LA-UR-12-21022

Approved for public release; distribution is unlimited.

Title: A Specification for a Godunov-type Eulerian 2-D Hydrocode, Revision O

Author(s): Nystrom, William D
Robey, Jonathan M

Intended for: Report

e
)
» Los Alamos

MATIONAL LABORATORY
EST.1543

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer,is operated by the Los Alamos National

Security, LLC for the National NuclearSecurity Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396.
By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to

publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the

U.S. Departmentof Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish;
as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

A Specification for a Godunov-type Eulerian 2-D Hydrocode,
Revision 0

WD Nystrom and JM Robey

April 24, 2012

CONTENTS

Contents

1 Overview

2 Algorithm Description

3 CodeHydro Calculation Flow

4 Discussion of Algorithm

5 Verification of Implementation
6 User Defined Input Parameters

27

28

29

1 OVERVIEW 2

1 Overview

The purpose of this code specification is to describe an algorithm for solving the Euler equations of hy-
drodynamics in a 2D rectangular region in sufficient detail to allow a software developer to produce an
implementation on their target platform using their programming language of choice without requiring de-
tailed knowledge and experience in the field of computational fluid dynamics. It should be possible for a
software developer who is proficient in the programming language of choice and is knowledgable of the target
hardware to produce an efficient implementation of this specification if they also possess a thorough working
knowledge of parallel programming and have some experience in scientific programming using fields and
meshes. On modern architectures, it will be important to focus on issues related to the exploitation of the
fine grain parallelism and data locality present in this algorithm. This specification aims to make that task
easier by presenting the essential details of the algorithm in a systematic and language neutral manner while
also avoiding the inclusion of implementation details that would likely be specific to a particular type of
programming paradigm or platform architecture.

The equations to be solved are the Euler equations of computational fluid dynamics which in conservative
form are [3]

ap B

a—f—V-pv—O (1.0.1)
dpv
W‘FV' (p’U’U-i—Pl) =0 (1.0.2)
% +V-[(E4+P)v]=0 (1.0.3)

where

p = mass density
v = fluid velocity
FE = total energy density
P = total pressure

| = unit tensor

Symbols in bold regular type are 2D cartesian vectors while symbols in bold Sans Serif type represent 2D
second order cartesian tensors. The term wvwv represents the dyadic or tensor product of the two vectors,
v. In two spatial dimensions, the Euler equations represent four equations for five unknown variables. A
polytropic gas equation of state is used to close these equations and relate P to p, E and v. This equation
of state is

P 1
E=——+-p° 1.0.4
o S 1l (1.0.4)
where + is the ratio of specific heats and is 5/3 for an ideal gas. Thus, equations 1.0.1, 1.0.2, 1.0.3 and 1.0.4
are the closed set of equations in five variables that will be solved by the algorithm presented in the next
section. This algorithm is a two dimensional finite volume Godunov [2] algorithm using Strang splitting [4],
explicit time integration and an inexact Riemann solver.

1 OVERVIEW

A compact and alternative way to write the Euler equations in Cartesian coordinates is as follows:

oUu oOF 0G
e B 1.0.
8t+83:+8y 0 (1.0.5)
where
DT _)
_ Y| _ PV
U*] | E
DT ST
_|FY _ | pui+P
FP |V (B + P) |
FDT oy]
— GU — PUy Vg
|G| lvy (E+ P)]

This algorithm also makes use of an additional set of state variables which are referred to as primitive

variables. These variables are the following.

p
Ve
Uy

P

(1.0.9)

These primitive variables are used during most of the calculation performed by this algorithm including the

Riemann step.

2 ALGORITHM DESCRIPTION 4

2 Algorithm Description

In this algorithm, the rectangular solution region is of dimension L, by L, and is divided into rectangular
cells. The x-coordinate is divided into n, cells of equal spacing such that the width of a cell in the x-
coordinate is L /n,. Similarly, the y-coordinate is divided into n, cells of equal spacing such that the height
of a cell in the y-coordinate is L,/n,. In order to allow for the enforcement of boundary conditions and
accomodate the numerical differencing of the spatial derivatives, two extra layers of cells are included and
referenced for each spatial coordinate in the description below. Thus, the reader can imagine a rectangular
array of cells where in the x-coordinate there are n; + 4 cells and in the y-coordinate there are n, + 4 cells.
In the x-coordinate, the cells located in the problem domain are numbered from ¢ = 3,...,n, + 2. In the
y-coordinate, the cells located in the problem domain are numbered from j = 3,...,n, + 2. How the cells
are labeled and how or whether the guard cells are stored is an implementation detail left to the discretion
of the software developer. However, in order to make the following description explicit, the above labeling
scheme will be adopted.

To summarize, the computational domain is a rectangular region of cells with n, + 4 cells in the x-
coordinate and n, + 4 cells in the y-coordinate. In the x-coordinate, the cells are numbered from i = 1 to
ng + 4. In the y-coordinate, the cells are numbered from j =1 to n, + 4. Each of the cells has two faces in
the x-direction and two faces in the y-direction. Thus in the x-direction, there are n, + 5 faces and in the
y-direction there are n, + 5 faces. Faces are labeled with a half-integer index. In the x-coordinate, the right
face of a cell is labeled as ¢ + % and the left face is labeled as ¢ — % where 7 is the x-coordinate index of the
cell. In the y-coordinate, the top face of a cell is labeled j + % and the bottom face is labeled j — 1% where j
is the y-coordinate index of the cell. Thus, the x-coordinate faces are labeled from % to ny +4 + 5 and the
y-coordinate faces are labeled from % ton, +4+ %

One way to discretize the Euler equations described in equation 1.0.5 is as follows.

g (F”%J a Fiféd) - %, (Gi,j% - Gi,jfé) (2.0.10)

This approach is what is referred to as an unsplit method or algorithm. However, we will choose to use a
split method or algorithm. In a split method, on odd timesteps we will solve the following two equations.

n+1l _ n
Uij =Ui;~

Uj,j =U}; - % (FH—%J - Fi_%d-) (2.0.11)

