Final Scientific Report: A Scalable Development
Environment for Peta-Scale Computing

Carsten Karbach and Wolfgang Frings

Jiilich Supercomputing Centre
Forschungszentrum Jiilich GmbH

c.karbach@fz-juelich.de

w.frings@fz-juelich.de
February 22, 2013

1 Overview Information

Project Title

Recipient
Principal Investigator
Team members

Award No
Project Period

A Scalable Development Environment for Peta-Scale
Computing

Forschungszentrum Jiilich

Wolfgang Frings (Co-PI), Forschungszentrum Jiilich
Wolfgang Frings, Claudia Knobloch and Carsten
Karbach

DE-SC0001620

September 15th, 2009 — September 14th, 2012

2 Objective

The objective of this project is the extension of the Parallel Tools Platform
(PTP) for applying it to peta-scale systems. PTP is an integrated development
environment for parallel applications. It comprises code analysis, performance
tuning, parallel debugging and system monitoring. The contribution of the
Jillich Supercomputing Centre (JSC) aims to provide a scalable solution for
system monitoring of supercomputers. This includes the development of a new
communication protocol for exchanging status data between the target remote
system and the client running PTP. The communication has to work for high
latency. PTP needs to be implemented robustly and should hide the complexity
of the supercomputer’s architecture in order to provide a transparent access to
various remote systems via a uniform user interface. This simplifies the porting
of applications to different systems, because PTP functions as abstraction layer
between parallel application developer and compute resources. The common
requirement for all PTP components is that they have to interact with the
remote supercomputer. E.g. applications are built remotely and performance
tools are attached to job submissions and their output data resides on the remote
system. Status data has to be collected by evaluating outputs of the remote job
scheduler and the parallel debugger needs to control an application executed on
the supercomputer. The challenge is to provide this functionality for peta-scale
systems in real-time.
The client server architecture of the established monitoring application LLview

[1], developed by the JSC, can be applied to PTP’s system monitoring. LLview
provides a well-arranged overview of the supercomputer’s current status. A set
of statistics, a list of running and queued jobs as well as a node display mapping
running jobs to their compute resources form the user display of LLview. These
monitoring features have to be integrated into the development environment.
Besides showing the current status PTP’s monitoring also needs to allow for
submitting and canceling user jobs. Monitoring peta scale systems especially
deals with presenting the large amount of status data in a useful manner. Users
require to select arbitrary levels of detail. The monitoring views have to provide
a quick overview of the system state, but also need to allow for zooming into
specific parts of the system, into which the user is interested in. At present, the
major batch systems running on supercomputers are PBS, TORQUE, ALPS
and LoadLeveler, which have to be supported by both the monitoring and the
job controlling component. Finally, PTP needs to be designed as generic as
possible, so that it can be extended for future batch systems.

3 Achievements

Within the project period a novel system monitoring component has been de-
veloped and integrated in PTP. This section outlines the architecture of this
component and presents a set of large-scale HPC systems, which are success-
fully monitored. Afterward, the main features required for the scalability of the

monitoring system are summarized. At last, the integration of the monitoring
component in the development cycle of PTP is documented.

3.1 Architecture

PTP has been extended by a new System Monitoring Perspective, which works
similar to LLview. It allows to connect to a target system via SSH authenti-
cation. The monitoring component is split into the visualization client and the
server application called LML_da. The latter application is written in Perl and
instantly deployed on the target system after the first connection is established.
Thus, the server component is installed automatically. LML_da is split into
independent modules for the different steps of status data collection. The steps
are parsing the outputs of batch system commands, deriving higher level data
for graphical components, which can easily be visualized, and defining colors, by
which jobs can be identified across the entire monitoring perspective. Only the
first step is batch system specific and has to be implemented for each new batch
system. This module based architecture minimizes the effort for extending PTP
for a new batch system. The data format Large-scale system Markup Language
(LML) functions as communication layer between client, server and the server
modules. It is used to send requests from the client and to respond with a logical
description of the current system status from the server. LML strictly defines
the interface between status data generating and visualizing applications. It is
implemented as XML Schema and a set of additional constraints documented
in [2]. LML uncouples LML _da from the visualization client, so that the status
data generated by LML_da can be interpreted by both the original LLview vi-
sualization client and the PTP system monitoring perspective. An overview of
the described monitoring architecture is shown in figure 1.

