
ANL-93/23

MathematicsandComputer UsersManualfor the
Science Division

Mathematics and Computer ChameleonParallel
Science Division

Mathematics and Computer ProgrammingTools
Science Division

byW.GroppandB.Smith

(_ Argonne NationalLaboratory,Argonne, Illinois 60439
operatedby The Universityof Chicago
for the United StatesDepartmentof Energyunder ContractW-31-109-Eng-38



Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is
owned by the United States government, and operated by The University of Chicago
under the provisions of a contract with the Department of Energy.

DISCLAIMER ......

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor

any agency thereof, nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
ne_.essarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Govemment or any agency thereof.

i i

Reproduced from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831
Prices available from (6 !5) 576-8401

Available to the public from the _,
National Technical Information Service

U.S. Department of Commerce 'I!i:
5285 Port Royal Road

Springfield, VA 22161



Distribution Category:
Mathematics and

Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue

Argonne, [L 60439-4801

ANL-93/23

Users Manual for the

Chameleon Parallel Programming Tools

by

William Gropp
Mathematics and Computer Science Division

Barry ,Smith
Department of Mathematics

University of California, Los Angeles

June 1993

This work was supported in part by the Office of Scientific Computing,
U.S. Department of Energy arid in part by the Office of Naval Research
under contract ONR N00014-90-J-1695.

MAST[R



Contents

Abstract 1

1 Introduction 2

1.1 Why Use Chameleon ......................... 3

1.2 Organization of the Manual ..................... 3
1.3 How to Read This Manual ...................... 4
1.4 Basic Routines ............................ 4

1.5 A Simple and Complete Example .................. 5
1.6 Systems Supported .......................... 7
1.7 Include Files ............................. 8

1.8 Linking ................................ 8

1.9 Using Chameleon with Fortran ................... 9

1.10 Chameleon and the Emerging Message-Passing Standard ..... 10
I. l I Further Information ......................... I l

2 Starting Progrmns 12

2.1 Getting Started ............................ 12
2.2 PICall Interface ............................ 13

2.3 Options ................................ 13

2.3.1 Parallelism Arguments .................... 14
2.3.2 Resource Limits ....................... 14

2.3.3 Hosts File ........................... 15

2.3.4 Debugging ........................... 16
2.4 Examples ............................... 16
2.5 In Case of Trouble .......................... 17

3 Message Passing 19

3.1 Getting Started ............................ 19
3.2 Overview ............................... 20

3.3 Blocking Message-Passing ...................... 22
3.4 Nonblocking Message-Passing .................... 23

3.5 Information about a Message .................... 24

111



3.6 Message Buffers ............................ 25

3.7 Machine Topology .......................... 26

3.8 System Functionality ......................... 26

4 Collective Operations 28

4.1 Getting Started ............................ 28
4.2 l_eductions .............................. 29

4.3 Broadcast ............................... 30

4.4 Gather ................................. 31

4.5 Barriers ................................ 32

4.6 Processor Sets ............................. 33

4.7 Changing the Virtual Topology ................... 35

4.8 Changing the Reduction Method .................. 36

4.9 Changing the Broadcast Method .................. 37

4.10 Why and How to Use Processor Sets ................ 37

5 Debugging 39

5.1 Getting Started ............................ 39
5.2 Correctness .............................. 40

5.3 Error Messages ............................ 41
5.4 Performance .............................. 41

5.4.1 Computation Implementation ................ 42

5.4.2 Communication Implementation .............. 43

5.4.3 Controlling the Event Log .................. 44
5.5 Runtime Control ........................... 46

6 Transport Layer-Specific Control 47

6.1 Specifying the Parallel Machines .................. 47

6.2 Running Programs .......................... 48
6.2.1 IBM EUI ........................... 48

6.2.2 Intel Delta .......................... 48

6.2,3 TMC CM-5 .......................... 48

6.3 Command-Line Options ....................... 49

6.3,1 p4 Options .......................... 49

6.3.2 PVM Options ......................... 49

6.4 Setting Options ............................ 49

7 Reverse Compatibility 50

7.1 PICL Compatibility ......................... 50

7.2 lntel NX Compatibility ....................... 51

iv



8 Progrmn Examples 53
8.1 Hello World .............................. 5:3

8.2 King .................................. 54
8.3 Rows and Columns .......................... 55

8.4 Nonb[ocking Communication .................... 56

9 Installation 57
9.1 Code .................................. 57
9.2 Host File ............................... 57

10 Summary of Routines 58
10.1 Program Initialization ........................ 58
10.2 Point-to-Point R.outines ....................... 58

10.3 Collective Communication ...................... 62

10.4 Process Set Management ....................... 64

10.5 Environmental Management ..................... 66
10.6 I/O Routines ............................. 67

Acknowledgment s 68

Bibliography 69

Function Index 70



Users Manual for the Chameleon Parallel Programming
Tools

by

William Gropp

Barry Smith

Abstract

Messagepassingisa common method forwritingprograms fordistributed-

memory parallelcomputers. Unfortunately,the lack of a standard for

message passinghas hampered the constructionofportableand efficient

parallelprograms. Inan attempt to remedy thisproblem, a number of

groups have developedtheirown message-passingsystems,each with its

own strengthsand weaknesses.Chameleon isa second-generationsystem

ofthistype.Rather than replacingtheseexistingsystems,Chameleon is

meant tosupplement them by providinga uniformway toaccessmany of

thesesystems.Chameleon'sgoalsareto(a)be verylightweight(lowover-

head),(b) be highlyportable,and (c)help standardizeprogram startup

and the use ofemerging message-passingoperationssuch as collective

operationson subsetsof processors.Chameleon also providesa way to

port programs writtenusingPICL or IntelNX message passingtoother

systems,includingcollectionsofworkstations.

Chameleon is tracking the Message-Passing Interface (MP[) draft stan-
dard and will provide both an MPI implementation and an MPI transport

layer. Chameleon provides support for heterogeneous computing by using
p4 and PVM. Chameleon's support for homogeneous computing includes
the portable libraries p4, PICL, and PVM and vendor-specific implemen-

tation for lntel NX, IBM EUI (SP-1), and Thinking Machines C_,JiMD
(CM-5). Support for Ncube and PVM 3.x is also under development.