Uit =ul, - % (Gi,jJr% - Gi,j,%> (2.0.12)
On even timesteps, we will solve the following two equations.

ul,=Uyp,; - % (Giﬁ% -G, 4,%) (2.0.13)

Uit =i, - %; (Fi+%=j - Fifé,j) (2.0.14)

This approach to a split algorithm where the order of solution in the two spatial coordinates is reversed
every timestep is referred to as Strang splitting [4] and results in a higher formal order of accuracy for the
solution. Note that in equation 2.0.11 F depends on U" while in equation 2.0.12 G' depends on U'. In
contrast, in equation 2.0.13 G depends on U™ while in equation 2.0.14 F depends on U,

3 CODEHYDRO CALCULATION FLOW)

3 CodeHydro Calculation Flow

This section describes the actual flow of the calculation in sufficient detail to serve as a guide for implementing
the CodeHydro algorithm. The flow of the calculation is described from a top down perspective. Because of
the data dependencies, the algorithm would be implemented in a bottom up fashion. More will be said on
this point later.

1. This is the beginning of the computational sweep over cells in the x-coordinate. In this sweep, we will be
solving equation 2.0.11.

Fori=3,..,n,+2and j=3,...,ny +2

At
T _ g
Uij=Us; - Ax (Fi+%,j - Fi—%,j) (3.0.15)

where U and F' were defined above.

2. For the first step, we need U? o At, Az and F. U ?,j is an initial condition and will be discussed later.
The value of Ax is determined by user input. The value of At varies according to numerical stability and
accuracy constraints. Its calculation will also be described later. Note that in the next step or item, the
index, 1, starts at 2 instead of 3. By allowing the ¢ index to start at 2, values are specified for both F, 1 +1

and F'; . ;. This is because F';, 1 ; for i = 2 is also equal to F;_1 ; for i = 3. So there is no need to add
extra complex1ty to the descnptlon by explicitly providing a formula for F . We compute these needed

quantities as follows.

Fori=2,...,n,+2and j=3,...,ny +2

FR 5 =Q0 Q0 Hz,] (3.0.16)
U _ D

Fz+7 2J Fz+ J z+ 2J + Qz-&-z 2J (3'0'17)
|4 _ D

FZJr ¥ FH y i+%7j (3.0.18)
P _NU 1 U 2 14 2 P

Fz+ g Vitg.g y—1 z+2,J + Qz+ J (i+%,j) + (i+%,j> +Qi+%,j (3.0.19)

3. For the previous step, we need values for v and Q where Q = (Q”,QY,Q",Q"). The value of v is
determined by user input. The value of @ is computed using a Riemann solver as follows.

Fori=2,..,n,+2and j=3,...,n, +2

D _ *

Poyg = Feorarions + (L= firns) (3.0.20)
U —

il = Jirt Uit (1 - fz'+%,j) L (3.0.21)

P *
vy = JirdiPips ;T (1 - fi+é,j) Pyt (3.0.22)

3 CODEHYDRO CALCULATION FLOW 6

it (z"'27] 2 O)

Z+2,J QHN (3.0.23)

else

b1 = O (3.0.24)

4. For step 3, we need values for f,r*, 7%, u*, u°, p*,p°, QYY and Q%Y. We compute these needed quantities
as follows.

Fori=2,..,n,+2and j=3,...,ny +2

L _ [L

Wity =/ (3.0.25)
R _ [R

CATWE VAT (3.0.26)

R R L R
—|—w +w lw.;,(u[.l,—u,l)
p&_; = nax z+2,J z+2 2J z+L2 \J i+35.J i+5,J i3, .0 <3.0.27)
? Z+2,]+w’b+2,J
do¢=1,nr it lim
o I 0.5
L _ | Y+ 1Py 1 7 Piry
it+5.J
o R 0.5
R _ |.R Y+ 1Pips; ~Piri;
113,57
. 3
2(2, 1)
+3,7
U1y = —z (3.0.30)
(i) by,
R 3
2 (z 1)
R _ H‘E»J
qi-l—%,j - R = (3031)
(ZH%J) Ty
po. 4 .—p, L
L L . i+35,] +5,7
,U’H‘%,j = ui+%,j —ZL+1 ' (3032)
1T 3,]
R
po. =Dt
R R i+3,7 +3,7
Viplj = Upi it o (3.0.33)
1+35,7
L R
qi+ 'qi+ ,J L R
0pity,; = max [M (Ui+%7j - “i+%,j) »“Pird (3.0.34)
z+ J z+ \J
pz—&-%,j = 1+ gt 6p1+ (3.0.35)

3 CODEHYDRO CALCULATION FLOW 7

S 1
if (p;;;;rjj"sm < nrtol> Pii1; =Pl (3.0.36)
end do
+ 1P _pz‘L+l 3 o
wf+%7j = [ciﬂ_;j (1 + 727 21775# j 3)] (3.0.37)
L
+ 1P;—F+; j *pi_; j o
wh, = [cﬁ;j <1+ 727 2]’9?11 —)] (3.0.38)
B
p‘Ll-_p%l' pR;~_p>‘k1-
U= % luiﬂé,j + W +ull,y - *;}Pi]*j] (3.0.39)
if (UL%J < 0)
it =i e (3.0.40)
s = Wi, (3.0.41)
Pip1; =Py (3.0.42)
Wiy = Wiy (3.0.43)
else
it =i g (3.0.44)
Uiy = Uity (3.0.45)
ngr%,j = piLjL%,j (3.0.46)
Wi = Wi (3.0.47)

o fyp;?*F%;j o
Cfp1, = MaxXq Cs, |abs (3.0.48)

r% .
i+1.7

=max |7,

(3.0.49)

*
Titvdlj

w10
CZ+%J = max | ¢s, |abs z (3.0.50)

