
LA-UR-12-21022
Approved for public release; distribution is unlimited.

Title: A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision 0

Author(s): Nystrom, William D
Robey, Jonathan M

Intended for: Report

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National
Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.
Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the
U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A Specification for a Godunov-type Eulerian 2-D Hydrocode,

Revision 0

WD Nystrom and JM Robey

April 24, 2012

CONTENTS 1

Contents

1 Overview 2

2 Algorithm Description 4

3 CodeHydro Calculation Flow 5

4 Discussion of Algorithm 27

5 Verification of Implementation 28

6 User Defined Input Parameters 29

1 OVERVIEW 2

1 Overview

The purpose of this code specification is to describe an algorithm for solving the Euler equations of hy-
drodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an
implementation on their target platform using their programming language of choice without requiring de-
tailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a
software developer who is proficient in the programming language of choice and is knowledgable of the target
hardware to produce an efficient implementation of this specification if they also possess a thorough working
knowledge of parallel programming and have some experience in scientific programming using fields and
meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the
fine grain parallelism and data locality present in this algorithm. This specification aims to make that task
easier by presenting the essential details of the algorithm in a systematic and language neutral manner while
also avoiding the inclusion of implementation details that would likely be specific to a particular type of
programming paradigm or platform architecture.

The equations to be solved are the Euler equations of computational fluid dynamics which in conservative
form are [3]

∂ρ

∂t
+ ∇ · ρv = 0 (1.0.1)

∂ρv

∂t
+ ∇ · (ρvv + P I) = 0 (1.0.2)

∂E

∂t
+ ∇ · [(E + P)v] = 0 (1.0.3)

where

ρ ≡ mass density
v ≡ fluid velocity
E ≡ total energy density
P ≡ total pressure
I ≡ unit tensor

Symbols in bold regular type are 2D cartesian vectors while symbols in bold Sans Serif type represent 2D
second order cartesian tensors. The term vv represents the dyadic or tensor product of the two vectors,
v. In two spatial dimensions, the Euler equations represent four equations for five unknown variables. A
polytropic gas equation of state is used to close these equations and relate P to ρ, E and v. This equation
of state is

E =
P

γ − 1
+

1
2
ρv2 (1.0.4)

where γ is the ratio of specific heats and is 5/3 for an ideal gas. Thus, equations 1.0.1, 1.0.2, 1.0.3 and 1.0.4
are the closed set of equations in five variables that will be solved by the algorithm presented in the next
section. This algorithm is a two dimensional finite volume Godunov [2] algorithm using Strang splitting [4],
explicit time integration and an inexact Riemann solver.

1 OVERVIEW 3

A compact and alternative way to write the Euler equations in Cartesian coordinates is as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (1.0.5)

where

U ≡


UD

UU

UV

UP

 ≡


ρ
ρvx

ρvy

E

 (1.0.6)

F ≡


FD

FU

FV

FP

 ≡


ρvx

ρv2
x + P
ρvxvy

vx (E + P)

 (1.0.7)

G ≡


GD

GU

GV

GP

 ≡


ρvy

ρvyvx

ρv2
y + P

vy (E + P)

 (1.0.8)

This algorithm also makes use of an additional set of state variables which are referred to as primitive
variables. These variables are the following.

Q ≡


QD

QU

QV

QP

 ≡

ρ
vx

vy

P

 (1.0.9)

These primitive variables are used during most of the calculation performed by this algorithm including the
Riemann step.

2 ALGORITHM DESCRIPTION 4

2 Algorithm Description

In this algorithm, the rectangular solution region is of dimension Lx by Ly and is divided into rectangular
cells. The x-coordinate is divided into nx cells of equal spacing such that the width of a cell in the x-
coordinate is Lx/nx. Similarly, the y-coordinate is divided into ny cells of equal spacing such that the height
of a cell in the y-coordinate is Ly/ny. In order to allow for the enforcement of boundary conditions and
accomodate the numerical differencing of the spatial derivatives, two extra layers of cells are included and
referenced for each spatial coordinate in the description below. Thus, the reader can imagine a rectangular
array of cells where in the x-coordinate there are nx + 4 cells and in the y-coordinate there are ny + 4 cells.
In the x-coordinate, the cells located in the problem domain are numbered from i = 3, ..., nx + 2. In the
y-coordinate, the cells located in the problem domain are numbered from j = 3, ..., ny + 2. How the cells
are labeled and how or whether the guard cells are stored is an implementation detail left to the discretion
of the software developer. However, in order to make the following description explicit, the above labeling
scheme will be adopted.

To summarize, the computational domain is a rectangular region of cells with nx + 4 cells in the x-
coordinate and ny + 4 cells in the y-coordinate. In the x-coordinate, the cells are numbered from i = 1 to
nx + 4. In the y-coordinate, the cells are numbered from j = 1 to ny + 4. Each of the cells has two faces in
the x-direction and two faces in the y-direction. Thus in the x-direction, there are nx + 5 faces and in the
y-direction there are ny + 5 faces. Faces are labeled with a half-integer index. In the x-coordinate, the right
face of a cell is labeled as i+ 1

2 and the left face is labeled as i− 1
2 where i is the x-coordinate index of the

cell. In the y-coordinate, the top face of a cell is labeled j + 1
2 and the bottom face is labeled j − 1

2 where j
is the y-coordinate index of the cell. Thus, the x-coordinate faces are labeled from 1

2 to nx + 4 + 1
2 and the

y-coordinate faces are labeled from 1
2 to ny + 4 + 1

2 .
One way to discretize the Euler equations described in equation 1.0.5 is as follows.

Un+1
i,j = Un

i,j −
∆t
∆x

(
F i+ 1

2 ,j − F i− 1
2 ,j

)
− ∆t

∆y

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(2.0.10)

This approach is what is referred to as an unsplit method or algorithm. However, we will choose to use a
split method or algorithm. In a split method, on odd timesteps we will solve the following two equations.

U †i,j = Un
i,j −

∆t
∆x

(
F i+ 1

2 ,j − F i− 1
2 ,j

)
(2.0.11)

Un+1
i,j = U †i,j −

∆t
∆y

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(2.0.12)

On even timesteps, we will solve the following two equations.

U †i,j = Un
i,j −

∆t
∆y

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(2.0.13)

Un+1
i,j = U †i,j −

∆t
∆x

(
F i+ 1

2 ,j − F i− 1
2 ,j

)
(2.0.14)

This approach to a split algorithm where the order of solution in the two spatial coordinates is reversed
every timestep is referred to as Strang splitting [4] and results in a higher formal order of accuracy for the
solution. Note that in equation 2.0.11 F depends on Un while in equation 2.0.12 G depends on U †. In
contrast, in equation 2.0.13 G depends on Un while in equation 2.0.14 F depends on U †.

3 CODEHYDRO CALCULATION FLOW 5

3 CodeHydro Calculation Flow

This section describes the actual flow of the calculation in sufficient detail to serve as a guide for implementing
the CodeHydro algorithm. The flow of the calculation is described from a top down perspective. Because of
the data dependencies, the algorithm would be implemented in a bottom up fashion. More will be said on
this point later.

1. This is the beginning of the computational sweep over cells in the x-coordinate. In this sweep, we will be
solving equation 2.0.11.

For i = 3, ..., nx + 2 and j = 3, ..., ny + 2

U †i,j = Un
i,j −

∆t
∆x

(
F i+ 1

2 ,j − F i− 1
2 ,j

)
(3.0.15)

where U and F were defined above.

2. For the first step, we need U0
i,j , ∆t, ∆x and F . U0

i,j is an initial condition and will be discussed later.
The value of ∆x is determined by user input. The value of ∆t varies according to numerical stability and
accuracy constraints. Its calculation will also be described later. Note that in the next step or item, the
index, i, starts at 2 instead of 3. By allowing the i index to start at 2, values are specified for both F i+ 1

2 ,j

and F i− 1
2 ,j . This is because F i+ 1

2 ,j for i = 2 is also equal to F i− 1
2 ,j for i = 3. So there is no need to add

extra complexity to the description by explicitly providing a formula for F i− 1
2 ,j . We compute these needed

quantities as follows.

