
U.S. Department of Energy, Office of Science 
Advanced Scientific Computing Research 

 
Knowledge-Based Parallel Performance Technology 

for Scientific Application Competitiveness 
 

Final Report 

August 15, 2007 – May 14, 2011 

DOE Agreement: DE FG02-07ER25826 

 
Allen D. Malony and Sameer Shende 

Department of Computer and Information Science 
University of Oregon 

 

1. Introduction 
The primary goal of the University of Oregon's DOE “competitiveness” project was to create 
performance technology that embodies and supports knowledge of performance data, analysis, and 
diagnosis in parallel performance problem solving.  The target of our development activities was the TAU 
Performance System and the technology accomplishments reported in this and prior reports have all been 
incorporated in the TAU open software distribution.   In addition, the project has been committed to 
maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute 
(PERI) and Center for Technology for Advanced Scientific Component Software (TASCS).  This 
collaboration has proved valuable for translation of our knowledge-based performance techniques to 
parallel application development and performance engineering practice.  Our outreach has also extended 
to the DOE Advanced CompuTational Software (ACTS) collection and project.  Throughout the project 
we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops. 

The original award started on August 15, 2007.  Progress reports were submitted 90 days before the end 
of each budget year in May 2008 and 2009 for project Years 1 and 2, respectively.  We requested a no-
cost extension to the award in August 2010 and were granted a 9-month extension to May 14, 2011.  
Thus, the final report covers the period from August 15, 2009 to May 14, 2011. 

The final project report is organized as follows.  The progress reports for Year 1 and 2 provided detailed 
discussion of the significant progress made in the development of performance database and data mining 
technologies in TAU, and our PERI and TASCS interactions.  In Section 2, we summarize the highlights 
of this work.  We then focus on the achievements in the last project period in Section 3.  Section 4 
describes our participation in external activities throughout the project.  Section 5 concludes the report. 

2. Highlights for Project Years 1 and 2  
The project proposal emphasized the transfer of knowledge-based performance technology through direct 
performance engineering engagement with the DOE SciDAC PERI and TASCS efforts.   The work 
involved TAU development efforts to demonstrate advances in performance technology to better 
characterize parallel performance data, mine multi-experiment results, and understand relationships in 
factors that help to diagnosis problems.  We applied these TAU advances in application performance 
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engineering efforts (PERI) and in component-based application development (TASCS).  During Year 1 of 
the project, we worked closely with the PERI Tiger Team efforts on the S3D and GTC applications.  Our 
efforts with the Common Component Architecture (CCA) environment focused on the integration of 
TAU and CCA's computational quality of service (CQoS) objectives.  In Year 2, we improved support for 
multi-dimensional data analysis, analysis workflow scripting, and performance knowledge integration, 
again with application to PERI and TASCS goals. 

2.1 TAU Technology Achievements 
The project delivered important new TAU capabilities in the first two years.  The key developments are 
listed below.  More detailed information can be found in the earlier progress reports. 

PerfDMF: TAU's performance data management framework (PerfDMF) was significantly 
enhanced to capture metadata about the development environment, platform, and application 
execution.  This came through automatic querying of systems information at runtime, a TAU 
API for metadata recording by the application, and mechanisms for database metadata updates 
post-execution.  With these improvements, PerfDMF was updated to provide a reference 
implementation of the PERI DB specification.  This included the addition of support for 
metadata storage with parallel profiles, importers from multiple profile formats, and 
implementation of XML metadata and profile export.  PerfDMF was linked to the PERI DB 
website interface for performance data/metadata search and query.  All of TAU's performance 
analysis tools were updated to work with PerfDMF. 

PerfExplorer: A new version of TAU's performance data mining framework (PerfExplorer) was 
developed during the project to process knowledge (metadata, scripts, rules) that extended the 
base-level analysis.  Implementation of analysis scripting enabled the automation of multi-step 
performance analysis procedures in the form of workflows.  All analysis components were 
updated to be modules that could be linked into workflows.  Intermediate results and provenance 
were also implemented in the PerfExplorer architecture.  The ability to access metadata within 
PerfExplorer allowed new meta-analysis capabilities.  Also, PerfExplorer analysis supplemented 
with new classification features.  To support performance diagnosis, we incorporated an 
inference engine in PerfExplorer that could process rules for reasoning about performance 
problems. 

Integration with OpenUH: In collaboration with researchers at the University of Houston, we 
integrated the TAU measurement system and the PerfExplorer analysis framework in the 
OpenUH compiler.    The union provided OpenUH auto-instrumentation of source code with 
TAU and automated analysis using PerfExplorer scripts of the performance measurements. 
PerfExplorer inference rules were developed to recognize and diagnose performance 
characteristics important for feedback-directed OpenUH modeling and optimization, such as for 
OpenMP load balancing. 

TAU support in Eclipse: The TAU toolset was integrated in the Eclipse Parallel Tools Platform 
(PTP) to support measurement and analysis of parallel applications developed using the Eclipse 
IDE.   The first phase in performance tool integration resulted in the implementation of plug-ins 
for several Eclipse IDE configurations, including the C/C++ Development Tools(CDT), Photran 
(Fortran IDE) and PTP.  These plug-ins integrated the functionality of the TAU performance 
analysis system (configuration, instrumentation, PAPI counters, profile data management, 
performance analysis, visualization) into the existing workflows of these IDE components.  
Further work extended these Eclipse-TAU plug-ins to use our External Tools Framework 
(ETFw), a generalized performance tool integration method for Eclipse.  ETFw has been 
contributed back to the Eclipse PTP project.  We demonstrated the capabilities of ETFw by 
integrating the functionality of several third-party performance tools into Eclipse/PTP, including 
Valgrind, SCALASCA, and VampirTrace. 
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2.2 PERI Accomplishments 
Our primary objective for work with PERI in Year 1 and 2 was to support the use of TAU in performance 
engineering practice, especially for petascale applications targeting the DOE leadership class facilities.   
To this end, our efforts focused on two PERI activities: participating in the PERI DB working group and 
working with the PERI Tiger Teams. 

