
U.S. Department of Energy, Office of Science
Advanced Scientific Computing Research

Knowledge-Based Parallel Performance Technology

for Scientific Application Competitiveness

Final Report

August 15, 2007 – May 14, 2011

DOE Agreement: DE FG02-07ER25826

Allen D. Malony and Sameer Shende

Department of Computer and Information Science
University of Oregon

1. Introduction
The primary goal of the University of Oregon's DOE “competitiveness” project was to create
performance technology that embodies and supports knowledge of performance data, analysis, and
diagnosis in parallel performance problem solving. The target of our development activities was the TAU
Performance System and the technology accomplishments reported in this and prior reports have all been
incorporated in the TAU open software distribution. In addition, the project has been committed to
maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute
(PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This
collaboration has proved valuable for translation of our knowledge-based performance techniques to
parallel application development and performance engineering practice. Our outreach has also extended
to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project
we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.

The original award started on August 15, 2007. Progress reports were submitted 90 days before the end
of each budget year in May 2008 and 2009 for project Years 1 and 2, respectively. We requested a no-
cost extension to the award in August 2010 and were granted a 9-month extension to May 14, 2011.
Thus, the final report covers the period from August 15, 2009 to May 14, 2011.

The final project report is organized as follows. The progress reports for Year 1 and 2 provided detailed
discussion of the significant progress made in the development of performance database and data mining
technologies in TAU, and our PERI and TASCS interactions. In Section 2, we summarize the highlights
of this work. We then focus on the achievements in the last project period in Section 3. Section 4
describes our participation in external activities throughout the project. Section 5 concludes the report.

2. Highlights for Project Years 1 and 2
The project proposal emphasized the transfer of knowledge-based performance technology through direct
performance engineering engagement with the DOE SciDAC PERI and TASCS efforts. The work
involved TAU development efforts to demonstrate advances in performance technology to better
characterize parallel performance data, mine multi-experiment results, and understand relationships in
factors that help to diagnosis problems. We applied these TAU advances in application performance

 2

engineering efforts (PERI) and in component-based application development (TASCS). During Year 1 of
the project, we worked closely with the PERI Tiger Team efforts on the S3D and GTC applications. Our
efforts with the Common Component Architecture (CCA) environment focused on the integration of
TAU and CCA's computational quality of service (CQoS) objectives. In Year 2, we improved support for
multi-dimensional data analysis, analysis workflow scripting, and performance knowledge integration,
again with application to PERI and TASCS goals.

2.1 TAU Technology Achievements
The project delivered important new TAU capabilities in the first two years. The key developments are
listed below. More detailed information can be found in the earlier progress reports.

PerfDMF: TAU's performance data management framework (PerfDMF) was significantly
enhanced to capture metadata about the development environment, platform, and application
execution. This came through automatic querying of systems information at runtime, a TAU
API for metadata recording by the application, and mechanisms for database metadata updates
post-execution. With these improvements, PerfDMF was updated to provide a reference
implementation of the PERI DB specification. This included the addition of support for
metadata storage with parallel profiles, importers from multiple profile formats, and
implementation of XML metadata and profile export. PerfDMF was linked to the PERI DB
website interface for performance data/metadata search and query. All of TAU's performance
analysis tools were updated to work with PerfDMF.

PerfExplorer: A new version of TAU's performance data mining framework (PerfExplorer) was
developed during the project to process knowledge (metadata, scripts, rules) that extended the
base-level analysis. Implementation of analysis scripting enabled the automation of multi-step
performance analysis procedures in the form of workflows. All analysis components were
updated to be modules that could be linked into workflows. Intermediate results and provenance
were also implemented in the PerfExplorer architecture. The ability to access metadata within
PerfExplorer allowed new meta-analysis capabilities. Also, PerfExplorer analysis supplemented
with new classification features. To support performance diagnosis, we incorporated an
inference engine in PerfExplorer that could process rules for reasoning about performance
problems.

Integration with OpenUH: In collaboration with researchers at the University of Houston, we
integrated the TAU measurement system and the PerfExplorer analysis framework in the
OpenUH compiler. The union provided OpenUH auto-instrumentation of source code with
TAU and automated analysis using PerfExplorer scripts of the performance measurements.
PerfExplorer inference rules were developed to recognize and diagnose performance
characteristics important for feedback-directed OpenUH modeling and optimization, such as for
OpenMP load balancing.

TAU support in Eclipse: The TAU toolset was integrated in the Eclipse Parallel Tools Platform
(PTP) to support measurement and analysis of parallel applications developed using the Eclipse
IDE. The first phase in performance tool integration resulted in the implementation of plug-ins
for several Eclipse IDE configurations, including the C/C++ Development Tools(CDT), Photran
(Fortran IDE) and PTP. These plug-ins integrated the functionality of the TAU performance
analysis system (configuration, instrumentation, PAPI counters, profile data management,
performance analysis, visualization) into the existing workflows of these IDE components.
Further work extended these Eclipse-TAU plug-ins to use our External Tools Framework
(ETFw), a generalized performance tool integration method for Eclipse. ETFw has been
contributed back to the Eclipse PTP project. We demonstrated the capabilities of ETFw by
integrating the functionality of several third-party performance tools into Eclipse/PTP, including
Valgrind, SCALASCA, and VampirTrace.

 3

2.2 PERI Accomplishments
Our primary objective for work with PERI in Year 1 and 2 was to support the use of TAU in performance
engineering practice, especially for petascale applications targeting the DOE leadership class facilities.
To this end, our efforts focused on two PERI activities: participating in the PERI DB working group and
working with the PERI Tiger Teams.

We substantially contributed to the PERI performance database working group (PERI DB) to design and
develop performance database support for PERI performance engineering work. This included helping to
define the metadata and performance data schemas. TAU was updated to be a PERI DB reference
platform. Throughout the two years, we met regularly with group members, worked together on
specification and interoperability issues, and contributed to demonstrations and presentations at the SC
conference. Most importantly, we applied the PERI DB work in the course of PERI performance
engineering activities.

The substantial part of our efforts were in PERI Tiger Team performance engineering projects. Our work
focused on collection and analysis of weak-scaling performance data from S3D and GTC/GTS codes
using the TAU on the leadership class facility (LCF) systems at ANL (Intrepid, IBM BG/P) and at ORNL
(Jaguar, Cray XT4/5). Performance profiling and tracing experiments were conducted on these
applications and the TAU measurements were collected in the performance database for analysis. The
new data mining capabilities developed in the first year were applied for multi-experiment investigation
and problem investigation.

