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Incremental Online Object Learning in a Vehicular
Radar-Vision Fusion Framework

Zhengping Ji, Member, IEEE, Matthew Luciw, Member, IEEE, Juyang Weng, Fellow, IEEE and Shuqing
Zeng, Member, IEEE

Abstract—In this paper, we propose an object learning system
that incorporates sensory information from an automotive radar
system and a video camera. The radar system provides a coarse
attention for the focus of visual analysis on relatively small areas
within the image plane. The attended visual areas are coded and
learned by a 3-layer neural network utilizing what is called in-
place learning, where every neuron is responsible for the learning
of its own signal processing characteristics within its connected
network environment, through inhibitory and excitatory con-
nections with other ncurons. The modeled bottom-up, lateral,
and top-down connections in the network enable sensory sparse
coding, unsupervised learning and supervised learning to occur
concurrently. The presented work is applied to learn two types of
encountered objects in multiple outdoor driving settings. Cross
validation results show the overall recognition accuracy above
95% for the radar-attended window images. In comparison with
the uncoded representation and purely unsupervised learning
(without top-down connection), the proposed network improves
the recognition rate by 15.93% and 6.35% respectively. The
proposed system is also compared with other learning algorithms
favorably. The result indicates that our learning systen is the only
one to fit all the challenging criteria for the development of an
incremental and online object learning system.

Index Terms—Intelligent vehicle system, sensor fusion, object
learning, biologically inspired neural network, sparse coding.

[. INTRODUCTION

Ever since the pioneering projects of driverless car in 1980’s
(e.g., the Euro EUREKA Prometheus Project and the USA
Autonomous Land Vehicle [1]), many systems for autonomous
driving have been created (e.g., [2] [3] [4]) and many more
are under development. Yet, the constraints of autonomous
driving did not require local perceptual awareness besides a
classification of traversable and non-traversable areas. Skilled
driving assistance systems, furthermore, require a rich under-
standing of the complex road environment, which contains
many signals and cues that visually convey information, such
as traffic lights, road signs, and many different types of
objects, including other vehicles, pedestrians, and trash cans,
to name a few. The skilled driving poses high requirements
for the awareness of driving conditions, which possibly have a
significant number of different objects. In order to take correct
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and intelligent actions in the driving conditions, recognition of
the varied objects is one of the most critical tasks.

Vision and radar systems have complimentary properties
in driving assistance systems. As one type of active sensors,
a radar system has shown the good performance of target
detection in driving environments. It provides fairly accurate
measurements of object distance and velocity, and remains
robust under various weather conditions. However, radars
installed on a vehicle do not have enough lateral resolution
to model object shapes, leading to a limitation of recognizing
object types. On the contrary, video cameras, called passive
sensors, are able to provide sufficient lateral resolution to ana-
lyze objects. The cues of shapes, furthermore the appearance,
give more details for the characteristics of different objects.

The fusion of radar and vision information has been widely
discussed and utilized in driving assistance systems. Early
fusion framework utilized radar positions in a vision-based
lane recognition system to achieve the better lane estimations
(e.g. Jochem and Langer 1996 [5] and Gern et al. 2000 [6]).
A more common approach was later described by Grover
et al. 2001 [7] to perform the radar-vision fusion at target
(e.g., key object) level, where a single radar map and a single
night-vision image (using blob features) were fused in polar
coordinates to determine vehicle localizations. Hofmann et al.
2003 [8] conducted a radar-based obstacle detection and an
optical lane recognition interactively to identify the relevant
vehicle for the controller of the host vehicle. Miyahara et
al. 2006 [9] presented a range-window algorithm to generate
regions of interest (ROI) from radar returns, where edge-based
pattern matching was used for tracking of the object appeared
in the attention window. Using the similar mechanism of ROI
provided by radars, Kadow et al. 2007 [10] and Bertozzi et al.
2008 [11] developed an optimized symmetry measurement and
motion stereos respectively to detect and track other vehicles.
However, the quantitative evaluation (e.g., average recognition
rate) of object recognition/detection is missing in most of
the work above. In addition, aforementioned fusion researches
mainly detected key objects (i.e., vehicles or pedestrians) using
object-specific features, such as blobs, edges, symmetries and
motion, etc. The object-specific (or called task-specific) per-
ceptual approach is not suited to provide perceptual awareness
in complex environments with various objects of interest.