For i = 2, ..., nx + 2 and j = 3, ..., ny + 2

FD
i+ 1

2 ,j = QD
i+ 1

2 ,jQ
U
i+ 1

2 ,j (3.0.16)

FU
i+ 1

2 ,j = FD
i+ 1

2 ,jQ
U
i+ 1

2 ,j +QP
i+ 1

2 ,j (3.0.17)

FV
i+ 1

2 ,j = FD
i+ 1

2 ,jQ
V
i+ 1

2 ,j (3.0.18)

FP
i+ 1

2 ,j = QU
i+ 1

2 ,j

{
1

γ − 1
QP

i+ 1
2 ,j +

1
2
QD

i+ 1
2 ,j

[(
QU

i+ 1
2 ,j

)2

+
(
QV

i+ 1
2 ,j

)2
]

+QP
i+ 1

2 ,j

}
(3.0.19)

3. For the previous step, we need values for γ and Q where Q ≡
(
QD, QU , QV , QP

)
. The value of γ is

determined by user input. The value of Q is computed using a Riemann solver as follows.

For i = 2, ..., nx + 2 and j = 3, ..., ny + 2

QD
i+ 1

2 ,j = fi+ 1
2 ,jr

∗
i+ 1

2 ,j +
(

1− fi+ 1
2 ,j

)
ro
i+ 1

2 ,j (3.0.20)

QU
i+ 1

2 ,j = fi+ 1
2 ,ju

∗
i+ 1

2 ,j +
(

1− fi+ 1
2 ,j

)
uo

i+ 1
2 ,j (3.0.21)

QP
i+ 1

2 ,j = fi+ 1
2 ,jp

∗
i+ 1

2 ,j +
(

1− fi+ 1
2 ,j

)
po

i+ 1
2 ,j (3.0.22)

3 CODEHYDRO CALCULATION FLOW 6

if
(
u∗

i+ 1
2 ,j
≥ 0
)

QV
i+ 1

2 ,j = QLV
i+ 1

2 ,j (3.0.23)

else

QV
i+ 1

2 ,j = QRV
i+ 1

2 ,j (3.0.24)

4. For step 3, we need values for f, r∗, ro, u∗, uo, p∗, po, QLV and QRV . We compute these needed quantities
as follows.

For i = 2, ..., nx + 2 and j = 3, ..., ny + 2

wL
i+ 1

2 ,j =
√
cL
i+ 1

2 ,j
(3.0.25)

wR
i+ 1

2 ,j =
√
cR
i+ 1

2 ,j
(3.0.26)

po
i+ 1

2 ,j = max

wR
i+ 1

2 ,j
pL

i+ 1
2 ,j

+ wL
i+ 1

2 ,j
pR

i+ 1
2 ,j

+ wL
i+ 1

2 ,j
wR

i+ 1
2 ,j

(
uL

i+ 1
2 ,j
− uR

i+ 1
2 ,j

)
wL

i+ 1
2 ,j

+ wR
i+ 1

2 ,j

, 0

 (3.0.27)

do i = 1, nr it lim

zL
i+ 1

2 ,j =

[
cLi+ 1

2 ,j

(
1 +

γ + 1
2γ

po
i+ 1

2 ,j
− pL

i+ 1
2 ,j

pL
i+ 1

2 ,j

)]0.5

(3.0.28)

zR
i+ 1

2 ,j =

[
cRi+ 1

2 ,j

(
1 +

γ + 1
2γ

po
i+ 1

2 ,j
− pR

i+ 1
2 ,j

pR
i+ 1

2 ,j

)]0.5

(3.0.29)

qL
i+ 1

2 ,j =
2
(
zL
i+ 1

2 ,j

)3

(
zL
i+ 1

2 ,j

)2

+ cL
i+ 1

2 ,j

(3.0.30)

qR
i+ 1

2 ,j =
2
(
zR
i+ 1

2 ,j

)3

(
zR
i+ 1

2 ,j

)2

+ cR
i+ 1

2 ,j

(3.0.31)

vL
i+ 1

2 ,j = uL
i+ 1

2 ,j −
po

i+ 1
2 ,j
− pL

i+ 1
2 ,j

zL
i+ 1

2 ,j

(3.0.32)

vR
i+ 1

2 ,j = uR
i+ 1

2 ,j +
po

i+ 1
2 ,j
− pR

i+ 1
2 ,j

zR
i+ 1

2 ,j

(3.0.33)

δpi+ 1
2 ,j = max

[
qL
i+ 1

2 ,j
qR
i+ 1

2 ,j

qL
i+ 1

2 ,j
+ qR

i+ 1
2 ,j

(
vL

i+ 1
2 ,j − v

R
i+ 1

2 ,j

)
,−po

i+ 1
2 ,j

]
(3.0.34)

po
i+ 1

2 ,j = po
i+ 1

2 ,j + δpi+ 1
2 ,j (3.0.35)

3 CODEHYDRO CALCULATION FLOW 7

if

(∣∣∣∣∣ δpi+ 1
2 ,j

po
i+ 1

2 ,j
+ rsps

∣∣∣∣∣ ≤ nr tol

)
p∗i+ 1

2 ,j = po
i+ 1

2 ,j (3.0.36)

end do

wL
i+ 1

2 ,j =

[
cLi+ 1

2 ,j

(
1 +

γ + 1
2γ

p∗
i+ 1

2 ,j
− pL

i+ 1
2 ,j

pL
i+ 1

2 ,j

)]0.5

(3.0.37)

wR
i+ 1

2 ,j =

[
cRi+ 1

2 ,j

(
1 +

γ + 1
2γ

p∗
i+ 1

2 ,j
− pR

i+ 1
2 ,j

pR
i+ 1

2 ,j

)]0.5

(3.0.38)

u∗i+ 1
2 ,j =

1
2

[
uL

i+ 1
2 ,j +

pL
i+ 1

2 ,j
− p∗

i+ 1
2 ,j

wL
i+ 1

2 ,j

+ uR
i+ 1

2 ,j −
pR

i+ 1
2 ,j
− p∗

i+ 1
2 ,j

wR
i+ 1

2 ,j

]
(3.0.39)

if
(
u∗

i+ 1
2 ,j

< 0
)

ro
i+ 1

2 ,j = rR
i+ 1

2 ,j (3.0.40)

uo
i+ 1

2 ,j = uR
i+ 1

2 ,j (3.0.41)

po
i+ 1

2 ,j = pR
i+ 1

2 ,j (3.0.42)

wo
i+ 1

2 ,j = wR
i+ 1

2 ,j (3.0.43)

else

ro
i+ 1

2 ,j = rL
i+ 1

2 ,j (3.0.44)

uo
i+ 1

2 ,j = uL
i+ 1

2 ,j (3.0.45)

po
i+ 1

2 ,j = pL
i+ 1

2 ,j (3.0.46)

wo
i+ 1

2 ,j = wL
i+ 1

2 ,j (3.0.47)

coi+ 1
2 ,j = max

cs,
[
abs

(
γpo

i+ 1
2 ,j

ro
i+ 1

2 ,j

)]0.5
 (3.0.48)

r∗i+ 1
2 ,j = max

rs,
ro
i+ 1

2 ,j

1 +
ro

i+ 1
2 ,j

„
po

i+ 1
2 ,j
−p∗

i+ 1
2 ,j

«
„

wo

i+ 1
2 ,j

«2

 (3.0.49)

c∗i+ 1
2 ,j = max

cs,
[
abs

(
γp∗

i+ 1
2 ,j

r∗
i+ 1

2 ,j

)]0.5
 (3.0.50)

3 CODEHYDRO CALCULATION FLOW 8

if
(
u∗

i+ 1
2 ,j

< 0
)

SO
i+ 1

2 ,j = coi+ 1
2 ,j + uo

i+ 1
2 ,j (3.0.51)

SI
i+ 1

2 ,j = c∗i+ 1
2 ,j + u∗i+ 1

2 ,j (3.0.52)

us
i+ 1

2 ,j =
wo

i+ 1
2 ,j

ro
i+ 1

2 ,j

+ uo
i+ 1

2 ,j (3.0.53)

else

SO
i+ 1

2 ,j = coi+ 1
2 ,j − u

o
i+ 1

2 ,j (3.0.54)

