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USING SUPPORT VECTOR MACHINES FOR ANOMALOUS CHANGE DETECTION

Ingo Steinwart, James Theiler, and Daniel Llamocca

Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

We cast anomalous change detection as a binary classification
problem, and use a support vector machine (SVM) to build a
detector that does not depend on assumptions about the un-
derlying data distribution. To speed up the computation, our
SVM is implemented, in part, on a graphical processing unit.
Results on real and simulated anomalous changes are used to
compare performance to algorithms which effectively assume
a Gaussian distribution.

Index Terms— anomaly, change detection, machine
learning, classification, support vector machine, graphical
processing unit

1. INTRODUCTION

Given two images of the same scene, taken at different times
and (inevitably) under different conditions, we consider the
problem of finding anomalous changes in the scene {1]. There
will be pervasive differences between these two images, due
to the different conditions under which the images were taken,
but our working assumption is that the character of these dif-
ferences will be the same over a large number of pixels in the
image, and that they can therefore be learned. By contrast, the
anomalous changes will be small and/or rare, and their char-
acter will be different from the pervasive differences. The
recasting of this problem in terms of binary classification en-
ables the use of more sophisticated machine learning tools
than have traditionally been employed for the change detec-
tion problem.

In this paper, we investigate the use of support vector ma-
chines (SVMs) with radial basis kernels for finding anoma-
lous changes. Compared to typical applications of SVMs, we
are operating in a regime of very low false alarm rate. This
means that even for relatively large training sets, the data are
quite meager in the regime of operational interest. This drives
us to use larger training sets, which in turn places more of a
computational burden on the SVM.

We initially considered three different approaches to to
address the need to work in the very low false alarm rate
regime. The first is a standard SVM which is trained at one
threshold (where more reliable estimates of false alarm rates
are possible) and then re-thresholded for the low false alarm

rate regime. The second uses the same thresholding approach,
but employs a so-called least squares SVM; here a quadratic
(instead of a hinge-based) loss function is employed, and for
this model, there are good theoretical arguments in favor of
adjusting the threshold in a straightforward manner. The third
approach employs a weighted support vector machine, where
the weights for the two types of errors (false alarm and missed
detection) are automatically adjusted to achieve the desired
false alarm rate. We have found in previous experiments (not
shown here) that the first two types can in some cases work
well, while in other cases they do not. This renders both ap-
proaches unreliable for automated change detection. By con-
trast, the third approach reliably produces good results, but
at the cost of larger computational requirements caused by
the need to estimate very small false alarm rates. To address
these computational requirements, we employ a recently de-
veloped in-house solver for SVMs that is significantly faster
than freely available standard solvers.

But these computational issues are secondary to the larger
question: do kernelized solutions provide better performance,
in terms of detection rates and false alarm rates, than more
traditional methods for change detection that effectively as-
sume Gaussian data distributions? To this end, we will com-
pare ROC curves obtained from the SVM with those from
chronochrome [2], covariance equalization [3], and hyper-
bolic anomalous change detection [4].

2. ANOMALOUS CHANGE DETECTION

A seeming difficulty with anomalous change detection, and
with anomaly detection generally, is that anomalies tend to
defy precise definition. We say that they are not normal or
that they are not not typical, but we have more trouble trying
to say what they are. As is often the case with detection prob-
lems, however, the main technical challenge lies not in char-
acterizing the targets, but in characterizing the background —
in this case, the non-anomalous pervasive differences.

Let z € R% be a pixel in the “x-image”, and y € R%
be the pixel at the corresponding location in the “y-image”.
We write P(x,y) as a joint probablity distribtuion in d; + d,
dimensional space that describes how z and y are correlated
over the two images. Here, P(z, y) corresponds to our model



for pervasive differences.!

As a one-class problem, P{z,y) describes the one “or-
dinary class;” data outside (or on the tails of) this distribu-
tion are candidates for anomalies. One way to find these
anomalies is to recast anomaly detection as binary classifica-
tion {5, 6]. In this recasting, one defines an “anomaly class”
as a generic low-information distribution — the usual choice is
a uniform distribution with support that extends well beyond
the range of the data. In this uniform case, contours of the
likelihood ratio (i.e., the Bayes optimal classifier) correspond
to the contours of P{x, y). A nonuniform anomaly class, in-
troduced previously [7], provides a model that is tailored for
anomalous change.

