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Exact Magnetic Diffusion Soutions for Magnetohydrodynamic Code
Verification (U)

David S. Miller

Lawrence Livermore National Laboratory, Livermore, California,94551

In this paper, the authors present several new exact analytic space and time dependent
solutions to the problem of magnetic diffusion in R-Z geometry. These problems serve to
verify several different elements of an MHD implementation: magnetic diffusion, external
circuit time integration, current and voltage energy sources, spatially dependent
conductivities, and ohmic heating. The exact solutions are shown in comparison with 2D

simulation results from the Ares code. (U)

Introduction

With the continued growth of interest in
pulsed power there is a corresponding
growth in the need for simulation codes to
accurately predict experimental results.
And magnetohydrodynamics (MHD) is an
important area of physics in some of these
experiments. For a simulation code to be
truly useful tool, experimenters and
designers must have high level of
confidence in the code’s accuracy. And
one very important step in building said
confidence is verification — the
determination that the simulation code is
correctly and accurately solving the
intended equations by direct comparison
with known solutions. In this paper we
derive a number of new exact solutions
which may prove useful for just this
purpose. The problems are all pure
magnetic diffusion — there is no
hydrodynamic motion involved. Also, all
of the problems are limited to R-Z
cylindrical symmetry. The resulting
solutions are then explicitly dependent on
the time t and radius r.

The Equations

To begin we first derive the magnetic
diffusion equation for the cylindrical
geometry and symmetry in which we are
interested. We adopt the approximation
that the fields are slowly changing with
respect to the speed of light and hence
drop the time derivative in Ampere’s law.
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This is sometimes referred to as the MHD
approximation. Then we have

Ampere’s law:
VxB = 474 1.

Faraday’s LaV\LZ
aa—ltg +VXE =0 2

and Ohm’s Law:
j=of 3,

Combining these three equations we find
that

oB 4,

B _ 9x-1 9xB)
ot dro
We wish to apply this equation to the
geometry as shown in Fig 1. Thisis a
cylindrically symmetric conductor (wires
and hollow cylinders) of outer radius Ry,
and length Z. As part of the computational
problem, the conductor is surrounded by a
cylindrical region of vacuum which
extends out to radius Rg. For the
symmetry we are interested in, the
magnetic field points solely in the angular
direction and is only a function of radius
and time. Then Eq. 4 reduces

o(rB) rg(i 6(rB)) 0 5.

ot or 4rro or

This is the magnetic diffusion equation for
which we will seek solutions. Our
diffusion unknown is
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I(r,t) = rB(r,t). The current density
provides Ohmic heating via the material
temperature equation

1 -2 6-

oT
pCv E - ; J
T is the material temperature, p is the
mass density and C, is the specific heat.

R:RB
Vacuum
R=Ry,
+
R=0
Z

Figure 1

Boundary Conditions

In all problems considered here, we have
that the boundary condition at the center
of the conductor is B(r=0,t) = 0 (or in the
case of a hollow vacuum filled cylinder,

zero at the inner surface of the conductor).

The boundary conditions on the ends of
the cylinder are such that the normal
magnetic flux is zero. This eliminates the
need to consider edge effects and
preserves the symmetry of the solution.
The boundary condition at the outer
surface will depend on whether we drive
the problem with a current source or a
voltage source and the verification
solutions will be divided into two groups
based on this difference.

With a current source, the value of the
total current is part of the problem
specification. If the total current is S(t),
then we know that the value of the
magnetic field everywhere exterior to the
conductor is easily computed from the
integral form of Ampere’s law

2 UNCLASSIFIED
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exterior

B(r,t)

This then provides the boundary condition
on the surface

I(R,,t) =2S(t) 8.
Equation 8 is always true regardless of the
type of source, but only for current
sources does it alone specify the boundary
condition on the outer surface of the
conductor. For problems where we have
some external circuit specification
providing a voltage source, we don’t a
priori know S(t) and so the boundary
condition at the surface of the conductor is
more complicated. To derive it we apply
Faraday’s law of induction to the exterior
vacuum region. Faraday’s law applied to
the exterior vacuum region states

—d BedA= § Eedl
exterior exterior

where the line integral in Eq. 9 is taken in
the counter clockwise direction. From Eq.
7 we know that

9.

