skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultrafast optical pump-probe spectroscopy is used to reveal the coexistence of coupled antiferromagnetic (AFM)/ferroelectric (FE) and ferromagnetic (FM) orders in multiferroic TbMnO3 films, which can guide researchers in creating new kinds of multiferroic materials.

Conference ·
OSTI ID:1045960

Multiferroic materials have attracted much interest in the past decade, due not only to their novel device applications, but also their manifestations of coupling and interactions between different order parameters (particularly electric polarization and magnetic order). Recently, much attention has been focused on perovskite manganites, RMnO{sub 3} (R = rare earth ions), due to the discovery of a large magnetoelectric effect in these materials. The first member of this family to be discovered was TbMnO{sub 3} (TMO), which is now well established as a typical magnetoelectric multiferroic. Extensive experimental and theoretical studies have already been done on single crystal TMO (SC-TMO). In brief, SC-TMO, with a distorted orthorhombic perovskite structure, has an antiferromagnetic (AFM) phase transition at T{sub N} {approx}40 K with sinusoidally ordered Mn moments. Below T{sub FE} {approx} 28 K, ferroelectric (FE) order develops owing to the appearance of cycloidal spiral spin structure. In contrast, there are relatively few reports describing the properties of TMO thin films (typically grown on SrTiO{sub 3} (STO) substrates). In general, thin films can enable new functionality in materials, as their physical parameters can be changed by modifying their structure via strain imposed by the substrate. Strain in particular has the potential to directly couple FE and FM orders, which is very rare. This could benefit electronic device applications by providing low power consumption, high speed operation, and greater electric/magnetic field controllability. Previous investigations of magnetic properties in TMO films revealed an unexpected ferromagnetic (FM) order, in contrast to SC-TMO. However, several important questions regarding these films are still unanswered for instance: (1) What mechanism induces FM order? (2) Can FM, sinusoidal AFM and spiral AFM (or FE) orders coexist? (3) Can FM order be coupled to FE order? To fully understand these unique materials, experimental techniques capable of dynamically unraveling the interplay between these degrees of freedom on an ultrafast timescale are needed. Here, we use ultrafast optical pump-probe spectroscopy to reveal coexisting coupled magnetic orders in epitaxial TMO thin films grown on (001)-STO, which were not observed in previous work. Our temperature (T)-dependent transient differential reflectivity ({Delta}R/R) measurements show clear signatures of sinusoidal AFM, spiral AFM (FE) and FM phases developing as the film thickness changes. We carry out first-principle density functional theory (DFT) calculations to explain the coupling between AFM/FE and FM orders. These results reveal that the coupling between different magnetic orders observed in our multiferroic TMO thin films may offer greater control of functionality as compared to bulk single crystal multiferroics.

Research Organization:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Organization:
USDOE Laboratory Directed Research and Development (LDRD) Program
DOE Contract Number:
AC52-06NA25396
OSTI ID:
1045960
Report Number(s):
LA-UR-12-22737; TRN: US1203884
Resource Relation:
Conference: Ultrafast Phenomena 2012 ; 2012-07-08 - 2012-07-13 ; Lausanne, Switzerland
Country of Publication:
United States
Language:
English