We substantially contributed to the PERI performance database working group (PERI DB) to design and 
develop performance database support for PERI performance engineering work.  This included helping to 
define the metadata and performance data schemas.  TAU was updated to be a PERI DB reference 
platform.  Throughout the two years, we met regularly with group members, worked together on 
specification and interoperability issues, and contributed to demonstrations and presentations at the SC 
conference.  Most importantly, we applied the PERI DB work in the course of PERI performance 
engineering activities. 

The substantial part of our efforts were in PERI Tiger Team performance engineering projects.  Our work 
focused on collection and analysis of weak-scaling performance data from S3D and GTC/GTS codes 
using the TAU on the leadership class facility (LCF) systems at ANL (Intrepid, IBM BG/P) and at ORNL 
(Jaguar, Cray XT4/5).  Performance profiling and tracing experiments were conducted on these 
applications and the TAU measurements were collected in the performance database for analysis.  The 
new data mining capabilities developed in the first year were applied for multi-experiment investigation 
and problem investigation. 

Our efforts on the Gyrokinetic Toroidal Code (GTC) contributed to a better understanding of the dynamic 
runtime behavior of the main bottleneck, charged distribution (a scatter operation), true for most particle 
codes.   The GTC development team was already aware of the performance bottleneck, but did not have a 
good sense as to the reason.  TAU’s dynamic phase profiling features were effective in characterizing the 
scatter-gather effects on cache and memory inefficiencies.  This confirmed that the particles in the 
simulation are accessed with good spatial locality, but the grid cells have poor temporal locality.  Hand-
tuning techniques such as common sub-expression elimination, code movement, loop unrolling, and 
cache blocking were used to improve performance of the charge deposition routine by around 10 percent.   
The performance analysis indicated that changes to the data layout (i.e., the particle ordering) would be 
needed to obtain additional gains in performance. 

The predominant amount of our PERI Tiger Team work was with the S3D application.  We investigated 
the scalability of S3D, particularly in issues of load imbalances, on the ORNL Jaguar system.  During the 
transition of Jaguar from a XT3 to XT4 platform, it was used in a hybrid configuration (XT3 + XT4).  
TAU's measurement, analysis, and visualization capabilities were used effectively at scale to uncover the 
nature of weak scaling performance.  Hybrid runs proved perplexing in this regard because the runs 
experienced increased MPI_Wait times that were different from experiments on the XT3 or XT4 alone.  
The use of TAU metadata about the type of node used by each process allowed TAU's metadata 
reasoning to conclude that the faster XT4 memory system enabled it processors to arrive at the MPI_Wait 
earlier than the XT3 processors, leading to an imbalance. 

We also looked at the effects of node mapping on the S3D code in the IBM BG/P architecture.  TAU was 
used to collect S3D BG/P performance for jobs ranging from 1 to 30,000 cores.  This weak-scaling study 
made apparent that time spent in communication routines began to dominate as the number of cores 
increased.  In the 30,000 core case, the time spent in routines MPI_Barrier, MPI_Wait and MPI_Isend 
rose significantly.  We further observed deviation between individual threads in time spent in 
communication routines.  The pattern of deviation suggested a load imbalance impacted by node 
topology.  We tested this hypothesis by running an 8000 core test with a random node mapping replacing 
the default.  This resulted in a 6% speedup entirely due to MPI behavior.  Other topologies were 
evaluated.  The PerfExplorer tool was able to highlight the effects across application and MPI library 
routines. 



 4 

The work with PERI in Years 1 and 2 proved the value of the new features we developed in TAU.  In 
addition to the GTC and S3D Tiger Teams, the TAU tools were also used in PERI performance studies on 
the MILC and Chroma codes. 

2.3 TASCS Accomplishments 
Our work with the TASCS SciDAC project continued development support for the Common Component 
Architecture (CCA) environment, while bringing new performance analysis and database capabilities to 
bear on the computational quality of service (CQoS) problem.  We improved our PDT source analysis 
tool to support the TASCS OnRamp project to ease the transition of legacy simulation codes to the CCA 
system.  In addition, PDT developments were useful for updating our support for CCA instrumentation 
and proxy generation.  The TAU Performance Component was implemented to enable performance 
measurement within the CCA framework.  It is to date the only component to be produced that is fully 
CCA compliant. 

We also incorporated the TAU PerfDMF and PerfExplorer tools into CQoS infrastructure for CCA to 
support performance analysis and decision-making for runtime adaptivity.  Our approach used 
classification analysis in PerfExplorer to identify opportunities for CQoS decisions based on prior learned 
performance classes.  For production application runs, the classifier is loaded into a CCA component and 
the best parameter setting (class) is obtained by querying the classifier with the current values of the 
application-specific metadata.  These values are matched to the classification properties to find the best 
class selection for the parameters. 

There were two specific CQoS investigations that we participated in with the CCA CQoS subgroup.  
First, TAU was used to characterize performance of linear and non-linear solvers for a variety of 
parameters so as to make intelligent configuration and runtime adaption decisions based on execution 
context.  These were stored in the PerfDMF database and PerfExplorer evaluated features for data mining 
and decision rule support based on linear/non-linear solver performance, execution context, and current 
performance state. 

Second, CQoS was incorporated in the GAMESS application.  Here the goal was to match high 
performing algorithms to the characteristics of chemical models.  TAU was used to capture metadata 
describing the chemical properties of a particular GAMESS execution and associate performance profiles 
which PerfExplorer then analyzed to find those metadata that best partition/cluster the performance space.  
From this, an efficient CQoS model could be produced for runtime decision control.  In particular, it is 
important in GAMESS to suggest whether to use a direct or conventional method, given the other 
parameter selections.  For each molecule, the associated basis functions roughly correlate with resource 
demand of the corresponding computations: the greater the number of basis functions, the more 
demanding the computation is expected to be.  The choice of molecules are based on their importance in 
chemistry and biology as well as on characteristic types of chemical interactions they represent; also, 
computations of molecules of a similar size (that is, with similar number of atoms and basis functions) are 
routine in contemporary quantum chemistry.  We constructed training experiments to learn the classifiers 
to choose between the direct and conventional methods, and other execution configuration parameters.  A 
new PerfExplorer CCA component was released to support the classification work. 