In the proposed work, we take the advantage of radar-
vision integration to achieve an efficient attention selection
on candidate targets, and employ a generic object learning
network to identify object classes without using the low-
level and mid-level object-specific features. A cortex-inspired
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Fig. 1: System architecture of the vehicle-based agent. The camera and the radar work together to generate a set of attended window images,
containing nearby objects. A teacher communicates with the system through an interface to train the class labels of objects. A 3-layer network
provides the processing and learning of the extracted window images. The number of neurons in each layer is specified at a 3D grid (r rows
xc columns xd depths). Layer | encodes the local input fields of each window image using self-developed orientation-selective features.
Neurons in layer 2 learn the sparse-coded object representations, associated by layer 3 with teacher’s output tokens.

neural network integrates 3-way computations (i.e., bottom-
up, top-down and lateral) to code object samples to an over-
complete space and learn the distribution of coded “key”
object patterns in favorable recognition performance. Its in-
place learning mechanism provides the incremental learning
optimality and comparatively low operational complexity even
for large networks.

A successful implementation here requires a combination
of the following challenges, where no existing work as we
know can meet all: (1) General radar-vision fusion framework
not constrained for a task-specific learning. (2) Visual sensory
sparse coding via developed features with statistical indepen-
dence. (3) Incremental object learning adaptive to the changing
of environments and objects. (4) Online real-time speed due
to low computation complexity. (5) Integration of supervised
learning (via top-down propagation) and unsupervised learning
(via bottom-up propagation) in any order suited for develop-
ment. All the properties above, coupled with a nurturing and
challenging environment, as experienced through sensors and
effectors, allow the automatic perceptual awareness to emerge
in driving assistance systems.

II. ARCHITECTURES

An outline of the system architecture is shown in Fig.1. The
eventual goal is to enable a vehicle-based agent to develop
the ability of perceptual awareness, for applications including
intelligent driving assistance and autonomous driving. Percep-
tual awareness is a conceptual and symbolic understanding of
the sensed environment, where the concepts are defined by a
common language' between the system and the teachers or
users. In this paper, a teacher points out sensory examples of
particular conceptual object classes (e.g., vehicle, pedestrian,
traffic lights, and other objects that are potential driving
hazards), where the system learns to associate a symbolic
token with the sensed class members, even those that have not

!'The language can be as simple as a pre-defined set of tokens or as complex
as human spoken languages.

been exactly sensed before, but instead share some common
characteristics (e.g., a van can be recognized as a vehicle by
the presence of a license plate, wheels and tail- lights). More
complicated perceptual awareness beyond recognition involves
abilities like counting and prediction.

[11. COARSE ATTENTION SELECTION

Two external (outward looking) sensors are used in the
proposed system. The first is the radar modality, utilized to find
attended regions (possible nearby objects) within the image.
The second senses the vision modality. Information from this
sensor is used to develop the capability of object recognition.
Table I & II specify the sensor parameters of radar and vision
modalities, respectively.

TABLE I: Sensor Specifications of Radar System

Key parameters
Refreshing rate
No. of targets

Specification
10 Hz
max. of 20 targets

Distance 2 ~ 150m + max(5%, 1.0m)
Angle 15° + max(0.3°, range of 0.1m)
Speed +56m/s = 0.75m/s

TABLE I1: Sensor Specifications of Vision System

Key parameters Specification

Refreshing rate 15 Hz

View of fields 45°
Resolution 320 x 240

As shown in Fig. 2 (right), a group of target points in
3D world coordinates can be detected from the radar system,
with a detection range up to 150 meters. Each radar point is
presented by a triangle, associated with a bar, whose length
and direction indicate the relative speed of an object. As a
rudimentary but necessary attention selection mechanism, we
discarded radar returns more than 80 meters in distance ahead



or more than 8 meters to the right or left outside the vehicle
path (e.g., red triangle points in Fig. 2 (right) are omitted).
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Fig. 2: A projection of effective radar points (green) onto the image
plane, where window images are extracted for further recognition.

Based on the estimation of maximum height (3.0 meters)
and maximum width (3.8 meters) of environment objects, a tar-
get window can be localized based on the radar-returned point
(centered at the window). Each target window is projected
into the image reference system, using a perspective mapping
transformation (see Fig. 2 (upper left)). The transformation
is performed by the calibration data that contain the intrinsic
and cxtrinsic parameters of each camera. For example, if the
radar-returned object distance (to the host vehicle) is lager, the
attention window in the image is smaller and vice versa.