Our efforts on the Gyrokinetic Toroidal Code (GTC) contributed to a better understanding of the dynamic
runtime behavior of the main bottleneck, charged distribution (a scatter operation), true for most particle
codes. The GTC development team was already aware of the performance bottleneck, but did not have a
good sense as to the reason. TAU’s dynamic phase profiling features were effective in characterizing the
scatter-gather effects on cache and memory inefficiencies. This confirmed that the particles in the
simulation are accessed with good spatial locality, but the grid cells have poor temporal locality. Hand-
tuning techniques such as common sub-expression elimination, code movement, loop unrolling, and
cache blocking were used to improve performance of the charge deposition routine by around 10 percent.
The performance analysis indicated that changes to the data layout (i.e., the particle ordering) would be
needed to obtain additional gains in performance.

The predominant amount of our PERI Tiger Team work was with the S3D application. We investigated
the scalability of S3D, particularly in issues of load imbalances, on the ORNL Jaguar system. During the
transition of Jaguar from a XT3 to XT4 platform, it was used in a hybrid configuration (XT3 + XT4).
TAU's measurement, analysis, and visualization capabilities were used effectively at scale to uncover the
nature of weak scaling performance. Hybrid runs proved perplexing in this regard because the runs
experienced increased MPI_Wait times that were different from experiments on the XT3 or XT4 alone.
The use of TAU metadata about the type of node used by each process allowed TAU's metadata
reasoning to conclude that the faster XT4 memory system enabled it processors to arrive at the MPI_Wait
earlier than the XT3 processors, leading to an imbalance.

We also looked at the effects of node mapping on the S3D code in the IBM BG/P architecture. TAU was
used to collect S3D BG/P performance for jobs ranging from 1 to 30,000 cores. This weak-scaling study
made apparent that time spent in communication routines began to dominate as the number of cores
increased. In the 30,000 core case, the time spent in routines MPI_Barrier, MPI_Wait and MPI_Isend
rose significantly. We further observed deviation between individual threads in time spent in
communication routines. The pattern of deviation suggested a load imbalance impacted by node
topology. We tested this hypothesis by running an 8000 core test with a random node mapping replacing
the default. This resulted in a 6% speedup entirely due to MPI behavior. Other topologies were
evaluated. The PerfExplorer tool was able to highlight the effects across application and MPI library
routines.

 4

The work with PERI in Years 1 and 2 proved the value of the new features we developed in TAU. In
addition to the GTC and S3D Tiger Teams, the TAU tools were also used in PERI performance studies on
the MILC and Chroma codes.

2.3 TASCS Accomplishments
Our work with the TASCS SciDAC project continued development support for the Common Component
Architecture (CCA) environment, while bringing new performance analysis and database capabilities to
bear on the computational quality of service (CQoS) problem. We improved our PDT source analysis
tool to support the TASCS OnRamp project to ease the transition of legacy simulation codes to the CCA
system. In addition, PDT developments were useful for updating our support for CCA instrumentation
and proxy generation. The TAU Performance Component was implemented to enable performance
measurement within the CCA framework. It is to date the only component to be produced that is fully
CCA compliant.

We also incorporated the TAU PerfDMF and PerfExplorer tools into CQoS infrastructure for CCA to
support performance analysis and decision-making for runtime adaptivity. Our approach used
classification analysis in PerfExplorer to identify opportunities for CQoS decisions based on prior learned
performance classes. For production application runs, the classifier is loaded into a CCA component and
the best parameter setting (class) is obtained by querying the classifier with the current values of the
application-specific metadata. These values are matched to the classification properties to find the best
class selection for the parameters.

There were two specific CQoS investigations that we participated in with the CCA CQoS subgroup.
First, TAU was used to characterize performance of linear and non-linear solvers for a variety of
parameters so as to make intelligent configuration and runtime adaption decisions based on execution
context. These were stored in the PerfDMF database and PerfExplorer evaluated features for data mining
and decision rule support based on linear/non-linear solver performance, execution context, and current
performance state.

Second, CQoS was incorporated in the GAMESS application. Here the goal was to match high
performing algorithms to the characteristics of chemical models. TAU was used to capture metadata
describing the chemical properties of a particular GAMESS execution and associate performance profiles
which PerfExplorer then analyzed to find those metadata that best partition/cluster the performance space.
From this, an efficient CQoS model could be produced for runtime decision control. In particular, it is
important in GAMESS to suggest whether to use a direct or conventional method, given the other
parameter selections. For each molecule, the associated basis functions roughly correlate with resource
demand of the corresponding computations: the greater the number of basis functions, the more
demanding the computation is expected to be. The choice of molecules are based on their importance in
chemistry and biology as well as on characteristic types of chemical interactions they represent; also,
computations of molecules of a similar size (that is, with similar number of atoms and basis functions) are
routine in contemporary quantum chemistry. We constructed training experiments to learn the classifiers
to choose between the direct and conventional methods, and other execution configuration parameters. A
new PerfExplorer CCA component was released to support the classification work.

As with PERI, the University of Oregon was an active participant in the TASCS project. We attended
every project meeting and even hosted meetings in Oregon. We also played a strong role in the
development and maintenance of the CCA tutorial, including overhauling the performance section of the
hands-on guide to include the new CCA components. Our group participated in CCA tutorial
presentations at the SC and ACTS meetings.

2.4 Application Successes
An outgrowth of our PerfExplorer developments and CQoS work led to work on the GenIDLEST

 5

application. Here we wanted to understand the scalability of OpenMP implementations and learn the best
settings for OpenMP parameters on different platforms. We constructed PerfExplorer scripts to derive the
inefficiency metrics, stall rates, and cache behavior. Rules were created to examine the results and derive
prescriptions for parameters selection. Data locality was shown to be significant and we looked to first-
touch policies on platforms for remedies. Scheduling alternatives and privatization control also were
significant strategies to pursue for performance optimization. The work here demonstrated PerfExplorer's
ability to automatically deduce causes of performance problems (e.g., cache inefficiencies) and identify
possible reasons (e.g., sequential data initialization). The lesson learned here was that we need to provide
feedback to the compiler to direct it to high value targets for optimization. The research was report in a
SC 2008 paper.

3. Final Period Results
In the final period (Year 3 plus no-cost extension) of the DOE “competitiveness” project, we had three
objectives: 1) continue support for PERI and TASCS initiatives, 2) translation of our TAU technology
development to other applications, and 3) broaden our outreach to other DOE efforts. Our achievements
in these areas are described below.

