skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reconnaissance Feasibility Study: Hydroelectric Potential on Lowell Creek

Technical Report ·
DOI:https://doi.org/10.2172/1087155· OSTI ID:1087155

The feasibility of hydroelectric power development on Lowell Creek near Seward has been investigated at.a reconnaissance level. The study was. conducted because .the physical characteristics of the creek and surrounding terrain initially appeared suitable for hydroelectric power. The creek has a steep gradient (about 400 feet per mile), is fed from a large snowfield, and has two significant drops. One drop is formed by the presence of a dam that was constructed to divert the creek through a mountain and around the town. The second drop of about 65 feet is at the termination of-the diversion tunnel. Three alternative sites for hydroelectric plants were considered, one each at the two drops and one farther upstream at the site of an old abandoned intake and valve house. Two of the sites were considered for 250-kW plants and one for a 100-kW plant. All were limited to a low head, less than 66 feet. Use of an existing dam and tunnel and an abandoned diversion dam and valve house was considered as part of the project alternatives. None of the three alternatives approaches feasibility at this time. Major influencing factors are the high cost of energy at over 13 cents per kWh, the winter freezeup resulting in plant shutdown from November to April, and a large amount of rock sediment carried by the stream and requiring expensive intake structures to skim off the rocks. The most promising alternative (alternative C), which would have a capacity of 250 kW and would produce about 800,000 kWh per year, would fill less than 5 percent of the city's present energy needs. The plant would cost nearly $1 million and produce energy at about 137 mills per kwh. This alternative is the best of the three from the standpoint of its.lower cost, best access via existing all-weather road, least exposure to avalanche and rockslides, and proximity to existing powerlines.

Research Organization:
not known
Sponsoring Organization:
USDOE
OSTI ID:
1087155
Report Number(s):
DOEID017681
Country of Publication:
United States
Language:
English

Similar Records

Related Subjects