Supercomputer |

Clientl

liview-client

LML

request
update

LML_da

response

Figure 1: PTP’s system monitoring architecture

3.2 Scaling examples

PTP’s system monitoring component is already in use for a number of peta-scale
systems. E.g. the BlueGene/Q system JUQUEEN, which displaces the JSC
system JUGENE, with more than 458 thousand cores and a peak performance
of 5.9 Petaflops can be displayed. JUQUEEN is listed as number 5 in the
November 2012 Top500 List [3]. It runs LoadLeveler as batch system. Figure
2 shows a snapshot of PTP’s monitoring perspective for JUQUEEN. The left
hand side is divided into the Monitor View, Active Jobs View and Messages View
starting from top. The right hand side shows the node display, which renders
the system architecture and maps running jobs to the compute resources. In
this example each of the smallest rectangles symbolizes a Nodeboard having 512

cores. Colored rectangles are allocated to the corresponding job, while idling
resources are left white.

File Edit Navigate Search Project Run Fesdback Sample Menu Senices Window Help

|

M- He@ miRe s -0-Q& -9 - Q B [[&Resource |5 System Monitoring
% Monitors % > 8 &4 %= 8 i system juqueen2.zam kfa-juelich de 52 e =0

Status | Connection Name System Type RO Vm] @] Vm 7]

= —
&, Juguesn 1BM LoadLeveler (Blue Gens) —— —— —
=L L b
EEEW»—O—H—m—o—n—o—um
£ Active Jobs 82 |22 Inactive Jobs v =
step |queve | wal| queusdate dispatchdate totalcores | status

B juqueentcl.zam kfajuslich.de 4185 m001 | 15000 jn 11 Nov 2012 03:04:44 C} 12 Nov 2012 06:27:45 8132° RUNNING

B | juqusentct.zam kfajuslich.de. 44276 n004 | 43740 n 11 Nov 2012 12:56:33 C| 12 Nov 2012 00.25:36 2048 | RUNNING

B | juqusentct.zam kfaquslich.de. 45697 m002 | 87000 jn 11 Nov 2012 19:27:23 C| 11 Nov 2012 19:43:15 16384 | RUNNING

B | juquesnict zam kiajuslich de 45706 m001 | 22200 jn 11 Nov 2012 21:02:43 C 12 Nov 2012 06:28:01 8192 RUNNING

B jugusentc zam fajusich de 45705 m001 | 22200 in 11 Nov 2012 21:0450 | 12 Nov 2012 06:30:34 8192 RUNNING

B | jugusentct.zam kfajuslich.de. 45710 m001 | 22200 n 11 Nov 2012 21:07.08 C| 12 Nov 2012 07:47:55 8192| RUNNING

B | juqusentct.zam kfaquslich.de. 45712 m0D1 | 22200 | 11 Nov 2012 21:12:23 C| 12 Nov 2012 07:47:55 8192] RUNNING

B | juquesnict zam kiauslich de 45726 n004 | 43800 jn 12 Nov 2012 00:24:40 C| 12 Nov 2012 00:25:40 2048] RUNNING

B juqusentcl.zam kfajuslich.de. 45737 n004 | 43740 jn 12 Nov 2012 00:32:14 C; 12 Nov 2012 00:32:51 2048 RUNNING

B | juqueentcl zam Kfa-uelich.de 4573¢ n004 | 43800 bn 12 Nov 2012 01:04:56 C| 12 Nov 2012 01:06:25 2048 RUNNING

