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Incremental Online Object Learning In a Vehicular 
Radar-Vision Fusion Framework 

Zhengping li , Member, IEEE, Matthew Luciw, Member, IEEE, luyang Weng, Fellow, IEEE and Shuqing 

Zeng, Member, IEEE 

Abstract-In this paper, we propose an object learning system 
that incorporates sensory information from an automotive radar 
system and a "ideo camera. The radar system provides a coarse 
attention for the focus of visual analysis on relatively small areas 
within the image plane. The attended visual areas are coded and 
learned by a 3-layer neural network utilizing what is called in­
place learning, where every neuron is responsible for the learning 
of its own signal processing characteristics within its connected 
network environment, through inhibitory and excitatory con­
nections with other neurons. The modeled bottom-up, lateral, 
and top-down connections in the network enable sensory sparse 
coding, unsupervised learning and supervised learning to occur 
concurrently. The presented work is applied to learn two types of 
encountered objects in multiple outdoor driving settings. Cross 
validation results show the overall recognition accuracy above 
95 % for the radar-attended window images. In comparison with 
the uncoded representation and purely unsupervised learning 
(without top-down connection), the proposed network improves 
the recognition rate by 15.93% and 6.35 % respectively. The 
proposed system is also compared with other learning algorithms 
favorably. The result indicates that our learning system is the only 
one to fit all the challenging criteria for the development of an 
incremental and online object learning system. 

Index Terms-Intelligent vehicle system, sensor fusion, object 
learning, biologically inspired neural network, sparse coding. 

I. I NTRODUCTIO N 

Ever since the pioneering projects of driverless car in 1980's 
(e.g., the Euro EUREKA Prometheus Project and the USA 
Autonomous Land Vehicle [I D, many systems for autonomous 
driving have been created (e.g., [2] [3] [4]) and many more 
are under development. Yet, the constraints of autonomous 
driving did not require local perceptual awareness besides a 
classification of traversable and non-traversable areas. Skilled 
driving assistance systems, furthermore, require a rich under­
standing of the complex road environment, which contains 
many signals and cues that visually convey in formation, such 
as traffic lights , road signs, and many different types of 
objects, including other vehicles, pedestrians, and trash cans , 
to name a few. The skilled driving poses high requirements 
for the awareness of driving conditions, which possibly have a 
significant number of different objects. In order to take correct 
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and intelligent actions in the driving conditions, recognition of 
the varied objects is one of the most critical tasks. 

Vision and radar systems have complimentary properties 
in driving assistance systems. As one type of active sensors, 
a radar system has shown the good performance of target 
detection in driving environments. It provides fairly accurate 
measurements of object distance and velocity, and remains 
robust under various weather conditions. However, radars 
installed on a vehicle do not have enough lateral resolution 
to model object shapes, leading to a limitation of recognizing 
object types. On the contrary, video cameras, called passive 
sensors, are able to provide sufficient lateral resolution to ana­
lyze objects. The cues of shapes, furthermore the appearance, 
give more details for the characteristics of different objects. 

The fusion of radar and vision information has been widely 
discussed and utilized in driving assistance systems. Early 
fusion framework utilized radar positions in a vision-based 
lane recognition system to achieve the better lane estimations 
(e.g. Jochem and Langer 1996 [5] and Gern et al. 2000 [6]). 
A more common approach was later described by Grover 
et al. 200 I [7] to perform the radar-vision fusion at target 
(e.g. , key object) level, where a single radar map and a single 
night-vision image (using blob features) were fused in polar 
coordinates to determine vehicle localizations. Hofmann et al. 
2003 [8] conducted a radar-based obstacle detection and an 
optical Jane recognition interactively to identify the relevant 
vehicle for the controller of the host vehicle. Miyahara et 
al. 2006 [9] presented a range-window algorithm to generate 
regions of interest (ROl) from radar returns, where edge-based 
pattern matching was used for tracking of the object appeared 
in the attention window. Using the similar mechanism of ROI 
provided by radars, Kadow et al. 2007 [10] and Bertozzi et al. 
2008 [II] developed an optimized symmetry measurement and 
motion stereos respectively to detect and track other vehicles. 
However, the quantitative evaluation (e.g., average recognition 
rate) of object recognition/detection is missing in most of 
the work above. In addition, aforementioned fusion researches 
mainly detected key objects (i.e., vehicles or pedestrians) using 
object-specific features, such as blobs, edges, symmetries and 
motion, etc. The object-specific (or called task-specific) per­
ceptual approach is not suited to provide perceptual awareness 
in complex environments with various objects of interest. 