SI
i+ 1

2 ,j = c∗i+ 1
2 ,j − u

∗
i+ 1

2 ,j (3.0.55)

us
i+ 1

2 ,j =
wo

i+ 1
2 ,j

ro
i+ 1

2 ,j

− uo
i+ 1

2 ,j (3.0.56)

if
(
p∗

i+ 1
2 ,j
≥ po

i+ 1
2 ,j

)
SO

i+ 1
2 ,j = us

i+ 1
2 ,j (3.0.57)

SI
i+ 1

2 ,j = us
i+ 1

2 ,j (3.0.58)

Scr
i+ 1

2 ,j = max
[
SO

i+ 1
2 ,j − S

I
i+ 1

2 ,j , cs + abs
(
SO

i+ 1
2 ,j + SI

i+ 1
2 ,j

)]
(3.0.59)

fi+ 1
2 ,j = max

{
0, min

[
1,

1
2

(
1 +

SO
i+ 1

2 ,j
+ SI

i+ 1
2 ,j

Scr
i+ 1

2 ,j

)]}
(3.0.60)

if
(
SO

i+ 1
2 ,j

< 0
)
fi+ 1

2 ,j = 0.0 (3.0.61)

if
(
SI

i+ 1
2 ,j

> 0
)
fi+ 1

2 ,j = 1.0 (3.0.62)

5. For step 4, we need values for cL, cR, pL, pR, uL, uR, rL, rR, rs, ps, cs, nr it lim and nr tol. We also still
need values for QLV and QRV for step 3. The values of rs, cs, nr it lim and nr tol are determined from
user input. We compute the remaining needed quantities as follows.

For i = 2, ..., nx + 2 and j = 3, ..., ny + 2

ps =
c2s
γ

(3.0.63)

3 CODEHYDRO CALCULATION FLOW 9

rL
i+ 1

2 ,j = max
(
rs, Q

LD
i+ 1

2 ,j

)
(3.0.64)

uL
i+ 1

2 ,j = QLU
i+ 1

2 ,j (3.0.65)

pL
i+ 1

2 ,j = max
(
psr

L
i+ 1

2 ,j , Q
LP
i+ 1

2 ,j

)
(3.0.66)

cLi+ 1
2 ,j = γpL

i+ 1
2 ,jr

L
i+ 1

2 ,j (3.0.67)

rR
i+ 1

2 ,j = max
(
rs, Q

RD
i+ 1

2 ,j

)
(3.0.68)

uR
i+ 1

2 ,j = QRU
i+ 1

2 ,j (3.0.69)

pR
i+ 1

2 ,j = max
(
psr

R
i+ 1

2 ,j , Q
RP
i+ 1

2 ,j

)
(3.0.70)

cRi+ 1
2 ,j = γpR

i+ 1
2 ,jr

R
i+ 1

2 ,j (3.0.71)

6. For step 5, we need values for QLD, QLU , QLP , QRD, QRU and QRP . We also still need values for QLV

and QRV for step 3. We compute these needed quantities as follows.

For i = 2, ..., nx + 3 and j = 3, ..., ny + 2

QLD
i+ 1

2 ,j = QmD
i,j (3.0.72)

QLU
i+ 1

2 ,j = QmU
i,j (3.0.73)

QLV
i+ 1

2 ,j = QmV
i,j (3.0.74)

QLP
i+ 1

2 ,j = QmP
i,j (3.0.75)

QRD
i+ 1

2 ,j = QpD
i+1,j (3.0.76)

QRU
i+ 1

2 ,j = QpU
i+1,j (3.0.77)

QRV
i+ 1

2 ,j = QpV
i+1,j (3.0.78)

QRP
i+ 1

2 ,j = QpP
i+1,j (3.0.79)

7. For step 6, we need values for QmD, QmU , QmV , QmP , QpD, QpU , QpV and QpP . These are cell centered
variables. We compute these needed quantities as follows.

For i = 2, ..., nx + 3 and j = 3, ..., ny + 2

QmD
i,j = qD

i,j − 0.5
(
SLp

i,j α
p
i,j + SLm

i,j α
m
i,j + SL0

i,j α
0r
i,j

)
(3.0.80)

QmU
i,j = qU

i,j − 0.5
(
SLp

i,j α
p
i,j − S

Lm
i,j α

m
i,j

) ci,j
qD
i,j

(3.0.81)

QmV
i,j = qV

i,j − 0.5SL0
i,j α

0v
i,j (3.0.82)

QmP
i,j = qP

i,j − 0.5
(
SLp

i,j α
p
i,j + SLm

i,j α
m
i,j

)
c2i,j (3.0.83)

3 CODEHYDRO CALCULATION FLOW 10

QpD
i,j = qD

i,j − 0.5
(
SRp

i,j α
p
i,j + SRm

i,j αm
i,j + SR0

i,j α
0r
i,j

)
(3.0.84)

QpU
i,j = qU

i,j − 0.5
(
SRp

i,j α
p
i,j − S

Rm
i,j αm

i,j

) ci,j
qD
i,j

(3.0.85)

QpV
i,j = qV

i,j − 0.5SR0
i,j α

0v
i,j (3.0.86)

QpP
i,j = qP

i,j − 0.5
(
SRp

i,j α
p
i,j + SRm

i,j αm
i,j

)
c2i,j (3.0.87)

if
(
qU
i,j − ci,j ≤ ZL

)
SLm

i,j = −β (3.0.88)

else

SLm
i,j =

(
qU
i,j − ci,j

) ∆t
∆x
− 1.0 (3.0.89)

if
(
qU
i,j + ci,j ≤ ZL

)
SLp

i,j = −β (3.0.90)

else

SLp
i,j =

(
qU
i,j + ci,j

) ∆t
∆x
− 1.0 (3.0.91)

if
(
qU
i,j ≤ ZL

)
SL0

i,j = −β (3.0.92)

else

SL0
i,j = qU

i,j

∆t
∆x
− 1.0 (3.0.93)

if
(
qU
i,j − ci,j ≥ ZR

)
SRm

i,j = β (3.0.94)

else

SRm
i,j =

(
qU
i,j − ci,j

) ∆t
∆x

+ 1.0 (3.0.95)

if
(
qU
i,j + ci,j ≥ ZR

)
SRp

i,j = β (3.0.96)

else

SRp
i,j =

(
qU
i,j + ci,j

) ∆t
∆x

+ 1.0 (3.0.97)

if
(
qU
i,j ≤ ZR

)
SR0

i,j = β (3.0.98)

else

SR0
i,j = qU

i,j

∆t
∆x

+ 1.0 (3.0.99)

3 CODEHYDRO CALCULATION FLOW 11

αm
i,j = 0.5

(
δqP

i,j

qD
i,jci,j

− δqU
i,j

)
qD
i,j

ci,j
(3.0.100)

αp
i,j = 0.5

(
δqP

i,j

qD
i,jci,j

+ δqU
i,j

)
qD
i,j

ci,j
(3.0.101)

α0r
i,j = δqD

i,j −
δqP

i,j

c2i,j
(3.0.102)

α0v
i,j = δqV

i,j (3.0.103)

if (scheme = muscl)

zL = −100
∆x
∆t

(3.0.104)

zR = 100
∆x
∆t

(3.0.105)

β = 1.0 (3.0.106)
else if (scheme = plmde)

zL = 0.0 (3.0.107)
zR = 0.0 (3.0.108)
β = 1.0 (3.0.109)

else if (scheme = collela)
zL = 0.0 (3.0.110)
zR = 0.0 (3.0.111)
β = 0.0 (3.0.112)

if (order = 1)

δqD
ij = 0 (3.0.113)

δqU
ij = 0 (3.0.114)

δqV
ij = 0 (3.0.115)