B | juqusentct.zam kfaquslich.de.4574(n004 | 43800 pn 12 Nov 2012 01:39:01 | 12 Nov 2012 01:39:33 2048 RUNNING
et e fEZE 00 0 0 L e e ST
£ Messages &2 nsole & Remote Environments v =
Key Value. |

bg_paralloc | LL12111200250216
bg_shaps_alloc] 2xdxdx2x2

by_size_alloc {128
by_size req 1128

by_state Running

classprio |30

dispatchdate | Mon 12 Nov 2012 00:25:40 CET

favored No

group | prans7

gouppio |1

name RA9e4BI36q

nodelist RO101-M0-NOB RO101-MO-NOS RO101-MO-N10,RO101-MO-N11

BIMof675M |

Figure 2: monitoring perspective for JUQUEEN

PTP’s system monitoring is also applied to the INCITE system Cray XT
Jaguar maintained by the Oak Ridge National Laboratory (ORNL). This su-
percomputer has 299 thousand processors and runs a combination of Torque
and ALPS. As stated in [4] monitoring is successfully tested and used on var-
ious XSEDE systems such as “(NICS) Kraken and Keeneland systems, |...]
(TACC) Lonestar and Ranger systems, as well as Argonne National Labora-
tory’s Blue Gene/P and Q”. Recently PTP was extended to display the status
of the DARPA prototype, which is listed as number 10 in the Top500 List

[3]. Next to LoadLeveler the system monitoring also supports the batch sys-
tem SLURM, which is tested on the Swiss Scientific Computing Center (CSCS)
Monte Rosa system.

Moreover, JSC’s general purpose cluster JUROPA with more than 26 thou-
sand cores as well as the GPU cluster JUDGE can be monitored with PTP. The
node display for JUDGE even allows for monitoring the GPU allocations. Both
clusters are running Torque as resource manager, which is triggered to obtain
current status data.

3.3 Basis for scalability

Scalability is the key feature of the developed monitoring component in order
to apply it for peta-scale systems. This features is achieved by scalable server
scripts within LML_da, the scalable data format LML and the scalable visualiza-
tion of the PTP client. The server scripts only collect the status data requested
by the user. E.g. if the user only requires to see the status data of his own
jobs, the other job data is omitted. LML is designed to avoid redundant data
and can transfer different levels of detail. It allows for mapping running jobs
to the compute resources, they are running on. But, instead of mapping a job
to each core separately, LML collects coherent cores in ranges. In addition, if
an entire compute node is allocated to a single job, it is sufficient to map the
job to nodes instead of cores. Therefore, LML has to be aware of the system
hierarchy, which defines the number of cores in each node, the number of nodes
in each node board and so forth. This hierarchy can be collapsed on any level,
so that users are able to resolve the job mapping on a low level providing a
good overview or on a detailed level showing exactly, which cores are allocated
to their jobs. The system hierarchy is used in LML as well as in the visualiza-
tion. It allows to zoom into the node display on any level of detail or to select
only a specific part of the supercomputer for monitoring. This functionality is
depicted in figure 3. It shows one of the 56 midplanes of JUQUEEN, which
contains 8192 cores. On the lowest level of detail the midplane is rendered as a
usage bar, where jobs are placed in a horizontal bar with each job covering an
area of the usage bar proportional to the number of consumed cores. On the
next level each rectangle represents a node board. The midplane on the bottom
of the figure is zoomed to the compute node level each rectangle symbolizing
16 cores. One node board is extracted by the dashed lines and shown on the
highest level of detail, where each rectangle represents a core.

Next to the level of detail functions, users can filter the job data transferred
from the target system. On the UI jobs can be filtered by their number of
cores, their owner or queue. The filtering information is sent to LML_da via the
next LML request. The request is interpreted by LML_da and only the relevant
information is returned on the next status update.