In the proposed work, we take the advantage of radar­
vision integration to achieve an efficient attention selection 
on candidate targets, and employ a generic object learning 
network to identify object classes without using the low­
level and mid-level object-specific features. A cortex-inspired 



Teacher 

~ 
Camera 

Radar 

Window 
Image 

Attentional 
Image Queue 

Label 

Receptive 
Fields 

Layer 1 
(Sparse Coding) 

a ~ 00 
00 global 0 
o -000 0 0 

000 
000 

o 0 Layer 3 
o (Association) 

Layer 2 
(Recognition) 

2 

Fig. I: System architecture of the vehicle-based agent. The camera and the radar work together to generate a set of attended window images, 
containing nearby objects. A teacher communicates with the system through an interface to train the class labels of objects. A 3-layer network 
provides the processing and learning of the extracted window images. The number of neurons in each layer is specified at a 3D grid (r rows 
xc columns xd depths). Layer l encodes the local input fields of each window image using self-developed orientation-selective features. 
Neurons in layer 2 learn the sparse-coded object representations, associated by layer 3 with teacher's output tokens. 

neural network integrates 3-way computations (i.e., bottom­
up, top-down and lateral) to code object samples to an over­
complete space and learn the distribution of coded "key" 
object patterns in favorable recognition performance. Its in­
place learning mechanism provides the incremental learning 
optimality and comparatively low operational complexity even 
for large networks. 

A successful implementation here requires a combination 
of the following challenges, where no existing work as we 
know can meet all: (1) General radar-vision fusion framework 
not constrained for a task-specific learning. (2) Visual sensory 
sparse coding via developed features with statistical indepen­
dcnce. (3) Incremental object learning adaptive to the changing 
of environments and objects. (4) Online real-time speed due 
to low computation complexity. (5) Integration of supervised 
learning (via top-down propagation) and unsupervised learning 
(via bottom-up propagation) in any order suited for develop­
ment. All the properties above, coupled with a nurturing and 
challenging environment, as experienced through sensors and 
effectors, allow the automatic perceptual awareness to emerge 
in driving assistance systems. 

II. ARCHITECTURES 

An outline of the system architecture is shown in Fig.l. The 
eventual goal is to enable a vehicle-based agent to develop 
the ability of perceptual awareness, for applications including 
intelligent driving assistance and autonomous driving. Percep­
tual awareness is a conceptual and symbolic understanding of 
the sensed environment, where the concepts are defined by a 
common language l between the system and the teachers or 
users. In this paper, a teacher points out sensory examples of 
particular conceptual object classes (e.g., vehicle, pedestrian, 
traffic lights, and other objects that are potential driving 
hazards), where the system learns to associate a symbolic 
token with the sensed class members, even those that have not 

I The language can be as simple as a pre-defined set of lokens or as complex 
as human spoken language., . 

been exactly sensed before, but instead share some common 
characteristics (e.g., a van can be recognized as a vehicle by 
the presence of a license plate, wheels and tail- lights). More 
complicated perceptual awareness beyond recognition involves 
abilities like counting and prediction. 

III. COARSE ATTENTION SELECTION 

Two external (outward looking) sensors are used in the 
proposed system. The first is the radar modality, utilized to find 
attended regions (possible nearby objects) within the image. 
The second senses the vision modality. Information from this 
sensor is used to develop the capability of object recognition. 
Table [ & II specify the sensor parameters of radar and vision 
modalities, respectively. 

TABLE I: Sensor Specifications of Radar System 

Key parameters Specification 
Refreshing rate to Hz 
No. of targets max. of 20 targets 

Dislance 2 ~ 150m ± max(5%, l.Om) 
Angle 15" ± max (O.3°, range of O.lm) 
Speed ±56m/ s ± O.75m/s 

TABLE II: Sensor Specifications of Vision System 

Key parameters Specification 
Refreshing rate 15 Hz 
View of fields 45° 

Resolution 320 x 240 

As shown in Fig. 2 (right), a group of target points in 
3D world coordinates can be detected from the radar system, 
with a detection range up to 150 meters. Each radar point is 
presented by a triangle, associated with a bar, whose length 
and direction indicate the relative speed of an object. As a 
rudimentary but necessary attention selection mechanism, we 
discarded radar returns more than 80 meters in distance ahead 



or more than 8 meters to the right or left outside the vehicle 
path (e.g., red triangle points in Fig. 2 (right) are omitted) . 
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Fig. 2: A projection of effective radar points (green) onto the image 
plane, where window images are extracted for further recognition. 

Based on the estimation of maximum height (3 .0 meters) 
and maximum width (3.8 meters) of environment objects, a tar­
get window can be localized based on the radar-returned point 
(centered at the window). Each target window is projected 
into the image reference system, using a perspective mapping 
transfonnation (see Fig. 2 (upper left)). The transformation 
is performed by the calibration data that contain the intrinsic 
and extrinsic parameters of each camera. For example, if the 
radar-returned object distance (to the host vehicle) is lager, the 
attention window in the image is smaller and vice versa. 

