LA-UR- 09- /& [/C//</
Approved for public release;
distribution is unlimited.

Title: | Tuple spaces in hardware for accelerated im-
plicit routing

Author(s): | Zachary K. Baker, Justin L. Tripp

Intended for: | 2011 Reconfigurable Architectures Work-
shop at IPDPS

» Los Alamos

NATIONAL LABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security,
LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By

acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or
reproduce the published form of this contribution, or to aliow others to do so, for U.S. Government purposes. Los Alamos National

Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however,
the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Tuple spaces in hardware for accelerated implicit routing

Zachary K. Baker and Justin L. Tripp
Los Alamos National Laboratory
Los Alamos, NM 87545
Email: {zbaker, jtripp} @lanl.gov

Abstract

Organizing and optimizing data objects on networks
with support for data migration and failing nodes is a com-
plicated problem to handle as systems grow. The goal of this
work is to demonstrate that high levels of speedup can be
achieved by moving responsibility for finding, fetching, and
staging data into an FPGA-based network card. We present
a system for implicit routing of data via FPGA-based net-
work cards. In this system, data stuctures are requested
by name, and the network of FPGAs finds the data within
the network and returns the structure to the requester. This
is acheived through successive examination of hardware
hash tables implemented in the FPGA. By avoiding soft-
ware stacks between nodes, the data is quickly fetched en-
tirely through FPGA-FPGA interaction. The performance
of this system is orders of magnitude faster than software
implementations due to the improved speed of the hash ta-
bles and lowered latency between the network nodes.

1 Introduction

Managing the parallelism provided by thousands of
cores is extremely challenging. Legacy codes in particu-
lar are not designed to take advantage of the large parallel
resources provided by current and upcoming system. New
approaches to programming these systems are required to
harness their power. Increasing the productivity of our sci-
entists and our computer systems is the most important goal
of this effort. The execution speed of a given code is of
little value if it takes an inordinate amount of time to de-
velop, debug, modify, and maintain. When we raise the
level of abstraction supported by the programming environ-
ment we let developers work in a domain specific to the
problem at hand, not the domain of the machine. This ap-
proach provides a more natural and comfortable interface to
the machine there is no need to learn the semantics of an
all-purpose environment or to “wedge” the problem into the
model of traditional programming languages.

Communication between nodes in HPC systems is a per-
formance bottleneck. Experience at LANL has shown that
50% of application execution time is actually just waiting
on the network [2]. The network topologies in HPC systems
are typically designed to accommodate the communication
patterns of any generic application, but are not optimized
to maximize the performance of any specific application.
Ideally the network behavior and application would be co-
designed to optimize performance by matching the topol-
ogy to the communication needs of the application.

We are currently developing the idea of the “RDI” or
Reconfigurable Data Interface. This is a fancy name for
FPGA-based “Smart” network card connected via PCI-E
that can make decisions about data movement and migra-
tion in order to optimize a computation. The programmer
then interacts with the network via abstracted calls that pro-
vide them with some separation from the dirty details of
working with an FPGA. The code does have to support the
abstraction of the global name space, but this is similar to
using a virtual address space. If the user can adopt a new
paradigm but not have to worry about why the performance
is better, then they will likely continue to use the new sys-
tem.

NoSQL databases have recently increased in popularity,
since they are continue to scale for large amounts of data or
across large clusters of computers. These databases are less
structured, typically lack tables and are not relational. This
decreases the overhead needed for storing data and eases
the difficulty of scaling. An example of storage of this type
would be key/value pairs. Key/value pair datastores orga-
nize the data using a key to store the data or value. Thus, the
data can be recalled using the key that was used to store it.
Memcached [8] is a prime example of the key/value datas-
tore, that is used by several major websites (Facebook, Twit-
ter, YouTube, Wikipedia, etc. [6]) to cache data. Amazon
uses a similar approach in their proprietary system called
Dynamo [5], which powers the Amazon Web Services.

Another approach used by NoSQL databases are dis-
tributed hashtables (DHT). DHTs are commonly used in
Peer-to-Peer systems (such as Bittorrent [19]), to store and

distribute the data. Pernicious systems, such as botnets, use
DHTs to store and distribute data as well. DHTSs have three
properties that make them useful and a potentially a key
technology to high performance computing problems: De-
centralization, Scalability and Fault Tolerance. Current in-
vestigation [12] shows how useful this approach could be
for high performance computing.