Let Po(x) = [ P(x,y) dy and P,(y) = [ P(a,y) dx
be the marginal distributions of P{xz,y). Here P,{x) corre-
sponds to the distribution of pixels in the x-image, regardless
of what is going on in the y-image. And P,(y) is the dis-
tribution of pixels in the y-image. Our model for anomalous
change considers the = and y pixels as individually ordinary,
but the relationship between them to be unusual. Specifically
we write the product P, (z) Py (y) as our model for anomalous
changes. This allows a likelihood ratio to be defined:
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Here A(x,y) is our measure of anomalousness, and when it
is above a3 given threshold, then we declare the change at a
pixel pair {z, y) to anomalous.

From a machine learning point of view, however, we do
not want to work with distributions explicitly. Instead, we
want to work directly with samples that are drawn from this
distribution (namely, our data). We can effectively draw data
from P,(x)P,(y) by resampling from our data. A pair (z, ¥}
is obtained by choosing x randomly from the x-image, and
independently choosing y from the y-image. In fact, this can
very efficiently be done by just scrambling the pixels in one of
the images. These pairs define our anomalous change class;
the original data defines our pervasive difference class. And
we have all we need to employ our favorite binary classifica-
tion algorithm.

It is important to note, however, that this binary classifi-
cation has to operate in the low false alarm rate regime. From
the point of view of likelihood ratio, this is a simple matter
of adjusting a threshold. But for binary classification, one
does not obtain a likelihood ratio, and must employ other
techniques. In the next section, we describe the use of our
favorite binary classifier, the support vector machine, with un-
equal weighting on the two classes, for solving the anomalous
change detection problem.

"We remark that this model treats the pixels as 1.i.4. samples from a parent
distribution, and in particular neglects spatial correlations in the imagery.
For hyperspectral imagery, this is often reasonable because there is so much
detailed spectral information at each pixel.

3. A SUPPORT YECTOR MACHINE APPROACH

In this work we use support vector machines (SVMs) to solve
these weighted binary classification problems. Therefore, let
us briefly recall SVMs (see [8, 9] for a thorough introduc-
tion). The core ingredient of an SVM is a so-called kernel
k:B? x R? — R, that is, a symmetric positive semi-definite
function. In the following we will solely focus on the so-
called Gaussian RBF kernels that, for a given ¢ > 0, are
defined by k, (z,z) := exp(—o?|lz — 2||3), where || - |2 de-
notes the Euclidean norm on R?, In it well-known that to each
such kernel there exists a unique reproducing kernel Hilbert
spaces (RKHS) H,, which consists of functions f : R* — R.
Now, given a so-called regularization parameter A > 0, a ker-
nel parameter o > 0, and two classification weights w. > 0
and wy > 0 with w.. 4+ w4 = 1, the corresponding SVM
solves the optimization problem

for. = arg ygﬂ MifI, +
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where L{y, t) = max{0,1 — gy} is the so-called hinge loss
and n_ and ny denotes the number of negatively and posi-
tively Iabeled samples, respectively. It is well-known that (2)
is a strictly convex optimization problem that has a unique so-
lution foaw_ € H,, seee.g. [9, Chapter 5.1}, Moreover, this
solution is of the form

i
forw. =Y _wyioTka(2, ), 3)
i=1
where (a],..., 00 ) is a solution of the dual optimization

problem, see e.g. [9, Chapter 11.1]. Unfortunately, there is,
in general, no way to use suitable a-priori knowledge to de-
termine the free parameters A, o and w_, and thus they are
often determined by a hold-out set in the following way. First
one fixes sets A, I, and W of candidate values for A, ¢ and
w.., respectively and splits the training set into two subsets
Dy and Dy, Then for each tiple (A, o,w..) € A x Z x W,
the SVM optimization problem for the dataset £}y is solved
and the false alarm rate and the detection rate of the resulting
forw. is estimated using D,. Finally, the triple (A, o, w..}
is picked for which the false alarm rate is below the given
threshold and the detection rate i1s maximized. Analogously
to the unweighted classification case, see e.g. [9, Chapter 8.3],
one can show that under suitable conditions on A, X, and W
this approach asymptotically yields optimal decision func-
tions fynw_. In addition, this approach closely resembles
many approaches recommended in practice for unweighied
binary classification problems. Consequently, we followed
this approach with two minor modifications.