For each attention window, the pixels are extracted as a 
single image where most of the non-object pixels have been 
filtered out. Each image is normalized in size, in this case to 
56 rows and 56 columns as shown in Fig. 2 (bottom left). To 
avoid stretching small images, if the attention window could 
fit, it was placed in the upper left comer of the size-normalized 
image, and the other pixels are set to be uniform gray. 

There may be more than one object in each window image, 
but for the purpose of object identification , the image is 
assigned with only one label. The labeled radar windows create 
a set of selected areas while the rest part of the image becomes 
ignored. This is called coarse attention selection - finding 
candidate areas purely based on physical characteristics (radar 
returns). The attended window images may still contain some 
information unrelated to the object, such as "leaked-in" back­
ground behind the object. However, our object learning scheme 
does not require the good segmentation of the object itself, but 
instead depends on the discriminant statistical distributions of 
the scenes in each radar window. The proposed system can 
thereby learn to detect and recognize multiple objects within 
the image captured by the video camera, as long as a radar 
point is returned for each one. 

IV. OBJECT LEARNING NETWORK 

The attended window images are processed and learned 
through the proposed neural network (see Fig. 1) via 3 layers, 
till the motor output, where each neuron in the motor layer 
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Fig. 3: General structure of the network connection. Neurons are 
placed (given a position) on different layers in an end-to-end hier­
archy - from sensors to motors. Only the connections to a centered 
cell are shown, but all the other neurons in the feature layer have the 
same default connections. 

corresponds to one object class . Fig. 3 shows the general 
structure of the network connection with three consecutive 
layers. Every neuron at layer l is connected with four types 
of connection weights : 

I) Bottom-up weight vector Wb (I) that links connections 
from its bottom-up field in the previous level. 

2) Top-down weight vector Wt (I ) that links connections 
from its top-down field in the next level. 

3) Lateral weight vector Wh (l) that links inhibitory connec­
tions from neurons in the same layer (larger range) . 

4) Lateral weight vector we l l ) that links excitatory connec­
tions from neurons in the same layer (smaller range). 

Note that each linked weight pair (i , j) shares the same 
value, i.e., Wt ~ l-l ) = Wb; l) Moreover, this work does not use 
explicit lateral connections, but instead uses an approximate 
method in which the top-k winners (i.e., k largest responses) 
along with their excitatory neighbors update and fire. The 
suppressed neurons are considered laterally inhibited and the 
winning neurons are considered laterally excited. 

The object learning network is incrementally updated at 
discrete times, t = 0,1,2, ... , taking inputs sequentially from 
sensors and effectors, computing responses of all neurons, and 
producing internal and external actions through experience. 
Fig. 4 shows an example of network computation, layer 
by layer, as well as key parameters used in the network 
implementation. 
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Fig. 4: An example of layer representations (i.e., responses) 
in the proposed neural network, including a specific set of 
resource parameters implemented. Green and red directed lines 
show the bottom-up and top-down connections to the firing 
neurons respectively. The top-down fields are not applicable 
in layer I and layer 2, and neural representation in layer I is 
reshaped to 36 x 431 for visualization purpose. 

As described in Algorithm I, layer I of the proposed net­
work develops earlier than other layers, which is inspired from 
the biological fact that early cortical regions in the brain (e.g., 
primary visual cortex) would develop earlier than the later 
cortical regions (12). Given t = 1,2, ... 500000, the network 
receives 56 x 56-pixe.1 (same as attention window dimension) 
natural image patches, which were randomly selected from 
the thirteen natural images2. Neurons are learned through 
the in-place learning algorithm described in Algorithm 2, 
however, without supervision on motors. After the matured 
development of layer I features (i.e., the layer 1 bottom­
up weights converge), the network perceives radar-attended 
images and all the layers are developed through the same in­
place learning procedure in Algorithm 2, whereas supervised 
signals from a teacher are given in the motor layer 3. 

The network performs an open-ended online learning while 
internal features "emerged" through interaction with its ex­
tracellular environment. All the network neurons share the 
same learning mechanism and each learns on its own, as a 
self-contained entity using its own internal mechanisms. In­
place learning, representing a new and deeper computational 
understanding of synaptic adaptation, is rooted in the genomic 
equivalence principle (13). It implies that there can not be 
a "global", or multi-cell, goal to the learning, such as the 
minimization of mean-square error for a pre-collected (batch) 
set of inputs and outputs. Instead, every neuron is fully 
responsible for its own development and online adaptation 
while interacting with its extracellular environment. 

2 Available al htlp:l/www.cis. hul.fi/projecll/icalimageical 

Algorithm 1 Network processing procedure 

I: for t = 1,2 , .... 500000 do 
2: Grab a whitened natural image patch s (t). 
3: for l = 1 do 
4: Get the bottom-up fields x(t) from s(t) . The top-

down fields z(t) are set to O. 
5 (y (t+l), L(t+l)) = In-place(x(t) , y(t) , z(t) I L(t)) 
6: end for 
7: end for 
8 for t = 500001,500002, ... do 
9: Grab the attention window image s(t). 