Chapter 1

Introduction

Chameleon is a collection of routines that provide a hierarchy of models for par-

allel programming on distributed-memory parallel computers. These routines
are intended to provide a consistent, easy-to-use model of message passing that
enables access to all of the power of a distributed-memory computer. An impor-
tant feature of Chameleon is that, in combination with packages such as p4 and

PVM, code that uses Chameleon (including the program startup routines) needs
no changes to run on a collection of workstations as well as on parallel super-

computers such as the Intel Paragon and Thinking Machines CM-5. Another
feature is that a wide variety of debugging information (both for correctness
and for performance) is made available. A production library that imposes no
overhead is also provided (again requiring no change in the source code).

Chameleon 's overhead is low enough that it was used as the message-passing

system in an application that won a Gordon Bell Prize in 1992 [9]. This applica-
tion, BlockSolve (a package for solving large, sparse, symmetric linear systems),
is publicly available and, because it uses Chameleon, is portable to a voide variety
of systems.

The Chameleon library is organized as a large collection of fairly simple
routines rather than as a small collection of complex routines. It is not necessary
to learn about or even be familiar with most of the routines, though as an

application is developed, many of the routines may come in handy. Chameleon is

part of the Portable, Extensible Tools for Scientific computing (PETSc) library,
which provides manual pages, portable makefiles, and a variety of numerical
support software.

The relationship of Chameleon to other systems is shown in Figure l.l.

Note that some systems, such as PICL and NX, appear as both inputs to and
outputs from Chameleon. This means that programs written using Chameleon
can run on systems that provide PICL or NX as the message-passing system

and that many programs written using PICL or NX can run on any system that
Chameleon runs on. This "reverse compatibility" is discussed in more detail in



Chameleon

Figure 1.1: Relationship of Chameleon to other message-passing systems

Chapter 7.

1.1 Why Use Chameleon

Chameleon provides a standardized and extremely low overhead interface to
message-passing software. It provides a uniform interface for program startup

and simplifies the use of clusters of workstations or other computers (including
massively parallel ones). It provides a stable interface to other packages that are
continuing tc change as they are developed. It provides routines for managing
sets of processors (sometimes known as groups), including providing collective

operations on these subsets of processors. Finally, Chameleon is part of a larger
integrated package of routines (PETSc, for Portable, Extensible Tools for Sci-
entific computing) that includes methods for solving large systems of linear and
nonlinear equations, both sequentially and in parallel.

1.2 Organization of the Manual

This manual is organized roughly into four sections. Chapter 2 describes how
programs are initialized in Chameleon. It also contains information on both ho-

mogeneous massively parallel processing (MPP) parallelism and heterogeneous,
"distributed-workstation parallelism. Chapter 3 describes point-to-point message
passing routines. Chapter 4 describes the routines for collective operations, in-



cluding tile routines for defining subsets of processes. The final chapters describe
some special topics, such as debugging (Chapter 5) and examples (Chapter 8).
The rest of this chapter describes various aspects of the Chameleon system;
all users should at least skim this text. Section 1.8 explains how to write a
makefile to use with Chameleon.

1.3 How to Read This Manual

This manual contains both simple examples and detailed information about

using advanced functions, qb make it easier for the novice, many of the chapters
have a section titled "Getting Started." You can read just that section and

skip the rest of the chapter. This will give you enough to get started with
using Chameleon; you will need to read the rest of each chapter to discover
all of Chameleon's functionality. In addition, you should read Chapter 5 on

debugging.
This is not a reference manual; details of the routines are available through

the mall pages or the reference manual ('too:i.n.eore/refs/refmaa.dv£'), X
Window system users may use 'tools.core/bin/toolmaa' to read the man
pages; this uses the xman program.

This manual does not discuss what message passing is or how to design

programs using message p_sing.

1.4 Basic Routines

This section contains a short summary that will get you started with Chameleon.
It does not contain all of the routines in all of their glory. The calling sequences
for these routines can be found in Chapter 10; some example programs are
presented in Chapter 8. Additional example programs may be found in
'tools. core/torero/examples',

Chameleon contains a large number of routines. The set described here is
sufficient to write many portable message-passing programs. These routines
are ordered roughly by use; all programs must use PICall to gel, started, most
programs will use PIbsend and PIbreev to send messages, and some programs
will use PIgdsum to perform a global sum.

PICall Call a routine in a parallel execution mode.

PImytid l_eturn my processor id.

PInumtids Return the number of processors.

Plbrecv P_eceive a message from another processor.

PIbsend Send a message to another processor.

PIgXmin Form the global minimum of a vector (X = d for
double, f for float, etc.).



PIgXmax Form the global maximum of a vector.

PIgXsum Form the global sum of a vector.

PIbeast Broadcast a vector to all other processors.

These will get you started. There are many additional routines, offering dif-
ferent kinds of sends and receives. There are additional global (or collective)
operations; in addition, all global operations may be performed on subsets of
processors. Various aids for debugging are also provided; see Chapter 5. Com-
plete summaries of the calling sequences for these routines may be found in
Chapter 10. There are man pages for all of these routines.

1.5 A Simple and Complete Example

The section presents a program, written in Fortran, for computing an approxi-
mation to the value of pi. This was chosen because it is a simple program that
makes use of many of these routines. Two makefiles are also presented. One
uses the PETSc makefiles to provide a portable makefile; the other is a makefile
using the p4 system for a collection of Sun 4's. This second makefile, because

it is more specific, may help in understanding the portable makefile.
This program is a modification of a pi program whose origins are unknown.

integer funtion worker()

integer nprocs, myid, pinumtids, pimytid
integer INTSZE, MSG_INT, PSAllProcs
integer i, n

double precision pi, PI25DT, h, sum, x, f, a, temp
parameter (INTSZE = 4, MSG_INT = I, PSAllProcs = O)
parameter (PI25DT = 3.141592683589793238462643d0)

c -- func¢ion to intergrate
f(a) = 4.dO / (1.dO + a.a)

nprocs = PInumtids()
myid = PImytid()

I0 if ( myid .eq. 0 ) then
write(6,88)

98 format(_Enter the number of intervals: (0 quits)_)
read(5,99)n

99 format (ilO)
endif

Call PIbcastSrc(n, INTSZE, O, PSAllProcs, MSG_INT)

c -- everyone check for qui_ signal
if ( n .le. 0 ) go_o 30



c -- calculate the interval size

h = 1.OdO/n

sum = O.OdO

do 20 i = myid+l, n, nprocs
x = h * _dble(i) - 0.SdO)

sum = sum + _(x)
20 continue

pi = h * sum

c -- collect all the partial sums

call PIgdsum(pi, I, temp, PSAllProcs)

c -- node 0 prints the answer.

if (myid .eq. O)then

write(6, 97) pi, abs(pi - PI28DT)
endif

goto 10

97 format(' pi is approximately: ', F18.16,' Error is: ', F18.16)
30 continue

return

end

This program asks for the number of intervals to use and sends that value

to all the processors (with PIbeaatSre). Each processor then computes its

contribution and uses PIgdsum to compute the sum of the contributions.