Hardware accelerated Tuple Spaces are a potential an-
swer to the problem of keeping track of data and compu-
tation on a large network. Performing load balancing on a
large system causes data and compute to migrate, making it
difficult for a user to manage their computation effectively.
By providing a fast mechanism to manage data and compu-
tation, we alleviate some of the burden from the user. This
is accomplished through a distributed associative memory
technique called “Tuple Spaces”. The attractiveness of the
Tuple Space paradigm is that a user requests data by its
name, rather than by its location. This allows the system
to maintain the location of data, similar to the way virtual
memory works in any common microprocessor.

In [7] real performance of a Tuple Space implementa-
tion on a small cluster is approximately 300 tuple lookup
per second, with a latency of about 60ms. Granted, this im-
plementation is in Java, with associated performance degra-
dations over coding at the metal. We believe these aspects
of performance have reduced interest in the Tuple Space
approach to managing data. By moving the details of man-
aging the Tuple Space to hardware and allowing it to be
accessed via standard API calls, we believe that the interest
in implicit data routing may be rejuvinated.

1.1 Field Programmable Gate Arrays

FPGA'’s provide a fabric upon which applications can be
built. FPGAs, in particular, SRAM based FPGAs from Xil-
inx [17] or Altera [9] are based on a look-up tables, flip-
flops, and multiplexers. In these devices, a SRAM bank
serves as a configuration memory that controls all of the
functionality of the device, from the logic implemented to
the signaling standards of the IO pins. The values in the
look-up tables can produce any combinational logic func-
tionality necessary, the flip-flops provide integrated state el-
ements, and the SRAM-controlled routing direct logic val-
ues into the appropriate paths to produce the desired archi-
tecture. The device is composed of many thousands of basic
logic cells that include the basic logic elements, and based
on the device variety, includes fast ASIC multipliers, ether-
net MACs, local RAMs, and clock managers.

There are many tools for automatically converting a
high-level language program into a low-level design. With
recent advances in compiler and synthesis technology, it is
now possible to map the computationally intensive mod-
ules of a program in C (SRC Carte [14] and Celoxica [4]),

or through graphical tools such as Xilinx System Genera-
tor [15].

While the ease and popularity of using FPGAs for ap-
plication design has increased, the automatically gener-
ated architectures tend to be inefficient compared to well-
researched and thought-out architectures for complex ap-
plications. In these situations, the creativity and domain
knowledge relevant to a design provided by a human de-
signer is a valuable asset.

2 Reconfigurable Data Interface

The Reconfigurable Data Interface (RDI) steers an appli-
cation’s computation and communication. The RDI is not
just a network interface card. The RDI is network. By in-
tegrating the data management with the network infrastruc-
ture, latency goes down and bandwidth goes up. Adding
a small local router to each processing node extends the
ideas that are currently being applied to multi-core pro-
cessing chips. Distributed routing eases the burden placed
on higher-level routers required to build up very large ma-
chines. In multi-core nodes, a router is available for a small
number of cores enabling the transfer of data to be opti-
mized at a local level. In this same way, the PFRouter’s pro-
grammable local router provides the ability to off-load the
transfer of data between local nodes and optimize the prob-
lem between the nodes within a given shelf of processing
nodes. Programmable NICs have demonstrated speed ups
for various operations (e.g., [20], [13]) FPGAs have shown
a 10x speed up for certain MPI collectives [10], and 1000x
for network processing [1], which demonstrate the poten-
tial for custom operations within a programmable network
to provide system speed up.

As larger systems spend more time waiting for network
operations, it will be necessary to move some operations
closer to the data on the network. Using configurable net-
work processing allows this to be molded to the application
and provide the customization necessary to handle different
kinds of operations.

Because the RDI is based on FPGA technology, particu-
lar instructions can be performed vary quickly in the pro-
grammable hardware. For instance, customized network
collectives can be implemented in hardware. These are op-
erations that use a large number of nodes, and often are
a determining factor in the overall performance of the ap-
plication. Potential operations we plan on addressing in-
clude collectives such as all-reduce, distributed tree traver-
sals, and scatter-gather primitives. A potential candidate for
movement into the RDI is distributed tree traversal, where
the network card automatically fetches the child nodes of a
tree and presents them as a package for processing to the
CPU or GPU.

