.
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2.1~ A Motivating Simtilation ! . .-,

As a motiiziting exa’rnple, we consider simulations of microstructural evolution in sintering “
via the method of lines, under investigation by W. Zhang and J. Schneibel [31, 32, 33].
At the heart of these simulations is the solution of a set of coupled ordinary dMerential
equations (ODES), which requires the solution of nonlinear systems, which in turn
can be addressed by preconditioned Newton-Krylov methods. For large-scale parallel
simulations, we have incorporated the complementary capabilities of (1) mathematical
sintering models of Zhang and Schneibel; (2) ODE solvers within the PVODE [17] software
of Hindmarsh et al. of Lawrence Lhermore National Laboratory, and (3) preconditioning
techniques, matrix coloring tools for finite differencing Jacobian approximation, and parallel
problem decomposition infrastructure within the PETSC software [4, 5]. PVODE and
PETSC complement each other well because PVODE provides higher-order, adaptive ODE
schemes and robust nonlinear solvers tailored for ODE solution, but does not focus on
parallel preconditioners and coloring tools; likewise, PETSC does not provide higher-order
ODE integrators. Due to data-structure-neutral design [28] with well-defined application
programming interfaces (APIs), this interopera~llity required no changes to the source COde
of either PVODE or PETSC.

Although the bilateral PVODE/PETSc interfacing has been a good step forward in
bridging the gap between what scientific simulations need and what numerical libraries
provide, it raises questions about broader interoperabllity issues. What we really need
is the dynamic combined use of various packages, including multiple tools that provide
identical functionality as well as those with different capabilities. For example, the sintering
simulations could potentially benefit from algorithmic alternatives for preconditioning and
ODE solution provided by different software packages as well as complementary capabilities
such as derivative-enhanced sensitivity analysis [18], visualization, and steering.

One-to-one interfacing is excessively burdensome, and the current generation of
infrastructure is inadequate, even for software packages that individually have been built
using object-oriented design. To enable more dynamic component-based interactions,
we must consider issues such as mechanisms for specifying software APIs (input/output
parameters) and behavior (services that a toolkit provides as well as those it requires),
approaches for establishing dynamic connections among tools, “standard” interfaces for
particular functionalities (see, e.g., [9] for linear algebra interface work), and language
interoperability (see, e.g., [10],[21]). Such issues are under consideration by a variety of
researchers. including [2, 20, 26, 25, 30, 3].

2.2 Comparison of Approaches

There are two main alternatives to the component model that we propose in this paper.
One is a more library-oriented approach, with a long and successful history in numerical
computing. The other is a commercial component or distributed object solution, which
has been successful in mainstream computing. To understand why we propose dynamically
loaded components, it is important to remember the problem that we are trying to solve:
managing the growing complexity of numerical libraries, particularly collections of libraries,
each representing the unique expertise of a research or product group, while maintaining
the performance that scientific/engineering application developers expect and require.

One common approach to developing software within the numerical computing commu-
nity is the unsatisfactory “flattening” of all code within a single application; this approach
fails because of the inherent lack of scalability in terms of development group size. In addi-
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tion, because the necessary SKI1lScannot reside in any ‘one group, additiond problems can.
arise in managing a distributed development effort. % ---’-’. -- -{”‘ ‘” - ~-~ “

More successful has been the use of full-scale class libraries, which require all users
and software developers to write code to these class libraries (e.g., the standard template
libraries in C++). However, this approach still does not work well for scientific computing
because of the wide variety of needs within meaningful app~cations.

Templates [6] (algorithmic, not C++ templates) have been proposed as a method
for providing advanced numerical methods to applications writers without dictating a
particular choice of data structure or even interface. This approach suffers from the fact that
there is no executable code; the user is still faced with all of the issues of implementation
and testing. With today’s high-performance parallel machines, these issues are just as
difficult as the mathematical and algorithmic development.

These considerations have led us to explore a model for numerical software components
that draws on the success of the component model in commercial information processing.
However, there are a number of differences between the needs of scientific and commercial
applications. Primarily, many of the commercial component solutions (e.g., CORBA and
the COM family) are targeted at the very difficult problem of managing distributed objects
on a wide-area network. While these approaches have proven revolutionary in domains
where interoperabllity is paramount (e.g., client-server interactions), they have not been
designed to address the complexity of interactions and performance issues for large-scale,
distributed-memory numerical applications. We cannot simply use COM or CORBA to
connect these components because we must address performance problems, e.g., by allowing
some objects to access the memory of others. In addition, some component systems are
based on an event-driven model that, while natural and effective in commercial applications,
is not appropriate for many scientific applications.