As with PERI, the University of Oregon was an active participant in the TASCS project.  We attended 
every project meeting and even hosted meetings in Oregon.  We also played a strong role in the 
development and maintenance of the CCA tutorial, including overhauling the performance section of the 
hands-on guide to include the new CCA components.  Our group participated in CCA tutorial 
presentations at the SC and ACTS meetings.   

2.4 Application Successes 
An outgrowth of our PerfExplorer developments and CQoS work led to work on the GenIDLEST 
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application. Here we wanted to understand the scalability of OpenMP implementations and learn the best 
settings for OpenMP parameters on different platforms.  We constructed PerfExplorer scripts to derive the 
inefficiency metrics, stall rates, and cache behavior.  Rules were created to examine the results and derive 
prescriptions for parameters selection.  Data locality was shown to be significant and we looked to first-
touch policies on platforms for remedies.  Scheduling alternatives and privatization control also were 
significant strategies to pursue for performance optimization.  The work here demonstrated PerfExplorer's 
ability to automatically deduce causes of performance problems (e.g., cache inefficiencies) and identify 
possible reasons (e.g., sequential data initialization).  The lesson learned here was that we need to provide 
feedback to the compiler to direct it to high value targets for optimization.  The research was report in a 
SC 2008 paper. 

3. Final Period Results 
In the final period (Year 3 plus no-cost extension) of the DOE “competitiveness” project, we had three 
objectives: 1) continue support for PERI and TASCS initiatives, 2) translation of our TAU technology 
development to other applications, and 3) broaden our outreach to other DOE efforts.  Our achievements 
in these areas are described below. 

3.1 PERI Work 
The primary work activity with the PERI initiative was the further involvement with the application Tiger 
Teams.  PFLOTRAN, a reactive flow and transport code that uses PETSc as the basis for its parallel 
framework, became an important focus.  We instrumented PFLOTRAN with TAU and ran experiments 
on the ORNL Jaguar (Cray XT4), UT Kraken (Cray XT5) platforms, as well as the ANL Intrepid (IBM 
BG/P) system.  Our work was targeted to scaling experiments and I/O performance. Interestingly, during 
this time, PFLOTRAN also became a test problem for tool evaluation, as part of a Dagstuhl seminar on 
parallel performance tools.  Thus, we tool the opportunity to improve the TAU measurement 
infrastructure with respect to online processing of performance data and demonstrated this with the 
PFLOTRAN application.  Results from this work are reported below. 

The PERI Tiger Team was interested in the scaling properties of PFLOTRAN from 10s of thousands of 
processors to over 100,000 processors.  We conducted scaling experiments on Jaguar, Kraken, and 
Intrepid for PFLOTRAN at these scales.  For TAU, these experiments required performance 
instrumentation.  We use our PDT tool for source instrumentation of both PFLOTRAN and the PETSc 
library.  Instrumentation of the PETSc library was challenging, mostly because of the time needed for 
recompilation, but PDT was successful in automatically inserting instrumentation for all PETSc routines.  
Full instrumentation of PFLOTRAN, the PETSc library, and the MPI library resulted in 1131 total active 
events at runtime.  We ran a TAU measurement test on PFLOTRAN to determine those events with 
exclusive times greater than 1% of the total and created a selective instrumentation file for only those 
events.  This effectively removed insignificant routines from consideration, and resulted in a partial 
instrumentation consisting of all PFLOTRAN routines, 44 MPI routines, and 19 PETSc routines.  
Subsequent PFLOTRAN experiments used this partial instrumentation for performance profile 
measurements with and without callpaths. 

The Cray XT5 experiments highlight our achievements.  For all of our measurement runs, we used PAPI 
metrics: total cycle counts as an execution time metric, and PAPI counters (FP OPS, TOT IN, L1 
DCA/DCM, L2 TCA/TCM, RES STL) for observing hardware effects.   Here we consider two 
experiments: one with 16K cores and one with 131K cores.  With full instrumentation, a total of ~1.5 GB 
of performance profile data is created for a flat profile with 16K cores; ~27 GB is created for 131K cores.  
With partial instrumentation, a total of ~80 MB (16K) and ~1.4 GB (131K) is produced.  Clearly, partial 
instrumentation can reduce the amount of data generated.  However, turning on callpath profiling will 
results in more performance data being produced. 
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In general, we are concerned with performance data management as applications scale.  One of TAU's 
scaling problems at this time was the fact that each core's profile was being written to a separate file.  
Also, the post-processing of parallel profiles to unify the performance event identifiers was causing 
verbose information to be stored with the measurement.  These two problems were addressed in our work.  
First, we developed a “merged” parallel profile output format that allows all core profiles to be written to 
a single file.  The performance data sizes above are for a merged profile file for 16K and 131K cores.  
The second step was to implement event unification before writing the merged file. 

Figure 1.  ParaProf's manager shows the PFLOTRAN experiment and metrics (left) 

and metadata (right) where information about event unification and profile merge 
performance is recorded. 

TAU performance measurement infrastructure is scalable because all performance data is kept local to the 
nodes.  However, TAU assigns event identifiers dynamically as measured events occur during execution.  
Hence, IDs for the same events can be different between nodes.  Unifying event IDs post-mortem requires 
information to associate each node's event name to its ID, and this full event information has to be kept in 
the performance data until then.  If event unification can take place at the end of the application execution 
before the merged file is written, additional savings in data volume can be achieved.  We implemented a 
scalable, distributed event unification algorithm using MPI that runs during TAU finalization.  
Remarkably, this produced a compact performance data size of 300 MB for the 16K full profile (vs. 1.5 
GB) and 600 MB for the 131K core full profile (vs. 27 BG).  Furthermore, the parallel event unification is 
fast, as shown in Figure 1 for the 16K case.  The profile merge algorithm has a sequential I/O bottleneck 
because a single file is being written, but it is still just a few seconds. (For 131K, the event unification 
took 0.00041 seconds, and 12.96 seconds for profile merging.) 
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Figure 2.  ParaProf's bargraph view of a 16K PFLOTRAN parallel profile on a Cray XT5 
(top).  A 3D view of the full parallel profile showing MPI_Allreduce dominance (bottom left).  
Removal of this event allows other events to be seen more clearly (bottom right). 