For each attention window, the pixels are extracted as a
single image where most of the non-object pixels have been
filtered out. Each image is normalized in size, in this case to
56 rows and 56 columns as shown in Fig. 2 (bottom left). To
avoid stretching small images, if the attention window could
fit, it was placed in the upper left corner of the size-normalized
image, and the other pixels are set to be uniform gray.

There may be more than one object in each window image,
but for the purpose of object identification, the image is
assigned with only one label. The labeled radar windows create
a set of selected areas while the rest part of the image becomes
ignored. This is called coarse attention selection — finding
candidate areas purely based on physical characteristics (radar
returns). The attended window images may still contain some
information unrelated to the object, such as “leaked-in” back-
ground behind the object. However, our object learning scheme
does not require the good segmentation of the object itself, but
instead depends on the discriminant statistical distributions of
the scenes in each radar window. The proposed system can
thereby learn to detect and recognize multiple objects within
the image captured by the video camera, as long as a radar
point is returned for each one.

IV. OBJECT LEARNING NETWORK

The attended window images are processed and learned
through the proposed neural network (see Fig. 1) via 3 layers,
till the motor output, where each neuron in the motor layer
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Fig. 3: General structure of the network connection. Neurons are
placed (given a position) on different layers in an end-to-end hier-
archy — from sensors to motors. Only the connections to a centered
cell are shown, but all the other neurons in the feature layer have the
same default connections.

corresponds to one object class. Fig. 3 shows the general
structure of the network connection with three consecutive
layers. Every neuron at layer ! is connected with four types
of connection weights:

1) Bottom-up weight vector wy, ") that links connections
from its bottom-up field in the previous level.

2) Top-down weight vector w() that links connections
from its top-down field in the next level.

3) Lateral weight vector wi, () that links inhibitory connec-
tions from neurons in the same layer (larger range).

4) Lateral weight vector w, (") that links excitatory connec-
tions from neurons in the same layer (smaller range).

Note that each linked weight pair (¢,7) shares the same
value, i.e., wtfl"l) = wy, ). Moreover, this work does not use
explicit lateral connecuons but instead uses an approximate
method in which the top-k winners (i.e., k largest responses)
along with their excitatory neighbors update and fire. The
suppressed neurons are considered laterally inhibited and the
winning neurons are considered laterally excited.

The object learning network is incrementally updated at
discrete times, t = 0, 1,2, ..., taking inputs sequentially from
sensors and effectors, computing responses of all neurons, and
producing internal and external actions through experience.
Fig. 4 shows an example of network computation, layer
by layer, as well as key parameters used in the network
implementation.
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Fig. 4: An example of layer representations (i.e., responses)
in the proposed neural network, including a specific set of
resource parameters implemented. Green and red directed lines
show the bottom-up and top-down connections to the firing
neurons respectively. The top-down fields are not applicable
in layer 1 and layer 2, and neural representation in layer 1 is
reshaped to 36 x 431 for visualization purpose.

As described in Algorithm 1, layer | of the proposed net-
work develops earlier than other layers, which is inspired from
the biological fact that early cortical regions in the brain (e.g.,
primary visual cortex) would develop earlier than the later
cortical regions [12]. Given ¢t = 1,2,...500000, the network
receives 56 x 56-pixel (same as attention window dimension)
natural image patches, which were randomly selected from
the thirteen natural images?. Neurons are leamned through
the in-place learning algorithm described in Algorithm 2,
however, without supervision on motors. After the matured
development of layer | features (i.e., the layer 1 bottom-
up weights converge), the network perceives radar-attended
images and all the layers are developed through the same in-
place learning procedure in Algorithm 2, whereas supervised
signals from a teacher are given in the motor layer 3.

The network performs an open-ended online learning while
internal features “emerged” through interaction with its ex-
tracellular environment. All the network neurons share the
same learning mechanism and each learns on its own, as a
self-contained entity using its own internal mechanisms. In-
place learning, representing a new and deeper computational
understanding of synaptic adaptation, is rooted in the genomic
equivalence principle [13]. It implies that there can not be
a “global”, or multi-cell, goal to the learning, such as the
minimization of mean-square error for a pre-collected (batch)
set of inputs and outputs. Instead, every neuron is fully
responsible for its own development and online adaptation
while interacting with its extracellular environment.

2 Available at htip://www.cis. hut.fi/projects/ica/imageica/

Algorithm 1 Network processing procedure

1: for t = 1,2,....500000 do

2:  Grab a whitened natural image patch s(t).