*
¢,
i+1.7

3 CODEHYDRO CALCULATION FLOW 8

it (ur,, ; <0)
Sg_%d_ =cy, 1 + uy 1 (3.0.51)
I —
Sis1; = RISy (3.0.52)
s Wiy L o
Yirdi = o U (3.0.53)
i+3.]
else
o __ 0 o
Siviy = Cirdy ~ Wi (3.0.54)
I * *
Sivdg = Cirdg ~ Yird (3.0.55)
w? .
s it o
Yirdi = o 12 T T Wil (3.0.56)
1+§,J
. . o
it (214 2 200 p)
o _ .8
Sivii = Uird, (3.0.57)
I _ .S
SiJr%,j =Uipl; (3.0.58)
S’f+ ,j =max [Sg_%7j - SiIJr ,Cs + abs (S ;T Sf+27])} (3.0.59)
o I
1 Sl + 5
fiy1 ;= max {O,min [1, 5 (1 + W)} } (3.0.60)
cr
’L+§,J
i (9, ;<0) firy,; =00 (3.0.61)
it (S, >0) firy,; =10 (3.0.62)

5. For step 4, we need values for c&, ¢, p=, p, ul uf, rL rB r, ps,ce,nr_it_1im and nr_tol. We also still

need values for QY and Q%Y for step 3. The values of ry,cs,nr_it_1im and nr_tol are determined from
user input. We compute the remaining needed quantities as follows.

Fori=2,...,n,+2and j=3,...,ny +2

(3.0.63)

2
&
ps:i
Y

3 CODEHYDRO CALCULATION FLOW 9

nﬂ%,j = max (rs, Lﬁj) (3.0.64)
U1 = Qi (3.0.65)
piLJr%,j = max (psTiL+%7j7 fo%,j) (3.0.66)
Civs g = VPik Tirh g (3.0.67)
i, =max (rs, Qﬁé,j) (3.0.68)
ufr ;= Qi (3.0.69)
P, =max (ps i J,QHQJ) (3.0.70)
Clo1 s =P Ty (3.0.71)

6. For step 5, we need values for QFP, QLY QLF, Q1P , Q%Y and QY. We also still need values for Q%Y
and QT for step 3. We compute these needed quantities as follows.

Fori=2,...,n,+3and j=3,...,ny +2

ff; =P (3.0.72)
z+2 s=ory (3.0.73)
ff; i= ’-fZ-V (3.0.74)
T =on (3.0.75)
1+2,J = QL (3.0.76)
z+2,] = Q1 (3.0.77)
Ay = QM (3.0.78)
fh =0 (3.0.79)

7. For step 6, we need values for Q™. Q™Y , Q™Y ,Q™mF, QPP ., QPY, QPY and QPF. These are cell centered
variables. We compute these needed quantities as follows.

Fori=2,...,n,+3and j=3,...,ny +2

=~ 05 (Sf’-’af o SEar + Sf?a?,ﬁ-) (3.0.80)

V= gy~ 05 (SfTab, - skrar) O (3.0.81)
q?,

7Y o= al; - 0557]a (3.0.82)

P =gl — 05 (S[Tab, + SEral) (3.0.83)

3 CODEHYDRO CALCULATION FLOW 10

QU = afy — 05 (SfFal; + SFral + Sl) (3.0.84)
% R em _m \ Ci,j
QY =l — 0.5 (8rat, - sfrary)) (3.0.85)
%,
v _ Vv RO Ov
Qi = ai; — 0.55;7 a5 (3.0.86)
P _ P R Rm _m 2
Qij =4i; =05 (Si,ypa]ig,j + 557 ai,j) Cij (3.0.87)
if (q; — iy < Z1)
Lm
Sk =—-p (3.0.88)
else
At
Lm U
Sig" = (4 = €ig) xp — 10 (3.0.89)
if (qgj +¢i; < ZL>
Lp _
S =-p (3.0.90)
else
At
L
Siy = (40 +¢ig) xp — 10 (3.0.91)
if (¢, < Z1)
LO __
S =—p (3.0.92)
else
At
Sy = Qi ay — 10 (3.0.93)
if (qi; —cij = Zr)
Rm __
Sij =P8 (3.0.94)
else
m At
SH = (4 — i) Ay 10 (3.0.95)
it (¢; +ciy > Zn)
R,
S;r=p (3.0.96)
else
At
R
Sif = (ai; +cij) Ay 10 (3.0.97)
if (¢7; < Zr)
RO __
S =p (3.0.98)
else
At
RO _ U
Sij =Gjp, T10 (3.0.99)

3 CODEHYDRO CALCULATION FLOW 11

5qF. q>.
™ =05 —2L —g5q. | 2L 3.0.100
g (QZ%) (3.0.100)
Saf. D
b, =05 (o 4 gl | L (3.0.101)
’ Q;.5Ci.j Y] Cig
5qF.
or D 2¥)
o =0¢; — —5= 3.0.102
LI (3.0.102)
o = 6q; (3.0.103)
if (scheme = muscl)
Az
= —-100—— 3.0.104
%L At ()
Az
=100— .0.1
2n = 1007, (3.0.105)
g=10 (3.0.106)
else if (scheme = plmde)
21 = 0.0 (3.0.107)
2r = 0.0 (3.0.108)
8=10 (3.0.109)
else if (scheme = collela)
2, =0.0 (3.0.110)
2r = 0.0 (3.0.111)
B=0.0 (3.0.112)
if (order =1)
D _
5q2 =0 (3.0.113)
U _
3ql =0 (3.0.114)
v _
5q¥, =0 (3.0.115)
P _
3q =0 (3.0.116)
else
if (d5PdfiP <0)
D _
3q2 =0 (3.0.117)
else
5q£::epmin{minﬂd5DL|d5D],|ng\} (3.0.118)
if (dfVdfV <0)
U_
sql =0 (3.0.119)

else
dqj; = eymin {min [|d57], |df}[] , |57 |} (3.0.120)

3 CODEHYDRO CALCULATION FLOW 12

if (dfVdfYV <0)
v _
g, =0 (3.0.121)
else

8q}; = evmin {min [[d" |, |d"]] |5V} (3.0.122)

if (dfPdfif <0)