δqP
ij = 0 (3.0.116)

else

if
(
dLD

ij dRD
ij ≤ 0

)
δqD

ij = 0 (3.0.117)

else

δqD
ij = εDmin

{
min

[
|dLD

ij |, |dRD
ij |

]
, |dCD

ij |
}

(3.0.118)

if
(
dLU

ij dRU
ij ≤ 0

)
δqU

ij = 0 (3.0.119)

else

δqU
ij = εUmin

{
min

[
|dLU

ij |, |dRU
ij |
]
, |dCU

ij |
}

(3.0.120)

3 CODEHYDRO CALCULATION FLOW 12

if
(
dLV

ij dRV
ij ≤ 0

)
δqV

ij = 0 (3.0.121)

else

δqV
ij = εV min

{
min

[
|dLV

ij |, |dRV
ij |
]
, |dCV

ij |
}

(3.0.122)

if
(
dLP

ij dRP
ij ≤ 0

)
δqP

ij = 0 (3.0.123)

else

δqP
ij = εP min

{
min

[
|dLP

ij |, |dRP
ij |
]
, |dCP

ij |
}

(3.0.124)

if
(
dCD

ij ≥ 0
)

εD = 1.0 (3.0.125)
else

εD = −1.0 (3.0.126)

if
(
dCU

ij ≥ 0
)

εU = 1.0 (3.0.127)
else

εU = −1.0 (3.0.128)

if
(
dCV

ij ≥ 0
)

εV = 1.0 (3.0.129)
else

εV = −1.0 (3.0.130)

if
(
dCP

ij ≥ 0
)

εP = 1.0 (3.0.131)
else

εP = −1.0 (3.0.132)

dCD
ij = 0.5

(
qD
i+1,j − qD

i−1,j

)
(3.0.133)

dCU
ij = 0.5

(
qU
i+1,j − qU

i−1,j

)
(3.0.134)

dCV
ij = 0.5

(
qV
i+1,j − qV

i−1,j

)
(3.0.135)

dCP
ij = 0.5

(
qP
i+1,j − qP

i−1,j

)
(3.0.136)

dLD
ij = Ts

(
qD
ij − qD

i−1,j

)
(3.0.137)

dLU
ij = Ts

(
qU
ij − qU

i−1,j

)
(3.0.138)

dLV
ij = Ts

(
qV
ij − qV

i−1,j

)
(3.0.139)

dLP
ij = Ts

(
qP
ij − qP

i−1,j

)
(3.0.140)

3 CODEHYDRO CALCULATION FLOW 13

dRD
ij = Ts

(
qD
i+1,j − qD

ij

)
(3.0.141)

dRU
ij = Ts

(
qU
i+1,j − qU

ij

)
(3.0.142)

dRV
ij = Ts

(
qV
i+1,j − qV

ij

)
(3.0.143)

dRP
ij = Ts

(
qP
i+1,j − qP

ij

)
(3.0.144)

8. For step 7, we need values for qD, qU , qV , qP , c, Ts, scheme and order. Ts, scheme and order are input
parameters. The remaining values above are cell centered values. Also note that we need values for qD, qU , qV

and qV over a larger range of values of the i index. Note that the values for q are the primitive variables
described in Section 1. The conversion from conservative variables to primitive variables is accomplished as
follows.

For i = 1, ..., nx + 4 and j = 3, ..., ny + 2

qD
ij = max

(
rs, U

nD
ij

)
(3.0.145)

qU
ij =

UnU
ij

qD
ij

(3.0.146)

qV
ij =

UnV
ij

qD
ij

(3.0.147)

qP
ij = max

[
Psq

D
ij , (γ − 1) qD

ij eij

]
(3.0.148)

cij =

(
γqP

ij

qD
ij

)0.5

(3.0.149)

eij =
UnP

ij

qD
ij

− 0.5
[(
qU
ij

)2
+
(
qU
ij

)2]
(3.0.150)

Ps =
c2s
γ

(3.0.151)

9. At this point everything has been specified to allow the calculation to proceed except for the following
three considerations. First, the values of U0D

ij , U0U
ij , U0V

ij and U0P
ij need to be specified for i = 3, ..., nx + 2

and j = 3, ..., ny + 2. These are the initial conditions. Second, we need values of UnD
ij , UnU

ij , UnV
ij and UnP

ij

for the values of i = 1, 2, nx + 3, nx + 4 and j = 3, ..., ny + 2. These are the boundary conditions in the
x-coordinate. Finally, we need to know how to compute the value of the time step. First, we will specify
how to compute the value of the time step.

10. For the calculation specified so far, it remains to specify how to compute the time step, ∆t. The timestep
is computed from a Courant limit that is based on the sound speed and fluid velocity in each coordinate
direction. It is computed as follows at the beginning of a timestep.

3 CODEHYDRO CALCULATION FLOW 14

if n = 0 (3.0.152)

∆t = 0.5
Cfmin (∆x,∆y)
max (Cx, Cy, cs)

(3.0.153)

else (3.0.154)

∆t =
Cfmin (∆x,∆y)
max (Cx, Cy, cs)

(3.0.155)

where Cf , cs and ∆x are input parameters and n labels the last timestep. When n = 0, we are at the
beginning of the simulation and the state of the previous timestep is represented by the initial conditions.
Note that there is a single value of the timestep, ∆t, which is used for every cell location and for the mesh
sweep in each of the two coordinates. The timestep is only computed after completion of the pass in each of
the two coordinates.

For i = 3, ..., nx + 2 and j = 3, ..., ny + 2

Cx = maxval
(
Cij + |qU

ij |
)

(3.0.156)

Cy = maxval
(
Cij + |qV

ij |
)

(3.0.157)

Cij =

(
γqP

ij

qD
ij

)0.5

(3.0.158)

qD
ij = max

(
rs, U

nD
ij

)
(3.0.159)

qU
ij =

UnU
ij

qD
ij

(3.0.160)

qV
ij =

UnV
ij

qD
ij

(3.0.161)

qP
ij = max

[
Psq

D
ij , (γ − 1) qD

ij eij

]
(3.0.162)

eij =
UnP

ij

qD
ij

− 0.5
[(
qU
ij

)2
+
(
qV
ij

)2]
(3.0.163)

Ps =
c2s
γ

(3.0.164)

11. A variety of boundary conditions can be supported but three will be provided in this specification. Using
the indexing scheme adopted for this specification, these three types of boundary conditions are specified
as follows where bc left is an input variable that selects the boundary condition for the left boundary and
bc right is an input variable that selects the boundary condition for the right boundary.

3 CODEHYDRO CALCULATION FLOW 15

For i = 1, 2 and j = 3, ..., ny + 2

if (bc left = 1)

UnD
ij = UnD

5−i,j (3.0.165)

UnU
ij = −UnU

5−i,j (3.0.166)

UnV
ij = UnV

5−i,j (3.0.167)

UnP
ij = UnP

5−i,j (3.0.168)

else if (bc left = 2)

UnD
ij = UnD

3,j (3.0.169)

UnU
ij = UnU

3,j (3.0.170)

UnV
ij = UnV

3,j (3.0.171)

UnP
ij = UnP

3,j (3.0.172)

else if (bc left = 3)

UnD
ij = UnD

nx+i,j (3.0.173)

UnU
ij = −UnU

nx+i,j (3.0.174)

UnV
ij = UnV

nx+i,j (3.0.175)

UnP
ij = UnP

nx+i,j (3.0.176)

For i = nx + 3, nx + 4 and j = 3, ..., ny + 2

if (bc right = 1)

UnD
ij = UnD

2nx+5−i,j (3.0.177)

UnU
ij = −UnU

2nx+5−i,j (3.0.178)

UnV
ij = UnV

2nx+5−i,j (3.0.179)

UnP
ij = UnP

2nx+5−i,j (3.0.180)

else if (bc right = 2)

UnD
ij = UnD

nx+2,j (3.0.181)

UnU
ij = UnU

nx+2,j (3.0.182)

UnV
ij = UnV

nx+2,j (3.0.183)

UnP
ij = UnP

nx+2,j (3.0.184)

else if (bc right = 3)

UnD
ij = UnD

i−nx,j (3.0.185)

UnU
ij = −UnU

i−nx,j (3.0.186)

UnV
ij = UnV

i−nx,j (3.0.187)

UnP
ij = UnP

i−nx,j (3.0.188)

3 CODEHYDRO CALCULATION FLOW 16

12. Finally, in order to begin a calculation, initial values must be specified for U0D
ij , U0U

ij , U0V
ij and U0P

ij

for i = 3, ..., nx + 2 and j = 3, ..., n + y + 2. The initial conditions and boundary conditions determine
which problem is being modeled. Note that the initial conditions are only applied once at the beginning of a
simulation in contrast to the boundary conditions which are applied at the beginning of each pass or sweep
of the mesh in a coordinate direction. Three different sets of initial conditions are specified.