3.1 PERI Work
The primary work activity with the PERI initiative was the further involvement with the application Tiger
Teams. PFLOTRAN, a reactive flow and transport code that uses PETSc as the basis for its parallel
framework, became an important focus. We instrumented PFLOTRAN with TAU and ran experiments
on the ORNL Jaguar (Cray XT4), UT Kraken (Cray XT5) platforms, as well as the ANL Intrepid (IBM
BG/P) system. Our work was targeted to scaling experiments and I/O performance. Interestingly, during
this time, PFLOTRAN also became a test problem for tool evaluation, as part of a Dagstuhl seminar on
parallel performance tools. Thus, we tool the opportunity to improve the TAU measurement
infrastructure with respect to online processing of performance data and demonstrated this with the
PFLOTRAN application. Results from this work are reported below.

The PERI Tiger Team was interested in the scaling properties of PFLOTRAN from 10s of thousands of
processors to over 100,000 processors. We conducted scaling experiments on Jaguar, Kraken, and
Intrepid for PFLOTRAN at these scales. For TAU, these experiments required performance
instrumentation. We use our PDT tool for source instrumentation of both PFLOTRAN and the PETSc
library. Instrumentation of the PETSc library was challenging, mostly because of the time needed for
recompilation, but PDT was successful in automatically inserting instrumentation for all PETSc routines.
Full instrumentation of PFLOTRAN, the PETSc library, and the MPI library resulted in 1131 total active
events at runtime. We ran a TAU measurement test on PFLOTRAN to determine those events with
exclusive times greater than 1% of the total and created a selective instrumentation file for only those
events. This effectively removed insignificant routines from consideration, and resulted in a partial
instrumentation consisting of all PFLOTRAN routines, 44 MPI routines, and 19 PETSc routines.
Subsequent PFLOTRAN experiments used this partial instrumentation for performance profile
measurements with and without callpaths.

The Cray XT5 experiments highlight our achievements. For all of our measurement runs, we used PAPI
metrics: total cycle counts as an execution time metric, and PAPI counters (FP OPS, TOT IN, L1
DCA/DCM, L2 TCA/TCM, RES STL) for observing hardware effects. Here we consider two
experiments: one with 16K cores and one with 131K cores. With full instrumentation, a total of ~1.5 GB
of performance profile data is created for a flat profile with 16K cores; ~27 GB is created for 131K cores.
With partial instrumentation, a total of ~80 MB (16K) and ~1.4 GB (131K) is produced. Clearly, partial
instrumentation can reduce the amount of data generated. However, turning on callpath profiling will
results in more performance data being produced.

 6

In general, we are concerned with performance data management as applications scale. One of TAU's
scaling problems at this time was the fact that each core's profile was being written to a separate file.
Also, the post-processing of parallel profiles to unify the performance event identifiers was causing
verbose information to be stored with the measurement. These two problems were addressed in our work.
First, we developed a “merged” parallel profile output format that allows all core profiles to be written to
a single file. The performance data sizes above are for a merged profile file for 16K and 131K cores.
The second step was to implement event unification before writing the merged file.

Figure 1. ParaProf's manager shows the PFLOTRAN experiment and metrics (left)

and metadata (right) where information about event unification and profile merge
performance is recorded.

TAU performance measurement infrastructure is scalable because all performance data is kept local to the
nodes. However, TAU assigns event identifiers dynamically as measured events occur during execution.
Hence, IDs for the same events can be different between nodes. Unifying event IDs post-mortem requires
information to associate each node's event name to its ID, and this full event information has to be kept in
the performance data until then. If event unification can take place at the end of the application execution
before the merged file is written, additional savings in data volume can be achieved. We implemented a
scalable, distributed event unification algorithm using MPI that runs during TAU finalization.
Remarkably, this produced a compact performance data size of 300 MB for the 16K full profile (vs. 1.5
GB) and 600 MB for the 131K core full profile (vs. 27 BG). Furthermore, the parallel event unification is
fast, as shown in Figure 1 for the 16K case. The profile merge algorithm has a sequential I/O bottleneck
because a single file is being written, but it is still just a few seconds. (For 131K, the event unification
took 0.00041 seconds, and 12.96 seconds for profile merging.)

 7

Figure 2. ParaProf's bargraph view of a 16K PFLOTRAN parallel profile on a Cray XT5
(top). A 3D view of the full parallel profile showing MPI_Allreduce dominance (bottom left).
Removal of this event allows other events to be seen more clearly (bottom right).

The ParaProf “bargraph” display of the first 43 processes in a 16K PFLOTRAN parallel profile is shown
in Figure 2. This interactive display allows the user to navigate the profile data set to investigate areas of
interest. Here we see immediately the dominance of MPI_Allreduce and MPI_Waitany in the execution,
suggesting communication overheads in collective operations. We also see relative uniformity in
performance of events, although we are only seeing a subset of the processes. The “full profile” views in
Figure 2 bear out this impression. When we compare the Cray XT5 MPI performance on PFLOTRAN
with that of the IBM BG/P, we see significantly better relative behavior due to the BG/P's high-
performance interconnection network and support for collective communication. However, it is also the
case that the computation times are slower due to the differences in processor performance. This results
in a more balanced performance perspective across the PFLOTRAN application.

As seen in Figure 1, all of the experiments we ran with TAU collected detailed performance counters.
This information is important for understanding the performance interactions within the nodes. We can
also turn on callpath profiling to get a better sense of how performance is distributed across the
PFLOTRAN code.

 8

Our positive experience with event unification on PFLOTRAN led us to consider the implementation of
other profile analysis operations at the end of application execution. As a matter of course, anytime a
parallel profile is loaded in ParaProf, the average, minimum, maximum, and standard deviation is
computer for all profile events. Why not compute these values online? We developed parallel, scalable
algorithms for this purpose. Again, the speed of the performance was impressive. This functionality is
now turned on by default in TAU. More information about this work can be found in our TAU
monitoring paper at the PROPER workshop.

3.2 TASCS Work

Our interactions with the TASCS project continued along two lines in the final project period. First, there
was a significant push in TASCS to engage potential users of CCA, those integrating CCA methodology
and components, and those componentizing their libraries. In addition to maintaining the CCA-related
TAU technology, we contributed substantially to the CCA educational activities. These efforts include
regular participation in the CCA tutorials, presented at SC and ACTS. These tutorials included hands-on
training in CCA and we applied our LiveDVD technology (developed with NSF and DOE SBIR funding)
to facilitate CCA software installation and usage in training sessions. See more discussion of ACTS and
our LiveDVD support below.