3 forl=1do

4 Get the bottom-up fields x(t) from s(t). The top-

down fields z(t) are set to O.

s (y(t+1), L(t+1)) = In-place(x(t), y(2), 2(2) | L(t))
6. end for
7: end for
8
9

. for t = 500001, 500002, ... do
Grab the attention window image s(t).
10.  Impose the motor vector (class labels) m(t) to layer 3.
1I: forl1</[<3do

12: if . =1 then

13: Get the bottom-up fields x(¢) from s(t).

14: else if [ = 2 then

15: Get the bottom-up fields x(t) from the previous

layer representation (responses) and the top-down
fields z(¢) from the next layer representation (re-

Sponses).

16: else

17: Get the bottom-up fields x(t) from the previous
layer representation (responses).

18: end if

19: (y(t+1), L(t+1)) = In-place(x(t),y(t), z(t) | L(t))

20:  end for

21: end for

In the following sections, we will go through the critical
components or properties of the neural network to achieve
robust and efficient object recognition. Sec. V will address
statistical optimalities of neurons’ weight adaption in both
spatial and temporal aspects. Sec. VI will explain how the
sparse coding scheme is performed by layer 1 and why such
a coding scheme is favorable compared to its original pixel
representation. Sec. VII will describe the abstraction role of
top-down connections to form the bridge representation in
layer 2, along with its perspective to reducing within-object
variance, and thereby, facilitating the object recognition.

V. LEARNING OPTIMALITY

In this section, we will discuss the learning optimality of
the in-place learning algorithm described above. Given the
limited resource of N neurons, the in-place learning divides
the bottom-up space X into N mutually non-overlapping
regions, such that

X=RiURyU...URpN 4)

where R, N R; = ¢, if ¢ # j. Each region is represented
by a single unit feature vector wy;, and all the vectors
Wps, ¢ = 1,2,..., N are not necessarily orthogonal. The
in-place learning decomposes a complex global problem of
approximation and representation into multiple, simpler and
local ones so that lower order statistics (means) are sufficient.
The proper choice of N is important for the local estimation
of X. If N is too small, the estimation becomes inaccurate.



Algorithm 2 In-place learning procedure: (y(t + 1), L(t +
1)) = In-place(x(t), y (¢), z(¢) | L(¢))
I: for 1 <i < N; do
2:  Compute pre-response of neuron ¢ from bottom-up and
top-down connections:

) )
wp,  (t) - x; ' (t)
g (1 —ar)—22 :
? ( OO )]
. MORL O )
1)
Iwe D @)z @)

iP+1) =

1

(1

where xgl)(t) and zgl)(t) are bottom-up and top-down

input fields of neuron i. g; is a neuron-specific sig-
moidal function or its piecewise linear approximation.
oy is a layer-specific weight that controls the maximum
influence of top-down versus the bottom-up part.

3: end for

4: Simulating lateral inhibition, decide the winner: j =

p ~{1) ;
argmax;eym 9; (L +1);

s: The cells belonging to excitatory neighborhood E() are
also considered as winners and added to the winner set
T.

6: The responses y(!) are computed from the pre-responses.
Only the winning neuron(s) have nonzero responses and
are copied from (.

7: Update the number of hits (cell age) n; for the winning
neuron(s): n; < n; + 1. Compute p(n;) by the amnesic
function, Compute p(n;) by the amnesic function:

0 ifn; < i1,
eln; —t1)/(ta —t1) if t1 <mj <t3, (2
e+ (n; —ta)/r if tp <,

wn;) —

where plasticity parameters t; = 20, ¢t = 200, ¢ = 2,
7 = 2000 in our implementation.
8: Update winning neuron(s) using its temporally scheduled
plasticity:
wp D (E41) = (1 - &(n;))we(2) 5
! L
+ () (£)5” (¢ + 1)

where the scheduled plasticity is determined by its age-
dependent weight:

®(n;) = (14 p(ny))/n;,

9: All other neurons keep their ages and weight unchanged.