Perhaps most fundamental, our microkernel work focuses on the design of the base
objects themselves, along with a minimal infrastructure that allows experimentation
with different lightweight approaches for accessing components in an environment where
security is not an issue (i.e., security is handled separately, as it is within a single high-
performance computer). As other component infrastructures begin to address the issue
of high performance, we can move our object design to those platforms. For example, an
implementation in Java using something like InfoBus [19] to communicate data and Java’s
mechanisms for managing components (or remote method invocation for more distributed
applications) would still need to provide the component operations that we describe here.

3 Scope of Solution

We specify two design requirements for this work: basic functionality should be as efficient
as standard procedural code (Fortran/C/C++), and no “run-time” system (e.g., threads)
should be needed. Bearing these in mind, we propose a model for object interaction
that consists of two orthogonal submodels: (1) a synchronous function call-based model
(e.g., in C++ calling methods on objects) for numerical algorithm implementation and
(2) an asynchronous remote function call-based model for accessing remote (or local)
objects for such tasks as monitoring, steering, and visualization. Model 1 meets our basic
performance requirement, while model 2 provides additional functionality, especially for
remote operations.

We begin by stating some definitions for use in the remainder of this discussion.

● object - encapsulated data and methods that operate on that data.
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standardized object - object that supports a set, of predefine methods.
. t .... ..

object toolkit - software package that provides code (source or binary) for one or more
(generally related) types of objects, including constructors to generate the object
instantiations. For example, PETSC [4] provides a variety of C objects, while ISIS++
[8] provides a variety of C++ objects.

standardized object toolkit - object toolklt that supports some standardized objects.
X-windows and MPI [24] are examples of standards for object toolkits, while MPICH
[15] and LAM [7] are examples of standardized object toolkits that implement the
MPI standard.

component - an encapsulated software object that provides a certain set of function-
aliti& or services an-d can be used in conjunction with other components to build
applications. A component consists of an API and one or more component imple-
mentations, and conforms to a prescribed behavior within the context of a given
framework.

This is our working definition of the term componen$ however, since this term is
so overloaded with partial meanings (see, e.g., [29]), and since the remainder of
this discussion focuses on functionality within encapsulated software objects that in
part comprise components, the remainder of this discussion will not employ the term
component.

Traditional large-scale numerical simulations are almost always implemented in a
procedural style, where subroutines are called in a well-defined order to implement a
deterministic numerical algorithm. When object-oriented techniques are used in numerical
computing, the standard approach (used in, for example, PETSC and ISIS++) is to
encapsulate the data structures in objects, while still allowing the application programmer
to write procedural code; that is, he or she calls a sequence of functions that operate on
the objects to perform the desired calculations. This programming style is used for the
numerical computations within the sintering model discussed in Section 2.1.

On the other hand, the programming of graphical user interfaces and transaction
processing systems has moved away from the expression of a computation as a linear list
of functions that are called. Rather, (possibly distributed) objects are viewed as making
requests of and serving requests of other objects.

We propose to recognize the differences between these two models and adopt different
mechanisms to handle the two types of interactions:

1.

2.

synchronous, local-address-space function calls, intended for implementing numerical
algorithms; and

asynchronous, possibly remote, transactions such as accessing an array of variables
for visualization. (Here we use the term asynchronous to mean that the object may
serve a request while simultaneously performing a numerical calculation.)

Model 1 can be implemented with no run-time environment. Handling the requirements
of model 2 requires a relatively large run-time infrastructure to support marshaling of
arguments. communicating among remote processes, locking and unlocking data structures
to allow access from multiple threads, and so forth. The remainder of this paper explains
model 1 in more depth and presents ideas about the design of a microkernel to support it.
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Infrastructure for model. 2 and the integration of the two submodels are currently under ~
investigation but are beyond the scope of this paper. ~’ ..,. ,,.-‘+. ~.. .+‘,“. ,.. ,f 4

In the procedural object model, the user writes code to create objects and then calls
methods on those objects in (more or less) a linear fastilon. It is assumed that the caller
and the callee share the same memory address space. Multiple threads may be used both
within an object (transparently as it handles a member function call) and explicitly outside
the objects by the user; however, the objects can handle only one member function request
at a time. For example, a matrix object would not be able to insert new matrix entries
while it is performing a matrix-vector product.