Conceptionally, the SVM approach is quite straightfor-
ward, but when implemented by standard SVM packages
such as LIBSVM [10] it is computationally almost infeasible
on asingle desktop. Indeed, the fact that we need to determine
three hyperparameters A, o and w_ means that we have to
solve the dual problem several thousand times, which is too
time-consuming when done by such packages. To address
this issue we developed our own faster SVM solver [11].
Our implementation also carefully caches the kernel matri-
ces (yiyjko(Zi, 24))7 j=1, Which also decreases the training
time significantly. Another computational bottleneck comes
from the fact that we are interested in very small false alarm
rates, which can only be estimated by large hold-out sets Ds.
Now (3) shows that a brute-force approach for estimating
the false alarm and detection rate for a single triple requires
(M, o, w_) requires T x V kernel computations and the same
amount of additional multiplications and additions. Here, T
is the number of training samples in D; and V' is the number
of validation samples in D;. With sample sizes of a few
thousand for T and 100-200 thousand for V', this becomes
computationally intractable when done for several thousand
triples (A, o, w_), even if the sparsity, see [9, Chapters 8.4
and 8.6] of the representation (3) is taken into account. To
address this issue, we combined the sparseness of (3) with
the following strategies: a) caching the kernel matrix and
changing ¢ in the most outer loop of the hyper-parameter
determination, b) updating (3) only for those o that have
changed from the previous value of A, which are changed in
the most inner loop of the hyper-parameter determination,
¢) implementing the remaining summation on a graphical
processing unit (GPU). By this means, a typical computa-
tion of the false alarm rate and the detection rate for a single
triple (A, o, w_) currently takes about 5Sms if T' = 1,000
and V' = 100,000, while without these strategies the same
computation exploiting only the sparseness takes about one
minute on one of the currently fastest desktop processors (In-
tel Core i7 Extreme). Similarly, the test phase in which the
final decision function is applied to the entire image requires
computing (3) very often (depending on the image size up
to several million times). Again, this is computationally too
expensive when done on a CPU, and hence we implemented
this step on an GPU, too. The discussion above shows that a
rigorous SVM approach for the anomalous change detection
problem requires a significant implementation effort.

4. RESULTS

Using the simulation framwork introduced in Ref. [4], we can
take a single real image, and produce an artificial pervasive
difference everywhere in the scene; this corresponds to the
normal differences that are observed due to different view-
ing conditions. We then introduce a single-pixel anomalous
change by replacing a given pixel with another pixel taken
from somewhere else in the image. This can be done multi-

,
0.9
+
o 0.8r - +t
& &
c +
807 %] g
= o ’
[
g ’
o8 o —HACD |
X [---cC
0.5+ - - CE I
O SVM T=1000
+ SVM T=3000
0.4 :
107 107 107 10°

False Alarm Rate

Fig. 1. ROC curves for anomalous change detection using
AVIRIS data with split channels, reduced by CCAtod = 5
channels, and simulated anomalies.

ple times to enable enough anomalous changes to get a good
statistical estimate of detection rate.

This was done with data from AVIRIS (Airborne Visi-
ble/InfraRed Imaging Sensor) [12], based on the 224-channel
image number 960323t01p02_r04.sc01. The perva-
sive difference was generated by splitting the image into two
112 channel images, and then canonical correlation analysis
(CCA) was used to reduce this to five channels per image.
Fig. 1 shows ROC curves computed for various change de-
tection algorithms: HACD is hyperbolic anomlous change
detection [7], CC is the chronochrome detector [2], and CE is
covariance equalization [3]. The two support vector machine
runs used 7" = 1000 and 7" = 3000 randomly chosen train-
ing samples, and the reported performance is for a separate
testing set.

In Fig. 2, we used a pair of hyperspectral images that were
part of an extensive change detection experiment, described
in Ref. [13]. Here, two separate images were taken, several
hours apart; in one of the images, a pair of folded tarps (ap-
proximately 100 pixels in size) were placed in the scene to act
as the anomalous changes. Canonical correlation analysis was
used to reduce the dimension to ten per image. In Fig. 2(a),
we masked out the actual changes and introduced simulated
changes as described above. In Fig. 2(b), the results are based
on the real changes (the tarps) in the image pair.

In all three cases, we observed HACD outperforming CC
and CE, which points to the utility of the machine learning
framework that is summarized in (1). The support vector ma-
chine results are based on the median of twenty runs; we see
that the SVM exhibits competitive or slightly better perfor-
mance than HACD, though in these preliminary experiments,
it was not substantially better.
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Fig. 2. ROC curves for anomalous change detection using data from Ref. [13], reduced to d = 10 dimensions per image using
canonical correlation analysis. Panel (a) is based on simulated anomalies that arise from shuffling the pixels in one of the
images, and panel (b) is based on the actual changes that occurred in the scene.
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