 
The ParaProf “bargraph” display of the first 43 processes in a 16K PFLOTRAN parallel profile is shown 
in Figure 2.  This interactive display allows the user to navigate the profile data set to investigate areas of 
interest.  Here we see immediately the dominance of MPI_Allreduce and MPI_Waitany in the execution, 
suggesting communication overheads in collective operations.  We also see relative uniformity in 
performance of events, although we are only seeing a subset of the processes.  The “full profile” views in 
Figure 2 bear out this impression.  When we compare the Cray XT5 MPI performance on PFLOTRAN 
with that of the IBM BG/P, we see significantly better relative behavior due to the BG/P's high-
performance interconnection network and support for collective communication.  However, it is also the 
case that the computation times are slower due to the differences in processor performance.  This results 
in a more balanced performance perspective across the PFLOTRAN application. 

As seen in Figure 1, all of the experiments we ran with TAU collected detailed performance counters.  
This information is important for understanding the performance interactions within the nodes.  We can 
also turn on callpath profiling to get a better sense of how performance is distributed across the 
PFLOTRAN code. 



 8 

Our positive experience with event unification on PFLOTRAN led us to consider the implementation of 
other profile analysis operations at the end of application execution.  As a matter of course, anytime a 
parallel profile is loaded in ParaProf, the average, minimum, maximum, and standard deviation is 
computer for all profile events.  Why not compute these values online?  We developed parallel, scalable 
algorithms for this purpose.  Again, the speed of the performance was impressive.  This functionality is 
now turned on by default in TAU.  More information about this work can be found in our TAU 
monitoring paper at the PROPER workshop. 

3.2 TASCS Work 

Our interactions with the TASCS project continued along two lines in the final project period.  First, there 
was a significant push in TASCS to engage potential users of CCA, those integrating CCA methodology 
and components, and those componentizing their libraries.  In addition to maintaining the CCA-related 
TAU technology, we contributed substantially to the CCA educational activities.  These efforts include 
regular participation in the CCA tutorials, presented at SC and ACTS.  These tutorials included hands-on 
training in CCA and we applied our LiveDVD technology (developed with NSF and DOE SBIR funding) 
to facilitate CCA software installation and usage in training sessions.  See more discussion of ACTS and 
our LiveDVD support below. 

Second, building on the positive results in TASCS CQoS activities, we continued to improve our 
capabilities in the TAU for sophisticated profile data analysis for informing high-level decision analysis.  
In particular, our colleagues at Argonne were requesting better mechanisms for specifying certain 
analyses to be applied within ParaProf and PerfExporer.  Instead of building a new analysis component 
for each request, we decided that the best way to implement this would be to enable users to specify their 
own analysis operations through a programming interface.  

Figure 3.  Design approach for embedding a scripting language (Python) interpreter in 
ParaProf and PerfExplorer, and functionality that is being developed with this support. 

As shown in Figure 3, the idea is to open up the internal functionality of ParaProf and PerfExplorer for 
external use by allowing users to program new programming operations for performance data processing 
in Python.  However, all of TAU's performance data analysis tools are written in Java.  To allow Python 
scripts to be processed, we needed to embed a Java-based Python interpreter in the tools.  The Jython 
interpreter was chosen because it is a robust, powerful implementation of Python in Java.  Within 
ParaProf and PerfExplorer, we needed to expose the performance data accessors and analysis components 
through Python-callable interfaces.  This was a straightforward process given the design of the tools and 
our earlier project work. 

To demonstrate the productivity gains in performance analysis afforded by work, consider the request of 
our Argonne colleague (Boyana Norris) to derive new performance metrics from measured data.  The 
general idea is to create new metrics that characterize performance data in different ways.  These “derived 
metrics” can then be interpreted relative to and in combination with each other to expose performance 
anomalies.  Figure 4 shows the output from a Python script written by Norris and input to PerfExplorer.  
This script is being used to analyze a specific measurement trial of the FLASH application where profile 
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events are processed with respect to metric expressions to determine “Top 10” events for different 
derived metric “features.”  The features of interest are: 

P_WALL_CLOCK_TIME intensive events 
floating-point intensive events (relative, high ratio of FP to non-FP instructions for this event only) 
FP-bound events (absolute, high ratio of this event's FP instructions to all program instructions) 
memory-bound events (relative, events with high memory costs per cycle per event) 
memory-bound events (absolute, events with high memory costs per cycle for all program cycles) 
floating point inefficiency events (relative) 
floating point inefficiency events (absolute) 

Each one of these (except for the first) is derived from a Python metric expression.  Once the derived 
metrics are calculated, the Python script then determines the top events manifesting the features.  These 
are then listed for each derived metric.  Again, the goal is to generate different perspectives on the 
performance data through sophisticated analysis expressions that are meaningful to the user and useful in 
performance problem classification.  In the case of FLASH, they were looking for performance symptoms 
that would allow them to pinpoint computations that were the best candidates for locality-improving 
optimizations, based on certain measures of FP inefficiencies. These identified regions where there was a 
relatively high cache miss rate, as well as proportionately high (to the whole computation) number of 
floating-point operations. 

The outcome for FLASH of this new TAU capability was important for defining new directions for auto-
tuning.  Building this support in the TAU tools will also be significant for extending their functionality in 
the future. 