Data in the object can be accessed only through arguments to member functions,
either by explicitly passing data into or out of the member function or by passing memory
references by address. The latter is frowned upon if it exposes any of the underlying object
data structures to the caller.

Member functions may be multistage; the object developer selects which operations r-
quire a split-phase implementation and simply provides the corresponding multiple member
function interface. For example, in PETSC we perform vector scatters with the two-stage
routines VecScatt erBegin(VecScatt er, Vec ,Vec), which begins the parallel communica-
tion involved in performing the scatter, and VecScatterEnd(VecScatter,Vec ,Vec), which
completes the operation [5]. This approach allows efficient overlapping of communication
and computation without requiring threads or application-specific coding.

Standardized objects can be developed in C++ by defining standardized abstract b=e
classes and inheriting from them to create a standardized object toolklt. Likewise, in C
standardized objects can be implemented by defining a standard format for function tables
for each type of object. Cross-language portability can be obtained by creating object
wrappers that convert method calls in one language (e.g., a class member function call in
C++) to another (e.g., a function table lookup in C).

4 Microkernel Design

This section presents a microkernel design for the synchronous function call-based model
discussed in Section 3. We propose an opaque object-based model where the objects
are dynamically loadable from the file system or network. That is, the executable code
that creates an object and fills its member functions can be loaded into memory by the
application as it runs. To limit complexity and overhead, the software for managing such
a system should be lightweight; we thus propose a microkernel that includes, at most

● a few basic services, namely, ‘
‘

— a mechanism for loading new objects at run time via dynamic link libraries, and
— consistent schemes for error handling and memory management; and

● selected methods that all objects share, to deal with I
— object life (destruction, reference counting, relationships), and
— object observation (viewing, profiling, tracing).

We have chosen these areas of functionality based on our experiences in PDE software
development. While some of these mechanisms, namely the variants of object observation,
might seem of secondary importance on initial consideration, they have proven invaluable
in practice for debugging, analysis, and performance optimization.



4.1 Basic Microkernel Services -, ‘..,..

For different software’ “toolkits to interoperate smoothly;- ‘they must employ consistent
schemes for error handling and memory management. These basic services, as well as
dynamic linking capabilities, should be supported within the microkernel as objects so that
various implementations can be introduced as needed. Details of these APIs and our base
implementations are beyond the scope of this paper, but will be presented elsewhere.

Support for dynamic linking is one of the key features needed to achieve true separation
of implementations from mathematical abstractions. By enforcing programming discipline
so that we can verify appropriate interface definitions for particular functionalities, dynamic
linking enables us to avoid the web of interdependent complexity that arises in traditional
class hierarchies. By separating software binding time from an application’s compilation, we
no longer care when particular tooll& implementations are written, as they can be imported
at any time. Hence, dynamic linklng capabilities provide an effective means to test proper
modularity. This feature enables new software injection without maintenance intervention,
and thereby makes it possible for applications to exploit new advances in algorithms
and architecture-specific performance optimization, since these may be introduced at run
time without requiring code recompilation. For example, within the sintering simulation
discussed in Section 2.1, new adaptive ODE techniques and cache-sensitive matrix data
structures provided by different toolklts compliant with the basic object model specified
above could be seamlessly introduced. In addition, dynamic linklng ensures name space
separation, which is not resolved in C and Fortran, although it is somewhat resolved in
C++ and Java.

4.2 Common Object Functionality

How can a software component efficiently interact with another that it did not know about
at compilation time? The answer is to choose a universal object memory layout that defines
the representation in memory of object methods. Within C they are represented as groups
of structures, while within C++ they are represented as abstract base classes. Two issues
must be considered here: methods common to all objects, and the details of memory layout.

Common Object Header. The following presents the memory layout within a
common header for all objects that are implemented using C; C++ cl=ses could also
be used.

struct _Object {
int cookie;
BaseOps *hops;
ClassOps *cops;

}

Here all objects are pointers to a particular structure, which contains a cookie to indicate
object type; a pointer to a basic set of operations, BaseOps; and a pointer to object-specific
operations, ClassOps.