On the other hand, if N is too large, it is possible to over-fit
the space X.
From Eq. 3, a local estimator wy,; can be expressed as:

Awp; = (n)[xi (E)ys(t + 1) — wo,(t)] )

When Awy,; = 0, meaning that the learning weight wy,;
converges, we have

X (t)yi(t + 1) = wp,(t) (6)

Consider a layer (e.g., layer 1 of the proposed network) in

which the top-down connections are not available®, Eq. 7 can
be re-written as below:
xi(t) - W, (t)
X () e = Whalt) @)
O @M1 ~ "o
such that
X ()x] ()We;i(t) = [wei ([l woe(8)  (®)

Averaging the both sides of Eq. 8 over x;(¢), conditional
on wy,; staying unchanged (i.e., converged), we have

C wp; = A wy,; )

where C is the covariance matrix of inputs x;(¢) over time ¢
and the scalar A = 3, [[wp;(¢)/|[Ix:(¢)]|. Eq. 9 is the standard
eigenvalue-eigenvector equation. It means that if a weight
wp; converges in a local region of the bottom-up space X,
the weight vector becomes one of the eigenvectors for the
input covariance matrix. For this reason, the in-place neural
learning becomes a principal component analyzer (PCA)* [15],
which is mathematically optimal to minimize the squared
mapping/representational error, such that

Wb = argmin D lea(t) - woi)we; — x:(0)[> (10)
ot

In addition, the multi-sectional function p(n) in Eq. (2)
performs straight average p(n) = 0 for small » to reduce the
error coefficient for earlier estimates. Then, p(n) enters the
rising section. It changes from ¢, to ¢ linearly. In this section,
neurons compete for the different partitions by increasing their
learning rates for faster convergence. Finally, » enters the third
section — the long adaptation section — where p(n) increases at
a rate about 1/r, meaning the second weight (1 + p(n))/n in
Eq. (2) approaches a constant 1/7, to trace a slowly changing
distribution. This kind of plasticity scheduling is more suited
for practical signals with unknown non-stationary statistics,
where the distribution does follow i.i.d assumption in all the
temporal phase.

In summary, the in-place learning scheme balances dual
optimalities in the aspect of both limited computational re-
sources (spatial) and limited learning experience at any time
(temporal), such that

1) Given the spatial resource distribution tuned by neural
computations, the developed features (weights) mini-
mize the representational error.

2) The recursive amnesic average formulation enables au-
tomatic determination of optimal step sizes in this in-
cremental non-stationary problem.

Because the in-place learning does not require explicit
search in high-dimensional parameter space nor compute the
second order statistics, it also presents high learning efficiency.
Given each n-dimensional input x(t), the system complexity
for updating m neurons is O(mn). It is not even a function
of the number of inputs ¢, due to the nature of incremental

3The functional role of top-down connection will be specifically discussed
in Sec. VII

4 Although not shown here, Oja et al. [14] has proven that it is the first
principal component that the neuron will find, and the norm of the weight
vector tends to 1.



learning. For the network meant to run in online development,
this low update complexity is very important.

V1. SENSORY SPARSE CODING

In this section, we will discuss important characteristics of
above dual optimalities in learning natural images, i.e., a mix-
ture of super-gaussian sources [16]. As discussed in [17], when
the input is a super-gaussian mixture, the spatial optimality
of minimizing representation error in the in-place learning
can function as an Independent Component Analysis (ICA)
algorithm [18], and its temporal optimality performed sur-
prising efficiency [19]. Such independent components would
help separate the non-Gaussian source signals into additive
subcomponents supposing the mutual statistical independence.

An example of developed independent components (i.e.,
bottom-up weights of our layer 1) are shown as image patches
in Fig. 5. Many of the developed features resemble the orienta-
tion selective cells that were observed in V1 area, as discussed
in [20], [21]. The mechanism of top-k winning is used to
control the sparseness of the coding. In the implemented
network, & is set as 91 to allow about a quarter of 431
components active for one bottom-up field in a window image.
Although the developed features appear like Gabor filters, the
inside independent statistics of these developed features are
not available in the formula defined Gabor functions.

Fig. 5: Developed layer I features (431) in one neural column,
arranged in a 2D grid. Each image patch shows a bottom-up weight
(16 x 16 dimensions) of one neuron.

Because object appearance in radar-attended window im-
ages could potentially vary quite a bit (the object invari-
ance issue), and “leaked-in” background may pose amount
of noises, it is computationally inefficient to present and
recognize objects using millions of pixels. The developed
independent features in layer | (considered as independent
causes) are able to code the object appearance from raw pixel
space (56 x 56) to an over-complete, sparse® space (431 x 36).
Such a sparse coding leads to Iower mutual information among

5By over-complete, it means that the number of code elements is greater
than the dimensionality of the input space. By sparse, it means that only a
few neurons will fire for a given input.

coded representations than pixel appearance [22] [23]. The
redundancy of the input is transformed into the redundancy of
the firing pattern of cells. This allows object learning and recall
(associative learning) to become a compositional problem (i.e.,
an view of a novel object is decomposed as a composite of
a unique set of independent events). As shown in Sec. VIII,
the sparse coding is able to reduce redundant, high-correlated
information in the pixel inputs and form the representations
such that statistical dependency among them is reduced, while
“key” object information for later recognition is preserved.