Sqj; =0 (3.0.123)
else
dqj; = epmin {min [|d"], [dfF"[] |57 |} (3.0.124)
if (AP > 0)
ep =1.0 (3.0.125)
else
ep =—1.0 (3.0.126)
if (dfY > 0)
cv =10 (3.0.127)
else
ev =—1.0 (3.0.128)
if (df;¥ >0)
ev =10 (3.0.129)
else
ev = —10 (3.0.130)
if (d" > 0)
ep =10 (3.0.131)
else
ep=—10 (3.0.132)
dz'CjD =05 (g5, — 4i’1;) (3.0.133)
di” =05 (g1~ ail1) (3.0.134)
dz'cjv =0.5 (qz‘{ﬁ-l,j qiv—l,]) (3.0.135)
diC;P =0.5(¢/41,; —4i11) (3.0.136)
dii? =T. (g5 — a1) (3.0.137)
dii’ =T (a5 — a1 5) (3.0.138)
di’ =T (a5 — 0/ 1,5) (3.0.139)
di” =T (45— ¢i"1,5) (3.0.140)

3 CODEHYDRO CALCULATION FLOW 13
di? =T (a7, — ;) (3.0.141)
di” =T (01,5 — diy) (3.0.142)
di" =T (041, — @) (3.0.143)
di” =T (01,5 — 4i5) (3.0.144)

8. For step 7, we need values for ¢°, ¢V, q",q%, ¢, Ts, scheme and order. T, scheme and order are input
parameters. The remaining values above are cell centered values. Also note that we need values for ¢, ¢V, ¢V
and ¢¥ over a larger range of values of the i index. Note that the values for g are the primitive variables
described in Section 1. The conversion from conservative variables to primitive variables is accomplished as

follows.

Fori=1,..,n,+4and j=3,...,n, +2

gi; = max (rs, Uj;") (3.0.145)
Urv
G =5 (3.0.146)
q;;
urv
q; = T!]? (3.0.147)
ij
qf; = max [P, (v = 1) ¢ eis] (3.0.148)
P 0.5
cij = (7%?) (3.0.149)
q;;
upr U2 U2
¢ =" p —05 [(qz-j) + (aij) } (3.0.150)
ij
C2
Po=— (3.0.151)
5

9. At this point everything has been specified to allow the calculation to proceed except for the following
three considerations. First, the values of U%D, U?jU, UinV and U%P need to be specified for i = 3,...,n, + 2
and j = 3,...,ny + 2. These are the initial conditions. Second, we need values of U{]L-D , U[]L-U, Ul?;-v and U{JL-P
for the values of 7 = 1,2,n; + 3,n, +4 and j = 3,...,ny + 2. These are the boundary conditions in the
x-coordinate. Finally, we need to know how to compute the value of the time step. First, we will specify

how to compute the value of the time step.

10. For the calculation specified so far, it remains to specify how to compute the time step, At. The timestep
is computed from a Courant limit that is based on the sound speed and fluid velocity in each coordinate
direction. It is computed as follows at the beginning of a timestep.

3 CODEHYDRO CALCULATION FLOW 14

ifn=0 (3.0.152)
Cymin (Az, Ay)
max (Cg, Cy, ¢s)
else (3.0.154)
_ Cymin (Az, Ay)

max (Cy, Cy, ¢s)

At=05 (3.0.153)

At (3.0.155)

where Cy,c, and Az are input parameters and n labels the last timestep. When n = 0, we are at the
beginning of the simulation and the state of the previous timestep is represented by the initial conditions.
Note that there is a single value of the timestep, At, which is used for every cell location and for the mesh
sweep in each of the two coordinates. The timestep is only computed after completion of the pass in each of
the two coordinates.

Fori=3,..,n,+2and j=3,....,ny +2

C, =maxval (Cy; + |qi}]) (3.0.156)
Cy = maxval (Cy; + |q¥|) (3.0.157)
P 05
V4
Cij = (qu> (3.0.158)
ij
qg» = max (5, UZD) (3.0.159)
unrv
a5 = q—ﬁ, (3.0.160)
ij
urv
40 = 4D (3.0.161)
ij
qf; = max [Psqg, (v—1) qgeij} (3.0.162)
nP
=005+ (@) 3.0.163
eij = —5 — 0.5 (¢;)" + (37) (3.0.163)
4;;
2
p="5 (3.0.164)
Y

11. A variety of boundary conditions can be supported but three will be provided in this specification. Using
the indexing scheme adopted for this specification, these three types of boundary conditions are specified
as follows where bc_left is an input variable that selects the boundary condition for the left boundary and
bc_right is an input variable that selects the boundary condition for the right boundary.

3 CODEHYDRO CALCULATION FLOW

Fori=1,2and j =3,...,ny, +2

f (bcleft = 1)

nD
UlP = upP
nU_ nU
Ui~ =-UsZ, 5
nV
Uj; U5 ij

UZJLP U5 ¥
else if (bc_left =2)

UpP = U37]
upt =ugy
Uy =ugy
Ut =ug?

else if (bc_left =3)
U5 = Uzh
U‘n‘U - _Uggﬂu
U = U2y
Unp Urrsz-‘rm

Fori=mn;+3,n,+4and j=3,...,ny +2

if (bc_right =1)
UnD U27la:+5 %,
Ul = -U37 5 is
U'n'v U2n +5—1,j
UL =Upl 154
else if (bc_right = 2)
UupP =Unb,
UnU Unm+27]
U =um,,
U’ZP Unm+2,3

else if (bc_right = 3)

nD nD
U UZ Na,J

nU nU
U =-U- ng,j

nV nV
U Ul N ,J
UnP UnP

i—Ng,J

15

3 CODEHYDRO CALCULATION FLOW 16

12. Finally, in order to begin a calculation, initial values must be specified for U%P, UV, UPY and UJP
fort =3,...,n, +2 and 57 = 3,....,n + y + 2. The initial conditions and boundary conditions determine
which problem is being modeled. Note that the initial conditions are only applied once at the beginning of a
simulation in contrast to the boundary conditions which are applied at the beginning of each pass or sweep

of the mesh in a coordinate direction. Three different sets of initial conditions are specified.