3.3 Application Case Study: NWChem 

Consistent with the project's goals of building knowledge-based support for analysis, there is a need to 
enhance the measurement capabilities to capture performance features that reflect evolving parallel 
programming models.  The use of global address space languages and one-sided communication is 
gaining attention, but there is a lack of good evaluative methods to observe multiple levels of 
performance, from programming interfaces to hardware counters.  This makes it difficult to isolate the 
cause of performance deficiencies on current systems, and to understand the fundamental limitations of 
system design for future improvement.  During the final period of the project, we were presented the 
opportunity to apply several achievements of the DOE project to an important application utilizing global 
address space and one-sided communication functionality, NWChem.  NWChem also presented a 
challenge to TAU to improve its support for one-sided communication.  The following describes our 
work with PNNL and ANL, which will appear in Concurrency and Computation: Practice and 
Experience. 
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Main Event:  FLASH [{Flash.F90} {31,1}-{45,17}] 

Top 10 P_WALL_CLOCK_TIME intensive events: 
1.1687393E7    HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}] 
3081856.0        *** custom:hy_block 
2840283.0        *** custom:hy_ppm_sweep 
1664883.0        SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}] 
1183784.0        *** custom:eos gc 
1082294.0        AMR_GUARDCELL [{mpi_amr_guardcell.F90} {87,7}-{473,34}] 
1046692.0        AMR_1BLK_GUARDCELL_SRL [{amr_1blk_guardcell_srl.F90} {10,7}-{856,43}] 
996254.0         MPI_AMR_LOCAL_SURR_BLKS [{mpi_amr_local_surr_blks.F90} {88,7}-{529,44}] 
822190.0         GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}] 
732730.0         MPI_AMR_1BLK_RESTRICT [{mpi_amr_1blk_restrict.F90} {117,7}-{1406,42}] 

Top 10 floating-point intensive events (relative, high ratio of FP to non-FP instructions for this event only): 
0.460917        GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}] 
0.397660        GR_MARKREFINEDEREFINE [{gr_markRefineDerefine.F90} {45,1}-{504,36}] 
0.299210        HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}] 
0.269704        MAP1 [{umap.F} {498,9}-{824,11}] 
0.244240        MAP2 [{umap.F} {1389,9}-{1900,11}] 
0.208284        RIEMAN [{rieman.F90} {90,1}-{480,21}] 
0.170483        STATES [{states.F90} {107,1}-{625,21}] 
0.165641        HYDRO_COMPUTEDT [{Hydro_computeDt.F90} {60,1}-{372,30}] 
0.161455        MPI_SETUP [{mpi_lib.F90} {265,7}-{376,30}] 
0.133053        DETECT [{detect.F90} {45,1}-{136,21}] 

Top 10 FP-bound events (absolute, high ratio of this event's FP instructions to all program instructions): 
0.002911        RIEMAN [{rieman.F90} {90,1}-{480,21}] 
0.002908        MONOT [{monot.F90} {40,1}-{109,20}] 
0.002589        INTERP [{interp.F90} {44,1}-{101,23}] 
0.002046        STATES [{states.F90} {107,1}-{625,21}] 
0.001107        INTRFC [{intrfc.F90} {111,3}-{338,21}] 
0.000975        DETECT [{detect.F90} {45,1}-{136,21}] 
0.000946        HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}] 
0.000942        SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}] 
0.000907        HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}] 
0.000724        AMR_RESTRICT_UNK_GENORDER [{amr_restrict_unk_genorder.F90} {14,7}-{235,46}] 

Top 10 memory-bound events (relative, events with high memory costs per cycle per event): 
5.106236        AMR_FLUX_CONSERVE [{mpi_amr_flux_conserve.F90} {90,7}-{132,38}] 
4.663727        AMR_REFINE_DEREFINE [{mpi_amr_refine_derefine.F90} {91,7}-{681,40}] 
4.473107        MPI_AMR_WRITE_RESTRICT_COMM [{mpi_amr_store_comm_info.F90} {482,7}-{555,48}] 
4.419078        MPI_AMR_WRITE_PROL_COMM [{mpi_amr_store_comm_info.F90} {168,7}-{234,44}] 
4.207310        AMR_RESTRICT_BND_DATA [{mpi_amr_restrict_bnd_data.F90} {15,7}-{410,42}] 
4.200861        MPI_AMR_READ_GUARD_COMM [{mpi_amr_store_comm_info.F90} {88,7}-{162,44}] 
4.125719        MPI_AMR_READ_PROL_COMM [{mpi_amr_store_comm_info.F90} {240,7}-{317,43}] 
4.112978        AMR_1BLK_TO_PERM [{amr_1blk_to_perm.F90} {15,7}-{264,37}] 
4.102125        GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}] 
3.972938        GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}] 

Top 10 memory-bound events (absolute, events with high memory costs per cycle for all program cycles): 
0.018345        GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}] 
0.015368        *** custom:hy_ppm_sweep 
0.012984        *** custom:hy_block 
0.012354        HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}] 
0.012107        AMR_FLUX_CONSERVE [{mpi_amr_flux_conserve.F90} {90,7}-{132,38}] 
0.011350        STATES [{states.F90} {107,1}-{625,21}] 
0.011254        AMR_GUARDCELL [{mpi_amr_guardcell.F90} {87,7}-{473,34}] 
0.008848        RIEMAN [{rieman.F90} {90,1}-{480,21}] 
0.008125        EOS_GETDATA [{Eos_getData.F90} {82,1}-{256,26}] 
0.006954        INTRFC [{intrfc.F90} {111,3}-{338,21}] 

Top 10 floating point inefficiency events (relative): 
0.216254        GR_UPDATEDATA [{gr_updateData.F90} {25,1}-{105,28}] 
0.203574        GR_MARKREFINEDEREFINE [{gr_markRefineDerefine.F90} {45,1}-{504,36}] 
0.134752        HY_PPM_UPDATESOLN [{hy_ppm_updateSoln.F90} {90,1}-{775,33}] 
0.105361        HYDRO_COMPUTEDT [{Hydro_computeDt.F90} {60,1}-{372,30}] 
0.095866        MPI_SETUP [{mpi_lib.F90} {265,7}-{376,30}] 
0.095160        MAP1 [{umap.F} {498,9}-{824,11}] 
0.084138        MAP2 [{umap.F} {1389,9}-{1900,11}] 
0.061689        GR_SANITIZEDATAAFTERINTERP [{gr_sanitizeDataAfterInterp.F90} {67,1}-{208,41}] 
0.050163        RIEMAN [{rieman.F90} {90,1}-{480,21}] 
0.039648        MPI_AMR_GLOBAL_DOMAIN_LIMITS [{mpi_amr_global_domain_limits.F90} {60,10}-{109,49}] 