The makefile for this example is

ALL : pi

ITOOLSDIR = /usr/local/tools.core

CFLAGS =-I$(ITOOLSDIR) $(OPT) $(COPT)

LDIR = $ (ITOOLSDIR)/libs/libs$ (BOPT) $ (PROFILE)/$ (ARCH)

LIBS = $(LDIR)/toolsS(COMM).a $(LDIR)/tools.a \

$(LDIR)/tools$(COMM). a $(LDIR)/system. a

FLIRS = $(ITOOLSDIR)/fort/S(ARCH)/fort$(COMM).a \

$(ITOOLSDIR)/fort/$ (ARCH)/fort. a

include $ (ITOOLSDIR)/bmake/$ (ARCH). $(COMM)

include $ (ITOOLSDIR)/bmake/$ (ARCH). $(BOPT) $(PROFILE)

include $ (ITOOLSDIR)/bmake/$ (ARCH)

pi: pi.o

$(FLINKER) -o pi $(BASEOPTF) pi.o \

$(FLIBS) $(LIBS) $(CLIB) $(SLIB) -lm



This makefile relies on features of the PETSc system and requires a few values
to be specified on the make line. For example, to build the program pi to run
on a collection of Sun 4 machines using p4, use

make ARCH=sun4 COMM=p4 BOPT=g

The BOPT=g produces a version _#ith extra debugging support. B'OPT=Oshould .
be used for production runs.

The second makefile for this example does not require any additional make-
files; as such, it is specific to a particular platform. In this case, the makefile
supports p4 on Sun 4's.

ALL : pi

ITOOLSDIR = /usr/local/tools.core

LDIR = $(ITOOLSDIR)/libs/libsO/sun4

LIBS = $(LDIR)/toolsp4.a $(LDIK)/tools.a \

$(LDIR)/toolsp4.a $(LDIR)/system.a

FLIBS = $(ITOOLSDIR)/for_/sun4/fortp4.a \
$(ITOOLSOT._)/fort/sun4/fort.a

pi: pi.o

f77 -o pi -0 pi.o $(FLIBS) $(LIBS) '\

/usr/local/p4-I.2c/SUN/libp4.a -lm

Note that this makefile also selects a particular optimization option (-0) and
location for the p4 libraries. Changing this makefile for use on, for example,
IBM RS/6000's requires several changes, including additional libraries to link

with (-lbsd in this case). The portable makefile listed above needs no changes
to run on the RS/6000 or many other architectures.

1.6 Systems Supported

Chameleon supports both native (vendor) communications libraries and several

popular "portable" communications packages. The "portable" packages sup-
ported are p4 [2], PICL [4], and PVM [l]; programs written with Chameleon
run unchanged on any system that those "portable" packages support. Of these,

p4 supports the widest variety of systems, including workstations and massively
parallel computers.

There is also support for the Intel family of parallel computers, currently

including the iPSC/i860, Touchstone Delta, and Paragon; IBM's SP-I (using
EUI); and the Thinking Machines CM-5, using version 2 or later of the CMMD
message- passing library.

The model of parallel computation is a "hostless" MIMD (Multiple Instruc-
tion Multiple Data) one. In this model, there is no distinguished host or pro-
cessor, and each processor may be running a different program. Most modern



parallel computer systems provide this model; it most closely resembles more
conventional uniprocessor programming. It also discourages the use of the host
to do more than start and stop the application; using the host more actively
may degrade the parallel scalability of an application because the host becomes
a resource bottleneck. For programs that require a host, one of the nodes can

" be designated the host. Processor subsets, described in Chapter 4, may be used
to restrict operations to the remaining nodes.

There is also "inverse" support for some of the other communications sys-
tems. Programs using the supported subsets of P[('L or [ntei NX may be

linked with, for example, the p4 or PVM versions of Chameleon, providing an
easy way to port codes from a parallel computer to a cluster of workstations.

This approach is particularly helpful for parallel computer systems with poor
debugging environments; the code may be debugged in a familar environment
of workstations using standard tools.

1.7 Include Files

Most C programs should use the include files 'tools. core/tools,h' and
'tools. eore/comm/comm.h'. These should be included with

#include "tools.h"

#include "comm/comm.h"

Make sure that the C compiler is told to look for include files in the tools

directory; often this is done by using the command line argument
-I/usr/local/tools. core. (it is necessary to tell the C compiler this because

the include files may include additional include files; the path names for these

additional include files is relative to the root of the tools directory tree.) [f you
use the portable makefile system, this is done automatically.

Fortran users need not include any files; however, the file
'tools. core/comm/fcomm.h' may be useful.

1.8 Linking

To build programs with Chameleon, you need to link with a number of libraries.

For simplicity in using Chameleon for both program development and produc-
tion computing, separate libraries are maintained for debugging, profiling, and
production. These libraries are in the directories

debugging 'tools. core/libs/libsg'

profiling 'tools. core/libs/libsOpg'

production 'tools.core/libs/libsO'



To allow the libraries for many different architectures to reside on the same

filesystem, the name of the architecture (such as 'sun4' or 'rs6000') defines an
additional directory level. For example, the debugging libraries for the Sun 4
are found in the directory 'tools.core/libs/libsg/sun4'.