For i = 3, ..., nx + 2 and j = 3, ..., ny + 2

if (problem = jet)

U0D
ij = 1.0 (3.0.189)

U0U
ij = 0.0 (3.0.190)

U0V
ij = 0.0 (3.0.191)

U0P
ij =

1
γ − 1

(3.0.192)

else if (problem = point explosion)

U0D
ij = 1.0 (3.0.193)

U0U
ij = 0.0 (3.0.194)

U0V
ij = 0.0 (3.0.195)

U0P
ij = 1.0e− 5 (3.0.196)

U0P
ie,je

=
1

∆x∆y
(3.0.197)

else if (problem = sod)
if (i < nx/2 + 3)

U0D
ij = 1.0 (3.0.198)

U0U
ij = 0.0 (3.0.199)

U0V
ij = 0.0 (3.0.200)

U0P
ij =

1
γ − 1

(3.0.201)

else

U0D
ij = 0.125 (3.0.202)

U0U
ij = 0.0 (3.0.203)

U0V
ij = 0.0 (3.0.204)

U0P
ij =

0.1
γ − 1

(3.0.205)

13. This is the beginning of the computational sweep over cells in the y-coordinate. In this sweep, we will
be solving equation 2.0.12. Note as mentioned earlier that G depends on U † and that boundary conditions
will get applied to U †.

For i = 3, ..., nx + 2 and j = 3, ..., ny + 2

Un+1
i,j = U †i,j −

∆t
∆y

(
Gi,j+ 1

2
−Gi,j− 1

2

)
(3.0.206)

where U and G were defined above.

3 CODEHYDRO CALCULATION FLOW 17

14. For this first step, we need U †i,j , ∆t, ∆y and G. U †i,j is the value of U at the end of the sweep in
the previous direction. The value of ∆y is determined by user input. The value of ∆t varies according
to numerical stability and accuracy constraints. It was calculated in step 10 above. Note that we are now
referencing face centered quantities in the j index since we are doing a sweep of the mesh in the y-coordinate.
We compute these needed quantities as follows.

For i = 3, ..., nx + 2 and j = 2, ..., ny + 2

GD
i,j+ 1

2
= QD

i,j+ 1
2
QU

i,j+ 1
2

(3.0.207)

GU
i,j+ 1

2
= GD

i,j+ 1
2
QU

i,j+ 1
2

+QP
i,j+ 1

2
(3.0.208)

GV
i,j+ 1

2
= GD

i,j+ 1
2
QV

i,j+ 1
2

(3.0.209)

GP
i,j+ 1

2
= QU

i,j+ 1
2

{
1

γ − 1
QP

i,j+ 1
2

+
1
2
QD

i,j+ 1
2

[(
QU

i,j+ 1
2

)2

+
(
QV

i,j+ 1
2

)2
]

+QP
i,j+ 1

2

}
(3.0.210)

15. For the previous step, we need values for γ and Q where Q ≡
(
QD, QU , QV , QP

)
. The value of γ is

determined by user input. The value of Q is computed using a Riemann solver as follows. Note that it is
now j, the index for the y-coordinate, that begins at 2 rather than i, the index for the x-coordinate.

For i = 3, ..., nx + 2 and j = 2, ..., ny + 2

QD
i,j+ 1

2
= fi,j+ 1

2
r∗i,j+ 1

2
+
(

1− fi,j+ 1
2

)
ro
i,j+ 1

2
(3.0.211)

QU
i,j+ 1

2
= fi,j+ 1

2
u∗i,j+ 1

2
+
(

1− fi,j+ 1
2

)
uo

i,j+ 1
2

(3.0.212)

QP
i,j+ 1

2
= fi,j+ 1

2
p∗i,j+ 1

2
+
(

1− fi,j+ 1
2

)
po

i,j+ 1
2

(3.0.213)

if
(
u∗

i,j+ 1
2
≥ 0
)

QV
i,j+ 1

2
= QLV

i,j+ 1
2

(3.0.214)

else

QV
i,j+ 1

2
= QRV

i,j+ 1
2

(3.0.215)

16. For step 15, we need values for f, r∗, ro, u∗, uo, p∗, po, QLV and QRV . We compute these needed quantities
as follows.

3 CODEHYDRO CALCULATION FLOW 18

For i = 3, ..., nx + 2 and j = 2, ..., ny + 2

wL
i,j+ 1

2
=
√
cL
i,j+ 1

2
(3.0.216)

wR
i,j+ 1

2
=
√
cR
i,j+ 1

2
(3.0.217)

po
i,j+ 1

2
= max

wR
i,j+ 1

2
pL

i,j+ 1
2

+ wL
i,j+ 1

2
pR

i,j+ 1
2

+ wL
i,j+ 1

2
wR

i,j+ 1
2

(
uL

i,j+ 1
2
− uR

i,j+ 1
2

)
wL

i,j+ 1
2

+ wR
i,j+ 1

2

, 0

 (3.0.218)

do i = 1, nr it lim

zL
i,j+ 1

2
=

[
cLi,j+ 1

2

(
1 +

γ + 1
2γ

po
i,j+ 1

2
− pL

i,j+ 1
2

pL
i,j+ 1

2

)]0.5

(3.0.219)

zR
i,j+ 1

2
=

[
cRi,j+ 1

2

(
1 +

γ + 1
2γ

po
i,j+ 1

2
− pR

i,j+ 1
2

pR
i,j+ 1

2

)]0.5

(3.0.220)

qL
i,j+ 1

2
=

2
(
zL
i,j+ 1

2

)3

(
zL
i,j+ 1

2

)2

+ cL
i,j+ 1

2

(3.0.221)

qR
i,j+ 1

2
=

2
(
zR
i,j+ 1

2

)3

(
zR
i,j+ 1

2

)2

+ cR
i,j+ 1

2

(3.0.222)

vL
i,j+ 1

2
= uL

i,j+ 1
2
−
po

i,j+ 1
2
− pL

i,j+ 1
2

zL
i,j+ 1

2

(3.0.223)

vR
i,j+ 1

2
= uR

i,j+ 1
2

+
po

i,j+ 1
2
− pR

i,j+ 1
2

zR
i,j+ 1

2

(3.0.224)

δpi,j+ 1
2

= max

[
qL
i,j+ 1

2
qR
i,j+ 1

2

qL
i,j+ 1

2
+ qR

i,j+ 1
2

(
vL

i,j+ 1
2
− vR

i,j+ 1
2

)
,−po

i,j+ 1
2

]
(3.0.225)

po
i,j+ 1

2
= po

i,j+ 1
2

+ δpi,j+ 1
2

(3.0.226)

if

(∣∣∣∣∣ δpi,j+ 1
2

po
i,j+ 1

2
+ rsps

∣∣∣∣∣ ≤ nr tol

)
p∗i,j+ 1

2
= po

i,j+ 1
2

(3.0.227)

end do

wL
i,j+ 1

2
=

[
cLi,j+ 1

2

(
1 +

γ + 1
2γ

p∗
i,j+ 1

2
− pL

i,j+ 1
2

pL
i,j+ 1

2

)]0.5

(3.0.228)

wR
i,j+ 1

2
=

[
cRi,j+ 1

2

(
1 +

γ + 1
2γ

p∗
i,j+ 1

2
− pR

i,j+ 1
2

pR
i,j+ 1

2

)]0.5

(3.0.229)

u∗i,j+ 1
2

=
1
2

[
uL

i,j+ 1
2

+
pL

i,j+ 1
2
− p∗

i,j+ 1
2

wL
i,j+ 1

2

+ uR
i,j+ 1

2
−
pR

i,j+ 1
2
− p∗

i,j+ 1
2

wR
i,j+ 1

2

]
(3.0.230)