Second, building on the positive results in TASCS CQoS activities, we continued to improve our
capabilities in the TAU for sophisticated profile data analysis for informing high-level decision analysis.
In particular, our colleagues at Argonne were requesting better mechanisms for specifying certain
analyses to be applied within ParaProf and PerfExporer. Instead of building a new analysis component
for each request, we decided that the best way to implement this would be to enable users to specify their
own analysis operations through a programming interface.

Figure 3. Design approach for embedding a scripting language (Python) interpreter in
ParaProf and PerfExplorer, and functionality that is being developed with this support.

As shown in Figure 3, the idea is to open up the internal functionality of ParaProf and PerfExplorer for
external use by allowing users to program new programming operations for performance data processing
in Python. However, all of TAU's performance data analysis tools are written in Java. To allow Python
scripts to be processed, we needed to embed a Java-based Python interpreter in the tools. The Jython
interpreter was chosen because it is a robust, powerful implementation of Python in Java. Within
ParaProf and PerfExplorer, we needed to expose the performance data accessors and analysis components
through Python-callable interfaces. This was a straightforward process given the design of the tools and
our earlier project work.

To demonstrate the productivity gains in performance analysis afforded by work, consider the request of
our Argonne colleague (Boyana Norris) to derive new performance metrics from measured data. The
general idea is to create new metrics that characterize performance data in different ways. These “derived
metrics” can then be interpreted relative to and in combination with each other to expose performance
anomalies. Figure 4 shows the output from a Python script written by Norris and input to PerfExplorer.
This script is being used to analyze a specific measurement trial of the FLASH application where profile

 9

events are processed with respect to metric expressions to determine “Top 10” events for different
derived metric “features.” The features of interest are:

P_WALL_CLOCK_TIME intensive events
floating-point intensive events (relative, high ratio of FP to non-FP instructions for this event only)
FP-bound events (absolute, high ratio of this event's FP instructions to all program instructions)
memory-bound events (relative, events with high memory costs per cycle per event)
memory-bound events (absolute, events with high memory costs per cycle for all program cycles)
floating point inefficiency events (relative)
floating point inefficiency events (absolute)

Each one of these (except for the first) is derived from a Python metric expression. Once the derived
metrics are calculated, the Python script then determines the top events manifesting the features. These
are then listed for each derived metric. Again, the goal is to generate different perspectives on the
performance data through sophisticated analysis expressions that are meaningful to the user and useful in
performance problem classification. In the case of FLASH, they were looking for performance symptoms
that would allow them to pinpoint computations that were the best candidates for locality-improving
optimizations, based on certain measures of FP inefficiencies. These identified regions where there was a
relatively high cache miss rate, as well as proportionately high (to the whole computation) number of
floating-point operations.

The outcome for FLASH of this new TAU capability was important for defining new directions for auto-
tuning. Building this support in the TAU tools will also be significant for extending their functionality in
the future.

3.3 Application Case Study: NWChem

Consistent with the project's goals of building knowledge-based support for analysis, there is a need to
enhance the measurement capabilities to capture performance features that reflect evolving parallel
programming models. The use of global address space languages and one-sided communication is
gaining attention, but there is a lack of good evaluative methods to observe multiple levels of
performance, from programming interfaces to hardware counters. This makes it difficult to isolate the
cause of performance deficiencies on current systems, and to understand the fundamental limitations of
system design for future improvement. During the final period of the project, we were presented the
opportunity to apply several achievements of the DOE project to an important application utilizing global
address space and one-sided communication functionality, NWChem. NWChem also presented a
challenge to TAU to improve its support for one-sided communication. The following describes our
work with PNNL and ANL, which will appear in Concurrency and Computation: Practice and
Experience.

 10

Main Event: FLASH [{Flash.F90} {31,1}-{45,17}]

Top 10 P_WALL_CLOCK_TIME intensive events:
1.1687393E7 HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}]
3081856.0 *** custom:hy_block
2840283.0 *** custom:hy_ppm_sweep
1664883.0 SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}]
1183784.0 *** custom:eos gc
1082294.0 AMR_GUARDCELL [{mpi_amr_guardcell.F90} {87,7}-{473,34}]
1046692.0 AMR_1BLK_GUARDCELL_SRL [{amr_1blk_guardcell_srl.F90} {10,7}-{856,43}]
996254.0 MPI_AMR_LOCAL_SURR_BLKS [{mpi_amr_local_surr_blks.F90} {88,7}-{529,44}]
822190.0 GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}]
732730.0 MPI_AMR_1BLK_RESTRICT [{mpi_amr_1blk_restrict.F90} {117,7}-{1406,42}]

Top 10 floating-point intensive events (relative, high ratio of FP to non-FP instructions for this event only):
0.460917 GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}]
0.397660 GR_MARKREFINEDEREFINE [{gr_markRefineDerefine.F90} {45,1}-{504,36}]
0.299210 HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}]
0.269704 MAP1 [{umap.F} {498,9}-{824,11}]
0.244240 MAP2 [{umap.F} {1389,9}-{1900,11}]
0.208284 RIEMAN [{rieman.F90} {90,1}-{480,21}]
0.170483 STATES [{states.F90} {107,1}-{625,21}]
0.165641 HYDRO_COMPUTEDT [{Hydro_computeDt.F90} {60,1}-{372,30}]
0.161455 MPI_SETUP [{mpi_lib.F90} {265,7}-{376,30}]
0.133053 DETECT [{detect.F90} {45,1}-{136,21}]

Top 10 FP-bound events (absolute, high ratio of this event's FP instructions to all program instructions):
0.002911 RIEMAN [{rieman.F90} {90,1}-{480,21}]
0.002908 MONOT [{monot.F90} {40,1}-{109,20}]
0.002589 INTERP [{interp.F90} {44,1}-{101,23}]
0.002046 STATES [{states.F90} {107,1}-{625,21}]
0.001107 INTRFC [{intrfc.F90} {111,3}-{338,21}]
0.000975 DETECT [{detect.F90} {45,1}-{136,21}]
0.000946 HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}]
0.000942 SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}]
0.000907 HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}]
0.000724 AMR_RESTRICT_UNK_GENORDER [{amr_restrict_unk_genorder.F90} {14,7}-{235,46}]