There are three libraries that you may need to link with. These are 'tools. a',
'system. a', and 'tools<torero>. a', where '<comm>' is one of 'p4', 'pyre', or 'picl'.
For example, a partial make file is shown below that builds the program 'example'
using p4 on a collection of Sun 4 workstations:

COMM = p4
BOPT = 0

CFLAGS = $(BASOPT) $(COPT)
ITOOLSDIR = /usr/local/tools.core

LIBDIR = $(ITOOLSDIR)/libs/libs$(BOPT)/sun4

example: example.o

$(CLINKER) -o example -0 example.o \
$(LIBDIR)/tools$(COMM).a $(LIBDIR)/tools.a \

$(LIBDIR)/system.a $(CLIB) -im
include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)

include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)

include $(ITOOLSDIR)/bmake/$(ARCH)

This builds a production version of 'example' on a Sun 4. The include lines
provide defiMtions for CLINGER(the linker for C programs) and CLIB (the com-

munication libraries for p4 in this case), as well as the rule to compile a C
program that uses the Chameleon macros (making sure the appropriate flags
are defined).

1.9 Using Chameleon with Fortran

The C language is the primary language that is supported. Extensive use is made
of the C preprocessor to provide much of the functionality, including traceback
information that automatically includes the file name and line number. This

allows the easy determination of exactly where errors have occurred during
the debugging stage. Fortran is supported to a lesser extent, as there is no
standardized Fortran preprocessor. However, each of the C routines listed here
has a Fortran counterpart. Where pointers are used in the C version, integers

should be used by the Fortran programmer (the implementation automatically
handles the translation between integers and pointers).

The libraries 'tools.core/_ort/$(ARCH)/fort$(COMM),a' and

'tools.core/fort/$(ARCH)/fort.a' provide a Fortran interface to the Chameleon
routines. These libraries must occur ahead of the '1_ools' libraries in the link

line. For example, this makefile fragment links a Fortran program (example)
with the appropriate libraries:



ITOOLSDIR = /usr/local/tools.core

LDIR = $(ITOOLSDIR)/libs/libs$(BOPT)$(PROFILE)/$(ARCH)

LIBS = $(LDIR)/tools$(COMM).a $(LDIR)/tools.a \

$ (LDIR)/system. a -lm
FLIBS = $(ITOOLSDIR)/fort/$(ARCH)/fort$(COMM).a \

$(ITOOLSDIR)/fort/$(ARCH)/fort.a

include $(ITOOLSDIR)/bm_ake/$(ARCH).$(BOPT)$(PROFILE)

include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)

include $(ITOOLSDIR)/bmake/$(ARCH)

example: example.o

$(FLINKER) -o example $(BASEOPTF) exsmple.o \
$(FLIBS) $(LIBS) $(CLIB)

$(RM) example,o

This assumesthatChameleon isinstalledin'/usr/local/tools.core'.

The interface libraries are constructed automatically from the C program
files. Thus, they should always match the C versions (any new routine added
to Chameleon automatically becomes available to both C and Fortran users; no
special interface code needs to be written).

1.10 Chameleon and the Emerging Message-
Passing Standard

The intent of Chameleon is to allow programmers to select the system that
they find appropriate for the task at hand. In other words, Chameleon does not
replace message-passing systems; it simply provides a common interface to some
of the most popular systems. This common interface includes a uniform way

(from the source code) to initialize a program. Thus, programs written using
Chameleon are highly portable. Further, since Chameleon provides some tools

for running programs written fc,r other message-passing systems, Chameleon is
a good choice for developing programs.

We hope that Chameleon can be replaced by the Message Passing Interface

(MPI) standard currently under development; until that standard is specified
and widely available, however, Chameleon gives programmers the widest choice
of message-passing systems, as well as providing a relatively smooth migra-
tion path to the emerging MP! standard, in any event, an implementation of

Chameleon that uses MPI will be provided. Further, an implementation of MPI
using Chameleon will be provided (an early proposal for MPI has already been
implemented in Chameleon and is described in [6]).

We note that the MPI effort does not include any standardized aids for
program correctness or performance debugging. Chameleon provides these, as

well as preserving any such aids provided by the underlying implementation
layer (such as the trace files produced by PICL or p4).

10



1.11 Further Information

More detailed information about the routines mentioned in this manual may be

found in the man pages (in manual section 6 "Low-level communications") or
in the reference manual ('tools. eore/refs/refman, dvi'). The script tool,,an
is one of the tools provided by PETSc for accessing the detailed documentation
on tile routines and may be found in 'tools. eore/bin/toolman'. PETSc also
provides a number of routines that may be of interest to users of Chameleon,
including routines to report on floating-point errors, memory-space tracing, _nd
debugging. See the man pages for more information.

Chameleon is _ontinu_lly growing through the addition of new routines. Sug-

gestions (and bug :eports) should be e-mailed to 'groppQmcn. an:]., gov'. A users
group has been set up by David Keyes; send e-mail to him ('keyes@cs. yale. edu')
to be added to the PETSc mailing list.

II



Chapter 2

Starting Programs

One of the least considered but most important aspects of parallel program-
ruing models is the method by which a parallel application is started. Many ap-
proaches provide a very flexible but cumbersome approach. The approach taken

here is to require as few changes to a sequential program as can be managed,
whether the program is an existing application or a new design. As always,
the advanced user with special needs can use vendor and/or system-specific
mechanisms to provide special features (Chameleon does not prevent the user
from accessing these features). The goal of the Chameleon routines is to make

a parallel program look as much like a uniprocessor program as possible. For
example, if a uniprocessor program, a.out, is run by

a. out <axguments>

then the parallel version is just

a.out -rip<number_of_processors> <arguments>

This is accomplished by taking the original main program and turning it into a
routine that is executed in parallel.

2.1 Getting Started

For most users, a very simple interface is suitable; just replace

main (argc, argv)

with

worker (argc, argv)

12



This uses a main program provided by the file 'cmain.o' (for C programs) or
'fmain.o' (for Fortran programs) in the tools library (for example,

'tools. ¢ore/libs/libsg/sun4/cmain.o') that must be linked with when you
link your program. A sample makefile is provided in Chapter 8. This interface
provides for a wide variety of command line options; these are discussed in detail
in Section 2.3. To get started, all that you need is the -rip option which specifies
the number of processors. Section 2.3.4 describes arguments that are useful in
debugging programs. Fortran users should replace program main with integer
function worker() and add the file 'fmain.o' to the link step. This process is
demonstrated in the sample makefiles.