3 Tuple Spaces

Tuple Spaces are based on giving data names that are
separate from their address in memory. This is similar to
a virtual address with fully associative mapping. However,
it can be extended across network nodes, and support more
complex data structure than a flat page of memory.

In past implementations, the secondary lookup of the
data’s name has hindered the performance of a Tuple Space.
In the PetaFlops Router system, the FPGAs actually main-
tains the tables that keep track of the current location of
data blocks as well as ongoing requests for computation.
This provides many benefits. First, the RDI is directly con-
nected to the network and can keep track of data movement
more closely than can a CPU that is several stages from the
network. Second, the RDI can fetch data directly from the
GPU without interfering with the CPU’s computation work.

Third, the distributed nature of the Tuple Space means that Figure 1. Photograph of the three node sys-
data can be stored across the network, rather than solely tem currently in test. The red and white ca-
at a given node. This positively impacts the reliability be- bles are the inter-FPGA network implemented
cause the failure of one node does not bring down the entire with SATA and SMA cabling. In practice,
computation. The ability to load balance across the network these cards would be plugged into the PCI-
means that scaling and usability will be improved over cur- E interfaces of the CPUs

rent MPI systems.

We have implemented the lookup features of the Tuple
System in hardware system. We are not, at this point, con-
sidering the larger problems of inserting computation re-
quests in the Tuple Request itself. For kernels and a limited
set of comptuation, it would be efficient but for requests
that include patterns (for instance, regular expressions), the
process of handling the patterns would be very expensive to
implement in hardware. This is particularly true with the Hardware Hash Table
memory-based hashing system we have devised, a more so-
phisticated pattern matching system would require Content-
Addressable Memory. This would significantly increase the

per-entry cost of the hash table. WJ -
FP

3.1 Tuple Architecture GA SATA

=3 Iy

We have demonstrated a prototype distributed hardware-

based Tuple Space system. Similar in spirit to the software- gl 3 Data Transfer Network
based LINDA tuple system, the system builds a distributed PCI-E \

hardware hash table across several FPGA nodes. The FP- CPU/GPU Interface

GAs then communicates across multi-gigabit links to move

data around automatically. This is potentially very exciting Figure 3. The tuple system is based on a
as it emphasizes a co-design approach to large cluster de- FPGA implementing a hardware hash table,
sign: Allow certain data management and collection func- data storage, PCI-E interface to the CPU host,
tions to migrate to hardware, while avoiding full-custom and independent network connections to the
hardware design of application kernel. other FPGAs in the network

The hash architecture is the core of the tuple system. The
hash key is the name of the tuple data element. The hash
lookup results in the address of the data in local DD3 mem-
ory store. The architecture consists of the blocks in Figure

tag requesl _3 _ ! e _____
_I CRC [Block RAM)
| 9 S e | Comect | Soft mMIPS CPU g
e c— i i , \ SATA |
; e | Collision?
e = = - X W
(Hash Table Controller "
: J
[Bulk DDR3 RAM - o
PCI-E x1
Figure 2. Hash table architecture
1400 — S——
Tuple Entries vs Time 1200 -
e 1000 H
|
250 800 I .
3 s 600 & CPU Host
o 150 “FPGA
E .
= -=Time (us) 400
100
200 weg
50
0 4
0
0 500 1000 1500 2000 Hash lookup (ns)
Number of Tuples

Figure 4. Tuple entry rate vs time. Tuples are
entered into table in roughly 130 ns vs 1.2 us
per tuple on CPU host

Figure 6. Hash lookup rate

2. The main block of the hash system is a CRC genera-
tor and a block memory for the keys. The system would
be simple if we did not handle collisions, but any real ap-
plication would have enough keys that collisions would be
unacceptable.
B The state machine starts by resetting the CRC generator
“l;')‘l’f;\ode and inputting the requested key. The CRC produced is used

I

thdSpecd Switch as an address in the key block RAM.
The output data is has the following format:
FPGA FPGA FPGA [1 occupied
Tuple Node K Tuple Node Tuple Nade 1 deletion flag

505 and ML-507 boards are connected via
SATA cables

i
Figure 5. Tuple engines implemented in ML- ‘

key_width-1 downto O
addr_width-1 downto O

data_length-1 downto 0

stored key for comparison
addr of data element

in the bulk memory

length of data block stored

in bulk memory

key, the occupied bit is checked.