10: Impose the motor vector (class labels) m(t) to layer 3. 
II: for 1 :S I :S 3 do 
12: if l = 1 then 
13: Get the bottom-up fields x(t) from s(t). 
14: else if I = 2 then 
15: Get the bottom-up fields x(t) from the previous 

layer representation (responses) and the top-down 
fields z(t) from the next layer representation (re­
sponses). 

16: else 
17: Get the bottom-up fields x(t) from the previous 

layer representation (responses). 
18: end if 
19 (y(t+l) , L(t +l») = In-place(x(t),y(t),z(t) I L(t») 
20: end for 
21: end for 

In the following sections, we will go through the critical 
components or properties of the neural network to achieve 
robust and efficient object recognition. Sec. V will address 
statistical optimalities of neurons' weight adaption in both 
spatial and temporal aspects. Sec. VI will explain how the 
sparse coding scheme is performed by layer 1 and why such 
a coding scheme is favorable compared to its original pixel 
representation. Sec. VII will describe the abstraction role of 
top-down connections to form the bridge representation in 
layer 2, along with its perspective to reducing within-object 
variance, and thereby, facilitating the object recognition. 

V. LEARNING OPTIMALITY 

In this section, we will discuss the learning optimality of 
the in-place learning algorithm described above. Given the 
limited resource of N neurons, the in-place learning divides 
the bottom-up space X into N mutually non-overlapping 
regions, such that 

(4) 

where Ri n Rj = cP, if i '" j. Each region is represented 
by a single unit feature vector wbi, and all the vectors 
Wbi, i = 1, 2, ... , N are not necessarily orthogonal. The 
in-place learning decomposes a complex global problem of 
approximation and representation into multiple, simpler and 
local ones so that lower order statistics (means) are sufficient. 
The proper choice of N is important for the local estimation 
of X. If N is too small, the estimation becomes inaccurate. 



Algorithm 2 In-place learning procedure: (y(t + 1), L(t + 
1)) = In-place(x(t),y(t), z (t) I L(t)) 

I : for 1 :s; i :s; NI do 
2: Compute pre-response of neuron i from bottom-up and 

top-down connections: 

( 1 ) 
Wbi t . Xi t 

( 
(I)() (I)() 

9 - al 
. , Ilwb;l)(t)lIlIx;I)(t) 11 

Wt (l)(t). z(l\t) ) + al 1 , 

II Wt;t) (t) III I z;t) (t) II (I) 

where x;1) (t) and z;t) (t) are bottom-up and top-down 
input fields of neuron i. 9i is a neuron-specific sig­
moidal function or its piecewise linear approximation . 
at is a layer-specific weight that controls the maximum 
influence of top-down versus the bottom-up part. 

3: end for 
4: Simulating lateral inhibition, decide the winner: j 

-(1)( 1) arg maxiEf(l ) Yi t + ; 
5: The cells belonging to excitatory neighborhood E (l) are 

also considered as winners and added to the winner set 

.J. 
6: The responses y U) are computed from the pre-responses . 

Only the winning neuron(s) have nonzero responses and 
are copied from y(l). 

7: Update the number of hits (cell age) nj for the winning 
neuron(s): nj f- nj + l. Compute J.L(nj) by the amnesic 
function, Compute J.L(nj) by the amnesic function : 

{ 

0 if nj :s; t l , 

J.L(nj) ~ c(nj - tl) / (t2 - tl) if tl < nj :s; t2, (2) 

c + (nj - t2)/r if t2 < t, 

where plasticity parameters tl = 20, t2 = 200, c = 2, 
r = 2000 in our implementation. 

S: Update winning neuron(s) using its temporally scheduled 
plasticity: 

Wbjll(t + 1) = (1 - <I>(nj) )wb;l)(t) 

+ <I>(nj)x;l) (t)yY)(t + 1) 
(3) 

where the scheduled plasticity is determined by its age­
dependent weight: 

<I>(nj) = (1 + J.L(nj))/nj, 

9: All other neurons keep their ages and weight unchanged. 

On the other hand , if N is too large, it is possible to over-fit 
the space X. 