3 CODEHYDRO CALCULATION FLOW 19

if
(
u∗

i,j+ 1
2
< 0
)

ro
i,j+ 1

2
= rR

i,j+ 1
2

(3.0.231)

uo
i,j+ 1

2
= uR

i,j+ 1
2

(3.0.232)

po
i,j+ 1

2
= pR

i,j+ 1
2

(3.0.233)

wo
i,j+ 1

2
= wR

i,j+ 1
2

(3.0.234)

else

ro
i,j+ 1

2
= rL

i,j+ 1
2

(3.0.235)

uo
i,j+ 1

2
= uL

i,j+ 1
2

(3.0.236)

po
i,j+ 1

2
= pL

i,j+ 1
2

(3.0.237)

wo
i,j+ 1

2
= wL

i,j+ 1
2

(3.0.238)

coi,j+ 1
2

= max

cs,
[
abs

(
γpo

i,j+ 1
2

ro
i,j+ 1

2

)]0.5
 (3.0.239)

r∗i,j+ 1
2

= max

rs,
ro
i,j+ 1

2

1 +
ro

i,j+ 1
2

„
po

i,j+ 1
2
−p∗

i,j+ 1
2

«
„

wo

i,j+ 1
2

«2

 (3.0.240)

c∗i,j+ 1
2

= max

cs,
[
abs

(
γp∗

i,j+ 1
2

r∗
i,j+ 1

2

)]0.5
 (3.0.241)

if
(
u∗

i,j+ 1
2
< 0
)

SO
i,j+ 1

2
= coi,j+ 1

2
+ uo

i,j+ 1
2

(3.0.242)

SI
i,j+ 1

2
= c∗i,j+ 1

2
+ u∗i,j+ 1

2
(3.0.243)

us
i,j+ 1

2
=
wo

i,j+ 1
2

ro
i,j+ 1

2

+ uo
i,j+ 1

2
(3.0.244)

else

SO
i,j+ 1

2
= coi,j+ 1

2
− uo

i,j+ 1
2

(3.0.245)

SI
i,j+ 1

2
= c∗i,j+ 1

2
− u∗i,j+ 1

2
(3.0.246)

us
i,j+ 1

2
=
wo

i,j+ 1
2

ro
i,j+ 1

2

− uo
i,j+ 1

2
(3.0.247)

3 CODEHYDRO CALCULATION FLOW 20

if
(
p∗

i,j+ 1
2
≥ po

i,j+ 1
2

)
SO

i,j+ 1
2

= us
i,j+ 1

2
(3.0.248)

SI
i,j+ 1

2
= us

i,j+ 1
2

(3.0.249)

Scr
i,j+ 1

2
= max

[
SO

i,j+ 1
2
− SI

i,j+ 1
2
, cs + abs

(
SO

i,j+ 1
2

+ SI
i,j+ 1

2

)]
(3.0.250)

fi,j+ 1
2

= max

{
0, min

[
1,

1
2

(
1 +

SO
i,j+ 1

2
+ SI

i,j+ 1
2

Scr
i,j+ 1

2

)]}
(3.0.251)

if
(
SO

i,j+ 1
2
< 0
)
fi,j+ 1

2
= 0.0 (3.0.252)

if
(
SI

i,j+ 1
2
> 0
)
fi,j+ 1

2
= 1.0 (3.0.253)

17. For step 16, we need values for cL, cR, pL, pR, uL, uR, rL, rR and ps. We also still need values for QLV

and QRV for step 15. We compute these needed quantities as follows.

For i = 3, ..., nx + 2 and j = 2, ..., ny + 2

ps =
c2s
γ

(3.0.254)

rL
i,j+ 1

2
= max

(
rs, Q

LD
i,j+ 1

2

)
(3.0.255)

uL
i,j+ 1

2
= QLU

i,j+ 1
2

(3.0.256)

pL
i,j+ 1

2
= max

(
psr

L
i,j+ 1

2
, QLP

i,j+ 1
2

)
(3.0.257)

cLi,j+ 1
2

= γpL
i,j+ 1

2
rL
i,j+ 1

2
(3.0.258)

rR
i,j+ 1

2
= max

(
rs, Q

RD
i,j+ 1

2

)
(3.0.259)

uR
i,j+ 1

2
= QRU

i,j+ 1
2

(3.0.260)

pR
i,j+ 1

2
= max

(
psr

R
i,j+ 1

2
, QRP

i,j+ 1
2

)
(3.0.261)

cRi,j+ 1
2

= γpR
i,j+ 1

2
rR
i,j+ 1

2
(3.0.262)

18. For step 17, we need values for QLD, QLU , QLP , QRD, QRU and QRP . We also still need values for QLV

and QRV for step 15. We compute these needed quantities as follows.

3 CODEHYDRO CALCULATION FLOW 21

For i = 3, ..., nx + 3 and j = 2, ..., ny + 2

QLD
i,j+ 1

2
= QmD

i,j (3.0.263)

QLU
i,j+ 1

2
= QmU

i,j (3.0.264)

QLV
i,j+ 1

2
= QmV

i,j (3.0.265)

QLP
i,j+ 1

2
= QmP

i,j (3.0.266)

QRD
i,j+ 1

2
= QpD

i+1,j (3.0.267)

QRU
i,j+ 1

2
= QpU

i+1,j (3.0.268)

QRV
i,j+ 1

2
= QpV

i+1,j (3.0.269)

QRP
i,j+ 1

2
= QpP

i+1,j (3.0.270)

19. For step 18, we need values for QmD, QmU , QmV , QmP , QpD, QpU , QpV and QpP . These are cell centered
variables. We compute these needed quantities as follows.

For i = 3, ..., nx + 3 and j = 2, ..., ny + 2

QmD
i,j = qD

i,j − 0.5
(
SLp

i,j α
p
i,j + SLm

i,j α
m
i,j + SL0

i,j α
0r
i,j

)
(3.0.271)

QmU
i,j = qU

i,j − 0.5
(
SLp

i,j α
p
i,j − S

Lm
i,j α

m
i,j

) ci,j
qD
i,j

(3.0.272)

QmV
i,j = qV

i,j − 0.5SL0
i,j α

0v
i,j (3.0.273)

QmP
i,j = qP

i,j − 0.5
(
SLp

i,j α
p
i,j + SLm

i,j α
m
i,j

)
c2i,j (3.0.274)

QpD
i,j = qD

i,j − 0.5
(
SRp

i,j α
p
i,j + SRm

i,j αm
i,j + SR0

i,j α
0r
i,j

)
(3.0.275)

QpU
i,j = qU

i,j − 0.5
(
SRp

i,j α
p
i,j − S

Rm
i,j αm

i,j

) ci,j
qD
i,j

(3.0.276)

QpV
i,j = qV

i,j − 0.5SR0
i,j α

0v
i,j (3.0.277)

QpP
i,j = qP

i,j − 0.5
(
SRp

i,j α
p
i,j + SRm

i,j αm
i,j

)
c2i,j (3.0.278)

if
(
qU
i,j − ci,j ≤ ZL

)
SLm

i,j = −β (3.0.279)

else

SLm
i,j =

(
qU
i,j − ci,j

) ∆t
∆y
− 1.0 (3.0.280)

3 CODEHYDRO CALCULATION FLOW 22

if
(
qU
i,j + ci,j ≤ ZL

)
SLp

i,j = −β (3.0.281)

else

SLp
i,j =

(
qU
i,j + ci,j

) ∆t
∆y
− 1.0 (3.0.282)

if
(
qU
i,j ≤ ZL

)
SL0

i,j = −β (3.0.283)

else

SL0
i,j = qU

i,j

∆t
∆y
− 1.0 (3.0.284)

if
(
qU
i,j − ci,j ≥ ZR

)
SRm

i,j = β (3.0.285)

else

SRm
i,j =

(
qU
i,j − ci,j

) ∆t
∆y

+ 1.0 (3.0.286)

if
(
qU
i,j + ci,j ≥ ZR

)
SRp

i,j = β (3.0.287)

else

SRp
i,j =

(
qU
i,j + ci,j

) ∆t
∆y

+ 1.0 (3.0.288)

if
(
qU
i,j ≤ ZR

)
SR0

i,j = β (3.0.289)

else

SR0
i,j = qU

i,j

∆t
∆y

+ 1.0 (3.0.290)