If the requested operation is a “write” operation on a new

If it is unset, then that

address is the new location of the hash key and the key, and

the length and address of the data in bulk memory is written
into the block memory. If the occupied bit is set, implying
a collison, then the output CRC is fed back into the CRC
generator to try again. Another approach is to increment
the address and check again. This would save one cycle
in the lookup, but could create clusters of data in the hash
table, violating the requirements for randomness in the O(1)
analysis.

If the requested operation is a read or delete, the CRC
output is checked for the occupied bit as well as comparing
the input key with the stored key. If the occupied bit is set
but the keys do not match, the entry is assumed to be from
an earlier collision. By following the collision chain until
the keys match, the collision can be resolved. In the case
of a delete operation, the key is zeroed and the occupied bit
is unset. If an unset occupied bit is tound while resolving a
collision chain, this implies that the key is no longer in the
system, or was never there in the first place.

A collision chain with deleted entries is somewhat prob-
lematic because a chain of collisions is determined to be in
error if an unset occupied bit is found. however, if delete is
intended to not corrupt the table, then there are two options.
One, all deleted key entries are set to an arbitrary value, per-
haps -1. Thus, the any collision chains that happen to pass
through the deleted entry will continue. However, this also
prevents any new key from being entered in the location,
effectively creating a memory leak.

The second option is to add another bit to the hash data
structure to imply a delete flag bit. An entry with this bit
set is not a valid entry, but can be used for new data. This
has the trade-off of increasing the size of the hash memory
footprint. Because we envision the hash system running for
extended periods of time with extensive New and Delete
operations, exchanging an extra bit per entry was deemed a
better option that an intentional memory leak.

Figure 6 illustrated the speed in which new entries are
added to the system. This data was collected for a relatively
small hash table to better illustrate the effect of collisions
on the hash table performance. The initial entries generally
do not encounter collisions, which means that they can be
entered into the first addresss generated by the CRC. As the
table becomes congested, the average time to find an empty
slot increases. There is no quality of service requirements,
except a desire for it to be fast, so the system will continue
to search for a location until it has searched every slot. This
would generally be unacceptable in a real system, but can
only be addressed in hardware through allocating a larger
memory at design time to the hash table, or moving the data
somewhere else, be it a backing store in a larger DRAM or
on another host entirely. We will address the second option
in Section 3.3.

3.2 Tuple Performance

In previous research, real performance of a tuple space
implementation on a small cluster is approximately 300
tuple lookup per second, with a latency of about 60ms.
This performance directly impacts overall application per-
formance. In the current prototype system, tuples are en-
tered into table in roughly 130 ns vs 1.2 us per tuple on a
single CPU host.

Using a ring architecture, we predict the lookup latency
in a 10 node prototype cluster to be 2.5us, a 1000x perfor-
mance improvement in locating and fetching remote data.

The Xilinx ML-50x boards support single lane PCI-E
connectivity, meaning a maximum of X Gbps between the
host and the FPGA. In practice, the latency was more rele-
vant, at approximately lus per transaction. The hash table
operates at 100MHz. It could easily operate faster but that is
of limited value given that the hash lookup is generally not
the performance bottleneck. The system processes one hash
lookup at a time, although the pipeline structure can acco-
modate three simultaneous lookups with minor changes.

The PCI-E interface is based on the BMD design pro-
vided by Xilinx. The driver was developed using the Jungo
WinDriver [18] package for Linux, but should port to Win-
dows fairly easily. The WinDriver package handles the
setup and provides a simple API for talking to a hardware
device. We have measured the PCI-E latency from user
software to the FPGA to be approximately lus per trans-
action. The latency of the other transactions is quite short
in comparison with the PCI-E latency T},.; = 1us. The hash
lookups Thash —ignoring the occasional multiple-collisions
lookup — take less than ten cycles, or about 100ns. The time
to fetch an address from the SDRAM is approximately **.
The hops between FPGAs nodes via MGT links running
Aurora are in the tens of cycles T},,p.

Tiotal = Tpci + nOdes(Thash + Tsdgram + Thop)

The ring structure reveals its limitations in this analysis.
While the total time at any given node is low the aggregation
of hash lookups in every node the search passes through
builds up becomes expensive. Clearly a ring structure is
not ideal in most cases, but is convenient when prototyping
with the ML-50x series of boards. These boards feature
two SATA connectors, allowing for easy building of ring
structures. The board also has a set of SMA connectors,
allowing for a third link, so a tree structure is also quite
feasible but somewhat less elegant.