From Eq. 3, a local estimator wb i can be expressed as: 

When L:,.Wbi = 0, meaning that the learning weight Wbi 
converges, we have 

Xi (t)Yi(t + 1) = Wb i(t) (6) 

Consider a layer (e.g., layer I of the proposed network) in 

which the top-down connections are not available3, Eq. 7 can 
be re-written as below: 

(7) 

such that 

Averaging the both sides of Eq. 8 over Xi (t), conditional 
on Wb i staying unchanged (i.e., converged), we have 

(9) 

where C is the covariance matrix of inputs Xi(t) over time t 
and the scalar>. = L:t Ilwbi (t) lllIxi(t)ll. Eq. 9 is the standard 
eigenvalue-eigenvector equation . It means that if a weight 
Wb i converges in a local region of the bottom-up space X, 
the weight vector becomes one of the eigenvectors for the 
input covariance matrix. For this reason, the in-place neural 
learning becomes a principal component analyzer (PCA)4 [15], 
which is mathematically optimal to minimize the squared 
mapping/representational error, such that 

wbi = arg min L II(Xi(t) . Wbi)Wb i - xi(t) 112. (10) 
Wb i t 

In addition, the multi-sectional function J.L( n) in Eq. (2) 
performs straight average J.L( n) = 0 for small n to reduce the 
error coefficient for earlier estimates. Then, J.L( n) enters the 
rising section . It changes from tl to t2 linearly. In this section, 
neurons compete for the different partitions by increasing their 
learning rates for faster convergence. Finally, n enters the third 
section - the long adaptation section - where J.L( n) increases at 
a rate about l/r, meaning the second weight (1 + p.(n))/n in 
Eq. (2) approaches a constant l /r, to trace a slowly changing 
distribution . This kind of plasticity scheduling is more suited 
for practical signals with unknown non-stationary statistics, 
where the distribution does follow i.i.d assumption in all the 
temporal phase. 

In summary, the in-place learning scheme balances dual 
optimalities in the aspect of both limited computational re­
sources (spatial) and limited learning experience at any time 
(temporal), such that 

I) Given the spatial resource distribution tuned by neural 
computations, the developed features (weights) mini­
mize the representational error. 

2) The recursive amnesic average formulation enables au­
tomatic determination of optimal step sizes in this in­
crementaJ non-stationary problem. 

Because the in-place learning does not require explicit 
search in high-dimensional parameter space nor compute the 
second order statistics, it also presents high learning efficiency. 
Given each n-dimensional input x(t), the system complexity 
for updating m neurons is O( mn). It is not even a function 
of the number of inputs t, due to the nature of incremental 

.lTne functional role of lop-down conneclion will be specificaUy discussed 
in Sec. VII 

4 Allhough nOI shown nere. Oja el aJ. (14) has proven Ihal il is Ihe firsl 
principal componenl Ihal the neuron will find. and Ihe norm of Ihe weigh I 
veclOr lends 10 I. 



learning. For the network meant to run in online development, 
this low update complexity is very important. 

VI. SENSORY SPARSE CODING 

In this section, we will discuss important characteristics of 
above dual optimalities in Jearning natural images, i.e., a mix­
ture of super-gaussian sources [16). As discussed in [17], when 
the input is a super-gaussian mixture, the spatial optimality 
of minimizing representation error in the in-place Jearning 
can function as an Independent Component Analysis (ICA) 
algorithm (18], and its temporal optimality performed sur­
prising efficiency [19]. Such independent components would 
help separate the non-Gaussian source signals into additive 
subcomponents supposing the mutual statistical independence. 

An exampl'e of developed independent components (i.e., 
bottom-up weights of our layer 1) are shown as image patches 
in Fig. 5. Many of the developed features resemble the orienta­
tion selective cells that were observed in Vl area, as discussed 
in [20], [21] . The mechanism of top-k winning is used to 
control the sparseness of the coding. In the implemented 
network, k is set as 91 to allow about a quarter of 431 
components active for one bottom-up field in a window image. 
Although the developed features appear like Gabor filters, the 
inside independent statistics of these developed features are 
not available in the formula defined Gabor functions. 

Fig. 5: Developed layer J features (431) in one neural column, 
arranged in a 20 grid. Each image patch shows a boltom-up weight 
(16 x 16 dimensions) of one neuron. 

Because object appearance in radar-attended window im­
ages could potentially vary quite a bit (the object invari­
ance issue), and "leaked-in" background may pose amount 
of noises , it is computationally inefficient to present and 
recognize objects using millions of pixels . The developed 
independent features in layer 1 (considered as independent 

causes) are able to code the object appearance from raw pixel 
space (56 x 56) to an over-complete, sparse5 space (431 x 36). 
Such a sparse coding leads to lower mutual information among 

5By over-complete, it means that the number of code elements is greater 
than the dimensionality of the input space. By sparse, it means that only a 
few neurons will fire for a given input. 

6 

coded representations than pixel appearance [22] [23]. The 
redundancy of the input is transformed into the redundancy of 
the firing pattern of cells. This allows object learning and recall 
(associative learning) to become a compositional problem (i.e., 
an view of a novel object is decomposed as a composite of 
a unique set of independent events). As shown in Sec. VIII, 
the sparse coding is able to reduce redundant, high-correlated 
information in the pixel inputs and fonn the representations 
such that statistical dependency among them is reduced, while 
"key" object information for later recognition is preserved . 