Fori=3,..,n,+2and j=3,...,ny +2

if (problem = jet)

Uyl =1.0 (3.0.189)
Uy =00 (3.0.190)
Uy =0.0 (3.0.191)
1
oP
oF — __— 3.0.192
L) v — 1 ()
else if (problem = point_explosion)
UpP =1.0 (3.0.193)
Uy =00 (3.0.194)
Uy =0.0 (3.0.195)
Uy =1.0e—5 (3.0.196)
1
oP
0P _ 0.1
tesJe A,’L‘Ay (30 97)
else if (problem = sod)
if (i <ng/2+3)
0D __
Uil =1.0 (3.0.198)
oU _
Uy =0.0 (3.0.199)
oV _
Uy =0.0 (3.0.200)
1
Uor — 3.0.201
) v — 1 ()
else
UpP =0.125 (3.0.202)
oU _
U =00 (3.0.203)
oV _
Uy =0.0 (3.0.204)
0.1
oP
op _ T 3.0.205
) v — 1 ()

13. This is the beginning of the computational sweep over cells in the y-coordinate. In this sweep, we will
be solving equation 2.0.12. Note as mentioned earlier that G depends on U' and that boundary conditions
will get applied to U'.

Fori=3,..,n,+2and j=3,...,ny +2

At
Ay

where U and G were defined above.

n+l _ 7t
Uij =U;;~ (Gi,j—&-% - Gi,j—%) (3.0.206)

3 CODEHYDRO CALCULATION FLOW 17

14. For this first step, we need Ul,j, At, Ay and G. UZT’]» is the value of U at the end of the sweep in
the previous direction. The value of Ay is determined by user input. The value of At varies according
to numerical stability and accuracy constraints. It was calculated in step 10 above. Note that we are now
referencing face centered quantities in the j index since we are doing a sweep of the mesh in the y-coordinate.
We compute these needed quantities as follows.

Fori=3,..,n,+2and j=2,....,ny +2

D U
Gz J+3 1 = 1]_;'_% i,j-‘,—; (30207)
D U
Gty =Gl Qies T Qijny (3.0.208)
v D v
Giiry = GigrsQijry (3.0.209)
1 2
_oU U
G Jts T Yigts {7—1 ig+d T Qw+1 [(i,j+%) + (ij+3)] +Qw+l} (3.0.210)

15. For the previous step, we need values for v and Q where Q = (QD, QY,QV, QP). The value of 7 is
determined by user input. The value of @ is computed using a Riemann solver as follows. Note that it is
now j, the index for the y-coordinate, that begins at 2 rather than ¢, the index for the x-coordinate.

Fori=3,..,n,+2and j=2,...,ny +2

ey =Jigeati ot (1 - fi,j—&-%) T je1 (3.0.211)
U
it = Jigriuisn + (1 - fm‘+%) U (3.0.212)
P
igrd = fig+iPijeg +(fi,jJr%)ij-i-% (3.0.213)

. *
if (uz’,j+§ > 0)

i+t = Qi1 (3.0.214)
else

14 _ RV

16. For step 15, we need values for f,r*, r° u*, u®, p*, p°, Q¥Y and Q%Y. We compute these needed quantities
as follows.

3 CODEHYDRO CALCULATION FLOW

Fori=3,..,n,+2and j=2,....,ny +2

L _ L
Wijrd =\ Cij+sd
R _ R
Wij+d =\ G+t

)

R L L R L R L R
. Wi Py WD 1 W W (“m‘+l Uiy
— max 2 2 2 2 2 2 2 2
Pijvi = wl | twk
ity ity

do¢=1,nr it lim

o L 0.5
L | 1+W+1pi,j+% Pijt1
Gty | Thdts 2y L
’Z,j+§
" R 0.5
LR | R 1+7+1pi,j+% Piji
ity | Thits R
27 p,L j+l
J T3
L 3
2 (z .)
L - i,j+4
Gij+s =7 7
2z 1 +c7.
i,j+% ij+%
R 3
R = 2 (Z’iJJr%)
ij+i T 2
2R 1 +cft 1
,J+5 1,J+3
o _ L
b — Uk B pi,jJr% pi,j+%
ij+: T Vig+3 L
i+ 3
o _ R
OB =R Pij+i Py
Ljts T ity 2R
i+ s

q 14
s — max i,j+5 1i,j+3 L _ R .o
Pij+3 = Lot qf . Vit Vi) Piged
ig+d T %41

(e} _ (o]
Pijes = Pips 0P s

(5p»» 1
. ,J+5
if [| ————"—| <nr_tol p;‘jJrl :p?jJrl
Py T TsPs ’ ’
end do
* _ L 0.5
Wb [CL (gt Py T Py
,J+5 1,5+5 27 pL
ij+3
* _ R 0.5
wi, .= [CR ! <1+ v+ 1Py~ Pigey
ij+3 ij+3 2 oE
i+
L ok R ok
U A Pigry “Pigry on Pigey “Pigey
ity 9 | hits: wk ij+3 wEk
ijt+% ity

18

(3.0.216)

(3.0.217)

(3.0.218)

(3.0.219)

(3.0.220)

(3.0.221)

(3.0.222)

(3.0.223)

(3.0.224)

(3.0.225)
(3.0.226)

(3.0.227)

(3.0.228)

(3.0.229)

(3.0.230)

3 CODEHYDRO CALCULATION FLOW

if (u* .
(u%]+% <:O>

o _ R
i+t = T+l

,
Uiy = ufﬂ%
Piivy = Pigi
Wy i1 = wfﬂ%

else

USTR TiL,jﬁ

Ug it s ::“£j+%

Piivy = Pijy

o o L
Wi+l = W4l

o 0.5
’yp 'Jrl
o] T3
C; ., 1 =max\ Cg, |abs
Gita o,
4,3+ 35

o
7o
r¥ =max |r bits
gty = S)
i3 \Tidt+d
1 + 2 2

if (u” . 0
(ij+3 <
SO . u? .
ig+3 = Cigrd T Ui
I * *
_ ur .
Eﬂd+% 1J+%-+ iit+%
w?
s _ LJJF; + u°
Za]+% ro . N 4,J+3
]+ 5
else
SO L =c =l
i,j+3 i+ 3 ij+3
ST =cF. —ur.
i+ i+ ij+3
o
w? .
us _ ijts —ul
i+: T ig+}

o
ij+3

19

(3.0.240)

