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USING SUPPORT VECTOR MACHINES FOR ANOMALOUS CHANGE DETECTION 

Ingo Steinwart, James Theiler, and Daniel Llamocca 

Los Alamos National Laboratory 
Los Alamos, NM 87545 

ABSTRACT 

We cast anomalous change detection as a binary classification 
problem, and use a support vector machine (SVM) to build a 
detector that does not depend on assumptions about the un­
derlying data distribution. To speed up the computation, our 
SVM is implemented, in part, on a graphical processing unit. 
Resu lts on real and simulated anomalous changes are used to 
compare performance to algorithms which effectively assume 
a Gaussian distribution. 

Index Terms- anomaly, change detection, machine 
learning, classification, support vector machine, graphical 
processing unit 

1. INTRODUCTION 

Given two images of the same scene, taken at different times 
and (inevitably) under different conditions, we consider the 
problem of finding anomalous changes in the scene [1]. There 
will be pervasive differences between these two images, due 
to the different conditions under which the images were taken, 
but our working assumption is that the character of these dif­
ferences will be the same over a large number of pixels in the 
image, and that they can therefore be learned. By contrast, the 
anomalous changes will be small and/or rare, and their char­
acter will be different from the pervasive differences. The 
recasting of this problem in terms of binary classification en­
ables the use of more sophisticated machine learning tools 
than have traditionally been employed for the change detec­
tion problem. 

In this paper, we investigate the use of support vector ma­
chines (SVMs) with radial basis kernels for finding anoma­
lous changes. Compared to typical applications of SVMs, we 
are operating in a regime of very low false alarm rate. This 
means that even for relatively large training sets, the data are 
quite meager in the regime of operational interest. This drives 
us to use larger training sets, which in turn places more of a 
computational burden on the SVM. 

We initially considered three different approaches to to 
address the need to work in the very low false alarm rate 
regime. The first is a standard SVM which is trained at one 
threshold (where more reliable estimates of false alarm rates 
are possible) and then re-thresholded for the low false alarm 

rate regime. The second uses the same thresholding approach, 
but employs a so-called least squares SVM; here a quadratic 
(instead of a hinge-based) loss function is employed, and for 
this model, there are good theoretical arguments in favor of 
adjusting the threshold in a straightforward manner. The third 
approach employs a weighted support vector machine, where 
the weights for the two types of errors (false alarm and missed 
detection) are automatically adjusted to achieve the desired 
false alarm rate. We have found in previous experiments (not 
shown here) that the first two types can in some cases work 
well, while in other cases they do not. This renders both ap­
proaches unreliable for automated change detection. By con­
trast, the third approach reliably produces good results, but 
at the cost of larger computational requirements caused by 
the need to estimate very small false alarm rates. To address 
these computational requirements, we employ a recently de­
veloped in-house solver for SVMs that is significantly faster 
than freely available standard solvers. 

But these computational issues are secondary to the larger 
question: do kernelized solutions provide better performance, 
in terms of detection rates and false alarm rates, than more 
traditional methods for change detection that effectively as­
sume Gaussian data distributions? To this end, we will com­
pare ROC curves obtained from the SVM with those from 
chronochrome [2], covariance equalization '[3], and hyper­
bolic anomalous change detection [4]. 

2. ANOMALOUS CHANGE DETECTION 

A seeming difficulty with anomalous change detection, and 
with anomaly detection generally, is that anomalies tend to 
defy precise definition. We say that they are not normal or 
that they are not not typical, but we have more trouble trying 
to say what they are. As is often the case with detection prob­
lems, however, the main technical challenge lies not in char­
acterizing the targets, but in characterizing the background -
in this case, the non-anomalous pervasive differences. 