It is worth mentioning that as natural images hold the vast 
inequities in variance along different directions of the input 
space, we should "sphere" the data by equalizing the variance 
in all directions [16]. This pre-processing is called whitening. 
The whitened sample vector s is computed from the original 
sample So as s = WSo , where W = VD is the whitening 
matrix. V is the matrix where each principal component 
Vj, V2, ... , Vn is a column vector, and D is a diagonal matrix 

1 
where the matrix element at row and column i is ,!Xi' and Ai 

is the eigenvalue of Vi. Whitening is very beneficial to uncover 
the true correlations within the natural images, since it avoids 
derived features to be dominated by the larger components. 

VII. TOP-DOWN ABSTRACTJON 

Z (Motor) Z (Motor) 

• Neuron 

Fig. 6: Illustration of top-down connection roles. Top-down con­
nections boost the variance of relevant subspace in the neural input, 
resulting in more neurons being recruited along relevant information . 
The boltom-up input samples contain two classes, indicated by 
samples" +" and "0" respectively. To see the effect clearly, assume 
only two neurons are available in the local region. (a) Class mixed 
using only the bottom-up inputs. The two neurons spread along the 
direction of larger variance (irrelevant direction). The dashed line is 
the decision boundary based on the winner of the two neurons, which 
is a failure partition case. (b) Top-down connections boost recruiting 
neurons along relevant directions. (c) Class partitioned. Especially 
during the testing phase, although the top-down connections become 
unavailab'le and the winner of the two neurons use only the bottom­
up input subspace X , the samples are partitioned correctly according 
to the classes (see dashed line). 

The coded representation in layer I is feed-forward to layer 
2, which is associated with feed-back, top-down connections 
from supervised signals in layer 3. The top-down connections 
coordinate the neural competition and representations through 
two functional properties of abstraction as below. 

I) The top-down connections provide a new subspace 
where the relevant information (the information that is 
important to distinguish between motor outputs) will 



FrameSeqlD FrameNum FrameTime ID1 ID2 longDistl longDi'5t2 ... LateraIDistl ! lateralDis12 Confidencel Confidence2 

.•. ... I ... - ." 

L0815_01 1081 108518 133 104 ... 26.8 126.9 ... -3.2 I 0.3 . .. 15 9 ..• 

. .. 

L0815_04 915 91865 143 242 30.2 79.2 -0. 2 -4.5 15 15 ... 

... 

L081S_0S 466 46821 101 34 76.8 10.4 5 -0.1 I· 15 15 ... 

-

L081S_08 836 83940 139 157 21.5 69.3 ... 2.9 -5.2 15 15 ... 

Fig. 7: Examples of radar data and cOITesponding images in time sequence. It also shows some examples of different road environments in 
the tested dataset. 

have a higher variance than the irrelevant subspace. 
Since higher variance subspace will recruit more neu­
rons due to the Neuronal Density Theorem [24) , the 
representation acuity becomes higher in the relevant 
subspace, and the representation becomes more suited 
to the task(s) that were trained . 
Fig. 6 illustrates this top-down connection roles. As 
the top-down connections correspond to relevant in­
formation, the variance in top-down signals boosts the 
total variance of the relevant subspace. This enhanced 
variance recruits the locally available neurons to spread 
along the relevant subspace. As shown in Fig. 6(c), 
the neurons spread along the relevant direction and 
are invariant to irrelevant information. The classes are 
partitioned correctly in the subspace (partitioned at the 
intersection with the dashed line) after top-down connec­
tion , but before that , the classes in Fig. 6(a) are mixed 
in the bottom-up subspace X. 

2) Neurons form topographic cortical areas according 
to abstract classes, called topographic class grouping 
(TCG). That is, based on the availability of neurons, 
the features represented for the same motor class are 
grouped together to reduce the relative within-class vari­
ance, leading to the better recognition ability. Consider 
the within-class variance Wk of the input space X 

n 

wk = L E [li x i - xl12 I x E e;lT Pi (11) 
i = 1 

and its total variance 

(12) 

where x is the input mean of X. Ci denotes the class i 
and Pi denotes the probability of a sample belonging to 
class i. 
The relative within-class variance for the input space X 
can be written as 

TX (I 3) 

From the Neuronal Density Theorem above, we know 
that the neurons will spread along the signal manifold to 
approximate the density of expanded input space X x Z. 
Thanks to the top-down propagation from the motor 

classes, w~ / a~ < wk / ak, such that the expanded 
input space X x Z has smaller relative within-class 
variance than that in X . 

_ wk +w~ 
TX x Z- 2 2 <TX' 

ax +az 
(14) 

Note that if top-down space Z consists of one label for each 
class, the within-class variance of Z is zero: w~ = 0 but the 
grand variance a~ is still large. 