Common Obj_ect Functions. We use a common function table to specify data
manipulations within the basic object, BaseOps. These core methods deal with two
categories of activity: object life (destruction, reference counting, relationships) and object
observation (viewing, profiling, tracing). The following figure presents an implementation
using C; other language implementations could employ corresponding language features,
for example. virtual functions in C++.

. . .. ..z-T’-Tr.mr. . . . ,. ., ..—., A., . . . . . . . . . . . ., . . . . ..-: . . . . . ..=- . . . . . . . . . . . . . ,.
.—-==, ___ ——-



:typedef struct {
“ ,,.,,, int.(~getcomm) (Object ,HPI.Comm*); - get WI communicator from object

int (*vieu) (Object, Viewer) : - visualize, serialize
int (*reference) (Object); - increase reference count by one
int (*destroy) (Object); - decrease reference count by one
int (*attach) (Object,char*,Object); - attach another object (interface)
int (*query) (Object,chZ,Object*); - get an attached object (interface)
int (*attachfunction) (Object,char*,char*,void*); - attach a method to an object
int (*queryfunction) (Object,char*, void**); - get a method from an object
int (*querylanguage(Object,Language,void**) ;n - get a representationof an object

(interface) in another lenguage
} BaseOps;

We now provide slightly more information on some ofthe basic methods.

● attach(Object,char *name,Object) -attaches the second objecttothefirst object

and increases the reference count of the second object. This mechanism allows one

toolklttocarry references toanother toolklt’sobjects; thesereferences aretransparent

to the carrying toolW (and invisible tothe end user). For example, a vector object

may carry a reference to a related grid object, and a Jacobian object may carry a

reference to adiscretization object that computes Jacobian entries. This capability

h=enabled interfacing between theunstructured m=hingtools of SUMAA3d [13]

and the algebraic solvers of PETSC, without introducing a single change to either

software package [12].

. query (Object, char *name, Object *) - retrieves an object that has been attached
to the first object via attacho.

● attachfunction( Object, char *name, char *fneme) - attaches a function pointer

to an object. The string fneme is the character string name of the function;

it may include the path name or URL of the dynamic library where the func-

tion is located. For example, fnzune may be libpetscsles :PCCreate-LU or

http: //WWW.mcs. anl .gov/petsc/libpetscsles :PCCreate~U. The argument n~e
is a “short” name of the function to be used with the queryf unct ion () call. This

provides a mechanism for specifying object methods at run time. For example, a

user can, at run time, select a particular preconditioned, say, a drop tolerance ILU

technique; then all methods controlling the factorization are dynamically added at

that time.

● queryf unct ion(Obj ect, char *name, void **f uric) - retrieves a function pointer

that has been associated with the object via attachf unct ion( ). If dynamic libraries

are used, the function is loaded into memory at this time (if it has not been previously

loaded), not when the attachf unctiono routine was called. This mechanism enables

access to an object’s dynamic methods.

● query language (Obj ect ob j, Language lang, void **interface) - requests an in-

terface to an object’s data from a language other than the one in which it is imple-

mented, (e.g., a C++ class representation of a C object for use in the C++ portion
of a multilanguage application).
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!5 Preliminary Observations and Conclusions - L ‘-’ < --- +

To support scientific computing components, we have- presen{ed-ideas- fdi ‘rninirn”~ infra-
structure in the form of basic microkernel services and a common object memory layout.
Key features include support for runtime binding of different toolkits, dynamic addition of
methods, and object attachment through a dynamically loaded library approach. A base
implementation of the microkernelj recently introduced into PETSC, has greatly increased
software extensibility by facilitating, the use of new external components.

We are currently experimenting with the microkernel as part of a flexible multilevel
ALICE architecture that supports interoperability among a range of computational
software. The microkernel coordinates interaction among tools with complementary
capabilities (e.g., ODE solvers within PVODE, unstructured mesh tools within SUMAA3d,
and algebraic soIvers within PETSC) and provides a foundation for investigating broader
issues in high-performance component design. For example, a great strength of the
dynamically loaded component approach presented here is that it promotes well-designed
interfaces that are completely separate from implementations, so that various external
toolklts can be introduced and the community can begin to work toward defining sets of
canonical interfaces. Our experiences thus far are merely the first steps toward much larger
computing and component sharing.
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