Figure 3: a midplane displayed on different levels of detail

3.4 Integration and Deployment

The monitoring system is seamlessly integrated into the development workflow
of PTP. As soon as a job is submitted via PTP’s Run Configurations the system
monitoring perspective is opened. A corresponding monitoring connection is
created and started. Users are then able to trace their jobs by switching from
submitted over running to completed state. It is easy to check, whether the
submission parameters are used correctly by the job scheduler. E.g. the number
of requested nodes, cores or GPUs can be compared to the monitoring output.
PTP allows for canceling submitted jobs by right-clicking on the job entry in
the Job View. Finally, on successful job completion its output can be obtained
via the monitoring perspective.

Besides the batch systems LoadLeveler, SLURM and Torque mentioned in
above example systems, PTP supports monitoring and job submission for the
batch systems Cobalt, Grid Engine, IBM Parallel Environment, IBM Platform
LSF and PBS. Monitoring also incorporates status data obtained from the Ap-
plication Level Placement Scheduler(ALPS), which can be run in combination
with SLURM or TORQUE.

The system monitoring implemented by JSC is included in the Eclipse dis-
tribution Eclipse for Parallel Application Developers, which can be downloaded
as top level project from the Eclipse downloads website [5]. It is in production
since 2011 and is continuously updated and extended for new target systems. In
addition, a stand-alone client only for system monitoring is published [6]. Users
only interested in monitoring their target systems can use this distribution in
order to simplify the access on the monitoring functionality included in PTP.
This client also includes a simple interface to submit jobs, whereas PTP’s ap-
plication development functionality is excluded. It represents an alternative for
the monitoring application LLview. Applying LLview to a new target system is

more complicated, since client and server have to be installed separately. How-
ever, LLview still provides more statistical diagrams than PTP’s monitoring
system.

3.5 Conclusion

To conclude, the monitoring system developed by the JSC and integrated into
PTP is successfully applied for peta-scale supercomputers. An extensible ar-
chitecture is formed by LML_da and the PTP visualization component. Their
interactions are defined by the communication interface provided by LML. Level
of detail functions and filtering operations allow for monitoring the status of a
wide range of target systems in real-time. The combination of Eclipse based
development environment, PTP’s job control component and the monitoring
system simplifies the access to supercomputers and provides a uniform interface
to all supported batch systems.

4 Publications

In 2011 the paper [7] has been published, which describes the architecture of the
Parallel Tools Platform. It focuses on the scalability of the monitoring system
developed by the JSC. Examples of the data format LML and its visualization
are outlined. Moreover, the target system configuration is documented, which
allows to quickly adapt PTP to new batch system interfaces.

The paper [4] extends the previous one by additional functions for level-of-
detail visualization and provides example supercomputers monitored by PTP
in order to showcase scalability.

The bachelor thesis [2] deals with the design of LML. It documents design
decisions and describes how to map the LML data to a corresponding graphical
representation. It also outlines LML’s features for avoiding redundancies and
for implementing various levels of detail. A generic job scheduler simulator
is designed and implemented in the master thesis [8]. It can be applied as
efficient on-line prediction for future job dispatch dates. The target system’s
job scheduler is simulated based on current status data obtained from the server
component of PTP’s system monitoring. Thus, a valuable tool is provided to
the users for better understanding the scheduling algorithms. It also allows
to detect future idling resources, which can be used by appropriately sized job
requests.

A full day tutorial on using PTP as development environment including
hands-on sessions on the JSC supercomputer JUDGE was given in June 2012 [9].
Within the PTP User-Developer Workshop a talk documenting how to extend
the system monitoring for further target systems was presented [10]. Moreover,
a summary of the results obtained from this project especially focusing on the
development work of the JSC was provided by the talk [11].

A couple of web sites document the usage of PTP as system monitoring ap-
plication. A large list of relevant documentation, which is continuously updated,

is provided by PTP’s wiki page [12]. This page especially contains a summary
of the resource manager and monitoring framework [13] outlining their archi-
tecture and interactions. Finally, the web site [14] documents the data format
LML. It provides the entire XML Schema definition, a couple of example LML
files and an on-line validation tool for generated LML files.