It is worth mentioning that as natural images hold the vast
inequities in variance along different directions of the input
space, we should “sphere” the data by equalizing the variance
in all directions [16]. This pre-processing is called whitening.
The whitened sample vector s is computed from the original
sample s, as s = Ws,, where W = VD is the whitening
matrix. V is the matrix where each principal component
V1, Vs, ..., V, 1S 2 column vector, and D is a diagonal matrix

where the matrix element at row and column ¢ is ——, and A;

. Y i
is the eigenvalue of v;. Whitening is very beneficial to uncover
the true correlations within the natural images, since it avoids
derived features to be dominated by the larger components.

VII. TOP-DOWN ABSTRACTION

Fig. 6: Illustration of top-down connection roles. Top-down con-
nections boost the variance of relevant subspace in the neural input,
resulting in more neurons being recruited along relevant information.
The bottom-up input samples contain two classes, indicated by
samples “+” and “0” respectively. To see the effect clearly, assume
only two neurons are available in the local region. (a) Class mixed
using only the bottom-up inputs. The two neurons spread along the
direction of larger variance (irrelevant direction). The dashed line is
the decision boundary based on the winner of the two neurons, which
is a failure partition case. (b) Top-down connections boost recruiting
neurons along relevant directions. (c) Class partitioned. Especially
during the testing phase, although the top-down connections become
unavailable and the winner of the two neurons use only the bottom-
up input subspace X, the samples are partitioned correctly according
to the classes (see dashed line). .

The coded representation in layer 1 is feed-forward to layer
2, which is associated with feed-back, top-down connections
from supervised signals in Jayer 3. The top-down connections
coordinate the neural competition and representations through
two functional properties of abstraction as below.

1) The top-down connections provide a new subspace

where the relevant information (the information that is
important to distinguish between motor outputs) will
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Fig. 7: Examples of radar data and corresponding images in time sequence. It also shows some examples of different road environments in
the tested dataset.

2)

have a higher variance than the irrelevant subspace.
Since higher variance subspace will recruit more neu-
rons due to the Neuronal Density Theorem [24], the
representation acuity becomes higher in the relevant
subspace, and the representation becomes more suited
to the task(s) that were trained.

Fig. 6 illustrates this top-down connection roles. As
the top-down connections correspond to relevant in-
formation, the variance in top-down signals boosts the
total variance of the relevant subspace. This enhanced
variance recruits the locally available neurons to spread
along the relevant subspace. As shown in Fig. 6(c),
the neurons spread along the relevant direction and
are invariant to irrelevant information. The classes are
partitioned correctly in the subspace (partitioned at the
intersection with the dashed line) after top-down connec-
tion, but before that, the classes in Fig. 6(a) are mixed
in the bottom-up subspace X.

Neurons form topographic cortical areas according
to abstract classes, called topographic class grouping
(TCG). That is, based on the availability of neurons,
the features represented for the same motor class are
grouped together to reduce the relative within-class vari-
ance, leading to the better recognition ability. Consider
the within-class variance w% of the input space X

n
wk =Y Elllx - %|*| x € c:] Tps

=1

(1

and its total variance

o'g(:E x — %2

(12)

where X is the input mean of X. ¢; denotes the class 4
and p; denotes the probability of a sample belonging to
class .

The relative within-class variance for the input space X
can be written as

(13)

From the Neuronal Density Theorem above, we know
that the neurons will spread along the signal manifold to
approximate the density of expanded input space X x Z.
Thanks to the top-down propagation from the motor
classes, w}/0% < w%/o%, such that the expanded
input space X x Z has smaller relative within-class
variance than that in X.

wg( I w%

14
0‘3(-{—0% (14)

TXxZ = < Tx.
Note that if top-down space Z consists of one label for each
class, the within-class variance of Z is zero: w% = 0 but the
grand variance 0% is still large.

Overall, above two abstraction properties work together to
transform the meaningless (iconic) inputs into the internal
representation with abstract class meanings.