Top 10 memory-bound events (relative, events with high memory costs per cycle per event):
5.106236 AMR_FLUX_CONSERVE [{mpi_amr_flux_conserve.F90} {90,7}-{132,38}]
4.663727 AMR_REFINE_DEREFINE [{mpi_amr_refine_derefine.F90} {91,7}-{681,40}]
4.473107 MPI_AMR_WRITE_RESTRICT_COMM [{mpi_amr_store_comm_info.F90} {482,7}-{555,48}]
4.419078 MPI_AMR_WRITE_PROL_COMM [{mpi_amr_store_comm_info.F90} {168,7}-{234,44}]
4.207310 AMR_RESTRICT_BND_DATA [{mpi_amr_restrict_bnd_data.F90} {15,7}-{410,42}]
4.200861 MPI_AMR_READ_GUARD_COMM [{mpi_amr_store_comm_info.F90} {88,7}-{162,44}]
4.125719 MPI_AMR_READ_PROL_COMM [{mpi_amr_store_comm_info.F90} {240,7}-{317,43}]
4.112978 AMR_1BLK_TO_PERM [{amr_1blk_to_perm.F90} {15,7}-{264,37}]
4.102125 GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}]
3.972938 GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}]

Top 10 memory-bound events (absolute, events with high memory costs per cycle for all program cycles):
0.018345 GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}]
0.015368 *** custom:hy_ppm_sweep
0.012984 *** custom:hy_block
0.012354 HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}]
0.012107 AMR_FLUX_CONSERVE [{mpi_amr_flux_conserve.F90} {90,7}-{132,38}]
0.011350 STATES [{states.F90} {107,1}-{625,21}]
0.011254 AMR_GUARDCELL [{mpi_amr_guardcell.F90} {87,7}-{473,34}]
0.008848 RIEMAN [{rieman.F90} {90,1}-{480,21}]
0.008125 EOS_GETDATA [{Eos_getData.F90} {82,1}-{256,26}]
0.006954 INTRFC [{intrfc.F90} {111,3}-{338,21}]

Top 10 floating point inefficiency events (relative):
0.216254 GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}]
0.203574 GR_MARKREFINEDEREFINE [{gr_markRefineDerefine.F90} {45,1}-{504,36}]
0.134752 HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}]
0.105361 HYDRO_COMPUTEDT [{Hydro_computeDt.F90} {60,1}-{372,30}]
0.095866 MPI_SETUP [{mpi_lib.F90} {265,7}-{376,30}]
0.095160 MAP1 [{umap.F} {498,9}-{824,11}]
0.084138 MAP2 [{umap.F} {1389,9}-{1900,11}]
0.061689 GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}]
0.050163 RIEMAN [{rieman.F90} {90,1}-{480,21}]
0.039648 MPI_AMR_GLOBAL_DOMAIN_LIMITS [{mpi_amr_global_domain_limits.F90} {60,10}-{109,49}]

Top 10 floating point inefficiency events (absolute):
0.000048 MONOT [{monot.F90} {40,1}-{109,20}]
0.000044 INTERP [{interp.F90} {44,1}-{101,23}]
0.000035 INTRFC [{intrfc.F90} {111,3}-{338,21}]
0.000016 SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}]
0.000012 RIEMAN [{rieman.F90} {90,1}-{480,21}]
0.000010 HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}]
0.000008 EOS_WRAPPED [{Eos_wrapped.F90} {93,1}-{198,26}]
0.000005 *** custom:hy_block
0.000005 SIM_FIND [{Simulation_initBlock.F90} {524,1}-{561,23}]
0.000005 STATES [{states.F90} {107,1}-{625,21}]

Figure 4. Derived metric analysis used in the FLASH application.

 11

NWChem is a computational chemistry suite supporting electronic structure calculations using a variety
of chemistry models. NWChem employs Global Arrays (GA) as the underlying one-sided programming
model. GA provides a global address space view of the distributed address spaces of different processes.
Aggregate Remote Memory Copy Interface (ARMCI) is the communication substrate that provides the
remote memory access functionality used by GA. Being able to observe the performance characteristics
of ARMCI in support of Global Arrays and in the context of NWChem is a key requirement for future
development and optimization. Of specific interest to multicore parallelism in NWChem is that one-sided
communication requires remote agency, leading communication runtime systems to often spawn a thread
for processing incoming one-sided message requests. In ARMCI this thread is known as the data-server.
It is also important for performance optimization to observe the role of core assignment between
computation and communication.

Figure 5. Derived metric analysis used in the NWChem application.

An important challenge for profiling the NWChem software was to capture events associated with the use
of Global Arrays and the ARMCI communication substrate. The ARMCI instrumentation approach we
developed is similar to what is used in the MPI library whereby an alternate “name- shifted” interface to
the standard routines is created (called PMPI in the case of MPI, where ‘P’ stands for “profiling”) and a
new library is provided to substitute for the original calls. In the spirit of PMPI, we call the profiling
interface for ARMCI, PARMCI. (PARMCI is now included as part of the ARMCI distribution.) We use
PARMCI to create a TAU-instrumented library for ARMCI that captures entry/exit events and make
performance measurements of time as well as communication statistics (e.g., bytes transmitted) between
sender and receivers. The TAU ParaProf tool was enhanced to display communication statistics to
highlight gross patterns of interaction, as shown in Figure 5. Utilizing TAU in NWChem required
additional enhancements of instrumentation and measurement support, as described in the paper.

An important goal in analyzing one-sided communication in NWChem was to understand the interplay
between the data-server and compute processes as a function of scale. However, as the job is strong-
scaled to larger numbers of nodes, not only does the computational work per node decrease, but the
fragmentation of data across the system leads to an increase in the total number of messages. We
conducted scaling experiments on three systems in this study:

Fusion: A 320-node Linux cluster with dual-socket Intel Nehalem-series quad-core processors
(Xeon X5550) connected by QDR IB (Mellanox Technologies MT26428). This machine is
operated by the Argonne Laboratory Computing Resource Center (LCRC).

Chinook: A 2310-node Linux supercomputer with dual-socket AMD Barcelona-series quad-core
processors (AMD Opteron 2354) connected by DDR IB (Mellanox Technologies MT25418

 12

NICs and Voltaire switches). This machine is operated by Pacific Northwest National
Laboratory’s Molecular Science Computing Facility.