The hash table system as implemented occupies 60% of
the block RAM resources in the LX110T. The soft proces-
sor’s memory occupies the balance of the block RAM. The
hash table, including the CRC, operates at 100 MHz. This is
not the maximum acheiveable speed, but decreases the time
required for place and route. The mmips processor operates
at 50 MHz and is responsible for steering data between the

PCI-E connection, the hash table, and the two Aurora links.
The Aurora links operate at 1.5Gbps. The Aurora links can
go much faster, up to 6 Gps with Gen 3 cabling. The single-
lane PCI-E connectors on the ML-50x boards are limited
to 2Gbps. Simply upgrading to the ML-605 would bring a
x8 connector for 8x the bandwidth and block RAM for the
hash table.

The largest performance improvement comes with
knowledge of data structures. For instance, when traversing
a tree or a linked list, the FPGAs can be given knowledge
of the data structure in question. Traditionally, the traver-
sal would require pulling data from the network, pushing it
up through the PCI-E bus to decode the data structure and
then back through the PCI-E bus to the network card for the
next request. In our simple, single node tests with mem-
cached [6], traversing a 7 element linked list took roughly
125us. In the hardware system with a single node, this same
operation took 3us, where 2 us is the PCI-E latency and the
pointer chasing essentially falls into the noise. The speedup
is entirely due to traversing the PCI-E bus twice for the en-
tire operation: first, to make the initial request, and second,
to fetch the result. The pointer chasing through the hash
table happens entirely in hardware. The data structure is
handled by the soft processor, so adding knowledge about a
particular struct is software, not hardware.

3.3 Handling Larger Data Sets

In the hash table architecture discussion, we came upon
an important question. What happens when the hash table is
full, or full enough that the hash performance is degraded?
In a software-based system, it is not difficult to expand the
size of the hash table dynamically. This is somewhat more
difficult in hardware unless we are willing to degrade per-
formance by switching out of the limited on-FPGA block
memory resources and into the essentially limitless exter-
nal DRAM. However, given the distributed nature of the
system, the latency to store entries on another node’s block
RAM can actually be less than going to external SDRAM
locally. This can be generalized into a system where hashed
addresses can point anywhere in the system.

Unfortunately, this global addressing has many charac-
teristics of the systems we are trying to improve upon. The
system is intended to be resistant to node or link failure (also
addressed in the 3.3 section). Thus, keeping a static pointer
to a particular node is self-defeating. This is easily avoided
by not using the node’s address per se, but rather a sec-
ondary key structure that a node can claim. In this mode,
the request traverses the network structure until it finds a
matching node, then performs a hash lookup to find an in-
dex into the local DRAM.

3.4 Migration

One problem with the global access to locally requested
keys is that repeated accesses to a location can cause unnec-
essary traffic on the network and extra work for the FPGAs.
Migrating the data and hash table entries to the local node
can be a solution, but can also increase the complexity of
managing the data in the FPGA-based system.

There are two potential pathways to acheive the goal of
migration. First, repeated requests to a particular tuple can
be tracked in the tuple data structure. Requests that exceed
a threshold can cause the entire data structure to be moved,
including a deletion of the tuple from the original tuple lo-
cation. In this mode, a single copy of the data is accessed by
all nodes in the system. This allows for simple coherence,
but hurts performance. Migration allows for the copy to mi-
grate to where it is most often used, but multiple readers can
cause excessive migration as well as the equivalent physical
separation of the reader and owner of a piece of data. One
strength of this approach is the ability to change values in
the data structure pointed to by the tuple in-situ, rather than
reading it out and completely re-writing it in memory.

A more traditional approach is to require single static as-
signment. In this mode, every data element is written once,
and no re-writing is allowed. This allows references to be
tracked more easily, as any changes to the data structure re-
quires a completely new tuple entry and allocation in the
bulk storage. In this mode, any requestor of a particular
data structure can create a local copy of the data. Because it
cannot be changed by another node, the data node remains
valid. Any updates to the data will take place in a newly
created tuple entry. Then, the updated tuple name/data com-
bination can be propagated as nodes request the new tuple
name.

