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ABSTRACT

Lead telluride and silicon germanium type alloys have served over the past
several decades as the preferred thermoelectric conversion materials for U. S.
radioisotope thermoelectric generator (RTG) power systems for planetary deep

space exploration missions. The Pioneer missions to Jupiter and
Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and
germanium telluride derivatives) power conversion devices. Since 1976,

silicon germanium (SiGe) alloys, incorporated into the unicouple device, have
evolved as the thermoelectric materials of choice for U. S. RTG powered space
missions. These include the U. S. Air Force Lincoln Experimental Satellites 8
& 9 for communications, in 1976, followed in 1977 by the National Aeronautics
and Space Administration Voyager 1 and 2 planetary missions. In 1989,
advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and,
in 1990, will be used to power the Ulysses investigation of the Sun. In
addition, SiGe technology has been chosen to provide RTG power for the 1995
Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn
orbiter mission. Summaries of the flight performance data for these systems
are presented.

Current U. S. Department of Energy thermoelectric development activities
include (1) the development of conversion devices based on hi-density, close
packed couple arrays and (2) the development of improved performance silicon
germanium type thermoelectric materials. The silicon germanium type
"muiticouple”, being developed in conjunction with the Modular RTG Program, is
discussed in a companion paper. A lead telluride type close-packed module,
discussed herein, offers the promise of withstanding high velocity impacts
and, thus, is a candidate for a Mars Penetrator application.

Recent projects sponsored by the U. S. Department of Energy, including the
Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric
Generator programs, have shown that improvements in silicon germanium
thermoelectric energy conversion capabilities of at least 50 percent can be
achieved by tailoring the characteristics of the silicon germanium alloy
materials and devices. This paper compares the properties and characteristics
of the SiGe alloys now being developed with those used in the operational
space power system.
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2) Teledyne Energy Systems, Timonium, Maryland

3) Ames Laboratory, Iowa State University, Ames, Iowa

4) H. L. Yoh Co., Philadelphia, Pennsylvania (formerly with General Electric
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INTRODUCTION

The launch of the Galileo spacecraft, ‘on October 18, 1989, continued a series
of highly successful Radioisotope Thermoelectric Generator (RTG) powered
spacecraft. The Galileo spacecraft was launched to explore Jupiter and its
moons in great detail. 1Its level of power and capabilities were dramatically
greater than the first "proof-of-principle" spacecraft in the series; namely,
the tiny SNAP-3B flown on Transit 4A in June 1961. To date, the U. S. has
successfully launched twenty (20) spacecraft powered by a total of thirty six
(36) RTGs. The RTGs have been quite varied in characteristics. There have
been eight basic designs using three types of thermoelectric materials, and
the RTGs had four different forms of plutonium 238 fuel for their heat sources.

Each of these RTG powered space systems used the experience gained on prior
missions to improve the performance characteristics of the power system from
the standpoints of generator efficiency, power outputs and specific powers.
As an example, the initial power output of the generator on Transit 4A was
about 2.7 watts electrical compared to the 600 watts supplied by the two units
on the Galileo spacecraft.

This paper will present a brief overview of the types of generators and
missions, the trends in generator performance with time, and some of the
recent projects being conducted to further enhance performance. Much more
detailed design and performance data on these RTGs have been reported
previously by Bennett, Lombardo and Rock (]), C. E. Kelly (2), Skrabek and

McGrew (3), Brittain and Skrabek (4), and Skrabek (5).

GENERATOR CHARACTERISTICS

Table 1, compiled by Skrabek <5), provides a chronological listing of the
successful U. S. RTG launches to date. From the design characteristics of
these generators listed in Table 2, he has concluded that there are eight
generator designs which can be separated into three general classifications.

The SNAP series (3B, 9A, 19B, 19 and 27) shared many features. They all
utilized telluride type thermoelectric materials with heat transfer from the
fuel source to the thermoelectric converter being accomplished by conductive
coupiing. These RTGs operated at moderate hot junction temperatures of about
780K to 890K and, except for the first SNAP 3B, a cover gas was used to help
retard sublimation.