Overall, above two abstraction properties work together to 
transform the meaningless (iconic) inputs into the internal 
representation with abstract class meanings. 

VIII. EXPERIMENTAL R ESU LTS 

We used an equipped vehicle to capture real-world im­
ages and radar sequences for training and testing purpose . 
Our dataset is composed from 10 different "environments" -
stretches of roads at different looldng places and times. Fig. 7 
shows a few examples of corresponding radar and image data 
in different environment scenarios. From each environment, 
multiple sequences were extracted. Each sequence contains 
some similar but not identical images (different scales, illumi­
nation and view point variation etc.). The proposed learning 
architecture is evaluated in a prototype of two-class problem: 
vehicles and other objects, which can be extendable to learn 
any types of objects defined by external teachers. There are 
1763 samples in the vehicle class and 812 samples in the other 
object class . For aU tests , each large image from the camera 
is 240 rows and 320 columns. Each radar window is size­
normalized to 56 by 56 and intensity-normalized to {O l}. 

A. Sparse coding effect 

To verify the functional role of sparse coding discussed in 
Sec. VI, we captured 800 radar-attended window images from 



our driving sequences and presented them in an object-by­
object order. Each object possibly appears in several window 
images with sequential variations, e.g., different scales, illu­
mination and view point variation etc . The correlation matrix 
of window images is shown in Fig. 8 (a) , indicating the 
high statistical dependence among the samples, especiaJiy, 
across different objects. Each image is further coded for a 
sparse representation in layer I. The correlation matrix of 
generated sparse representations is shown in Fig . 8 (b). It 
takes the advantage in two aspects : (I) object samples are de­
correlated by the coding process, i.e., cross-object correlation 
is dramatically reduced; (2) object information is maintained, 
i.e., within-object samples keep the high correlation. 

200 400 600 800 
(a) 

200 400 600 800 
(b) 

a 

Fig. 8: Correlation matrix of (a) sampled 800 window images in pixel 
space and (b) their corresponding sparse representations in layer I 
space. 

B. Top-down abstraction effect 

To evaluate the functional role of top-down abstraction 
discussed in VII, we first define the empirical "probability" 
of a neuron's firing across classes: 

n(i) 
Pi = L~ n(i) 

i E 1, 2, ... , c (15) 

where n(i) is the winning age of a neuron fired on a motor 
class i. 

(a) (b) 

Fig. 9: 20 class maps of 15 x 15 neurons in layer 2. Each neuron is 
associated with one color, presenting a class with the largest empirical 
"probability" Pi. 

As shown in Fig. 9 and discussed in Sec. VII, neurons tend 
to distribute along the classes (i.e., "relevant information"). 
When the number of available neurons are lager than the 
number of classes, the neurons representing the same class are 
grouped together, leading to the lower within-class variance, 

i.e., simpler class boundaries. Through the mechanism of top­
down abstraction, the network is able to develop both effective 
and efficient internal neural distributions. 

C. Cross validation 

In this experiment, a ten-fold cross validation is performed 
to evaluate the system performance. All the samples are 
shuffled and partitioned to 10 folds/subsets, where 9 folds are 
used for training and the last fold is used for testing. This 
process is repeated 10 times, leaving one fold for evaluation 
each time. The cross validation result is shown in Fig. 10 (c). 
The average recognition rate of the vehicle samples is 96.87%, 
and 94.01 % of the other object samples, where the average 
false positive and false negative rates are 2.94% and 6.72%, 
respectively. Compared to the performance without sparse 
coding in layer I (see Fig. 10 (a», we found that, in average, 
the recognition rate improved 16.8 1 % for positive samples and 
14.66% for negative samples, respectively. Compared to the 
performance without top-down supervision from layer 3 (see 
Fig . 10 (b» , the recognition rate improved 5.83 % for positive 
samples and 7. 12% for negative samples, respectively. 

D. Performance comparison. 

In the aspect of open-ended visual perceptual development, 
an incremental (learning one image perception per time) , 
online (cannot turn the system off to change or adjust), real­
time (fast learning and performing speed), and extendable 
(the number of classes can increase) architecture is expected. 
We compare the following incremental learning methods in 
MATLAB to classify the extracted window images (56 x 56) 
as vehicles and other objects: (1) K-Nearest Neighbor (K-NN), 
with K=I, and using a Ll distance metric for baseline per­
formance; (2) Incremental Support Vector Machines (J-SVM) 
[25]; (3) Incremental Hierarchical Discriminant Regression 
(IHDR) [26] and (4) the proposed network described in this 
paper. We used a linear kernel for I-SVM, as is suggested for 
high-dimensional problems [27] . We did try several settings 
for a RBF kernel, but the system training becomes extremely 
slow and the performance improvement is not obvious (by 
I %-3% only). 

