
LA-UR- /D-tJJI311 
Approved for public release; 
distribution is unlimited. 

-QAlamos 
NATIONAL LABORATORY 
---- EST.1943 ---

Title: Optimizing the Inner Loop of the Gravitational Force 
Interaction on Modern Processors 

Author(s): Michael S. Warren, T-2, LANL 

Intended for: The Future of AstroComputing Conference 

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC 
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-ACS2-06NA2S396. By acceptance 
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the 
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests 
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National 
Laboratory strongly supports academic freedom and a researcher's right to publish ; as an institution, however, the Laboratory does not 
endorse the viewpoint of a publication or guarantee its technical correctness. 

Form 836 (7/06) 



Optimizing the Inner Loop of the Gravitational 
Force Interaction on Modern Processors 

Michael S. Warren 
Los Alamos National Laboratory 

msw©lanl.gov 

We have achieved superior performance on multiple generations of the fastest 

supercomputers in the world with our hashed oct-tree N-body code (HOT), spanning almost 

two decades and garnering multiple Gordon Bell Prizes for significant achievement in parallel 

processing. Execution time for our N-body code is largely influenced by the force calculation 

in the inner loop. Improvements to the inner loop using SSE3 instructions has enabled the 

calculation of over 200 million gravitational interactions per second per processor on a 2.6 GHz 

Opteron, for a computational rate of over 7 Gflops in single precision (700/0 of peak). 

We obtain optimal performance some processors (including the Cell) by decomposing 

the reciprocal square root function required for a gravitational interaction into a table lookup, 

Chebychev polynonlial interpolation, and Newton-Raphson iteration, using the algorithm of 

Karp. By unrolling the loop by a factor of six, and using SPU intrinsics to compute on vectors, 

we obtain performance of over 16 Gflops on a single Cell SPE. Aggregated over the 8 SPEs on 

a Cell processor, the overall performance is roughly 130 Gflops. In comparison, the ordinary C 

version of our inner loop only obtains 1.6 Gflops per SPE with the spuxlc compiler. 



Inner Loop Performance 

I Processor libn1 I Karp I 
533-MHz Alpha EV56 76.2 242.2 
933-MHz Transmeta TM5800 189.5 373.2 
375-MHz IBM Power3 298.5 514.4 
1133-MHz Intel P3 292.2 594.9 
1200-MHz AMD Athlon MP 350.7 614.0 
1800-MHz AMD Athlon XP 609.9 951.9 
1250-MHz Alpha 21264C 935.2 1141 .0 
2530-MHz Intel P4 (icc) 1170.0 1357.0 
2530-MHz Intel P4 (SSE) 6514.0 
2600-MHz AMD Opteron (SSE3) 7380.0 
PowerXCell 8i (single SPE) 16356.0 

Table 1 : Mflop/s obtained on our gravitational micro-kernel benchmark. 



Historical Performance 

I Year I Site Machine I Procs I Gflop/s I Mflops/proc I 
2006 LANL Coyote (SSE3) 448 1880 4200.0 
2004 LANL Space Simulator (SSE) 288 1166 4050.0 
2003 LANL ASCIQB 3600 2793 775.8 
2002 NERSC IBM SP-3(375/W) 256 57.70 225.0 
2000 LANL SGI Origin 2000 64 13.10 205.0 
1996 Sandia ASCI Red 6800 464.9 68.4 
1995 JPL Cray T3D 256 7.94 31.0 
1995 LANL TMC CM-5 512 14.06 27.5 
1993 Caltech Intel Delta 512 10.02 19.6 

Table 2: Performance of HOT on a variety of parallel supercomputers. 



Cell Code for Inner Loop 

for (i = O· i <= n/16; i++) { , 
mass = *(vector float *)p; 
dx = *(vector float *)(p+4); 
dy = *(vector float *)(p+8); 
dz = *(vector float *)(p+12); 

dx = spu_sub(dx, pposx); 
dy = spu_sub(dy, pposy); 
dz = spu_sub(dz, pposz); 

dr2 = spu_madd(dx, dx, eps2); 
dr2 = spu_madd(dy, dy, dr2); 
dr2 = spu_madd(dz, dz, dr2); 

phii = spu_rsqrte(dr2); 
mor3 = spu_mul(phii, phii); 
phii = spu_mul(phii, mass) ; 
total_mass = spu_add(total_mass, mass); 
p += 16; 
mor3 = spu_mul(mor3, phii); 

phi = spu_sub(phi, phii); 
ax = spu_madd(mor3, dx, ax) ; 

ay = spu_madd(mor3, dy, ay); 
az = spu_madd(mor3, dz, az); 

} 