Top 10 floating point inefficiency events (absolute): 
0.000048        MONOT [{monot.F90} {40,1}-{109,20}] 
0.000044        INTERP [{interp.F90} {44,1}-{101,23}] 
0.000035        INTRFC [{intrfc.F90} {111,3}-{338,21}] 
0.000016        SIMULATION_INITBLOCK [{Simulation_initBlock.F90} {45,1}-{306,35}] 
0.000012        RIEMAN [{rieman.F90} {90,1}-{480,21}] 
0.000010        HYDRO_1D [{hydro_1d.F90} {153,1}-{677,25}] 
0.000008        EOS_WRAPPED [{Eos_wrapped.F90} {93,1}-{198,26}] 
0.000005        *** custom:hy_block 
0.000005        SIM_FIND [{Simulation_initBlock.F90} {524,1}-{561,23}] 
0.000005        STATES [{states.F90} {107,1}-{625,21}] 

Figure 4.  Derived metric analysis used in the FLASH application. 
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NWChem is a computational chemistry suite supporting electronic structure calculations using a variety 
of chemistry models.  NWChem employs Global Arrays (GA) as the underlying one-sided programming 
model. GA provides a global address space view of the distributed address spaces of different processes.  
Aggregate Remote Memory Copy Interface (ARMCI) is the communication substrate that provides the 
remote memory access functionality used by GA.  Being able to observe the performance characteristics 
of ARMCI in support of Global Arrays and in the context of NWChem is a key requirement for future 
development and optimization.  Of specific interest to multicore parallelism in NWChem is that one-sided 
communication requires remote agency, leading communication runtime systems to often spawn a thread 
for processing incoming one-sided message requests.  In ARMCI this thread is known as the data-server.  
It is also important for performance optimization to observe the role of core assignment between 
computation and communication. 

Figure 5.  Derived metric analysis used in the NWChem application. 

An important challenge for profiling the NWChem software was to capture events associated with the use 
of Global Arrays and the ARMCI communication substrate.  The ARMCI instrumentation approach we 
developed is similar to what is used in the MPI library whereby an alternate “name- shifted” interface to 
the standard routines is created (called PMPI in the case of MPI, where ‘P’ stands for “profiling”) and a 
new library is provided to substitute for the original calls.  In the spirit of PMPI, we call the profiling 
interface for ARMCI, PARMCI.  (PARMCI is now included as part of the ARMCI distribution.) We use 
PARMCI to create a TAU-instrumented library for ARMCI that captures entry/exit events and make 
performance measurements of time as well as communication statistics (e.g., bytes transmitted) between 
sender and receivers.  The TAU ParaProf tool was enhanced to display communication statistics to 
highlight gross patterns of interaction, as shown in Figure 5.  Utilizing TAU in NWChem required 
additional enhancements of instrumentation and measurement support, as described in the paper. 

An important goal in analyzing one-sided communication in NWChem was to understand the interplay 
between the data-server and compute processes as a function of scale.  However, as the job is strong-
scaled to larger numbers of nodes, not only does the computational work per node decrease, but the 
fragmentation of data across the system leads to an increase in the total number of messages.  We 
conducted scaling experiments on three systems in this study: 

Fusion: A 320-node Linux cluster with dual-socket Intel Nehalem-series quad-core processors 
(Xeon X5550) connected by QDR IB (Mellanox Technologies MT26428).  This machine is 
operated by the Argonne Laboratory Computing Resource Center (LCRC). 

Chinook: A 2310-node Linux supercomputer with dual-socket AMD Barcelona-series quad-core 
processors (AMD Opteron 2354) connected by DDR IB (Mellanox Technologies MT25418 
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NICs and Voltaire switches).  This machine is operated by Pacific Northwest National 
Laboratory’s Molecular Science Computing Facility. 

Intrepid: The Argonne Leadership Computing Facility operates Intrepid and Surveyor, which are 
40- and 1-rack Blue Gene/P systems, respectively. In contrast to the Linux clusters above, the 
implementation of ARMCI on Blue Gene/P does not use the data server due to the existence of 
active-message functionality within DCMF.  True passive progress is achieved either with a 
communication helper thread continuously polling for incoming active-messages or by 
operating system interrupts, which are extremely lightweight in the BG/P compute node kernel 
(CNK) relative to Linux. 

 
Our experiments varied the number of nodes, cores-per-node, and whether or not memory buffers were 
“pinned”, that is, registered with the NIC and ineligible for paging.  On BG/P, paging is disabled in the 
kernel and memory-registration of the entire address space is trivial, hence there is no comparison to be 
made with respect to buffer pinning.  There is an important trade-off between using all available 
processing power for numerical computation and dedicating some fraction of the cores to communication.  
Understanding these trade-offs as a function of scale is critical for adapting software for new platforms 
which may have widely varying capability for hardware offloading of message-processing, such as 
support for contiguous and/or non-contiguous RDMA operations.  The strong scaling experiments with 
Fusion exposed the effects of growing effects of communication (see Figure 6) in NWChem when care is 
not taken to properly configure the application for the communications system.  Use of a separate thread 
for the data-server only stalls the onset.  It is only when the communication buffers are pinned that 
performance scaling in achieved (see Figure 7). 

To test the generality of our experiments on Fusion, we performed similar tests on Chinook.  A key 
difference is that the newer Intel Nehalem processors have approximately twice the memory bandwidth 
per core and per node, and the system software runs HPC-oriented Linux and communication stack.  
Figure 8 compares the total execution time and relative efficiency of different experiments on Fusion and 
Chinook. 

Figure 6.  PerfExplorer graphs are automatically generated from scaling experiment 
profiles, highlighting the top contributors to execution time.  ARMCI communication 
overheads increase with increasing number of processors, with and without a help thread for 
communication. 
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Figure 7.  Pinning communication buffers on Fusion results in performance scaling advantages. 