Let x E ]Rd" be a pixel in the "x-image", and y E ]Rd" 

be the pixel at the corresponding location in the "y-image". 
We write P(x, y) as a joint probablity distribtuion in dx + dy 
dimensional space that describes how x and y are correlated 
over the two images. Here, P(x, y) corresponds to our model 



for differences. I 

As a one-class problem, y) describes the one "or-
dinary class;" data outside (or on the tails this distribu­
tion are candidates for anomalies. One way to find these 
anomalies is to recast anomaly detection as binary classifica­
tion [5, In this recasting, one defines an "anomaly class" 
as a generic low-information distribution the usual choice is 
a uniform distribution with support that extends well beyond 
the range of the data. In this uniform case, contours of the 
likelihood ratio (i.e .. the optimal cOITespond 
to the contours of A nonuniform anomaly class, in-
troduced previously [7], provides a model that is tailored for 

J P(x, y) y) dx 
be the marginal distributions of 

to the distribution of pixels in the 
of what is going on in the y-image. And is the dis-
tribution of pixels in the Our model for anomalous 
change considers the x and y as individually 
but the between them to be unusual. 
we write the (x) as our model for anomalous 

This allows a likelihood ratio to be defined: 

A(:r, (I) 

Here A(x, is our measure of and when it 
is above a given then we declare the change at a 

y) to anomalous. 
From a machine of view, nt",up·,!p,. 

not want to work with distributions explicitly. we 
want to work directly with samples that are drawn from this 
distribution our data). We can effectively draw data 
from resampling from our data. A pair 
is obtained by x randomly from the 

choosing y from the In 
be done by just scrambling the in one of 

the images. These pairs define our anomalous change class; 
the original data defines our difference class. And 
we have all we need to employ our favorite binary classifica­
tion algorithm. 

It is important to note, however, that this binary classifi-
cation has to operate in the low false alarm rate From 
the of view of likelihood this is a matter 
of adjusting a threshold. But for classification, one 
does not obtain a likelihood ratio, and must employ other 

In the next we describe the use of our 
favorite binary classifier, the support vector with un­
equal on the two for solving the anomalous 
change detection problem. 

I We remark that this modellreats the pixels as i.Ld. samples from a parent 
distribution, and in particular neglects spatial correlations in the imagery. 
For hyperspectral imagery. this is often reasonable because there is so much 
detailed spectral information at each pixel. 

3. A SUPPORT VECTOR MACHINE APPROACH 

In this work we use support vector machines (SVMs) to solve 
these weighted classification Therefore, let 
us recall SVMs 9] for a thorough introduc­
tion). The core ingredient of an SVM is a so-called kernel 
k : X -t lit that positive semi-definite 
function. In the following we will solely focus on the 50-

called Gaussian RBF kernels that, for a (J > 0, are 
defined by ka := exp( _(J2 where II· de-
notes the Euclidean norm on lRd . In it well-known that to each 
such kernel there exists a unique reproducing kernel Hilbert 

H a, which consists offunctions f . -; R 
Now, a so-called parameter A > 0, a ker­
nel parameter (J 0, and two classification weights w_ .. > ° 
and w+ > 0 with + w+ = 1, the corresponding SVM 
solves the problem 

= arg min [ + 
JEH 

L(-l, -+ 

where t) max{O,l is the so-called loss 
and n_ and n+ denotes the number of negatively and 
tively labeled respectively. It is well-known that (2) 
is a strictly convex optimization problem that has a unique so­
lution E see e.g. [9, Chapter 5.1). Moreover, this 
solution is of the form 

n 

. ) , (3) 
i=l 

) is a solution of the dual 
see e.g. 11.1]. 

in no way to use suitable 
termine the free parameters A, (J and w_, and thus are 
often determined by a hold-out set in the following way. First 
one fixes sets A, and IV of candidate values for A, (J and 
w_, respectively and the set into two subsets 

and D2. Then for each triple (A,(J,W_) A x 2:: x W, 
the SVM optimization problem for the dataset is solved 
and the false alarm rate and the detection rate of the 

is estimated using D2. the triple (A,(J,W_) 
is picked for which the false alarm rate is below the 
threshold and the detection rate is maximized. Analogously 
to the unweighted classification case, see e.g. Chapter 8.3], 
one can show that under suitable conditions on and H/ 
this asymptotically optimal decision func-
tions . In addition, this closely resembles 
many approaches recommended in for 

classification problems. we followed 
this approach with two minor modifications. 



Conceptionally, the SVM approach is quite straightfor­
ward, but when implemented by standard SVM packages 
such as LIBSVM [10] it is computationally almost infeasible 
on a single desktop. Indeed, the fact that we need to determine 
three hyperparameters A, a and w_ means that we have to 
solve the dual problem several thousand times, which is too 
time-consuming when done by such packages. To address 
this issue we developed our own faster SVM solver [11]. 
Our implementation also carefully caches the kernel matri­
ces (J)iJ)jka( X i, xJ)) i~J= l' which also decreases the training 
time significantly. Another computational bottleneck comes 
from the fact that we are interested in very small false alarm 
rates, which can only be estimated by large hold-out sets D 2 . 