(3.0.241)

(3.0.242)
(3.0.243)

(3.0.244)

(3.0.245)
(3.0.246)

(3.0.247)

3 CODEHYDRO CALCULATION FLOW 20

s * ()
it (pi,j+§ = pi,j+§)

O s
I us
S B+l = Uit (3.0.249)
— O I I
ch+1 = max {S’mﬁré - Si,j-i—%’CS + abs (S’”Jrl +S; e)} (3.0.250)
SO+ 61
f. .1 =max{0,min 1114 Zigts T Pigey 3.0.251
7,7+
)35 2 Scr
i,j+3
if (S?.+% < 0) fijir =00 (3.0.252)
(Sz > o) fijes =10 (3.0.253)

17. For step 16, we need values for c”, ¢, p”, p®, u”, u® r& rf and p,. We also still need values for Q™Y

and QT for step 15. We compute these needed quantities as follows.

Fori=3,..,n,+2and j=2,....,ny +2

2
C
ps=— (3.0.254)
¥
L LD
,]+1 = max (TS7 i,j+%) (30255)
L LU
U1 = Qs (3.0.256)
Pijpy = max (ps s QL) (3.0.257)
L _ L
Ci,j—i—% - r)/pi,jﬁ_%?“i’j_%% (30258)
Ty =max (r fj’i%) (3.0.259)
R RU
Ui = QijeL (3.0.260)
pfj+1 = max (ps 1J+17Q1]+) (30261)
R _ R
Cirjad = VPias i (3.0.262)

18. For step 17, we need values for QP QLV, QFF, Q1P QFV and QFP. We also still need values for QFY
and QT for step 15. We compute these needed quantities as follows.

3 CODEHYDRO CALCULATION FLOW

For:=3, ...,

ng+3and j=2,...,ny+2

LD _ gmD
iLi+s Wi
LU, mv
ij+s T Wiy
LV —_ mV
‘,j+§ .3
]+2 = Qi

a+f Q%+LJ
J+* QW+LJ
u+1 QH—LJ

J+2 Q%+1J

21

19. For step 18, we need values for Q™P,Q™Y,Q™V,Q™F, QrP,QPY, QP and QPF. These are cell centered

variables. We compute these needed quantities as follows.

Fori:=3, ...,

ng+3and j=2,..,n,+2

7

mD—q”—O5(S

U= gl —05 (Sfp P glmg,

%
mV = q” - O.BS»LQon”.

mP_q,L]_OS(SLp p +SLm

QY =4l 05 (Sf?’af ST+ Sz'l?a%‘%‘)

QU =y~ 05 (STl ~ Sfrra

_ RO _Ov
Q” qZJ—0.5S--a--
QPr =g - 05 (SR”a” + Sfma

£ (¢, — iy < Z1)
Skm — _g

i,j
else
At

SE = (o —) 5 -

Lp P +SLmam +SLO or

m) Ci,j
l] D
q

2%

m 2
ZJ)CJ

HL) Cl)]
i, D
4;.;

m 2
u) Cij

1.0

(3.0.271)

(3.0.272)

(3.0.273)
(3.0.274)

(3.0.275)

(3.0.276)

(3.0.277)
(3.0.278)

(3.0.279)

(3.0.280)

3 CODEHYDRO CALCULATION FLOW 22

1 (qi; +eij < Z1)

8§ =-8 (3.0.281)
else
At
Si3 = (al +eis) 35 =10 (3.0.282)

Siy =8 (3.0.283)
else
At
Lo _ U
Sid =i p, ~ 10 (3.0.284)

Rm
Sftm = (3.0.285)
else
m At
Si5" = (ai5 —eig) 5, +1.0 (3.0.286)

515 =10 (3.0.287)
else
At
Siy = (@ + i) 7, + 1.0 (3.0.288)

Sﬁjo -3 (3.0.289)
else
At
RO _ U
Sig =iy, T10 (3.0.290)
5P D
oty =05 (i -ty) 22 020
1,5 Cisi i,
5P D
of, =05 (quZ{ + 5qgj> z?? (3.0.292)
i,§Cisi iJ
5qP
or D 5
ol = 5qP, — CT]J (3.0.293)
ot = 8, (3.0.204)

3 CODEHYDRO CALCULATION FLOW 23

if (scheme = muscl)

zr = —100% (3.0.295)

iR = 100%’ (3.0.296)

5=1.0 (3.0.297)
else if (scheme = plmde)

zr, = 0.0 (3.0.298)

2r = 0.0 (3.0.299)

5=10 (3.0.300)
else if (scheme = collela)

21 = 0.0 (3.0.301)

2r = 0.0 (3.0.302)

8=0.0 (3.0.303)

if (order =1)

dqi; =0 (3.0.304)
U _
3ql =0 (3.0.305)
v _
8q}; =0 (3.0.306)
P _
5ql =0 (3.0.307)
else
if (dfPdfiP <0)
D _
dgij =0 (3.0.308)
else
dq;; = epmin {min [|df;"], [d3"|] , 5|} (3.0.309)
it (1001 <o)
U _
9g;; =0 (3.0.310)
else
dq5j = eymin {min [|d"|, ;"] , |d5;"'[} (3.0.311)
ie (Va5 <o)
v _
dg;; =0 (3.0.312)

else
dq}; = evmin {min [|d5" |, [d"]] |5V |} (3.0.313)

3 CODEHYDRO CALCULATION FLOW 24

if (dfPdBEP <0)