The Transit-RTG used PbTe thermoelectrics but had a different approach for
controlling sublimation; namely, reduction of the hot junction temperature to
673K. Also, the thermoelectric elements were radiatively coupled to the heat
source.

Since 1976, emphasis has been directed toward the use of silicon germanium
alloys in RTGs for deep spacé missions. The first application of this system,
in 1976, was the United States Air Force Lincoln Experimental Satellite 8 & 9
(USAF LES 8/9) communication satellites which were followed, in 1977, by the
NASA Voyager 1 and 2 planetary missions. The units employed on these missions
were called multi-hundred watt (MHW) RTGs. In 1989, General Purpose Heat
Source Radioisotope Thermoelectric Generators (GPHS-RTGs) were used to power
the Galileo exploration of Jupiter and will be used in 1990 to power the
Ulysses investigation of the Sun. In addition, SiGe technology has been
chosen to provide power for the 1995 launch of CRAF (Comet Rendezvous Asteroid
Flyby) and the 1996 launch of the Cassini Saturn orbiter.

RTGs with SiGe thermoelectric materials operate at a higher hot junction
temperature of about 1273K. Radiative coupling is used between the heat
source and unicouples for these designs and sublimation is retarded by a
chemical vapor deposition (CVD) silicon nitride coating on the thermoelectric
elements. The figures-of-merit of SiGe alloys are lower than that for PbTe
alloys, but the higher operating temperatures provide for a larger Carnot
efficiency and result in overall improvement in the specific power of the
system.

The heat sources for the RTGs have evolved over the years from metallic Pu 238
to the hot pressed plutonia pellets encased in iridium metal used in MHW and
GPHS RTGs. These are protected by graphite enclosures from reentry heating
and are designed for intact reentry in the event of accidents.

RTG MISSION AND GENERATOR PERFORMANCE
skrabek ¢’
and the results are summarized in Figure 1 through 8. Specific details for

nas recently summarized the performance data for all these RTGs

several of the more important missions are summarized below. These include
Pioneer, Viking, LES 8/9, and Voyager.



SNAP 19 Pioneer RTGs - Jupiter and Saturn Spacecraft
The Pioneer 10 and 11 spacecraft ¢(Figure 9) blazed a trajl through the
asteroid belt, were the first to explore Jupiter and Saturn by flyby and went

on to the outer solar system. They have now reached beyond the borders of the
solar system and will ultimately journey to the distant stars (6). The four
RTGs on both spacecraft continue to perform well above design levels and are
now beginning, respectively, their 18th and 19th years of space flight.
Pioneer 10 is the longest successfully operating system to date and is even
now producing as much power as was required for the Jupiter encounter more
than 12 years ago. As shown in Figurevﬁ, the Pioneer RTGs are still producing
about 56% 'of their original power after over 150,000 hours, based upon
spacecraft telemetry data, an average power decay rate of less than 0.3% per
1000 hours.

Because of the continued good condition of both spacecraft as they travel in
interstellar space, useful scientific data are now expected well into the
1990s, as long as spacecraft signal strength to Earth is adequate for
reception by NASA's Deep Space Network.

SNAP 19 RTGs/Viking-Mars Landers
NASA's Viking missions were initiated in August and September 1975, when two

spacecraft were launched for extended exploration of the planet Mars to search
for life and to evaluate other scientific features. Following planet
rendezvous in the summer of 1976, each orbiting spacecraft successfully
released its Lander for descent and soft landing at preselected sites on the
Martian surface. Aboard each Lander were two (2) SNAP 19 RTGs, shown in
Figure 10. The RTGs provided thermal protection for the scientific
instrumentation and communication equipment in addition to the prime
electrical power. The SNAP 19 RTGs far exceeded their two (2) vyears of
planetary cruise/orbit and ninety (90) day landed mission design requirements
as shown in Figure 5. When Orbiter/Lander transmission was terminated, it was
projected that the RTGs could adequately operate Lander equipment for at least

another decade (5).