VIII. EXPERIMENTAL RESULTS

We used an equipped vehicle to capture real-world im-
ages and radar sequences for training and testing purpose.
Our dataset is composed from 10 different “environments” —
stretches of roads at different looking places and times. Fig. 7
shows a few examples of corresponding radar and image data
in different environment scenarios. From each environment,
multiple sequences were extracted. Each sequence contains
some similar but not identical images (different scales, illumi-
nation and view point variation etc.). The proposed learning
architecture is evaluated in a prototype of two-class problem:
vehicles and other objects, which can be extendable to learn
any types of objects defined by external teachers. There are
1763 samples in the vehicle class and 812 samples in the other
object class. For all tests, each large image from the camera
is 240 rows and 320 columns. Each radar window is size-
normalized to 56 by 56 and intensity-normalized to {0 1}.

A. Sparse coding effect

To verify the functional role of sparse coding discussed in
Sec. VI, we captured 800 radar-attended window images from



our driving sequences and presented them in an object-by-
object order. Each object possibly appears in several window
images with sequential variations, e.g., different scales, illu-
mination and view point variation etc. The correlation matrix
of window images is shown in Fig. 8 (a), indicating the
high statistical dependence among the samples, especially,
across different objects. Each image is further coded for a
sparse representation in layer 1. The correlation matrix of
generated sparse representations is shown in Fig. 8 (b). It
takes the advantage in two aspects: (1) object samples are de-
correlated by the coding process, i.e., cross-object correlation
is dramatically reduced; (2) object information is maintained,
i.e., within-object samples keep the high correlation.

0.8
0.6
0.4

0.2

200

200 400

(a)

600 800 400

(b)

Fig. 8: Correlation matrix of (a) sampled 800 window images in pixel
space and (b) their corresponding sparse representations in layer |
space.

B. Top-down abstraction effect
To evaluate the functional role of top-down abstraction
discussed in VII, we first define the empirical “probability”
of a neuron’s firing across classes:
n(i)
Pi = ¢
Zl n(i)
where n(%) is the winning age of a neuron fired on a motor
class z.

. .
! (a) (b)

Fig. 9: 2D class maps of 15 x 15 neurons in layer 2. Each neuron is
associated with one color, presenting a class with the largest empirical
‘“‘probability” p;.
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As shown in Fig. 9 and discussed in Sec. VII, neurons tend
to distribute along the classes (i.e., “relevant information”).
When the number of available neurons are lager than the
number of classes, the neurons representing the same class are
grouped together, leading to the lower within-class variance,

i.e., simpler class boundaries. Through the mechanism of top-
down abstraction, the network is able to develop both effective
and efficient internal neural distributions.

C. Cross validation

In this experiment, a ten-fold cross validation is performed
to evaluate the system performance. All the samples are
shuffled and partitioned to 10 folds/subsets, where 9 folds are
used for training and the last fold is used for testing. This
process is repeated 10 times, leaving one fold for evaluation
each time. The cross validation result is shown in Fig. 10 (c).
The average recognition rate of the vehicle samples is 96.87%,
and 94.01% of the other object samples, where the average
false positive and false negative rates are 2.94% and 6.72%,
respectively. Compared to the performance without sparse
coding in layer | (see Fig. 10 (a)), we found that, in average,
the recognition rate improved 16.81% for positive samples and
14.66% for negative samples, respectively. Compared to the
performance without top-down supervision from layer 3 (see
Fig. 10 (b)), the recognition rate improved 5.83% for positive
samples and 7.12% for negative samples, respectively.

D. Performance comparison

In the aspect of open-ended visual perceptual development,
an incremental (learning one image perception per time),
online (cannot turn the system off to change or adjust), real-
time (fast learning and performing speed), and extendable
(the number of classes can increase) architecture is expected.
We compare the following incremental learning methods in
MATLAB to classify the extracted window images (56 x 56)
as vehicles and other objects: (1) K-Nearest Neighbor (K-NN),
with K=1, and using a L1 distance metric for baseline per-
formance; (2) Incremental Support Vector Machines (I-SVM)
[25]; (3) Incremental Hierarchical Discriminant Regression
(IHDR) [26] and (4) the proposed network described in this
paper. We used a linear kernel for [-SVM, as is suggested for
high-dimensional problems [27]. We did try several settings
for a RBF kernel, but the system training becomes extremely
slow and the performance improvement is not obvious (by
1%-3% only).