The issues with migration are theoretical at this point as
they have not been implemented or tested in real hardware.
However, the work is largely in software as the cases are
special enough to implement solely in software in the em-
bedded processor.

3.5 Improvements to Network

We also plan on exploring the issues of network topol-
ogy in the future. Our second implementation will allow
the network topology to dynamically change by creating
and closing dedicated circuit-switched links as needed dur-
ing program execution. This is akin to the operation of the
original circuit-switched telephone network where switch-
board operators were in place to physically connect and dis-
connect callers based on customer demand and connection
availability as opposed to having dedicated lines between
customers. In our case, unused circuit-switched links would
immediately become part of the packet-switched network,

providing more network capacity for generalized commu-
nications. The basic system structure is shown in Figure
5. Each component of the system is commodity hardware.
This will allow us to estimate the performance of the initial
system without a large outlay for custom hardware. The net-
work is logically built around a central MindSpeed crossbar
switch [11]. This crossbar acts as the bulk circuit switching
resource in the system, providing the ability to configure
the network topology as needed, including hardware-based
multicast. As shown in Figure 5, crossbar forms an essen-
tially direct electrical connection between ports, forming
the desired network topology. The network interface cards
(NIC), inside each PC, are connected to the crossbar. The
NICs are responsible for two main functions. First, they
provide the fast PCI-E interface with the CPU and memory
of the computer. Second, they provide any packet and cir-
cuit switching capability that is not covered by the cross-
bar. Because the crossbar can only provide connectivity
that is a subset of that enabled through physical wiring, the
NICs provide any other needed connection paths and alter-
nate routes. Using Aurora as a starting point, we will add
a protocol layer providing flow control and packet headers
for switch-mode links. This protocol layer will support both
packet- and circuit-switched communications, meaning that
the hybrid network can fluidly transition between operat-
ing modes without change of protocol. More sophisticated
protocols could be implemented, but a protocol trade study
would only serve to detract from the core purpose of the
proposed effort.

4 Interesting FPGA tidbits

Because we developed the system using a combination
of Xilinx ML-505 and ML-507, we must target a combina-
tion of “GTP” and “GTX” multi-gigabit transceivers. This
is inconvenient, as the Aurora source trees are somewhat
different. One convenience we added is a merging of the
source trees so that a particular MGT on a particular V5 de-
vice can be targeted without delving deeply into the source
code.

The execution and behavior of the system is controlled
by a small embedded processor. Initially this was controlled
via the serial port rather than the final implementation in-
cluding PCI-E. Via RS-232, we can interact with the pro-
cessor, as well as updating the software on the processor.
This proved to be difficult to scale as the system increased
in size. Past four FPGA boards the overhead of serial cables
became an annoyance. Moving to Xilinx ML-605 boards
would ammeliorate this problem somewhat as it has USB-
emulated serial, but even then the total number if USB ca-
bles becomes a burden.

Our solution to this was to move to a new administration
system built on I2C. 12C [16] allows many devices to be

connected to the same bus. It’s fairly slow compared to most
modern interfaces, but a) it is faster than serial bus (400kbps
vs 115200bps on RS-232) and b) it requires very little hard-
ware support and two signal lines. Out of the box there is
no support for external i2¢ connections on the ML-605, that
is to say, there is no convenient set of headers that bring
the signals to the surface. However, following the model
in [3] we fabricated an i2c cable out of a DVI cable. DVI
includes an i2c bus so that a GPU can communicate with
the attached monitors. This allows us to use one of the in-
tended i2c networks on the board without building anything
expensive/custom. This is a great idea for single boards,
but with multiple boards there are two problems: too many
i2¢c pull-up resistors, and too much capacitance. Therefore,
other headers including the FMC connectors must be used
for larger networks.

The software driver splits the output from the i2c bus
into several windows, allowing a single server to view all
the output of all of the FPGAs with a single cable. This
is a relatively easy mechanism to debug large systems of
FPGAs without using the main data channels. The system
can upload the average new software package for the soft
processor in about 5 seconds per FPGA.

The mMIPS soft processor is a 32 bit CPU that uses a
small subset of MIPS instructions. Use of the soft CPU has
allowed us to quickly prove out ideas in hardware at hard-
ware speeds rather than develop full hardware implemen-
tations. Adding a standardized bus system to the CPU has
allowed other IP to be quickly developed and combined to
make larger and more complex systems. The C compiler for
the CPU was modified to allow the use of larger instruction
stores, so that we can have more complex programs. These
features combined have made the mMIPS a useful vehicle
for testing ideas and exploring the space of the PFRouter
hardware system.