Of the twenty-five (25) experiments aboard the Orbiter/Lander, including
meterology, seismology and biology, the surface imagery and organic sampling

(7). Man's first view of the

capabilities were particularly noteworthy
Martian horizon, taken within minutes of the Viking 1 landing on July 20,

1976, is shown in Figure 11.



MHW RTG for LES 8/9 and Voyager Missions

The MHW RTG is an isotope fueled static power supply using SiGe alloy
thermoelectric materials. It was designed to provide an electrical power
output of 150 watts with a thermal inventory of 2400 watts at beginning of
mission. Major components .of the RTGs are the heat source, SiGe alloy
unicouples, a multifoil insulation system and a beryllium outer housing as
shown in Figure 12. The heat source radiated heat to 312 couples (Figure 13)
operating at a hot Jjunction temperature of 1273K. Except for heat source
configuration and number of couples, similar design considerations have been
also used for the GPHS RTGs on the Galileo converters.

The MHW RTGs on the LES 8/9 and Voyager 1 and 2 missions are performing very
close to their predicted levels (Figures 7 and 8). All the generator outputs
have been above the predicted values, and it is expected that they will send
data back from well outside the 1imits of the solar system until the beginning
of the next century.

This capability for predicting accurately the performance trends for the space
power systems reflects the experimental and theoretical emphasis that was
directed at determining the relative magnitudes, rates and temperature
dependency of the critical degradation mechanisms. These include factors such
as radioisotope fuel decay, alteration of bulk thermoelectric properties due
to dopant precipitation, changes in the characteristics of the semiconductor
electrode interfaces, geometry and compositional changes due to material
sublimation, and degradation of the multifoil insulation. Predictive models
for each of these effects were generated based on coupon and ground based
module tests and prior flight mission performance characteristics.

General Characteristics of RTGs

The reliability demonstrated for SNAP 19, MHW RTGs and GPHS RTGs can now be
measured in decades rather than months, and the designs have matured to the
point where precise power levels and operating lifetimes can be achieved,
permitting extremely 1long space missions. In fact, the scientific test
equipment and telemetry systems rather than the isotope power supplies may
provide the mission 1imiting contraints for future RTG powered spacecraft.




RECENT EXAMPLES OF U. S. DEPARTMENT OF ENERGY PROJECTS
The United States Department of Energy has a series of on-going activities to
make further improvements in the mission-related characteristics of RTGs and
in energy conversion capabilities. Two examples of these projects are
summarized below; namely,. (a) shock resistant close packed array
thermoelectric modules, and (b)) improved performance SiGe thermoelectric

alloys.

Shock Resistant CPA Thermoelectric Modules

® (Close Packed Array Module Technology

The design of small RTGs which have relatively high voltage power output, and
are capable of high level shock loads associated with possible hard landings
on planet Mars, requires special consideration for thermoelectric module
design and support within the RTG housing. An attractive approach to achieve
high impact integrity, designated Close Packed Array <(CPA), has been
extensively used for over two (2) decades with bismuth telluride
thermoelectric materials. This technical approach has more recently been
applied to the higher operating temperature 1lead telluride family of
thermoelectrics. A typical bismuth telluride CPA module is shown in Figure 14,

Figure 15 shows a CPA module containing lead telluride type thermoelectric
elements being prepared for application of hot and cold shoes. An "egg crate"
is first assembled into a holding fixture and the individual elements inserted
in the matrix. Figure 16 shows the completed module with power leads

installed.

Table . 3 shows the initial performance of a completed module. Module
performance agreed well with the predicted values.

® Minicouple PbTe Module Technology

An optional technical approach for the thermoelectric module to obtain
relatively high voltage at Tow power output consists of individual minicouples
arrayed in a circular configuration to form a cylindrically-shaped module
assembly. Figure 17 pictures a completed module ready for testing.



a. Bell Jar Tests
Table 4 presents initial data for three modules which were tested in a bell
jar. All modules were very close to the performance prediction. Note that
the design point for the disc-type module is 850/210°F hot/cold junction
temperatures and 5.25V load voltage. '

b. Generator Testing

Referring to Figure 18, the two electrically heated generator assemblies were
initially operated at 850/210°F hot/cold junction temperature and 5.25V load
voltage. Later, operating temperatures were reduced. One unit has since been
operating at 800/200°F and the other unit at 750/150°F hot junction and
cold junction temperatures, respectively. Load voltage for both units is set

at 5v.