Ié edA=7 j%(t)dr =27 In(%)S(t)

exterior

And from the symmetry we know that the
electric field only points in the z direction
so that

§E edl =ZE(r =R,,t)-ZE(r =R,,t)  11.
At the surface of the conductor we can get
the electric field from I(r,t) as

ERD - (1vx§j
dro
which in our geometry reduces to
E(R,.1) = 1(6 | (r,t)] 13.
ar r=R,,

12.

r=R,

47oR

What about the electric field at r=Rg?
This is just the voltage applied to our
problem from the external circuit divided
by the length of the load
Vi 14.
E(RB,t) _ apzplled

Putting together Egs. 9-13 we have

Ry, d z 0 15
ZIn(=2)—I(R,,t —I(r,t =V .
n( Rw)dt (R, )+ 47oR, [ar (r )jr:Rw applied
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So, Eqg. 8 provides our exterior surface
boundary condition when the problem is
driven by a current source, and Eq. 15
when it is driven by a voltage source.

Solution Method

In each case the solution method is
generally the same: take the Laplace
transform in the time variable of the
magnetic equation Eqg. 5, and the relevant
boundary conditions, solve the resulting
ordinary differential equation in the radius
variable, then perform the inverse Laplace
transform to obtain the complete magnetic
field solution. Then, the current density is
derived from the Magnetic field B via Eq.
1, Ampere’s law. For voltage driven
problems, the total current is derived from
the magnetic field via Eq. 7. If the heat
capacity and electrical conductivity are a
constant, the Ohmic heating can then be
computed by time integrating Eq. 6,
resulting in an exact solution for the
material temperature as well.

Current Source Solutions

Solution 1: Consider a solid cylindrical
conductor of radius Ry, driven by a
current source

S(t)=S,(b/t)*2(2b/t-3)e™" 16

where b is a constant. Use a spatially
dependent conductivity given by

o 17.

o(r)= r—g
Define D = 47c,. Then the magnetic

field and current density are given by
Equations 18 and 19.

_4s, (b)Y, 1 D R,
B(r.1)= r (tj (Hz\Fbln( r)J[t

12t
_ 5,/Db? (

164t

i(r,t)

For a specific example, set So=1.2, b=0.5,
R,=1.0 cm, and o5=1.0 cm/milliOhm. In
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Figures 2 and 3 we show the solutions for
the magnetic field and current densities at
r = 0.5*R,, (curves A and C) and r=0.9*
Rw (curves B and D). The red curves
represent the exact solution and the blue
curves are the Ares result.
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Figure 2: Magnetic Field, MegaGauss
versus ps for solution 1
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Figure 3: éurrent Density,
DegaMegaAmps/cc versus ps for solution 1

D, R JZ 3]e_f[hiﬁm(ﬁw)r 18.

19.

+= =
2

Solution 2: Consider a solid cylindrical
conductor of radius R, driven by constant
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current S(t) = Sp and possessing constant
electrical conductivity o and specific heat
C,. Now we can also solve for the Ohmic
heating. Define D = 47o and

b= RW\/B . Lety, be the n™ nonzero

roots of J;(y)=0. Then the magnetic field,
current density and material temperature
are given by Egs. 20, 21 and 22.

[ERRTERFRTEETERINSTNSRRAN|

o0 Rl T T e
000 100 200 200 500

Figure 4: Magnetic Fleld MegaGauss

versus ps for solution 2
r 20.
J ?yn N
B(r,t) = 0 1+ 22 W _Jg v

nlryn J (yn)

] [ r J 21.
—y :

: S o C\R, ") o
rt)y=—21+ b

w n=1

So

T t)=T)g+—F5—F—
(r="T 7°RiopC,

So = 1.0 DecaMegaAmps, initial
temperature T = 1.0e-3 KeV. The results
are shown in Figures 4, 5 and 6. The red
curves represent the exact solution and the
blue curves are the Ares result.

The edits are taken at r=0.2cm (curves A
and E), r=0.5cm (curves B and F),
r=0.9cm (curves C and G), and r=0.95cm
(curves D and H).