2.2 PICall Interface

For more flexibility, Chameleon allows you additional control by providing the
PICall routine. A sequential program that begins with

main(axgc, argv)

is replaced by

main(argo, axgv)
int arg¢ ;

char **axgv ;

int worker() ;

/* user setup ... */
PICall( worker, argc, argv ) ;

worker( argo, argv )

When this program is run, it will use a collection of processors. PICall will

process some of the arguments in axgv; these allow the user to specify the
number of processors, various debugging flags, and resource limits.

2.3 Options

PICall processes a number of options in the argument list (axgc and axgv).
These can be divided into three categories: parallelism arguments, resource
limits, and debugging. The debugging options are discussed in detail in Chap-
ter 5. Some of these are meaningfid only for distributed computing (such as on

a collection of workstations).

13



2.3.1 Parallelism Arguments

The following parallelism arguments describe the number of processes, location
of the executable, and tile type of machine on which to run the progranl.

-up u Specifies the number of processors, n, to use

-arch name Specifies the architecture to run the program on

-exes name Specifies the full path name of the executable

-pihosts names Specifies the names of the machines to run on. The names
must be separated by commas.

Only the -np n argument is required; the others will be determined from the
environment that tile program is run on (that is, if you start a program on a
Sun 4, the architecture will be arm4 and the name of the executable will be that

of the running program).
The architectures may be set with the environmental variable T00LSAItCHES.

If, for example, you issue the shell command

setenv TOOLSARCHES sun4 :rs6000:IRIX

any Chameleon program will attempt to use any machines of tile type sun4,

rs6000,or IRIX that are available.
On an MPP such as the lntel Delta, none of these arguments are needed. For

example, to run the program example using 16 processors (on a 4 by 4 mesh)
on the Delta, use

mexec -1; "(4,4)"-f "example"

Here, mexec is the [ntel NX command to start a program on the Delta. (_harneleon

does not specify how a program is started; rather, it strives for source code porta-
bility. That is, the source code is portable even if the interface to the operating
system commands to start a parallel job is not.

2.3.2 Resource Limits

With any program, it is necessary to set some limits on the amount of resources
used. With uniprocessor programs run on an individual's workstation, this
resource limiting is often done manually by the user: if the program is taking too

long or using too much memory, the user kills it. In a parallel environnlent, this
is often difficult. When running on a collection of workstations, many (perhaps
all) of the processes will be running on remote workstations, in this case, manual

detection of runaway or greedy processes is impractical. To provide a simple
mechanism to prevent runaway jobs, PiCa11 enforces resource limits on (_PII
time, elapsed time, memory use, and page faults (since a code that is generating

large numbers of page faults will often adversely affect the I)erformance of a

14



workstation, as well as run poorly). Default limits that are suitable for small

programs are provided; these limits can be overridden on the command line
with the following arguments:

-cpu rain Minutes of CPU time allowed.

-mere mb Megabytes of memory allowed.

-pf n Number of pagefaults allowed.

-nice n Nice increment.

-dtime hh:mm Total elapsed time (hours:minutes) allowed.

-atime hh:mnl Absolute time by which the program must be finished (on
the same day as it started).

These arguments may also be set by calling the routine
SYChangeResourceDefaults before calling PICa11.

2.3.3 Hosts File

When Chameleon is used for distributed computing, it needs to determine the
processors that will be used. Several methods are provided for this. One, which
will be discussed later, allows the user to list the processors to be used. However,
in most cases (particularly when the distributed-computing version is being

used to debug programs intended for an MPP), any available processors can be
used. PICal:l. uses a file, called the hosts file, to determine which computers are

available and what resource limits apply to each machine. Each line of the file
specifies a computer (by internet host name), architecture type, principal user,
number of processors, type of processor (workstation, shared-, or distributed-

memory), and resource limits. The resource limits are specified as a time period
when the limits apply, and the actual limits. A particular computer may be
mentioned on several lines, with each line indicating a different time period. For
example, the following three lines indicate that the machine my-tin is available
for small jobs from 8 am to 6:30 pm Monday through Friday and for large jobs

the rest of the time. Small jobs are defined by the third line as those using no
more than 5 megabytes of memory, 8 CPU minutes, and 1000 page faults. [n
addition, the job will be "niced" by 9. User gropp, the principle user of the
machine, may use it at any time.

mysunsun4 gropp 18:30-08:00 M-F 0 0 0 I 0 W
mysunsun4 gropp 00:00-23:59 S-Su 0 0 0 1 0 W
mysun sun4 gropp 08:00-18:30 N-F 5 8 1000 I 9 t/

The next example shows a shared-memory machine with 20 processors, This
machine is named srver and is available at all times.

15



srver symmetryroot 00:00-23:59N-Su 0 0 0 20 0 S

The option-listnodes willlisttheprocessorsthathave been chosen.Tile

option-pidbug willindicatewhich processorsin the hostsfilewere accepted

and which wererejected,alongwiththe reasonforthatrejection.
The locationof the hostsfileisgivenby the environmentvariable

T00LSII0STS(forp4 programs)or T00LSPVMIIOSTS(forPVM programs);a de-

faultisestablishedwhen theChameleon packageisin_talled.The entriesinthis

filemust followsome veryparticularrules;shouldyou need tomodifyitor pro-

videyour own hostsfile,trytofindan example thatisclosetowhat you want.

Also,be carefulthatyou do not useotherpeople'sworkstationswithouttheir

permission;one ofthe main reasonsforthe hostsfiledatabaseistoencourage

thecontributionofworkstationstoa poolofavailablecompt,ters.The principal

usersofa workstationaremore likelyto contributetheirmachinesiftheyknow

thattheirworkstationwillnot be pummeled by usersofparallelprograms.

2.3.4 Debugging

PICa11 understandsa number ofargumentsthataidindebuggingparallelpro-

grams bothforcorrectnessand forperformance.These argumentsaredescribed

brieflybelow;more detailsareinChapter,5.

-trace Enablecommunicationtracing.

-tracefilename Specifya filename forthetracinginformationtobe written

to;sl;dou¢isthedefault.Ifthe n_me contains"%d", the

valueof plmytid (theprocessornumber) willreplacetile
"%d".

-event Enable event tracing. A logfile will be written.