Silicon Germanium Alloy Thermoelectric Materials

As indicated above, silicon germanium alloys have been established as the
material of choice for high temperature thermoelectric power generation.
Although Si and Ge have high melting points, large band gaps and good chemical
stability, their Tlattice thermal conductivities are too high and the pure
elements are of no use in thermoelectric applications. However, when these
isomorphous elements are alloyed to form a solid solution, there is a marked
reduction in the lattice thermal conductivity due to the scattering of the
short wavelength phonons with atoms of different mass (hence, the term mass
(8, 9). Further reductions are realized by the
sy, TiE due to the interaction of phonons

fluctuation scattering)
addition of n- or p-type dopants
with the charge carriers at intermediate wavelengths and the use of fine
grained materials to effect scattering of the long wavelength phonons at the
grain boundaries <]2']5). By introducing additional disorder into the SiGe
lattice, Pisharody and Garvey ¢16) reduced the lattice thermal conductivity
even further by the addition of GaP. This, however, was complicated by
porosity and grain size effects.

Fabrication of the SiGe alloys used in the space power missions up to now has
been prepared by the melting/casting/grinding/hot pressing technique. More
recent investigations are involved with the development of improved SiGe
alloys with GaP additions. As early as 1976, gallium phosphide was suggested
as a promising additive for improving the performance of SiGe alloys. GaP was
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postulated to reduce the Tlattice thermal conductivity by increasing the
"complexity" or mass fluctuation scattering of the lattice in a manner similar
to the mechanism which results from the addition of Ge to Si (]6). A
significant decrease (40-50%) in the thermal conductivity was experimentally
observed by Pisharody and Garvey (16 when GaP was added to hot pressed
63/37 SiGe alloys. Unfortunately, the electrical resistivity also increased
and the net gain in the figure-of-merit was small. The reported reduction in
thermal conductivity may be due to other effects 1like the reduction in
particle size (from 180 to 44 um) and the high degree of porosity (3-8%). Two
approaches currently under investigation to improve the figure-of-merit are:
(1) a two step process involving hot pressing of a mixture of materials - a
SiGe alloy with a high solubility for GaP and a highly doped silicon based
material, and (2) hot pressing of a SiGe/GaP powder prepared by mechanical
alloying. The first approach was developed by the General Electric Company
and the second approach is being developed by Ames Laboratory at Iowa State
University. Several gallium phosphide alloys of identical composition have
been prepared and characterized for their high temperature thermoelectric

properties.

The fabrication process employed by GE is an extension of the melting/chill
casting/grinding/hot pressing technique wused successfully in earlier RTG
projects. Initially, castings of a SiGe alloy with a high solubility for GaP
and a highly doped Si alloy are prepared. Reduction to a small particle
diameter and hot pressing of the resulting powders followed.

An alternate fabrication method used at Ames Laboratory involves room
temperature solid state alloying and hot pressing. Silicon, germanium and
gallium phosphide are placed in a container, along with several steel balls,
and vigorously shaken to produce a homogeneous alloy. The resultant powder of
extremely small diameter is then hot pressed.

The Seebeck coefficient, electrical resistivity and thermal conductivity were
measured up to 1000°C and used to compute the figure-of-merit in order to
assess the thermoelectric performance of these new materials. The
figure-of-merit of the GaP containing alloys prepared by these two techniques
are similar and are about 25% higher than the current state-of-the-art n-type
SiGe alloy used in the Voyager and Galileo RTGs. The increase in the
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figure-of-merit is attributed to a Higher carrier concentration and smaller
particle size which act to increase the electrical power factor and decrease
the thermal conductivity. Further investigation is necessary to verify that
both fabrication techniques allow for reproducibility of the improved
thermoelectric properties. '

CONCLUSIONS

A variety of isotope powered RTGs has been fabricated and used successfully in
deep space missions. The technology is mature and very reliable: performance
can be predicted with a high degree of accuracy. It is expected that future
missions will tend to emphasize the tailoring of the RTG characteristics to
specific requirements of the mission such as shock and vibration, and to
improving generator efficiencies, power outputs and specific powers by module
design and/or materials changes.
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Table 3.