Intrepid: The Argonne Leadership Computing Facility operates Intrepid and Surveyor, which are
40- and 1-rack Blue Gene/P systems, respectively. In contrast to the Linux clusters above, the
implementation of ARMCI on Blue Gene/P does not use the data server due to the existence of
active-message functionality within DCMF. True passive progress is achieved either with a
communication helper thread continuously polling for incoming active-messages or by
operating system interrupts, which are extremely lightweight in the BG/P compute node kernel
(CNK) relative to Linux.

Our experiments varied the number of nodes, cores-per-node, and whether or not memory buffers were
“pinned”, that is, registered with the NIC and ineligible for paging. On BG/P, paging is disabled in the
kernel and memory-registration of the entire address space is trivial, hence there is no comparison to be
made with respect to buffer pinning. There is an important trade-off between using all available
processing power for numerical computation and dedicating some fraction of the cores to communication.
Understanding these trade-offs as a function of scale is critical for adapting software for new platforms
which may have widely varying capability for hardware offloading of message-processing, such as
support for contiguous and/or non-contiguous RDMA operations. The strong scaling experiments with
Fusion exposed the effects of growing effects of communication (see Figure 6) in NWChem when care is
not taken to properly configure the application for the communications system. Use of a separate thread
for the data-server only stalls the onset. It is only when the communication buffers are pinned that
performance scaling in achieved (see Figure 7).

To test the generality of our experiments on Fusion, we performed similar tests on Chinook. A key
difference is that the newer Intel Nehalem processors have approximately twice the memory bandwidth
per core and per node, and the system software runs HPC-oriented Linux and communication stack.
Figure 8 compares the total execution time and relative efficiency of different experiments on Fusion and
Chinook.

Figure 6. PerfExplorer graphs are automatically generated from scaling experiment
profiles, highlighting the top contributors to execution time. ARMCI communication
overheads increase with increasing number of processors, with and without a help thread for
communication.

 13

Figure 7. Pinning communication buffers on Fusion results in performance scaling advantages.

Here we see a reduced dependence on the use of pinning versus the number of compute cores used on
Chinook. On the other hand, it is much more sensitive to how cores are allocated. In particular, using all
8 cores per node for computation increases the time for certain procedures markedly. With 32 nodes and
8 cores/node computing, the time spent generating atomic integrals is 3 and 9 times greater than when
only 6 cores per node are used for the pinned and non-pinned cases, respectively. Similarly, on 128
nodes, using 8 cores per node for computation increases the wall time by approximately 3 times the 6-
and 7-compute core per node cases.

Figure 8. Total time and relative efficiency of different numbers of cores and pinning on
Chinook and Fusion.

Figure 9. Scaling results are compared for cases with (dcmf=0) and without (dcmf=1) a

communication helper thread.

When we look at the Intrepid BG/P results in Figure 9, we see the influence of an entirely different

 14

systems context for our performance scaling experiments. BGP not only has very different hardware —
low-memory, slow-clock-rate processors, no local disk, and an extremely low-latency network with
modest bandwidth network — but it uses a lightweight operating system which does not permit Linux-
style oversubscription, nor does it support SysV shared-memory. As such, the implementation of ARMCI
is quite different and relies heavily upon active-message capability within DCMF, which is enabled by
lightweight operating system interrupts. Preliminary investigations of ARMCI performance on BG/P
resulted in a primitive communication helper thread (CHT) being added to the ARMCI implementation.
The performance results demonstrate the utility of this approach to asynchronous progress relative to
interrupts. Both the CHT and interrupt-mode provide a means to achieve passive- target progress in one-
sided communication, although only the CHT requires a dedicated core. We compare these two contexts
for running NWChem across a range of node counts (64, 128, 256 and 512) which is approximately
comparable to the range used on Chinook and Fusion. Our NWChem calculations on BG/P executed in
SMP and DUAL mode – 1 and 2 processes per node respectively.

What is remarkable in these results is that the ARMCI calls are barely noticeable, whereas normally
negligible BLAS2 operations (e.g., DAXPY) show up in an unusually significant way. This result is not
surprising due to the low clock-frequency of the BG/P processor and relatively low bandwidth from L2
cache. As a consequence, the scaling on BG/P is excellent, since the absence of pathological IB
communication behavior allows for nearly halving of total execution time with a doubling of node count.

The NWChem performance analysis exercised the full capabilities of TAU enhancements made possible
by the DOE “competition” project. The role of automated instrumentation, measurement, and analysis in
TAU was invaluable for understanding the performance behavior of a complex code such as NWChem.
The NWChem code base is millions of lines, in addition to the tens of thousands of lines of code active in
GA and ARMCI for a given interconnect. Without automated source instrumentation and profiling hooks
to both MPI and ARMCI, it would not have been possible to reliably identify the performance issues
described. In particular, understanding the performance effects of one-sided communication is non-
trivial. While the remote target is passive from a programmer perspective, passive-target progress
requires significant resources on every node, especially since remote accumulate requires floating-point
computation on top the memory operations required for packing and unpacking of non-contiguous
messages. More rudimentary profiling techniques are not useful for analyzing the behavior of an
asynchronous agent such as the ARMCI data server. Advanced performance tools will become more
important with increased interest in one-sided programming models in both GA and PGAS languages.

3.4 DOE ASCR Outreach – ACTS

Throughout the DOE “competition” project, we have looked for avenues to translate our efforts to the
broader DOE ASCR community. In particular, we have been actively involved in the DOE Advanced
CompuTational Software (ACTS) collection and project. As seen in Figure 10, TAU is a part of the
ACTS collection, and has been so for over five years. As part of the collection, we validate TAU with
every one of the other ACTS packages to guarantee compatibility on all the platforms where ACTS
software is installed.

Our ACTS involvement does not end there. We have actively participated in every one of the ACTS
workshops, giving tutorials on TAU and assisting in hands-on training. The TAU project created a
LiveDVD that configures parallel software development environments and performance tools for a single
Linux distribution which can boot up on a user's laptop or workstation, natively or on a virtual machine.
Our technology has been used for the ACTS workshops for the last three years. The LiveDVD disk for
the 2010 ACTS workshop is shown in Figure 11. The different packages are listed and include several
performance tools, the Eclipse/PTP framework, and CCA.

 15

Figure 10. ACTS software collection architecture and packages.

Figure 11. ACTS software collection architecture and packages.

4. Other Information
During its lifetime, the project supported two Ph.D. graduate students, two Master's graduate students,
three staff members at the Performance Research Laboratory (PRL), a PRL system administrator, and the
project PIs. One graduate student, Kevin Huck, completed his Ph.D. degree during the second year and
went to work at the Barcelona Supercomputing Center.