[ 100 200 100 400

Figure 5: current density in

DecaMegaAmps/cc versus us for solution 2

W e sz i
L e ARARaass Tr T
obo 100 tho Tbo o 500

Figure 6: Material temperature in KeV
versus ps for solution 2

As a specific example, use radius R, = 1.0
cm, o= 1/milliohm/cm, specific heat C, =
1.0 Eu/gm/KeV, density o = 8.93 gm/cc,

4 UNCLASSIFIED

‘]O(yn)‘lo(ym)

r
_ yano[R ymj L y§+zy,f,
= l1-e °

Voltage Source Solutions

Solution 3: Consider a solid cylindrical
conductor of radius Ry, driven by a

NECDC 2010 Proceedings
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voltage source representing the external
circuit shown in Figure 7, where V is a
constant voltage, L is a constant inductor,
and R is a constant resistor.

\Y L R
R:RB
Vacuum
R=Ry
r -
Wire of length =Z
R=0

Figure 7

Again use a spatially dependent
conductivity given by o (r) = o, /1.
Define D =47o,, f=InR/R)+L/(22).
Require that R =Z /(2D /) . Then the

magnetic field, current density and total
current are given by Eqns. 23, 24 and 25.

but still allows them to have the same
value. This is

L=R= z(,lln(RB IR,)?+1/D —In(Ry / RW)) 26.
In figures 8, 9, and 10 we plot the exact
solutions and the Ares simulations results.
The edits are taken at r=0.2cm (curves A
and E), r=0.5cm (curves B and F),
r=0.9cm (curves C and G), and r=0.95cm
(curves D and H). The red curves
represent the exact solution and the blue
curves are the Ares result.

15.00-]

Ly e L L R L R

Figure 8: Magnetic field in megaGauss
versus ps for solution 3

D (Ru) 23.
4 perfc (1\Fln[RWjJ—4,{te a [ ' ] +
VD 2\t r 7D
B(r.t)=-—- LRt
| Bw 2
2(t+ |n(RWJ_2ﬂ)erfC [1\/T+ 1\/H|n(ijJe2/3 ( r J 4Dp?
AD r 2\ND 2\t r ]
[ D [ R’ 1 24,
2 D(Z,B—In(RWDe o) +
it r
. VD - L\/IJri\/Eln[R—wj]Q
j(r,t) = \/E t (Rij_ [Zﬁ D2Vt T e .
4wz ® ﬂt(ﬁD ")) Rt
1( (ijj (1 t 1 [D (RW)]
——| —+In| = | |erfc —+ =/ —In| =~
B\ D r 2D 2\t r
_t 25.
st)="Plag-a|t o L _2pler i\/I g 0%
27 D /D 28\ D
As a specific example, set V=10.0
decakilovolts, cp=1.0 cm/milliOhm,
R,=1.3cm, Rg=1.5cm. The inductance and
resistance are set to a specific value which
satisfies the requirements of the problem
NECDC 2010 Proceedings UNCLASSIFIED 5
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Figure 9: current density in
decaMegaAmps/cc verus us for solution 3
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Figure 10: Total current in decaMegaAmps
versus ps for solution 3

Solution 4: For this solution we use the
same circuit driven picture as in Figure 7
but let the conductivity now be a constant,
o=const. DefineD =4rzc, y=R/2,
b=R,ND, B=LI2+ZIn(R,/R,),
and 6 =Z/(DR,) . Let x, be the n"" root
of

R, (7 = )3, (bVx) + 3b4/x3, (bv/x) =0 27.

Now define y, = b\/x—n and

20V 28.

G =
" 26Rw7/+52yr?+Rv2v(7_ﬂxn)2

With these definitions, the magnetic field,
current density and total current are given
by equations 29, 30, and 31.

r
. sy | 30
ey
n=1

. 1 AY
=0k, 20m)

4R, | (R, +25)

R, V g et 31.
S(t)=7[m—ZGne j|

As a specific example, use conductor
radius Ry, = 1.3 cm, outer radius of the
vacuum Rg = 1.5 cm, conductivity o=
0.1/milliOhm/cm, conductor length Z = 2
cm, inductance L = 0.13 nanoHenries,
resistance Rs= 0.13 milliOhms, voltage V=
10.0 decaKiloVolts. Figures 11 and 12 are
plots of the magnetic field and current
density solutions at three different radii:
r=0.1R,, (curves A and D), r=0.5R,,
(curves B and E), r=0.9Ry, (curves C and
F). Figure 13 is the total current as a
function of time (in us). The red curves
represent the exact solution and the blue
curves are the Ares result.