References

1]

Jilich Research Centre. LLVIEW: graphical monitoring of batch sys-
tem controlled cluster. http://www.fz-juelich.de/jsc/1lview/, March
2005.

Carsten Karbach. Konzeption und Umsetzung einer Beschreibungssprache
flir Statusinformationen von Parallelrechnern als Basis einer Web-
schnittstelle fiir LLview, August 2010.

Hans Meuer, Erich Strohmaier, Jack Dongarra, and Horst Simon. Top 500
list. http://www.top500.0rg/1list/2012/11/, November 2012.

G.R. Watson, W. Frings, C. Knobloch, C. Karbach, and A.L. Rossi. A scal-
able control and monitoring framework to aid the development of supercom-
puter applications. http://wwwx.cs.unc.edu/~tgamblin/whist-2012/
papers/whist-2012-watson.pdf, 2012.

Eclipse Foundation. Eclipse downloads. http://www.eclipse.org/
downloads/, February 2013.

G.R. Watson. Stand-alone SysMon Application. http://download.
eclipse.org/tools/ptp/builds/kepler/nightly/index.html, Febru-
ary 2013.

G.R. Watson, W. Frings, C. Knobloch, C. Karbach, and A.L. Rossi. Scal-
able control and monitoring of supercomputer applications using an inte-
grated tool framework. In Parallel Processing Workshops (ICPPW), 2011,
40th International Conference on, FEdited by Jang-Ping Sheu, National Ts-
ing Hua University, Taiwan; Cho-Li Wang, The University of Hong Kong,
China, IEEE, 2011, 978-1-4577-1337-8, 457 - 466, 2011. Record converted
from VDB: 12.11.2012.

Carsten Karbach. Design and implementation of a highly configurable and
efficient simulator for job schedulers on supercomputers. Master’s the-
sis, FH-Aachen, University of Applied Sciences, http://hdl.handle.net/
2128/4703, August 2012.

G. Watson, Carsten Karbach, and Claudia Knobloch. Developing Scientific
Applications with the Eclipse Parallel Tools Platform (PTP). In PTP-
Tutorial at JSC, 2012. Record converted from VDB: 12.11.2012.

http://www.fz-juelich.de/jsc/llview/
http://www.top500.org/list/2012/11/
http://wwwx.cs.unc.edu/~tgamblin/whist-2012/papers/whist-2012-watson.pdf
http://wwwx.cs.unc.edu/~tgamblin/whist-2012/papers/whist-2012-watson.pdf
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://download.eclipse.org/tools/ptp/builds/kepler/nightly/index.html
http://download.eclipse.org/tools/ptp/builds/kepler/nightly/index.html
http://hdl.handle.net/2128/4703
http://hdl.handle.net/2128/4703

[10]

[11]

[12]

[13]

[14]

Carsten Karbach and Wolfgang Frings. Monitoring system basics, and
adding support for a new batch system. NCSA Eclipse PTP User-Developer
Workshop, Schiller Park, IL, USA, and Jiilich, Germany, 09/18 - 09/20
2012.

Carsten Karbach. PTP is watching your supercomputer. JSC-
Jahresabschlusskolloquium 2012, Jilich, 12/13 2012.

The Eclipse Foundation. PTP. http://wiki.eclipse.org/PTP, February
2013.

The Eclipse Foundation. PTP Design document: scalability. http://
wiki.eclipse.org/PTP/designs/scalability, February 2013.

Carsten Karbach. LML: Large-scale system Markup Language. http:
//1lview.zam.kfa-juelich.de/LML, February 2013.

http://wiki.eclipse.org/PTP
http://wiki.eclipse.org/PTP/designs/scalability
http://wiki.eclipse.org/PTP/designs/scalability
http://llview.zam.kfa-juelich.de/LML
http://llview.zam.kfa-juelich.de/LML

	Overview Information
	Objective
	Achievements
	Architecture
	Scaling examples
	Basis for scalability
	Integration and Deployment
	Conclusion

	Publications