It was important for our project to maintain frequent and consistent connections to the PERI and TASCS
groups through meeting participation, conferences calls, and visits to DOE laboratories. For both PERI
and TASCS, we hosted meetings in Oregon at various points during the project period. We are currently
scheduled to host a PERI meeting in Eugene, Oregon in September 2011. Similarly, we regularly
attended the ACTS workshops and will be doing so again August 16-19, 2011 at LBL.

Lastly, we participated in all of the DOE SciDAC Center for Scalable Application Development Software

 16

(CScADS) summer workshops on performance tools and applications.

4. Conclusion
The DOE “competitiveness” project at the University of Oregon has achieved all of its objectives to
develop advanced performance technology that supports knowledge-based analysis of parallel
performance measurements and to translate those achievements to the PERI and TASCS activities. All of
the technology is delivered in the open source TAU performance system for distribution. In this way,
results from the project more broadly benefit DOE projects. In addition to PERI, TASCS, and ACTS, we
were involved with the DOE SciDAC CFRFS and FACETS projects during the project where our TAU
performance tools were applied.

Presentations:
We gave the following presentations during the project period:

1. S. Shende, "TAU Performance System," LLNL, May 3, 2007.

2. S. Shende, "Parallel Performance Evaluation Tools for HPC Systems," tutorial, Linux Cluster
Institute Conference, South Lake Tahoe, May 14, 2007.

3. S. Shende, "Parallel Performance Evaluation using the TAU Performance System Project," DOE
CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, July 17, 2007.

4. S. Shende, "TAU Performance System," DOE CScADS Workshop on Petascale Architectures and
Performance Strategies, Snowbird, UT, July 24, 2007.

5. S. Shende, "Performance Evaluation using the TAU Performance System," TACC Summer Institute,
U. Texas, Austin, August 17, 2007.

6. K. Huck, “Knowledge Support for Parallel Performance Data Mining, Code Instrumentation and
Modeling for Parallel Performance Analysis,” Dagstuhl Seminar, Dagstuhl, Germany, August 19-24,
2007.

7. S. Shende, "TAU Performance System," DOE ACTS Workshop, Berkeley, CA, August 24, 2007.

8. K. Huck, “Scalable Performance Analysis with TAU, PerfDMF and PerfExplorer,”
Forschungszentrum, Juelich, Germany, August 28, 2007.

9. S. Shende, "TAU Performance System," Performance Tools BOF, International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC07), Reno, NV, November 13, 2007.

10. K. Huck, “Scalable, Automated Performance Analysis with TAU and PerfExplorer,” Parallel
Computing Conference, Aachen and Juelich, Germany, September 4-7, 2007.

11. S. Shende, "TAU: Performance Technology for Productive, High Performance Computing," seminar
at ORNL, February 5, 2008.

12. K. Huck, “PERI Database Working Group: Status Update,” PERI Meeting, UCSD, February 25-26,
2008.

13. S. Shende, “TAU: Performance Technology for Productive, High Performance Computing,” seminar
at MCS, ANL, May 2, 2008.

14. S. Shende, “Future Tool Overview and Plans for Future Tools (What they will do),” Petascale
Summer Workshop, TeraGrid 2008, Las Vegas, June 9-13, 2008.

15. K. Huck, “Using the TAU Performance Analysis System on the Blue Gene/P,” ALCF INCITE
Workshop, ANL, Argonne Leadership Computing Facility, May 7-8, 2008.

 17

16. T. Drummond, O. Marques, J. Roman, and S. Shende, “Computational Tools for Rapid and Reliable
Development of High Performance Applications,” tutorial, International Meeting on High
Performance Computing for Computational Science (VECPAR 2008), Toulouse, France, June 24-27,
2008.

17. K. Huck, “Integrating Knowledge, Automation, and Persistence with PerfExplorer and PerfDMF,”
DOE CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, July 21-24,
2008.

18. S. Shende, “TAU Parallel Performance System,” Leap to Petascale Workshop, ANL, Argonne
Leadership Computing Facility, July 28-31, 2008.

19. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 19-22, 2008.

20. K. Huck, “Knowledge Support for Parallel Performance Data Mining,” Doctoral Showcase,
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC08), Austin, TX USA, November 20, 2008.

21. K. Huck, “Capturing Performance Knowledge for Automated Analysis,” Technical Session,
International Conference for High Performance Computing, Networking, Storage and Analysis
(SC08), Austin, TX USA, November 20, 2008.

22. A. Malony, F. Wolf, and D. Skinner, “Tools for High Productivity Supercomputing,” BOF,
International Conference for High Performance Computing, Networking, Storage, and Analysis
(SC08), Austin, TX USA, November 20, 2008.

23. S. Shende, A. Malony, R. Kufrin, R. Reddy, S. Moore, “Parallel Performance Evaluation Tools,”
Tutorial, LCI Conference, Boulder, CO, March 9, 2009.

24. B. Mohr, M. Schulz, D. Gunter, K. Huck, X. Wu, “A Proposal for a Profiling Data Exchange
Format,” DOE CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City, CA,
July 20-23, 2009.

25. A. Malony, “Performance Measurement and Analysis of Heterogeneous Systems: Tasks and GPU
Accelerators,” DOE CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City,
CA, July 20-23, 2009.

26. W. Spear, “Parallel Performance Evaluation with TAU,” DOE CScADS Workshop on Leadership-
class Machines, Petascale Applications, and Performance Strategies, Tahoe City, CA, July 27-30,
2009.

27. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 18-21, 2009.

28. A. Malony, “PFLOTRAN Meets TAU,” Dagstuhl Seminar on Program Development for Extreme-
Scale Computing, Proceedings 10181, May 2-7, 2010.

29. A. Malony, “Hybrid Parallel Performance Measurement and Analysis,” Dagstuhl Seminar on
Program Development for Extreme-Scale Computing, Proceedings 10181, May 2-7, 2010.

30. L. Drummond, O. Marques, S. Shende, and J. Roman, “Computational Tools for Rapid and Reliable
Development of High Performance Applications,” tutorial, International Meeting on High
Performance Computing for Computational Science (VECPAR 2010), June 23-25, 2010.

31. A. Malony, “TAU Potpourri and Working with Open Components, Interfaces, and Environments,”
DOE CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, August 2-
5, 2010.

32. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 17-20, 2010.