5 Conclusion

We have presented a system for implicit routing of data
via FPGA-based network cards. In this system, data stuc-
tures are requested by name, and the network of FPGAs
finds the data within the network and returns the structure to
the requester. This is acheived through successive examina-
tion of hardware hash tables implemented in the FPGA. By
avoiding software stacks between nodes, the data is quickly
fetched entirely through FPGA-FPGA interaction. The per-
formance of this system is orders of magnitude faster than
software implementations due to the improved speed of the
hash tables and lowered latency between the network nodes.

References

(1]

(2]

(3]
[4]

[5]

[6]

[71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]
[16]

(17

Z. Baker and V. Prasanna. Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs. IEEE Transactions
on Dependable and Secure Computing, Vol. 3, No. 4, Octo-
ber 2006.

K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang,
S. Pakin, and J. C. Sancho. Entering the petaflop era: the
architecture and performance of roadrunner. In SC ’08: Pro-
ceedings of the 2008 ACM/IEEE conference on Supercom-
puting, pages 1-11, Piscataway, NJ, USA, 2008. [EEE Press.
P. Burgess. The 25¢ I2C Adapter. http://www.
paintyourdragon.com/?p=43.

Celoxica MATLAB/Simulink Interface, 2004. http://
www.celoxica.com/methodology/matlab.asp.
G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available key-
value store. [n Proc. of SOSP’07, pages 205-220, Steven-
son, WA, October 2007. ACM.

Dormando. memcached - a distributed memory caching sys-
tem. http://www.memcached.org, Nov. 2010.

D. Fiedler, K. Walcott, T. Richardson, G. M. Kapfhammer,
A. Amer, and P. K. Chrysanthis. Towards the measurement
of tuple space performance. In ACM SIGMETRICS Perfor-
mance Evaluation Review, 2003.

B. Fitzpatrick. Distributed caching with memcached. Linux
Journal, (124):72-74,76,78, August 2004.
FPGA CPLD and ASIC from Altera.
altera.com.

S. Gao, A. Schmidt, and R. Sass. Hardware implemen-
tation of MPI_Barrier on an FPGA cluster. In Field Pro-
grammable Logic and Applications, 2009. FPL 2009. Inter-
national Conference on, pages 12 -17, September 2009.
Mindspeed 72x72 3.2 Gbps Crosspoint Switch with
Integrated CDRs, [nput Equalization & Pre-Emphasis.
http://www.mindspeed.com/web/product/
info.html?id=599&trail=2001, 2022, 4039.

R. Minnich and D. Rudish. Ten million and one pengiuns,
or lessons learned from booting millions of virtual machines
on hpc systems. In Proc. of Workshop on System-level Vir-
tualization for High Performance Computing in conjunction
with EuroSys '10, Paris, France, April 2010. ACM.

F. Petrini, A. Moody, J. Fernandez, E. Frachtenberg, and
D. K. Panda. Nic-based reduction algorithms for large-scale
clusters. International Journal of High Performance Com-
puting and Networking, 4(3-4), 2006.

SRC Carte Programming Environment, HLL FPGA Pro-
gramming. http://www.srccomp.com/techpubs/
carte.asp.

http://www.

System Generator for DSP, 2010. http://www.
xilinx.com/tools/sysgen.htm.
telos EDV Systementwicklung GmbH. [2c-bus: What's

that? http://www.i2c-bus.org/i2c-~bus/.
Virtex-5 FXT FPGA ML3507 Evaluation Platform.
http://www.xilinx.com/products/devkits/
HW-V5-ML507-UNI-G.htm, Nov. 2010.

[18]

[19]

[20]

WinDriver: Driver Development Tools for USB/PCI/PCI-
Express. http://www.jungo.com/st/
windriver_usb_pci_driver_development_
software.html.

Workshop on Economics of Peer-to-Peer systems. Incen-
tives build robustness in BitTorrent, 2003.

W. Yu, D. Panda, and D. Buntinas. Scalable,
high-performance NIC-based all-to-all broadcast over
Myrinet/GM. In Sixth [EEE I[nternational Conference on
Cluster Computing (CLUSTER’04), pages 125-134, 2004.