Instead of randomly selecting samples in cross validation,
we used a “true disjoint” test, where the time-organized
samples are broken into ten sequential folds. Each fold is used
for testing per time. In this case, the problem is more difficult,
since sequences of vehicles or objects in the testing fold may
have never been seen. This truly tests generalization.

The results are summarized in Tables 1I1. Nearest neighbor
performs fairly well, but is prohibitively slow. IHDR combines
the advantage of K-NN with an automatically developed
overlapping tree structure, which organizes and clusters the
data. It is useful for extremely fast retrievals due to logarithmic
complexity. IHDR performs the recognition better than K-
NN, and also is much faster for real-time training and testing.
However, IHDR typically takes a lot of memory. It allows
sample merging of prototypes, but in such case it saved every
training sample, thereby did not use memory efficiently. I-
SVM performed the worst on the high dimensional data with
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Fig. 10: 10-fold cross validation (a) without sparse coding in layer 1, (b)without top-down connection from layer 3 and (c) of the proposed

work.

TABLE I1I: Average performance & comparison of learning methods over “true disjoint™ test

Learning Overall “Vehicle” “Other objects™ Training time Testing time
method accuracy accuracy accuracy per sample per sample
K-NN 78.45 +12.64% | 74.43+1355% | 90.44 + 8.33% n/a 891 £ 13.4ms
ISVM 71.54 + 9.82% 7323 £9.36% | 69.32£10.24% | 161.2 £18.3ms 2.4+ 0.3ms
IHDR 80.21 £6.14% | 74.78 £ 10.24% | 89.43F 5.38% 4.2+ 1.9ms 6.4 £ 2.3ms

Proposed network 87.01+ 1.43% 89.32+ 1.64% 82.33 £6.54% 112 &+ 8.2ms 42.3 + 7.2ms

amount of noises, but the testing speed is fastest, since its
decision making only based on the small number of support
vectors. A major problem with I-SVM is lack of extendability
— by only saving support vectors to make the best two-class
decision boundary, it throws out information that may be
usefu] in distinguishing other classes that could be added later.
The proposed network is able to perform the recognition
better than all other methods using only 15 x 15 layer 2
neurons with a top-down supervision parameter o = 0.3. It
is also fairly fast, and efficient in terms of memory. Overall,
the proposed work does not fail in any criteria, although it is
not always the “best” in any one category. the proposed work
also has its major advantages in its extendability. New tasks,
more specifically, new object classes can added later without
changing the existing learning structure of the network.

E. Incremental and online learning

The proposed neural network is incrementally updated by
one piece of training data at a time, and the data is discarded
as soon as it has been “seen”. The incremental learning entails
the recognition system to learn while performing onboard for
a vehicle. This is very important for the driving assistance
and autonomous driving systems, especially as information in
input images is huge and highly redundant. The system only
needs information necessary for the decision making.

An incremental online teaching interface is developed in
C++ using a PC with 2.4 GHz Intel Core2 Duo CPU and 4GB
memory. The teacher could move through the collected images
in the order of their sequence, provide a label to each radar
window, train the agent with current labels, or test the agent’s
current knowledge. Even in this non-parallelized version, the
speed is in real-time use. The average speed for training the

entire system (not just the algorithm) is 12.54 samples/s and
the average speed for testing is 15.12 samples/s.

IX. CONCLUSION

In this paper, we proposed and demonstrated a generic
object learning system based on the automobile sensor fusion
framework. Early attention selection is provided by an efficient
integration of multiple sensory modalities (vision and radar).
Extracted attended areas are sparsely coded by the neural
network using its layer | features developed from the statistics
of natural images. Layer 2 of the network further learns
in reaction to the coupled sparse (object) representation and
external motor representations, where each cell in the network
is a local class-abstracted density estimator. The proposed
system architecture allows incremental and online learning,
which is feasible for real-time use of any vehicle robot that can
sense visual information, radar information, and a teacher’s
input.

For future work, we would like to test the system perfor-
mance on the other critical objects in the driving environments,
e.g, pedestrians, traffic signs, etc. Since the radar system is
robust for various weather conditions, the sensor fusion frame
work can potentially extend to some severe weather conditions,
such as in rains or snows. Currently, it is assumed that each
frame is independent from the next (which is certainly not
usual the case). Relaxing this assumption may lead us to ways
for the temporal information of images, which should provide
a promising method to upgrade the efficiency of the learning
system. We hope that these improvements will eventually lead
to a vehicle based robot that can learn to be aware of any type
of object in its environment.
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