 18

33. M. Geimer, A. Knupfer, R. Kufrin, S. Moore, and S. Shende, “Hands-on Practical Parallel
Application Performance Engineering using PAPI, PerfSuite, Scalasca, Vampir, and TAU,” tutorial,
International Conference for High Performance Computing, Networking, Storage, and Analysis
(SC10), November 15-18, 2010.

34. A. Malony, “Performance Visualization, Integrated Profiling, and Kernel Measurement,” DOE
CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City, CA, August 1-4,
2011.

References:

1. D. Gunter, K. Huck, K. Karavanic, J. May, A. Malony, K. Mohror, S. Moore, A. Morris, S. Shende,
V. Taylor, X. Wu, and Y. Zhang, “Performance Database Technology for SciDAC Applications,”
Journal of Physics: Conference Series, Vol. 78, 24--28 June 2007, Boston Massachusetts, USA.

2. Y. Zhang, R. Fowler, K. Huck, A. Malony, A. Porterfield, D. Reed, S. Shende, V. Taylor, and X. Wu,
“US QCD Computational Performance Studies with PERI,” Journal of Physics: Conference Series,
Vol. 78, 24–28 June 2007, Boston Massachusetts, USA.

3. Li Li, “Model-based Automated Parallel Performance Diagnosis,” Ph.D. thesis, University of Oregon,
June 2007.

4. K. Huck, A. Malony, S. Shende, and A. Morris, “Scalable, Automated Performance Analysis with
TAU and PerfExplorer,” Parallel Computing: Architectures, Algorithms, and Applications, C.
Bischof, M. Bucker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr, and F. Peters (Eds.), NIC Serices,
Vol. 38, Aachen, Germany, pp. 629–636, 2007. Reprinted in: Advances in Parallel Computing, Vol.
15, 2007.

5. S. Moore, “Porting and Performance Improvement of GTC_S,” PERI GTC Tiger Team report, July
11, 2007.

6. H. Chen, A. Choudhary, B. de Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao, K. L. Ma,
J. Mellor-Crummy, N. Podhorski, R.Sankaran, S. Shende, C. S. Yoo, "Terascale Direct Numerical
Simulations of Turbulent Combustion using S3D," (to appear) IOP Journal, 2008.

7. N. Trebon, A. Morris, J. Ray, S. Shende, A. Malony, "Performance Modeling of Component
Assemblies," Concurrency and Computation: Practice and Experience, Vo. 19 No. 5, pp. 685-696,
2007.W. Spear, A. Malony, A. Morris, and S. Shende, “Performance Tool Workflows,” International
Conference on Computational Science (ICCS 2008), Springer-Verlag, pp. 276–285, May, 2008.

8. K. Huck, A. Malony, S. Shende, and A. Morris, "Knowledge Support and Automation for
Performance Analysis with PerfExplorer 2.0," Journal of Scientific Programming, special issue on
Large-Scale Programming Tools and Environments, 16(2-3):123–134, 2008.

9. A. Malony, S. Shende, A. Morris, S. Biersdorff, W. Spear, K. Huck, and A. Nataraj, “Evolution of a
Parallel Performance System,” 2nd International Workshop on Tools for High Performance
Computing, High Performance Computing Center Stuttgart (HLRS), Eds. M. Resch, R. Keller, V.
Himmler, B. Krammer, and A. Schulz, Springer-Verlag, pp. 169–190, July, 2008.

10. A. Morris, W. Spear, A. Malony, and S. Shende, “Observing Performance Dynamics using Parallel
Profile Snapshots,” European Conference on Parallel Processing (EuroPar 2008), Springer, LNCS
5168, pp. 162–171, August, 2008.

11. K. Huck, W. Spear, A. Malony, S. Shende, and A. Morris, “Parametric Studies in Eclipse with TAU
and PerfExplorer,” Workshop on Productivity and Performance (PROPER 2008), EuroPar 2008, Las
Palmas de Gran Canaria, Spain, August, 2008.

 19

12. V. Bui, B. Norris, K. Huck, L. Curfman McInnes, L. Li, O. Hernandez, and B. Chapman, “A
Component Infrastructure for Performance and Power Modeling of Parallel Scientific Applications,”
Component-Based High Performance Computing (CBHPC 2008), October, 2008.

13. K. Huck, O. Hernandez, V. Bui, S. Chandrasekaran, B. Chapman, A. Malony, L. Curfman McInnes,
and B. Norris. “Capturing Performance Knowledge for Automated Analysis.” International
Conference for High Performance Computing, Networking, Storage, and Analysis (SC08), 2008.

14. H. Jagode, J. Dongarra, S. Alam, J. Vetter, W. Spear, A. Malony. “A Holistic Approach for
Performance Measurement and Analysis for Petascale Applications.” International Conference on
Computational Science (ICCS 2009), Baton Rouge, LA, 2009.

15. W. Spear, S. Shende, A. Malony, R. Portillo, P. Teller, D. Cronk, S. Moore, D. Terpstra. “Making
Performance Analysis Tuning Part of the Software Development Cycle.” UGC 2009, San Diego, CA,
June 15-18, 2009.

16. L. Li, J. Kenny, M. Wu , K. Huck, A. Gaenko, M. Gordon , C. Janssen, L. Curfman McInnes, H.
Mori, H. M. Netzloff, B. Norris, and T. Windus. “Adaptive Application Composition in Quantum
Chemistry",” submitted to 5th International Conference on the Quality of Software Architectures
(QoSA 2009), East Stroudsburg University, Pennsylvania, USA, June 22-26, 2009.

17. S. Shende, A. Malony, and A. Morris, “Improving the Scalability of Performance Evaluation Tools,”
International Workshop on Applied Parallel Computing (PARA 2010), June, 2010.

18. C.W. Lee, A. Malony, and A. Morris, “TAUmon: Scalable Online Performance Data Analysis in
TAU,” Workshop on Productivity and Performance Tools for HPC Application Development
(PROPER 2010), August 2010.

19. A. Morris, A. Malony, S. Shende, and K. Huck, “Design and implementation of a hybrid parallel
performance measurement system,” in International Conference on Parallel Processing (ICPP 2010),
September, 2010.

20. J. Hammond, S. Krishnamoorthy, S. Shende, N. Romero, A. Malony, “Performance Characterization
of Global Address Space Applications: A Case Study with NWChem,” to appear in Concurrency and
Computation: Practice and Experience, 2011.

21. U. Oregon, “TAU Performance System,” URL: http://tau.uoregon.edu, 2011.