8q;; =0 (3.0.314)
else
dq;; = epmin {min [|d"[, [d"]] . 1457} (3.0.315)
if (dP > 0)
€p =10 (3.0.316)
else
ep =-1.0 (3.0.317)
if (d5Y > 0)
ev =10 (3.0.318)
else
v =—10 (3.0.319)
if (dSV > 0)
ev =10 (3.0.320)
else
ev =-1.0 (3.0.321)
if (d;” >0)
ep =10 (3.0.322)
else
ep = —1.0 (3.0.323)
A" =05 (g5 — a1 ;) (3.0.324)
di” =05 (g1 — a1 5) (3.0.325)
di" =05 (a1 — a1) (3.0.326)
dig” =05 (g1, = 01 ,5) (3.0.327)
dii? =T (4] — a1 ;) (3.0.328)
dii” =T (¢ — 4" ;) (3.0.329)
di =Ts (a)j — a1 5) (3.0.330)
di” =T (¢ — 41 ;) (3.0.331)
dii” =T, (a41,; — 4i;) (3.0.332)
di’ =T, (4715 — aij) (3.0.333)
i =Ts (a1, — aiy) (3.0.334)
dii” =Ts (g1, — 4iy) (3.0.335)

3 CODEHYDRO CALCULATION FLOW 25

20. For step 19, we need values for ¢P, ¢V, q", ¢", c and T;. T, is an input parameter. The remaining values
above are cell centered values. Also note that we need values for ¢?, ¢V, q" and ¢" over a larger range of
values of the j index. Note that the values for g are the primitive variables described in Section 1. The

conversion from conservative variables to primitive variables is accomplished as follows.

Fori=3,..,ny;+2and j=1,...n,+4

¢i; = max (ry, Uj}") (3.0.336)
unv
4= (3.0.337)
q;;
unv
q;; = q—{) (3.0.338)
ij
¢i; = max [Psqy], (v — 1) 4jj €] (3.0.339)
P 0.5
Y4
cij = (qu> (3.0.340)
ij
unP
eij = qi? —0.5 [(q%f + (q%ﬂ (3.0.341)
ij
2
P== (3.0.342)
5

21. At this point everything has been specified to allow the calculation to proceed except for the boundary
conditions. We need values of U;‘J, U;fj, UT and UT for the values of j = 1,2,ny+3,ny+4and i = 3, ..., n, +2.
These are the boundary conditions in the y- coordmate. A variety of boundary conditions can be supported
but the same three will be provided in this specification as for the x-coordinate. Using the indexing scheme

adopted for this specification, these three types of boundary conditions are specified as follows.

Forj=1,2andi=3,...,n; +2

if (bc_bottom = 1)

UpP = U7, (3.0.343)

upl =-Up (3.0.344)

upy =upry (3.0.345)

Uit =uprE (3.0.346)
else if (bc_bottom = 2)

uiP =upy 3.0.347

()

UnU U ()
upy =0y (3.0.349)
UnP U ()
()

3 CODEHYDRO CALCULATION FLOW

else if (bc_bottom = 3)

UnD

U,“,U:_

UnV
nP
s

UnD

i,y +J
nU
Ui My +J

UnV

i,ny+j

UnP

03Ny +J

For j=n, +3,n,+4and i =3,...,n, + 2

f (bc_top =1)
U5” = Ul 4=
U5 = =Ulbn, 15
Uy =Ury, nyi5-)
UnP Ut 121y +5—j

else if (bc_top =2)
U'n'D Uﬁiﬂ
vt =upy L
Unv Ulnxyﬂ
upt =upy

else if (bc_top = 3)
U —urP.,
vy = v,
v~ Ui,
v -0,

26

This completes the specification of the algorithm used in CodeHydro. Now we will spend some time discussing
how to use the details of the specification above.

4 DISCUSSION OF ALGORITHM 27

4 Discussion of Algorithm

As indicated, the previous section provided details on how to implement the algorithm from a top down
perspective. However, the algorithm must be executed in a bottom up fashion such that equations 2.0.11,
2.0.12, 2.0.13 and 2.0.11 would be computed at the end of their respective calculations. Thus, an actual
calculation would proceed by executing the sweep over the x-coordinate first in the following fashion. Execute
the following steps in this order: 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 and 1. Then execute the sweep over the
y-coordinate by executing the following steps in this order: 21, 20, 19, 18, 17, 16, 15, 14 and 13. Then
execute another sweep over the y-coordinate by executing the following steps in this order: 10, 21, 20, 19,
18, 17, 16, 15, 14 and 13. Note that in this sweep over the y-coordinate we included step 10 to compute the
value of At. Then executa a sweep over the x-coordinate by executing the following steps in this order: 11,
9,8,7,6,5,4, 3,2 and 1. Note that in this sweep over the x-coordinate, steps 12 and 10 are omitted. Step
12 is only done once at the very beginning of a simulation. Step 10 is done at the beginning of a pair of
sweeps over either x and then y or over y and then x. Step 10 computes the value of the timestep, At, for a
pair of sweeps over the two spatial coordinates.

There are also several other items which should be noted and discussed. One is that in the steps of the
algorithm above, there is freedom to algebraically combine steps as desired to eliminate variables. One might
choose a fewer number of variables in order to reduce the memory footprint of the implementation. The
variables and steps above were chosen to describe an existing reference implementation. However, if variables
are eliminated and steps combined, the result should be algebraically equivalent to the steps described above.

It should also be noted that in the algorithm described above, the calculations associated with a particular
cell in a sweep over either of the two coordinates is independent of all the other cell values being calculated
at the new time step. More specifically, the values of the state variables described in equation 1.0.9 depend
only on the old values of those state variables at the previous time step or previous sweep. This means
that this algorithm has a very large amount of fine grain parallelism and this may be exploitable by some
hardware architectures. Or, the fine grain parallelism can be organized into larger tasks which may be more
appropriate for other hardware architectures.

It should also be noted that when performing a sweep over one of the two coordinates, there is no spatial
coupling in the coordinate that is not being swept over. The only spatial coupling is in the coordinate being
swept over and only the two nearest neighbors on either side of the cell being updated participate in this
coupling. Thus there is significant data locality that can be exploited.