Here we see a reduced dependence on the use of pinning versus the number of compute cores used on 
Chinook.  On the other hand, it is much more sensitive to how cores are allocated.  In particular, using all 
8 cores per node for computation increases the time for certain procedures markedly.  With 32 nodes and 
8 cores/node computing, the time spent generating atomic integrals is 3 and 9 times greater than when 
only 6 cores per node are used for the pinned and non-pinned cases, respectively.  Similarly, on 128 
nodes, using 8 cores per node for computation increases the wall time by approximately 3 times the 6- 
and 7-compute core per node cases. 

Figure 8.  Total time and relative efficiency of different numbers of cores and pinning on 
Chinook and Fusion. 

 
Figure 9.  Scaling results are compared for cases with (dcmf=0) and without (dcmf=1) a 

communication helper thread. 

When we look at the Intrepid BG/P results in Figure 9, we see the influence of an entirely different 
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systems context for our performance scaling experiments.  BGP not only has very different hardware — 
low-memory, slow-clock-rate processors, no local disk, and an extremely low-latency network with 
modest bandwidth network — but it uses a lightweight operating system which does not permit Linux-
style oversubscription, nor does it support SysV shared-memory.  As such, the implementation of ARMCI 
is quite different and relies heavily upon active-message capability within DCMF, which is enabled by 
lightweight operating system interrupts.  Preliminary investigations of ARMCI performance on BG/P 
resulted in a primitive communication helper thread (CHT) being added to the ARMCI implementation.  
The performance results demonstrate the utility of this approach to asynchronous progress relative to 
interrupts.  Both the CHT and interrupt-mode provide a means to achieve passive- target progress in one-
sided communication, although only the CHT requires a dedicated core.  We compare these two contexts 
for running NWChem across a range of node counts (64, 128, 256 and 512) which is approximately 
comparable to the range used on Chinook and Fusion.  Our NWChem calculations on BG/P executed in 
SMP and DUAL mode – 1 and 2 processes per node respectively. 

What is remarkable in these results is that the ARMCI calls are barely noticeable, whereas normally 
negligible BLAS2 operations (e.g., DAXPY) show up in an unusually significant way.  This result is not 
surprising due to the low clock-frequency of the BG/P processor and relatively low bandwidth from L2 
cache.  As a consequence, the scaling on BG/P is excellent, since the absence of pathological IB 
communication behavior allows for nearly halving of total execution time with a doubling of node count. 

The NWChem performance analysis exercised the full capabilities of TAU enhancements made possible 
by the DOE “competition” project.  The role of automated instrumentation, measurement, and analysis in 
TAU was invaluable for understanding the performance behavior of a complex code such as NWChem.  
The NWChem code base is millions of lines, in addition to the tens of thousands of lines of code active in 
GA and ARMCI for a given interconnect.  Without automated source instrumentation and profiling hooks 
to both MPI and ARMCI, it would not have been possible to reliably identify the performance issues 
described.  In particular, understanding the performance effects of one-sided communication is non-
trivial.  While the remote target is passive from a programmer perspective, passive-target progress 
requires significant resources on every node, especially since remote accumulate requires floating-point 
computation on top the memory operations required for packing and unpacking of non-contiguous 
messages.  More rudimentary profiling techniques are not useful for analyzing the behavior of an 
asynchronous agent such as the ARMCI data server.  Advanced performance tools will become more 
important with increased interest in one-sided programming models in both GA and PGAS languages. 

3.4 DOE ASCR Outreach – ACTS 

Throughout the DOE “competition” project, we have looked for avenues to translate our efforts to the 
broader DOE ASCR community.  In particular, we have been actively involved in the DOE Advanced 
CompuTational Software (ACTS) collection and project.  As seen in Figure 10, TAU is a part of the 
ACTS collection, and has been so for over five years.  As part of the collection, we validate TAU with 
every one of the other ACTS packages to guarantee compatibility on all the platforms where ACTS 
software is installed. 

Our ACTS involvement does not end there.  We have actively participated in every one of the ACTS 
workshops, giving tutorials on TAU and assisting in hands-on training.  The TAU project created a 
LiveDVD that configures parallel software development environments and performance tools for a single 
Linux distribution which can boot up on a user's laptop or workstation, natively or on a virtual machine.  
Our technology has been used for the ACTS workshops for the last three years.  The LiveDVD disk for 
the 2010 ACTS workshop is shown in Figure 11.  The different packages are listed and include several 
performance tools, the Eclipse/PTP framework, and CCA. 
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Figure 10.  ACTS software collection architecture and packages. 

Figure 11.  ACTS software collection architecture and packages. 

4. Other Information 
During its lifetime, the project supported two Ph.D. graduate students, two Master's graduate students, 
three staff members at the Performance Research Laboratory (PRL), a PRL system administrator, and the 
project PIs.  One graduate student, Kevin Huck, completed his Ph.D. degree during the second year and 
went to work at the Barcelona Supercomputing Center. 

It was important for our project to maintain frequent and consistent connections to the PERI and TASCS 
groups through meeting participation, conferences calls, and visits to DOE laboratories.  For both PERI 
and TASCS, we hosted meetings in Oregon at various points during the project period.  We are currently 
scheduled to host a PERI meeting in Eugene, Oregon in September 2011.  Similarly, we regularly 
attended the ACTS workshops and will be doing so again August 16-19, 2011 at LBL. 

Lastly, we participated in all of the DOE SciDAC Center for Scalable Application Development Software 
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(CScADS) summer workshops on performance tools and applications. 

4. Conclusion 
The DOE “competitiveness” project at the University of Oregon has achieved all of its objectives to 
develop advanced performance technology that supports knowledge-based analysis of parallel 
performance measurements and to translate those achievements to the PERI and TASCS activities.  All of 
the technology is delivered in the open source TAU performance system for distribution.  In this way, 
results from the project more broadly benefit DOE projects.  In addition to PERI, TASCS, and ACTS, we 
were involved with the DOE SciDAC CFRFS and FACETS projects during the project where our TAU 
performance tools were applied. 

Presentations: 
We gave the following presentations during the project period: 

1. S. Shende, "TAU Performance System," LLNL, May 3, 2007. 

2. S. Shende, "Parallel Performance Evaluation Tools for HPC Systems," tutorial, Linux Cluster 
Institute Conference, South Lake Tahoe, May 14, 2007. 