αm
i,j = 0.5

(
δqP

i,j

qD
i,jci,j

− δqU
i,j

)
qD
i,j

ci,j
(3.0.291)

αp
i,j = 0.5

(
δqP

i,j

qD
i,jci,j

+ δqU
i,j

)
qD
i,j

ci,j
(3.0.292)

α0r
i,j = δqD

i,j −
δqP

i,j

c2i,j
(3.0.293)

α0v
i,j = δqV

i,j (3.0.294)

3 CODEHYDRO CALCULATION FLOW 23

if (scheme = muscl)

zL = −100
∆y
∆t

(3.0.295)

zR = 100
∆y
∆t

(3.0.296)

β = 1.0 (3.0.297)
else if (scheme = plmde)

zL = 0.0 (3.0.298)
zR = 0.0 (3.0.299)
β = 1.0 (3.0.300)

else if (scheme = collela)
zL = 0.0 (3.0.301)
zR = 0.0 (3.0.302)
β = 0.0 (3.0.303)

if (order = 1)

δqD
ij = 0 (3.0.304)

δqU
ij = 0 (3.0.305)

δqV
ij = 0 (3.0.306)

δqP
ij = 0 (3.0.307)

else

if
(
dLD

ij dRD
ij ≤ 0

)
δqD

ij = 0 (3.0.308)

else

δqD
ij = εDmin

{
min

[
|dLD

ij |, |dRD
ij |

]
, |dCD

ij |
}

(3.0.309)

if
(
dLU

ij dRU
ij ≤ 0

)
δqU

ij = 0 (3.0.310)

else

δqU
ij = εUmin

{
min

[
|dLU

ij |, |dRU
ij |
]
, |dCU

ij |
}

(3.0.311)

if
(
dLV

ij dRV
ij ≤ 0

)
δqV

ij = 0 (3.0.312)

else

δqV
ij = εV min

{
min

[
|dLV

ij |, |dRV
ij |
]
, |dCV

ij |
}

(3.0.313)

3 CODEHYDRO CALCULATION FLOW 24

if
(
dLP

ij dRP
ij ≤ 0

)
δqP

ij = 0 (3.0.314)

else

δqP
ij = εP min

{
min

[
|dLP

ij |, |dRP
ij |
]
, |dCP

ij |
}

(3.0.315)

if
(
dCD

ij ≥ 0
)

εD = 1.0 (3.0.316)
else

εD = −1.0 (3.0.317)

if
(
dCU

ij ≥ 0
)

εU = 1.0 (3.0.318)
else

εU = −1.0 (3.0.319)

if
(
dCV

ij ≥ 0
)

εV = 1.0 (3.0.320)
else

εV = −1.0 (3.0.321)

if
(
dCP

ij ≥ 0
)

εP = 1.0 (3.0.322)
else

εP = −1.0 (3.0.323)

dCD
ij = 0.5

(
qD
i+1,j − qD

i−1,j

)
(3.0.324)

dCU
ij = 0.5

(
qU
i+1,j − qU

i−1,j

)
(3.0.325)

dCV
ij = 0.5

(
qV
i+1,j − qV

i−1,j

)
(3.0.326)

dCP
ij = 0.5

(
qP
i+1,j − qP

i−1,j

)
(3.0.327)

dLD
ij = Ts

(
qD
ij − qD

i−1,j

)
(3.0.328)

dLU
ij = Ts

(
qU
ij − qU

i−1,j

)
(3.0.329)

dLV
ij = Ts

(
qV
ij − qV

i−1,j

)
(3.0.330)

dLP
ij = Ts

(
qP
ij − qP

i−1,j

)
(3.0.331)

dRD
ij = Ts

(
qD
i+1,j − qD

ij

)
(3.0.332)

dRU
ij = Ts

(
qU
i+1,j − qU

ij

)
(3.0.333)

dRV
ij = Ts

(
qV
i+1,j − qV

ij

)
(3.0.334)

dRP
ij = Ts

(
qP
i+1,j − qP

ij

)
(3.0.335)

3 CODEHYDRO CALCULATION FLOW 25

20. For step 19, we need values for qD, qU , qV , qP , c and Ts. Ts is an input parameter. The remaining values
above are cell centered values. Also note that we need values for qD, qU , qV and qV over a larger range of
values of the j index. Note that the values for q are the primitive variables described in Section 1. The
conversion from conservative variables to primitive variables is accomplished as follows.

For i = 3, ..., nx + 2 and j = 1, ..., ny + 4

qD
ij = max

(
rs, U

nD
ij

)
(3.0.336)

qU
ij =

UnU
ij

qD
ij

(3.0.337)

qV
ij =

UnV
ij

qD
ij

(3.0.338)

qP
ij = max

[
Psq

D
ij , (γ − 1) qD

ij eij

]
(3.0.339)

cij =

(
γqP

ij

qD
ij

)0.5

(3.0.340)

eij =
UnP

ij

qD
ij

− 0.5
[(
qU
ij

)2
+
(
qU
ij

)2]
(3.0.341)

Ps =
c2s
γ

(3.0.342)

21. At this point everything has been specified to allow the calculation to proceed except for the boundary
conditions. We need values of U†ij , U

†
ij , U

†
ij and U†ij for the values of j = 1, 2, ny +3, ny +4 and i = 3, ..., nx +2.

These are the boundary conditions in the y-coordinate. A variety of boundary conditions can be supported
but the same three will be provided in this specification as for the x-coordinate. Using the indexing scheme
adopted for this specification, these three types of boundary conditions are specified as follows.

For j = 1, 2 and i = 3, ..., nx + 2

if (bc bottom = 1)

UnD
ij = UnD

i,5−j (3.0.343)

UnU
ij = −UnU

i,5−j (3.0.344)

UnV
ij = UnV

i,5−j (3.0.345)

UnP
ij = UnP

i,5−j (3.0.346)

else if (bc bottom = 2)

UnD
ij = UnD

i,3 (3.0.347)

UnU
ij = UnU

i,3 (3.0.348)

UnV
ij = UnV

i,3 (3.0.349)

UnP
ij = UnP

i,3 (3.0.350)

(3.0.351)

3 CODEHYDRO CALCULATION FLOW 26

else if (bc bottom = 3)

UnD
ij = UnD

i,ny+j (3.0.352)

UnU
ij = −UnU

i,ny+j (3.0.353)

UnV
ij = UnV

i,ny+j (3.0.354)

UnP
ij = UnP

i,ny+j (3.0.355)

For j = ny + 3, ny + 4 and i = 3, ..., nx + 2

if (bc top = 1)

UnD
ij = UnD

i,2ny+5−j (3.0.356)

UnU
ij = −UnU

i,2ny+5−j (3.0.357)

UnV
ij = UnV

i,2ny+5−j (3.0.358)

UnP
ij = UnP

i,2ny+5−j (3.0.359)

else if (bc top = 2)

UnD
ij = UnD

i,ny+j (3.0.360)

UnU
ij = UnU

i,ny+j (3.0.361)

UnV
ij = UnV

i,ny+j (3.0.362)

UnP
ij = UnP

i,ny+j (3.0.363)

else if (bc top = 3)

UnD
ij = UnD

i,j−ny
(3.0.364)

UnU
ij = −UnU

i,j−ny
(3.0.365)

UnV
ij = UnV

i,j−ny
(3.0.366)

UnP
ij = UnP

i,j−ny
(3.0.367)

This completes the specification of the algorithm used in CodeHydro. Now we will spend some time discussing
how to use the details of the specification above.

