LA-UR- JD-OP15Y

Approved for public release;
distribution is unlimited.

Title: | Optimizing the Inner Loop of the Gravitational Force
Interaction on Modern Processors

Author(s): | Michael S. Warren, T-2, LANL

Intended for: | The Future of AstroComputing Conference

A
0 L/ojsAIamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Optimizing the Inner Loop of the Gravitational
Force Interaction on Modern Processors

Michael S. Warren
Los Alamos National Laboratory
msw@lanl .gov

We have achieved superior performance on multiple generations of the fastest
supercomputers in the world with our hashed oct-tree N-body code (HOT), spanning almost
two decades and garnering multiple Gordon Bell Prizes for significant achievement in parallel
processing. Execution time for our N-body code is largely influenced by the force calculation
in the inner loop. Improvements to the inner loop using SSE3 instructions has enabled the
calculation of over 200 million gravitational interactions per second per processor on a 2.6 GHz
Opteron, for a computational rate of over 7 Gflops in single precision (70% of peak).

We obtain optimal performance some processors (including the Cell) by decomposing
the reciprocal square root function required for a gravitational interaction into a table lookup,
Chebychev polynomial interpolation, and Newton-Raphson iteration, using the algorithm of
Karp. By unrolling the loop by a factor of six, and using SPU intrinsics to compute on vectors,
we obtain performance of over 16 Gflops on a single Cell SPE. Aggregated over the 8 SPEs on
a Cell processor, the overall performance is roughly 130 Gflops. In comparison, the ordinary C
version of our inner loop only obtains 1.6 Gflops per SPE with the spuxlc compiler.

Inner Loop Performance

Processor | liom Karp
533-MHz Alpha EV56 76.2 | 242.2
933-MHz Transmeta TM5800 189.5 | 373.2
375-MHz IBM Power3 298.5 | 5144
1133-MHz Intel P3 292.2 | 594.9
1200-MHz AMD Athlon MP 350.7 | 614.0
1800-MHz AMD Athlon XP 609.9 | 951.9
1250-MHz Alpha 21264C 935.2 | 1141.0
2530-MHz Intel P4 (icc) 1170.0 | 1357.0
2530-MHz Intel P4 (SSE) 6514.0

2600-MHz AMD Opteron (SSE3) 7380.0

PowerXCell 8i (single SPE) 16356.0

- Table 1: Mflop/s obtained on our gravitational micro-kernel benchmark.

Historical Performance

Year Site Machine Procs | Gflop/s | Mflops/proc
2006 | LANL Coyote (SSES3) 448 1880 4200.0
2004 | LANL | Space Simulator (SSE) 288 1166 4050.0
2003 | LANL ASCI| QB 3600 2793 775.8
2002 | NERSC IBM SP-3(375/W) 256 57.70 225.0
2000 | LANL SGil Origin 2000 64 13.10 205.0
1996 | Sandia ASCI| Red 6800 464.9 68.4
1995 JPL Cray T3D 256 7.94 31.0
1995 | LANL TMC CM-5 512 14.06 27.5
1993 | Caltech Intel Delta 512 | 10.02 19.6

Table 2: Performance of HOT on a variety of parallel supercomputers.

Cell Code for Inner Loop

for (i = 0; i <= n/16; i++) {
mass = *(vector float *)p;
dx = *(vector float *)(p+4);
dy = *(vector float *)(p+8);
dz = *(vector float *)(p+12);

dx = spu_sub(dx, pposx);

dy = spu_sub(dy, pposy);

dz = spu_sub(dz, pposz);

dr2 = spu_madd(dx, dx, eps2);
dr2 = spu_madd(dy, dy, dr2);
dr2 = spu_madd(dz, dz, dr2);

phii = spu_rsqrte(dr2);

mor3 = spu_mul(phii, phii);

phii = spu_mul(phii, mass);

total_mass = spu_add(total_mass, mass);
p += 16;

mor3 = spu_mul (mor3, phii);

phi = spu_sub(phi, phii);

ax = spu_madd(mor3, dx, ax);
ay = spu_madd(mor3, dy, ay);
az = spu_madd(mor3, dz, az);