5 VERIFICATION OF IMPLEMENTATION 28

5 Verification of Implementation

In this section we discuss how one verifies that an implementation of this specification is accurate and
conformant. There are multiple approaches that one could take to verify an implementation of the algorithm
described in this specification. Perhaps the simplest is for Los Alamos National Laboratory to make available
for download the output of one of our implementations for several different test problems at several different
problem sizes. This is the approach we have currently decided upon. We will provide an input file for a test
problem and the output file that goes with it. Both files will be simple text files and the output file will
contain the values of the state variable, U, printed out to machine precision at the end of the simulation.
There will be several input/output file pairs available to represent several test problems run at different
problem sizes. These test results will be maintained in a source control repository. Access to this repository
may be requested by anyone who chooses to implement this specification and desires to verify it. It should
be noted that there is an implicit responsibility assumed by Los Alamos National Laboratory to make sure
that we possess and maintain a verified implementation of this specification.

6 USER DEFINED INPUT PARAMETERS 29

6 User Defined Input Parameters

During the detailed description of the calculation flow presented in Section 3, several parameters were
identified as user specified input parameters for the algorithm. These will now be defined and discussed.

1.

10.

11.

12.

13.

ng is the number of cells in the x-coordinate. Together with Az, it defines the size of the simulation
domain in the x-coordinate such that L, = n,Az. This parameter is referenced in each of the steps in
Section 3.

ny is the number of cells in the y-coordinate. Together with Ay, it defines the size of the simulation
domain in the y-coordinate such that L, = n,Ay. This parameter is referenced in each of the steps in
Section 3.

Ax is the size of a cell in the x-coordinate. Together with n,, it defines the size of the simulation
domain in the x-coordinate such that L, = n,Axz. Note that Az is the same for all cells and this leads
to a mesh spacing that is uniform in the x-coordinate. This parameter is referenced in Steps 1, 7, 10
and 12 of Section 3.

. Ay is the size of a cell in the y-coordinate. Together with n,, it defines the size of the simulation

domain in the y-coordinate such that L, = n,Ay. Note that Ay is the same for all cells and this leads
to a mesh spacing that is uniform in the y-coordinate. This parameter is referenced in Steps 10, 12,
13 and 19 of Section 3.

«v is the ratio of specific heats and is 5/3 for an ideal gas. This parameter is referenced in Steps 2, 4,
5, 8, 10, 12, 14, 16, 17 and 20 of Section 3.

Cy is the Courant time step limit factor which is used in the calculation of the next time step value.
For numerical stability, this value should be less than or equal to one. This parameter is referenced in
Step 10 of Section 3.

¢s is a smallness parameter used in some equations to provide good numerical properties including
avoidance of divide by zero errors. A good value for it is 10710, This parameter is referenced in Steps
4,5, 8, 10, 16, 17 and 20 of Section 3.

rs is a smallness parameter used in some equations to provide good numerical properties including
avoidance of divide by zero errors. A good value for it is 10719, This parameter is referenced in Steps
4,5, 8,10, 16, 17 and 20 of Section 3.

nr_itlim is the maximum number of iterations to take in the Newton- Raphson calculation used in
the Riemann solver. A reasonable value for this is 10. The larger this value, the closer the Riemann
solver is to an exact Riemann solver. This parameter is referenced in Steps 4 and 16 of Section 3.

nr_tol is the convergence tolerance on the Newton-Raphson solver. A reasonable value for this pa-
rameter is 107%. The smaller this value, the more accurate the Riemann solver is and the closer it is
to an exact Riemann solver. This parameter is referenced in Steps 4 and 16 of Section 3.

Ty is the slope type input parameter. The value of this input variable should be 1.0. It is used in Steps
7 and 19 of Section 3.

order selects the order of accuracy for the calculation and should be an integer equal to 1 or 2. A
good value is 2 as this provides for a more accurate algorithm at the expense of more computation. It
is used in Steps 7 and 19 of Section 3.

scheme is a hydro scheme input parameter. It can take values of muscl, plmde and collela. When
scheme = muscl, the MUSCL-Hancock [5] version of the Godunov algorithm is used. When scheme =
plmde, a Piecewise Linear MUSCL Direct Eulerian version of the Godunov algorithm is used. When

6 USER DEFINED INPUT PARAMETERS 30

14.

15.

16.

17.

18.

scheme = collela, a Piecewise Parabolic Method [1] version of the Godunov algorithm is used which
is also known as Colella’s method. It is used in Steps 7 and 19 of Section 3.

bc_left specifies the boundary condition for the left boundary in the x-coordinate of the problem
domain. This parameter is referenced in Step 11 of Section 3.

bc_right specifies the boundary condition for the right boundary in the x-coordinate of the problem
domain. This parameter is referenced in Step 11 of Section 3.

bc_top specifies the boundary condition for the top boundary in the y-coordinate of the problem
domain. This parameter is referenced in Step 21 of Section 3.

bc_bottom specifies the boundary condition for the bottom boundary in the y-coordinate of the problem
domain. This parameter is referenced in Step 21 of Section 3.

problem specifies the test problem to be used. This parameter is referenced in Step 12 of Section 3.

REFERENCES 31

References

[1] Phillip Colella and Paul R. Woodward. The piecewise parabolic method (ppm) for gas-dynamical simu-
lations. Journal of Computational Physics, 54(1):174 — 201, 1984.

[2] S. K. Godunov, A. V. Zabrodin, and G. P. Prokopov. A computational scheme for two-dimensional
non stationary problems of gas dynamics and calculation of the flow from a shock wave approaching a
stationary state. USSR Computational Mathematics and Mathematical Physics, 1(4):1187 — 1219, 1962.

[3] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 40
West 20th Street, New York, NY 10011-4211, USA, 2002.

[4] Gilbert Strang. On the construction and comparison of difference schemes. STAM Journal on Numerical
Analysis, 5(3):506-517, 1968.

[5] Bram van Leer. Towards the ultimate conservative difference scheme. v. a second-order sequel to go-
dunov’s method. Journal of Computational Physics, 32(1):101 — 136, 1979.