-eventfile name Specify the event file. ' The same syntax is used as for -
tracefile.

-summary Enable communication summary.

2.4 Examples

This section shows how to use the command line arguments to specify different
processors and informational behavior from a program.

a.out -rip 4 Use four processors from any that are available

a.out -rip 4 -pihosts sun2,sun3,sun4 Use the four processors consisting of
the processor the program was started on and the hosts sun2, sun3, and
sun4.

16



a.out -lip 4 -cpu 1 -mere 4 Use any four processors, restricting the run to 1
CPU minute and 4 megabytes of memory (such a restriction may make
more machines available).

a.out -rip 4 -trace Cause all message-passing operations to write to stdout

(see Chapter 5).

a.out -rip 4 -event Produce an event file for use with Upshot [8].

a.out -rip 4 -event -blogfmt picl Produce an event file for use with Para-

Graph [7].

2.5 In Case of Trouble

On a collection of workstations, the most common cause of trouble is having too
few workstations available. PICall uses a database of workstations (described

in Section 2.3.3) to guide the selection of available machines. This database
includes resource limits oil CPU, memory, and pagefaults. Different limits may

be established for different times of day. Through the use of this database,
the workstation owners (the principal users of the workstations) are assured
that their machines won't be swamped with remote jobs when they need them;
conversely, their machines can be made available for short development tests
during the day and for long production runs at night.

The most common cause of the message

Could not find enough acceptable processors

is that there are not enough processors offering the requested resources. Try

specifying smaller values of-cpu and -taem on the command line. if this does not
work, make sure that the database contains enough processors _f the requested
architecture. The default database file is 'tools.core/torero/hosts'. The file

name can be overridden by specifying the environment variable T00LSIt0STS for
p4 and TOOLSPVMIIOSTSfor PVM.

If the parallel job seems to start but then hangs, there may be a problem
with the workstations or your program's access to them. Unless you are using
the p4 server, p4 requires that rsh work; try doing rsh ,:workstation> ls for
each workstation that you wish to use. When p4 is used, a temporary file is
created with a name that begins with the characters PI, for example, PIa1037.

This file is a p4 procgroup file and lists the machines being used. On successfifl
completion of a run, this file is removed. If the program hangs, you may refer
to this tile to help determine which machine may be causing the problem.

PVM 2.4.x has a particular feature that can sometimes cause a job to hang. If
a program aborts or is killed in a way that does not cause all of the participating
processes to execute the PVM leave routine, it is impossible to rerun that

17



program successfidly without restarting the PVM daemon. This problem is
caused by the way parallel programs in PVM get access to each other through
the enroll routine. If you suspect that this is the problem, kill and then restart
the PVM daemon and then try running your code.

Finally, both p4 and PVM benefit from starting a "server" before running
any parallel programs. Sample shell scripts that use the host database to start
the servers is in 'tools. core/coma/daemons'. These may be run by any user.

It is not necessary to run these scripts, but doing so may significantly reduce
the time that it takes to start a parallel application.

If all of this fails, look at Chapter 5 on debugging. The options -trace may
be used to indicate where a program is getting hung.

18



Chapter 3

Message Passing

Message passing is a well-known and portable method for writing parallel pro-
grams. This document does not describe the technique; rather, it describes a
particular portable implementation. This implementation is designed to make

the full power of a message-pa_ing system available; it is not a least-common-
denominator design.

As an aside, if you are writing an api.:ication program, you may not need

any of these routines (except perhaps the inquiry routines). Instead, you should
see whether any higher-level communication or computation routines (such as

a parallel linear solver) meet your needs. If you do not find the routines you
need, let us know. They may be available elsewhere, or they may be general

enough that they could be added to Chameleon.
On systems that do not support certain message-passing features, such as

nonblocking communications, Chameleon will automatically emulate the behav-
ior (as much as possible). Thus, one need not give up efficiency on a particular
machine in order to obtain portability. Chameleon also provides a way to deter-
mine which features are supported, in the event that different algorithms would
be used depending on the available features.

3.1 Getting Started

It is not necessary to master all of these routines to write a working parallel
program, To begin with, use the blocking message-passing routines with user-
specified buffers. These routines are

PIbsend (tag, buffer, length, to, datat ype) ;

PIbrecv (tag, buf_ er, maxlength, datat ype) ;

The first line sends a message, and the second line receives one. The parameters
are

19



tag User-specified message tag (often called the message type).
This should be a non-negative integer; it should also not

be too large (the routine PITagRaage will give the range of
allowable tags).

buffer Pointer to the buffer to send (for PIbsend) or to receive
into (PIbrecv).

length Length of the message to send, in bytes.

maxlength Maximum length of a message to receive, in bytes. The
routine PImize may be used to determine the actual size.

to Processor id of the processor to send to. This is an integer
between 0 and PIntmtids-1. The id of a processor is given
by PImytid.

datatype Datatype of the message. The use of this parameter to
build programs that are portable to heterogeneous collec-
tions of processors is discussed below. A table of possible

values is given below.

3.2 Overview

In Chameleon, message passing means sending a buffer of data (the message)
with a user-defined tag from one processor and receiving it on another proces-
sor. The choices of buffer, the kind of sending semantics, and the time when
the buffer becomes available for reuse are made by selecting one of a set of

message-passing routines (all with nearly identical calling sequences). This sec-
tion describes the routines for sending messages consisting of contiguous bytes.
This is the most common type of message.

The names of the message-passing routines (actually macros in C) have the
following general format:

PI<blocking?><operat ion><user_buff er?><fas__protocol?>

Below we describe the choices for each of the four fields.

The operations are

send Send a message.

recv Receive a message.

The values for b:l.ocking? are

2O



b Blocking operation. When the routine completes, the op-
eration has been performed. For a send, this means that

the message has been sent (but not necessarily received).
For a receive, this means that a message has been received.

n Nonblocking operation. When the routine completes, a
handle has been set. It is necessary to use the wait modifier
with this handle to ensure that the operation (both sends

and receives) has completed.

w For nonblocking operations, wait until a previously requested
operation completes.

The values for user_buffer? are

<null> Indicates that the buffer was not allocated with the mes-

sage buffer allocation routines (see PINewSendBuf and
PINewRecvBuf). This is the usual case.

m Indicates that the buffer was allocated with the buffer al-
location routines.