Figure 11: Magnetic field in megaGauss
versus ps for solution 4

r 29.
. Ji(5-Ya)
B(rt)=— ' 3G e
R.(R,y+26) = 31 (¥n)
6 UNCLASSIFIED NECDC 2010 Proceedings
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Figure 12: current density in
decaMegaAmps/cc verus us for solution 4

T
3.00

Figure 13: Total current in decaMegaAmps
versus ps for solution 4

Solution 5: For this solution we use the
same problem setup as in solution 4 but
now add a constant capacitor C in series
with the other circuit elements. Again use

D=4rzo, y=R/2,b=R /D,
p=LI12+ZIn(R;/R,), and
0 =Z/(DR,) . But let us also define

a =1/(2C) . Proceeding as in solution 4,
let x, be the n root of

Rw(y—m-%)al(b&)mD&Jo(b&) _o 3

Define y, = b\/x_n and

s vy
G, = —FC
2R, (7=~ VORI = o= )

n n

NECDC 2010 Proceedings
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With these definitions, the magnetic field,
current density and total current is given
by equations 34, 35, and 36.

r 34.
© Jl(?yn)
B(r,t)=2) G e —%
; ‘Jl(yn)
r 35.
e 3o Yn)
H —Xpt
r)y=—"-> Gye™" —*—
27ZRW n=1 Jl(yn)
36.

J(t)=R,>.G,e™
n=1

Solution 5 has two different modes of
operation - the critically damped and
oscillatory damped modes. Which mode
one sees depends on the nature of the
roots of equation 32. If all of the roots are
real then you get the critically damped
mode. If any of the roots are complex,
then you get the damped oscillatory
behavior.

For a critically damped example, use the
following parameters: Ry, = 1.3 cm, Rg =
1.5cm, o= 0.1/milliOhm/cm, Z = 2 cm,
L = 10.0 nanoHenries, R= 1.0 milliOhmes,
voltage V= 10.0 decaKiloVolts, C=5.0
milliFarads. For these parameters all of
the roots x, are real and positive.

Figures 14 and 15 are plots of the
magnetic field and current density
solutions at three different radii: r=0.1R,,
(curves A and D), r=0.5R,, (curves B and
E), r=0.9R,, (curves C and F). Figure 16
is the total current as a function of time
(in us). The red curves represent the
exact solution and the blue curves are the
Avres result.
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000 000 Z000 000 4000 S000 8OO0 TO.00

Figure 14: Magnetic field in megaGauss
versus ps for solution 5, critically damped
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Figure 15: current density in
decaMegaAmps/cc verus ps for solution 5,
critically damped
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T rreT
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Figure 16: Total current in decaMegaAmps

versus ps for solution 5, critically damped

To get an oscillatory damped example,
just change the value of the capacitor to

C=0.1 milliFarads. Now the first two roots
of equation 32 are complex (they are the

complex conjugates x;=
0.20889+0.90466i and x,= 0.20889-

8 UNCLASSIFIED

0.9046i) and all the other roots are real
and positive definite. Again we plot the
magnetic field and current density
solutions at three different radii: r=0.1R,,
(curves A and D), r=0.5R,, (curves B and
E), r=0.9R,, (curves C and F). Figure 19
is the total current as a function of
time. Again, the red curves represent the
exact solution and the blue curves are the
Avres result.

[ERTSITSIaTeee
a0 500 10.00 1500

Figure 17: Magnetic field in megaGauss
versus ps for solution 5, oscillatory

TTTTITTTTT T rrTTeTT ™ THTTTTrTr T
T T
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Figure 18: current density in
decaMegaAmps/cc verus ps for solution 5,
oscillatory

NECDC 2010 Proceedings



UNCLASSIFIED

Figure 19: Total current in decaMegaAmps
versus ps for solution 5, oscillatory

Conclusions

These verification problems have proven
useful to the Ares team for building
confidence in our MHD implementations.
Notice that while all of the Ares numerical
solutions provided were run ina 2D r-z
mode, the solutions are equally valid run
in 3D. These problems were in fact also
used to verify the 3D mhd implementation
in Ares, as well as the 2D. And while it
may seem that these problems are very
similar to each other, they each combine
different elements of difficulty in
implementation and/or solution. Together
they give a good base of coverage for
basic magnetic diffusion (with Ohmic
heating) verification. Hopefully other
code groups will find these problems
useful as well.
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