Power Qutput (WATTS(E))
Power INPUT (WATTS(T))

Hot Junction (°F)

Cotp Junctron (OF)

Open CircutT VoLtace (VDC)
Loap VoLTace (VDC)

INTERNAL RESISTANCE (OHMS)

(1) INCLUDES: QT/E(49.MW)

126-Couple CPA Module Performance
(Element Size = .061" Sq. x .466" Lg.)

+
QSEPARATORS

PREDICTION

4.51

59.7¢1)
925
160
19.27
9.63

20.56%

(8.2W)

MobuLe S/N 5
4.47
60.0(2)

925(3)
160

19.30
9.72

20.83

* QINERT COUPLES(Z'lW)

(2) Measurep Power INPUT LEss TesT FixTURE TARE LOSSES.

(3) INFERRED TEMPERATURE BASED ON PoOwER

VOLTAGE.

InpuT AND OPEN CIRCUIT

(4) INCLUDES RT/E(20.40 OHMS) + RSTRAPS(.O6 OHMS) + RLEADS(.IO OHMS) .
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Table 4. Module Initial Performance Summary Bell Jar Tests

NorMALIZED JeST DATA
Prepiction MopuLe S/N 6 Mobure S/N 7/ Mopure S/N 17
@ 100 Hrs. @ 115 Hrs.. @ 114 Hrs. @ 504 Hrs.

Power Output (W(E)) 3.66 3.09 3.70 3.72
Hot Junctron (%F) 850 850 850 850
Coup Junction (°F) 210 210 210 210
Loap VoLTage (V) 5.25 5.25 5.25 5.25
Open CircuiT VoLTAce (V) 9.04 8.83 8.83 8.91
INTERNAL RESISTANCE(OHMS) 5.43 5.09 5.08 5.16

MobuLe CONFIGURATION SUMMARY

D1SC-TYPE MODULE.

ELEMENT s1ze: 0.104 1n. sa. x 0.625 IN. LG.
68 COUPLES CONNECTED ELECTRICALLY IN SERIES.
PBTE N-LEG; TAGS P-LEG.

SCHOTTKY DIODE OPEN CIRCUIT PROTECTION.

PC BOARD COLD SIDE ELECTRICAL STRAPS.
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SNAP-generator load voltage, V

3.2

2.8

2.4

2.0

= Transit 4A %

| | | | | | | | |

180 182 184 186 183 190 192 194 196 198

3.2

2.8

Transit 4B  *

x Power
excursions

2.4
r ﬁ
2.0 ]I
_ e —
320 360 35 75 115 155 195

Time, universal days

Figure 1. SNAP-3B Operating Data Telemetered from
Transit 4A (top) and Transit 4B (bottom) [Reference 5]
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by Transit 5BN-1 (top) and 5BN-2 (bottom) [Reference 5]
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Figure 3. Nimbus III/SNAP-19 Power OQutput (Smoothed Data) [Reference 5]
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Figure 4.
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(Summed and Smoothed Data) [Reference 5]
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POWER OUTPUT — W(e)

POWER QUTPUT — W(e)
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Figure 8. Power History of Voyager MHW RTGs [Reference 5]
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Figure 9. SNAP-19 RTG Integration Test on Pioneer Spacecraft
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Figure 12. MHW-RTG
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Figure 14. Close Packed Array (CPA) Thermoelectric Module

27



PARTIALLY “STUFFED"” MODULE

Figure 15. CPA Development Thermoelectric Module Tooling
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HOT SIDE OF COMPLETED MODULE

Figure 16. CPA Development Thermoelectric Module
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lectric Module Hot Side View

Figure 17. Completed Thermoe
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