Here, <null> means "blank".

The values for fuse_protocol? are

rr Indicates that a fast but possibly unreliable message pro-

tocol is to be used. A message sent using this modifier
may be discarded if the destination processor has not al-
ready executed an appropriate receive, or an application
may block until the destination executes a receive for this
message. The "rr" stands for "ready receiver."

<null> Indicates that a correct but possibly slower protocol should

be used for messages.

In addition to these routines, there are routines to determine whether mes-

sages are available and whether a nonblocking routine has finished. These are
also described below.

All of the routines that send or receive data take a datatype argument. This
indicates what kind of data the message contains; it is used to allow the use of
heterogeneous collections of machines which may use different storage formats
for integers, floating-point values, etc. The valid datatypes are as follows:

21



Datatype C Fortran
MSG.,SHRT short

MSG/NT int integer
MSGLNG long
MSG_FLG float real

MSG_DBL double double precision
MSG_OTH ER char character

HSG..0THERshould be used for any data whose type is unspecified.
This raises the issue of what to do ifa message containing different datatypes

is to be sent, for example, a structure defined as

struct {

int n, m;

double a, b;
}

If you are using machines that all use the same storage formats, and you
do not want portability to collections of machines with tifferent formats, use

NSG_0THER. (You should mark this in your code; such a_umptions can cause
difficult maintenance problems.)

3.3 Blocking Message-Passing

Blocking message-passing is the simplest form of message passing. Tile term
blocking here refers to the message buffer: when the routine exits, the buffer is
ready for use. In the case of a send, this means that the buffer may be reused.
For a receive, this means that the buffer contains the received data. The basic
routines are

PIbrecv Receive a message of a given tag into a buffer that
was allocated by the user.

PIbsend Send a message of a given size (in bytes) to another
processor.

PIbrecvm Receive a message of a given tag into a buffer (allo-
cated with PIMewRecvBuf)

PIbsendm Send a message of a given size (in bytes) to another
processor. The buffer must have been allocated with
PINewSendBuf.

PIbrecvUnsz Receive a message of unspecified length.
PIbrecvUnsz allocates a buffer for Ihe message and
returns a pointer to the allocated buffer and the size

of the message.

22



The formats are

PIbrecvm (t ag, buffer, maxlength, dat at ype )
PIbsendm(tag,buffer,Iength,to,datatype)

PIbrecvUnsz(tag,_tbuffer,_size,datatype)

The parametersare

tag Message tag

buffer Pointertobuffer

datatype Datatype (e.g.,l_SG_IIIT)

length Sizeofmessageto sendinbytes

maxlength Size of the buffer in a receive (allows a message of this size
or smaller) in bytes

size Size of a received message in PIbrecvUnsz in bytes

For more details, see the man pages or the reference manual.
The variantssuch as PIbsendrr have the same callingsequencesbut the

slightlydifferentsemantics,as describedinthe overview.
There arefoursuch routines:

PIbrecvrr Plbrecvmrr

Plbsendrr Plbsendmrr

3.4 Nonblocking Message-Passing

Nonblocking message-passing allows the programmer to overlap communication
and computation (when the underlying hardware and system software supports

it). This is done, in the case of a send, by specifying a buffer to send. The state
of the buffer becomes undefined and may not be changed by the programmer
until the send operation completes.

A sample use of a nonblocking send is

PISendId_t id;

Pinsend(tag,buffer,length,to,datatype,id)
... much computation ...

PI_send(tag,buffer,length,to,datatype,id)

The programmer may not use the buffer until the PIwsend completes (the con-

tents at that time are implementation defined). The parameter id (which is not
present in the blocking version PIbsend) is an identification value that permits
multiple nonblocking sends to be issued before their corresponding PIwsends.

In the case of a nonblocking receive, the programmer tells the system where
to put a message when it arrives. This can save memory references and can
significantly improve the performance of a parallel program. A sample use is

23



PIRecvId_t id;

PInrecv(tag,buffer,maxlength,datatype,id)

... much computation ...

PIwrecv(tag,buffer,maxlength,da_a_ype,id)

The "wait" has the same parameter list as the "nonblocking" operation in order

to make it easy to simulate nonblocking operations with blocking ones. It also
aids the programmer in seeing just what data was expected at the end of a
nonbiocking operation; this allows easy runtime checking that the expected
operation was performed.

The variants such as PInrecvm and PInsendrr have the same calling se-

quences but the slightly different semantics, as described in the overview.
There are twelve such routines:

Plnrecvm P[nrecvrr Plnrecvmrr
Plnsendm Plnsendrr Plnsendmrr
Plwrecvm Plwrecvrr Plwrecvmrr

Plwsendm PIwsendrr Plwsendmrr

In addition to these routines, the routine PInstatus may be used to de-

termine whether a particular nonblocking message operation has fnished. The
format is PInstatus (id), where id is the identification value from the PInsend _/

or PInrecv. PInstatus returns the value 1 if the message is completed and 0 _
otherwise. _

Note: if nonbiocking messages are not supported by the underlying system
software, the use of the pairs PInsend()...PIwsend() and
PInxscv()...PIwrecv() will still work. However, PInstatus in those cases

will always return O. ,\The macro PI_IIO_NSI_IID is defined if there is no nonblocking send;
PI__O_NRECV is defined if there is no nonblocking receive. These may be used \

to select different algorithms in the two cases at compile time. \
\.

3.5 Information about a Message

When a message is received, the basic routines simply return. Sometimes, ad-

ditional information is required, such as who sent the message, how long it is,
and what message tag it had. These are available from the following routines:

PIfrom Return the processor id of the sender of the message.

•PIsize Return the length of the message in bytes.

Pltag Return the tag of the message.