Now (3) shows that a brute· force approach for estimating 
the false alarm and detection rate for a single triple requires 
(A , a, w_) requires T x V kernel computations and the same 
amount of additional multiplications and additions. Here, T 
is the number of training samples in Dl and V is the number 
of validation samples in D 2 . With sample sizes of a few 
thousand for T and 100-200 thousand for V, this becomes 
computationaUy intractable when done for several thousand 
triples (A, a, w_), even if the sparsity, see [9, Chapters 8.4 
and 8.6] of the representation (3) is taken into account. To 
address this issue, we combined the sparseness of (3) with 
the following stJategies: a) caching the kernel matrix and 
changing a in the most outer loop of the hyper-parameter 
determination, b) updating (3) only for those 0:; that have 
changed from the previous value of A, which are changed in 
the most inner loop of the hyper-parameter determination, 
c) implementing the remaining summation on a graphical 
processing unit (GPU). By this means, a typical computa­
tion of the false alarm rate and the detection rate for a single 
triple (A,a,w_) currently takes about Sms if T = 1,000 
and V = 100,000, while without these strategies the same 
computation exploiting only the sparseness takes about one 
minute on one of the currently fastest desktop processors (In­
tel Core i7 Extreme). Similarly, the test phase in which the 
final decision function is applied to the entire image requires 
computing (3) very often (depending on the image size up 
to several million times). Again, this is computationally too 
expensive when done on a CPU, and hence we implemented 
this step on an GPU, too. The discussion above shows that a 
rigorous SVM approach for the anomalous change detection 
problem requires a significant implementation effort. 

4. RESULTS 

Using the simulation framwork introduced in Ref. [4], we can 
take a single real image, and produce an artificial pervasive 
difference everywhere in the scene; this corresponds to the 
normal differences that are observed due to different view­
ing conditions. We then introduce a single-pixel anomalous 
change by replacing a given pixel with another pixel taken 
from somewhere else in the image. This can be done multi-
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Fig. 1. ROC curves for anomalous change detection using 
AVIRIS data with split channels, reduced by CCA to d = 5 
channels, and simulated anomalies. 

pIe times to enable enough anomalous changes to get a good 
statistical estimate of detection rate. 

This was done with data from AVIRIS (Airborne Visi­
blelInfraRed Imaging Sensor) [12], based on the 224-channel 
image number 960323tOlp02_r04_scOl. The perva­
sive difference was generated by splitting the image into two 
112 channel images, and then canonical correlation analysis 
(CCA) was used to reduce this to five channels per image. 
Fig. 1 shows ROC curves computed for various change de­
tection algorithms: HACD is hyperbolic anomlous change 
detection [7], CC is the chronochrome detector [2], and CE is 
covariance equalization [3]. The two support vector machine 
runs used T = 1000 and T = 3000 randomly chosen train­
ing samples, and the reported performance is for a separate 
testing set. 

In Fig. 2, we used a pair of hyperspectrai images that were 
part of an extensive change detection experiment, described 
in Ref. [13]. Here, two separate images were taken, several 
hours apart; in one of the images, a pair of folded tarps (ap­
proximately 100 pixels in size) were placed in the scene to act 
as the anomalous changes. Canonical correlation analysis was 
used to reduce the dimension to ten per image. In Fig. 2(a), 
we masked out the actual changes and introduced simulated 
changes as described above. In Fig. 2(b), the results are based 
on the real changes (the tarps) in the image pair. 

In all three cases, we observed HACD outperforming CC 
and CE, which points to the util ity of the machine learning 
framework that is summarized in (1). The support vector ma­
chine results are based on the median of twenty runs; we see 
that the SVM exhibits competitive or slightly better perfor­
mance than BACD, though in these preliminary experiments, 
it was not substantially better. 
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Fig. 2. ROC curves for anomalous change detection using data from Ref. [13], reduced to d = 10 dimensions per image using 
canonical correlation analysis . Panel (a) is based on simulated anomalies that arise from shuffling the pixels in one of the 
images, and panel (b) is based on the actual changes that occurred in the scene. 
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