4 DISCUSSION OF ALGORITHM 27

4 Discussion of Algorithm

As indicated, the previous section provided details on how to implement the algorithm from a top down
perspective. However, the algorithm must be executed in a bottom up fashion such that equations 2.0.11,
2.0.12, 2.0.13 and 2.0.11 would be computed at the end of their respective calculations. Thus, an actual
calculation would proceed by executing the sweep over the x-coordinate first in the following fashion. Execute
the following steps in this order: 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 and 1. Then execute the sweep over the
y-coordinate by executing the following steps in this order: 21, 20, 19, 18, 17, 16, 15, 14 and 13. Then
execute another sweep over the y-coordinate by executing the following steps in this order: 10, 21, 20, 19,
18, 17, 16, 15, 14 and 13. Note that in this sweep over the y-coordinate we included step 10 to compute the
value of ∆t. Then executa a sweep over the x-coordinate by executing the following steps in this order: 11,
9, 8, 7, 6, 5, 4, 3, 2 and 1. Note that in this sweep over the x-coordinate, steps 12 and 10 are omitted. Step
12 is only done once at the very beginning of a simulation. Step 10 is done at the beginning of a pair of
sweeps over either x and then y or over y and then x. Step 10 computes the value of the timestep, ∆t, for a
pair of sweeps over the two spatial coordinates.

There are also several other items which should be noted and discussed. One is that in the steps of the
algorithm above, there is freedom to algebraically combine steps as desired to eliminate variables. One might
choose a fewer number of variables in order to reduce the memory footprint of the implementation. The
variables and steps above were chosen to describe an existing reference implementation. However, if variables
are eliminated and steps combined, the result should be algebraically equivalent to the steps described above.

It should also be noted that in the algorithm described above, the calculations associated with a particular
cell in a sweep over either of the two coordinates is independent of all the other cell values being calculated
at the new time step. More specifically, the values of the state variables described in equation 1.0.9 depend
only on the old values of those state variables at the previous time step or previous sweep. This means
that this algorithm has a very large amount of fine grain parallelism and this may be exploitable by some
hardware architectures. Or, the fine grain parallelism can be organized into larger tasks which may be more
appropriate for other hardware architectures.

It should also be noted that when performing a sweep over one of the two coordinates, there is no spatial
coupling in the coordinate that is not being swept over. The only spatial coupling is in the coordinate being
swept over and only the two nearest neighbors on either side of the cell being updated participate in this
coupling. Thus there is significant data locality that can be exploited.

5 VERIFICATION OF IMPLEMENTATION 28

5 Verification of Implementation

In this section we discuss how one verifies that an implementation of this specification is accurate and
conformant. There are multiple approaches that one could take to verify an implementation of the algorithm
described in this specification. Perhaps the simplest is for Los Alamos National Laboratory to make available
for download the output of one of our implementations for several different test problems at several different
problem sizes. This is the approach we have currently decided upon. We will provide an input file for a test
problem and the output file that goes with it. Both files will be simple text files and the output file will
contain the values of the state variable, U , printed out to machine precision at the end of the simulation.
There will be several input/output file pairs available to represent several test problems run at different
problem sizes. These test results will be maintained in a source control repository. Access to this repository
may be requested by anyone who chooses to implement this specification and desires to verify it. It should
be noted that there is an implicit responsibility assumed by Los Alamos National Laboratory to make sure
that we possess and maintain a verified implementation of this specification.

6 USER DEFINED INPUT PARAMETERS 29

6 User Defined Input Parameters

During the detailed description of the calculation flow presented in Section 3, several parameters were
identified as user specified input parameters for the algorithm. These will now be defined and discussed.

1. nx is the number of cells in the x-coordinate. Together with ∆x, it defines the size of the simulation
domain in the x-coordinate such that Lx = nx∆x. This parameter is referenced in each of the steps in
Section 3.

2. ny is the number of cells in the y-coordinate. Together with ∆y, it defines the size of the simulation
domain in the y-coordinate such that Ly = ny∆y. This parameter is referenced in each of the steps in
Section 3.

3. ∆x is the size of a cell in the x-coordinate. Together with nx, it defines the size of the simulation
domain in the x-coordinate such that Lx = nx∆x. Note that ∆x is the same for all cells and this leads
to a mesh spacing that is uniform in the x-coordinate. This parameter is referenced in Steps 1, 7, 10
and 12 of Section 3.

4. ∆y is the size of a cell in the y-coordinate. Together with ny, it defines the size of the simulation
domain in the y-coordinate such that Ly = ny∆y. Note that ∆y is the same for all cells and this leads
to a mesh spacing that is uniform in the y-coordinate. This parameter is referenced in Steps 10, 12,
13 and 19 of Section 3.

5. γ is the ratio of specific heats and is 5/3 for an ideal gas. This parameter is referenced in Steps 2, 4,
5, 8, 10, 12, 14, 16, 17 and 20 of Section 3.

6. Cf is the Courant time step limit factor which is used in the calculation of the next time step value.
For numerical stability, this value should be less than or equal to one. This parameter is referenced in
Step 10 of Section 3.

7. cs is a smallness parameter used in some equations to provide good numerical properties including
avoidance of divide by zero errors. A good value for it is 10−10. This parameter is referenced in Steps
4, 5, 8, 10, 16, 17 and 20 of Section 3.

8. rs is a smallness parameter used in some equations to provide good numerical properties including
avoidance of divide by zero errors. A good value for it is 10−10. This parameter is referenced in Steps
4, 5, 8, 10, 16, 17 and 20 of Section 3.

9. nr itlim is the maximum number of iterations to take in the Newton- Raphson calculation used in
the Riemann solver. A reasonable value for this is 10. The larger this value, the closer the Riemann
solver is to an exact Riemann solver. This parameter is referenced in Steps 4 and 16 of Section 3.

10. nr tol is the convergence tolerance on the Newton-Raphson solver. A reasonable value for this pa-
rameter is 10−6. The smaller this value, the more accurate the Riemann solver is and the closer it is
to an exact Riemann solver. This parameter is referenced in Steps 4 and 16 of Section 3.

11. Ts is the slope type input parameter. The value of this input variable should be 1.0. It is used in Steps
7 and 19 of Section 3.

12. order selects the order of accuracy for the calculation and should be an integer equal to 1 or 2. A
good value is 2 as this provides for a more accurate algorithm at the expense of more computation. It
is used in Steps 7 and 19 of Section 3.

13. scheme is a hydro scheme input parameter. It can take values of muscl, plmde and collela. When
scheme = muscl, the MUSCL-Hancock [5] version of the Godunov algorithm is used. When scheme =
plmde, a Piecewise Linear MUSCL Direct Eulerian version of the Godunov algorithm is used. When

6 USER DEFINED INPUT PARAMETERS 30

scheme = collela, a Piecewise Parabolic Method [1] version of the Godunov algorithm is used which
is also known as Colella’s method. It is used in Steps 7 and 19 of Section 3.

14. bc left specifies the boundary condition for the left boundary in the x-coordinate of the problem
domain. This parameter is referenced in Step 11 of Section 3.

15. bc right specifies the boundary condition for the right boundary in the x-coordinate of the problem
domain. This parameter is referenced in Step 11 of Section 3.

16. bc top specifies the boundary condition for the top boundary in the y-coordinate of the problem
domain. This parameter is referenced in Step 21 of Section 3.

17. bc bottom specifies the boundary condition for the bottom boundary in the y-coordinate of the problem
domain. This parameter is referenced in Step 21 of Section 3.

18. problem specifies the test problem to be used. This parameter is referenced in Step 12 of Section 3.

REFERENCES 31

References

[1] Phillip Colella and Paul R. Woodward. The piecewise parabolic method (ppm) for gas-dynamical simu-
lations. Journal of Computational Physics, 54(1):174 – 201, 1984.

[2] S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov. A computational scheme for two-dimensional
non stationary problems of gas dynamics and calculation of the flow from a shock wave approaching a
stationary state. USSR Computational Mathematics and Mathematical Physics, 1(4):1187 – 1219, 1962.

[3] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 40
West 20th Street, New York, NY 10011-4211, USA, 2002.

[4] Gilbert Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical
Analysis, 5(3):506–517, 1968.

[5] Bram van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to go-
dunov’s method. Journal of Computational Physics, 32(1):101 – 136, 1979.