Instead of randomly selecting samples in cross validation, 
we used a " true disjoint" test, where the time-organized 
samples are broken into ten sequential folds. Each fold is used 
for testing per time. In this case, the problem is more difficult, 
since sequences of vehicles or objects in the testing fold may 
have never been seen. This truly tests generalization. 

The results are summarized in Tables III. Nearest neighbor 
performs fairly well , but is prohibitively slow. IHDR combines 
the advantage of K-NN with an automatically developed 
overlapping tree structure, which organizes and clusters the 
data. It is useful for extremely fast retrievals due to logarithmic 
complexity. IHDR performs the recognition better than K­
NN, and also is much faster for real-time training and testing. 
However, IHDR typically takes a lot of memory. It allows 
sample merging of prototypes, but in such case it saved every 
training sample, thereby did not use memory efficiently. J­
SVM performed the worst on the high dimensional data with 
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Fig. \ 0: lO-fold cross validation (a) without sparse coding in layer I , (b)withouttop-down connection from layer 3 and (c) of the proposed 
work. 

TABLE III : Average perfonnance & comparison of learning methods over "true disjoint" test 

Learning Overall "Vehicle" 
method accuracy accuracy 
K-NN 78 .45 ± 12.64% 74.43 ± 13.55% 
ISVM 71.54 ± 9.82 '10 73 .23 ± 9 .36~o 

IHDR 80.21 ± 6 . 14 ~o 74.78 ± 10.24 70 
Proposed network 87.0I± 1.43% 89.32± 1.64% 

amount of noises, but the testing speed is fastest, since its 
decision making only based on the small number of support 
vectors. A major problem with I-SVM is lack of extendability 
- by only saving support vectors to make the best two-class 
decision boundary, it throws out infonnation that may be 
useful in distinguishing other classes that could be added later. 

The proposed network is able to perfonn the recognition 
better than all other methods using only 15 x 15 layer 2 
neurons with a top-down supervision parameter Ct = 0.3. It 
is also fairly fast, and efficient in tenns of memory. Overall, 
the proposed work does not fail in any criteria, although it is 
not always the "best" in anyone category. the proposed work 
also has its major advantages in its extendability. New tasks, 
more specifically, new object classes can added later without 
changing the existing learning structure of the network. 

£. incremental and online learning 

The proposed neural network is incrementally updated by 
one piece of training data at a time, and the data is discarded 
as soon as it has been "seen". The incrementalleaming entails 
the recognition system to learn while perfonning onboard for 
a vehicle. This is very important for the driving assistance 
and autonomous driving systems, especially as infonnation in 
input images is huge and highly redundant. The system only 
needs infonnation necessary for the decision making. 

An incremental online teaching interface is developed in 
C++ using a PC with 2.4 GHz Intel Core2 Duo CPU and 4GB 
memory. The teacher could move through the collected images 
in the order of their sequence, provide a label to each radar 
window, train the agent with current labels, or test the agent 's 
current knowledge . Even in this non-parallelized version, the 
speed is in real-time use. The average speed for training the 

"Other objects" Training Lime Testing lime 
accuracy per sample per sample 

90.44 ± 8.33% nJa 891 ± 13.4ms 
69.32 ± 10.24% 161.2 ± 18.3ms 2.4± O_3ms 
89.43 ± 5.38% 4.2± l.9ms 6.4 ± 2.3ms 
82.33 ± 6.54% 112 ± 8 .2ms 42.3 ± 7.2ms 

entire system (not just the algorithm) is 12.54 samples/s and 
the average speed for testing is \5 .12 samples/s. 

IX . CONCLUSION 

In this paper, we proposed and demonstrated a generic 
object learning system based on the automobile sensor fusion 
framework. Early attention selection is provided by an efficient 
integration of multiple sensory modalities (vision and radar). 
Extracted attended areas are sparsely coded by the neural 
network using its layer I features developed from the statistics 
of natural images. Layer 2 of the network further learns 
in reaction to the coupled sparse (object) representation and 
external motor representations, where each cell in the network 
is a local class-abstracted density estimator. The proposed 
system architecture allows incremental and online \.earning, 
which is feasible for real-time use of any vehicle robot that can 
sense visual infonnation , radar infonnation, and a teacher's 
input. 

For future work, we would like to test the system perfor­
mance on the other critical objects in the driving environments, 
e.g, pedestrians, traffic signs, etc. Since the radar system is 
robust for various weather conditions, the sensor fusion frame 
work can potentially extend to some severe weather conditions, 
such as in rains or snows. Currently, it is assumed that each 
frame is independent from the next (which is certainly not 
usual the case). Relaxing this assumption may lead us to ways 
for the temporal infonnation of images, which should provide 
a promising method to upgrade the efficiency of the learning 
system. We hope that these improvements will eventually lead 
to a vehicle based robot that can learn to be aware of any type 
of object in its environment. 
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