3. S. Shende, "Parallel Performance Evaluation using the TAU Performance System Project," DOE 
CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, July 17, 2007. 

4. S. Shende, "TAU Performance System," DOE CScADS Workshop on Petascale Architectures and 
Performance Strategies, Snowbird, UT, July 24, 2007. 

5. S. Shende, "Performance Evaluation using the TAU Performance System," TACC Summer Institute, 
U. Texas, Austin, August 17, 2007. 

6. K. Huck, “Knowledge Support for Parallel Performance Data Mining, Code Instrumentation and 
Modeling for Parallel Performance Analysis,” Dagstuhl Seminar, Dagstuhl, Germany, August 19-24, 
2007. 

7. S. Shende, "TAU Performance System," DOE ACTS Workshop, Berkeley, CA, August 24, 2007. 

8. K. Huck, “Scalable Performance Analysis with TAU, PerfDMF and PerfExplorer,” 
Forschungszentrum, Juelich, Germany, August 28, 2007. 

9. S. Shende, "TAU Performance System," Performance Tools BOF, International Conference for High 
Performance Computing, Networking, Storage, and Analysis (SC07), Reno, NV, November 13, 2007. 

10. K. Huck, “Scalable, Automated Performance Analysis with TAU and PerfExplorer,” Parallel 
Computing Conference, Aachen and Juelich, Germany, September 4-7, 2007. 

11. S. Shende, "TAU: Performance Technology for Productive, High Performance Computing," seminar 
at ORNL, February 5, 2008. 

12. K. Huck, “PERI Database Working Group: Status Update,” PERI Meeting, UCSD, February 25-26, 
2008. 

13. S. Shende, “TAU: Performance Technology for Productive, High Performance Computing,” seminar 
at MCS, ANL, May 2, 2008.  

14. S. Shende, “Future Tool Overview and Plans for Future Tools (What they will do),” Petascale 
Summer Workshop, TeraGrid 2008, Las Vegas, June 9-13, 2008. 

15. K. Huck, “Using the TAU Performance Analysis System on the Blue Gene/P,” ALCF INCITE 
Workshop, ANL, Argonne Leadership Computing Facility, May 7-8, 2008. 
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16. T. Drummond, O. Marques, J. Roman, and S. Shende, “Computational Tools for Rapid and Reliable 
Development of High Performance Applications,” tutorial, International Meeting on High 
Performance Computing for Computational Science (VECPAR 2008), Toulouse, France, June 24-27, 
2008. 

17. K. Huck, “Integrating Knowledge, Automation, and Persistence with PerfExplorer and PerfDMF,” 
DOE CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, July 21-24, 
2008.  

18. S. Shende, “TAU Parallel Performance System,” Leap to Petascale Workshop, ANL, Argonne 
Leadership Computing Facility, July 28-31, 2008. 

19. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 19-22, 2008. 

20. K. Huck,  “Knowledge Support for Parallel Performance Data Mining,” Doctoral Showcase, 
International Conference for High Performance Computing, Networking, Storage and Analysis 
(SC08), Austin, TX USA, November 20, 2008. 

21. K. Huck, “Capturing Performance Knowledge for Automated Analysis,” Technical Session, 
International Conference for High Performance Computing, Networking, Storage and Analysis 
(SC08), Austin, TX USA, November 20, 2008. 

22. A. Malony, F. Wolf, and D. Skinner, “Tools for High Productivity Supercomputing,” BOF, 
International Conference for High Performance Computing, Networking, Storage, and Analysis 
(SC08), Austin, TX USA, November 20, 2008. 

23. S. Shende, A. Malony, R. Kufrin, R. Reddy, S. Moore, “Parallel Performance Evaluation Tools,” 
Tutorial, LCI  Conference, Boulder, CO, March 9, 2009. 

24. B. Mohr, M. Schulz, D. Gunter, K. Huck, X. Wu, “A Proposal for a Profiling Data Exchange 
Format,” DOE CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City, CA, 
July 20-23, 2009. 

25. A. Malony, “Performance Measurement and Analysis of Heterogeneous Systems: Tasks and GPU 
Accelerators,” DOE CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City, 
CA, July 20-23, 2009. 

26. W. Spear, “Parallel Performance Evaluation with TAU,” DOE CScADS Workshop on Leadership-
class Machines, Petascale Applications, and Performance Strategies, Tahoe City, CA, July 27-30, 
2009. 

27. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 18-21, 2009. 

28. A. Malony, “PFLOTRAN Meets TAU,” Dagstuhl Seminar on Program Development for Extreme-
Scale Computing, Proceedings 10181, May 2-7, 2010. 

29. A. Malony, “Hybrid Parallel Performance Measurement and Analysis,” Dagstuhl Seminar on 
Program Development for Extreme-Scale Computing, Proceedings 10181, May 2-7, 2010. 

30. L. Drummond, O. Marques, S. Shende, and J. Roman, “Computational Tools for Rapid and Reliable 
Development of High Performance Applications,” tutorial, International Meeting on High 
Performance Computing for Computational Science (VECPAR 2010), June 23-25, 2010. 

31. A. Malony, “TAU Potpourri and Working with Open Components, Interfaces, and Environments,” 
DOE CScADS Workshop on Performance Tools for Petascale Computing, Snowbird, UT, August 2-
5, 2010. 

32. S. Shende, “TAU Performance System,” DOE ACTS Workshop, Berkeley, CA, August 17-20, 2010. 
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33. M. Geimer, A. Knupfer, R. Kufrin, S. Moore, and S. Shende, “Hands-on Practical Parallel 
Application Performance Engineering using PAPI, PerfSuite, Scalasca, Vampir, and TAU,” tutorial, 
International Conference for High Performance Computing, Networking, Storage, and Analysis 
(SC10), November 15-18, 2010. 

34. A. Malony, “Performance Visualization, Integrated Profiling, and Kernel Measurement,” DOE 
CScADS Workshop on Performance Tools for Petascale Computing, Tahoe City, CA, August 1-4, 
2011. 
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