24



These all return information about the last message received; they should be
called at most once for each message. Each is a function that takes no parame-
ters (i.e., use PIfrom() to determine which processor sent the last message that

was received).
This approach is not "thread safe." That is, it can cause problems if there

are multiple threads of control. This situation can happen if, for example, a

signal or interrupt handler issues a receive. The MPI draft standard provides
a thread-safe version; the next version of Chameleon may provide a thread-safe

version of the receive routines (in an upward compatible way, of course).
Two routines allow the programmer to determine whether a message of a

given tag is available. The routine PInprobe returns l if so, and 0 if not. The
routine PIbprobe does not return until a message of the specified tag becomes
available. The formats of these routines are as follows:

PInprobe(tag) Nonblocking test for a message of tile given tag

PIbprobe(tag) Blocking test for a message of the given tag

To receive a message that has been probed for, use PIbrecvProbed rather
than PIbrecvm. The former is needed because of race conditions in some im-

plementations of PIbprobe and PInprobe. The format of PIbrecvProbeg. is

PIbrecvProbed( tag, bur, maxlength, datatype )

3.6 Message Buffers

For the best performance on some systems, buffers that are used for sends and
receives should be allocated with the routines PINewSendBuf and PINe_RecvBuf.

These routines allow the underlying implementation to use special buffer formats
or structures for improved performance; if these routines are not used to allocate
buffers, be sure to use the user buffer=<null> versions of the send and receive

routines. (Fortran users cannot allocate memory this way, so they cannot use
the m versions.)

PINewSendBuf Allocate a send buffer. The format is

PINewSendBuf(buf,size,type),where type isa validC

type. For example,tocreatea bufferbu:ffor32 doubles,
use PINewSendBuf(bur,32.sizeof(double),double).

PINewRecvBu:f Allocate a receive buffer. The format is the same as
PINewSendBuf.

PIFreeSendBuf Free a buffer allocated with PINewSendBuf. The format for

freeing a buffer bu:f is PIFreeSendBuf(buf).

PIFreeRecvSuf Freea bufferallocatedwithPINewRecvBu:f.

25



3.7 Machine Topology

Some parallel programs need to know something about the number of processors
and the interconnection of processors on the parallel machine on which they are

running. Other information, such as the ranges of valid message sizes and tags,
is needed by general-purpose programs. Virtually all programs need to know
the id of the running process. This information is provided by the following
routines:

PInumtids Returnsthenumber ofprocessors

PImy_id Returnsthe indexofthe processor,inthe range0 to
PInumtids--1

PIdistance Givesthedistancebetweentwo processors.The formatis

PIdistance(from,to).The returnedvalueisthe number

of hops from processorfrom to processorto. The exact

definitionof a hop isimplementationdependent;theonly

requirementisthatPIdistance(from,from)iszero.Note

thatan implementationmay definePIdistance(from,to)
tobe zeroevenforfrom differentfrom to. The valuemust

be non-negative.

PIdiameter Returnsthe maximum valueofPIdistance forallpairsof

processors.Thisisthe "diameter"oftheparallelprocessor.

PIl_sgSizes Returnsthe minimum and maximum messagesizes.The

formatisPINsgSizes(_ain,/max);thevaluesrainand max
areinbytes.

PITagRange Returns the range of valid message tags. The format is
PITagRange(_tlow,khigh). Note that some systems have
a very limited range of tags.

Most of these routines are actually macros that return simple values.

3.8 System Functionality

C programmers can access, through macros, information on the capabilities of
the parallel system at compile time. These macros are

PI_NO_NSEND Defined if nonblocking send is not supported by the trans-
port layer

PI_NO_NRECV Defined if nonblocking receive is not supported by the trans-
port layer

26



PI_NO_READYRECEIVE Defined if ready-receive is not supported by the
transport layer

PI_NO_NATIVE_GLOBAL Defined if the transport layer does not directly

support collective operations on all processors

In all cases, Chameleon will simulate the capability if the underlying transport
system does not provide it.

27



Chapter 4

Collective Operations

Many programs require operations that involve a collection of processes. When
every processor is involved, these are called global operations. Examples in-

clude barriers (all processors wait until all have reached the barrier), sums (all
processors contribute to a sum), and broadcasts (one processor sends a value to
all others). These operations also make sense on any subset of processors. The
routines described here allow the programmer to dynamically define subsets of
processors. All of the collective operations are defined on these subsets. For

simplicity, these routines are described first for collective operations on all pro-
cessors by using the predefined processor set PSlllProcs that contains all of the
processors. Section 4.6 describes how to define subsets of processors. Section
4.10 discusses where and why processor sets are useful.

4.1 Getting Started

The most common use of collective communication routines is on all of the

processors (as opposed to a subset of the processors). The routine

PIbcast( bur, size, issrc, PSAllProcs, da_atype )

broadcastsa bufferbur ofs£ze bytestoallprocessors;the valueof£ssrc is1
forthesenderand 0 forallothernodes.

The routine

PIgdsum( val, n, work, PSAllProcs )

sums val (an arrayofsizen ofdoubles)acrossallprocessors,returningthesum

inval.The array_ork ofsizen doublesmust be provided.

There areadditionalroutinesforfindingthemaximum, minimum, and log-
icaloperationson variousdatatypes.

28



4.2 Reductions

A common operation in parallel programs is the reduction of a value (or col-
lection of values) held on many processors into a single value (or collection of
values). For example, each processor may compute a value"v and desire th_
minimum of all the v's on all processors. If v is _ double, the routine
PIgdmin will compute that minimum. Since a reduction requires combining
values, it is necessary to know what datatype and format is being combined.
These datatypes are double, int, float, etc. To simplify tile routines, the second
character in the routine name is used to denote the datntype.

These characters are

d double
i int
f float

c char

The routines are

PIgXsum Finds the sum of tile values across the processor set.

PIgXmax Finds the maximum of the values across the processor set.

PIgXmin Finds the minimum of ttle values across the processor set.

PIgXor Finds the logical "or" of the values across the processor set (X
may be i or c only).

PIgXand Finds the logical "and" of the values across the processor set (X
may be i or c only).

The last two routines are not defined for double or float types.
The format of all of these routines is the same:

PIgxxxx(val,n,work,procset), where work is a work area of the same size
as val, and n is the number of elements. For example, to find the maximum

value of a number on all processors, use

double val, work;

PIgdmax( _tval, I, Jtwork, PSAIIProcs );

When any of these routines exits, val contains the result.

Some systems separate the meaning of reduction from combination; in one

case, a single node gets the reduced value; in the other, nil nodes get the value.
Chameleon currently provides only the version where the final value is made
available to all nodes.

The routine PIcombine will combine values using a user-provided routine.
The format of this routine is

29



void PIcombins( val, n, work, procset, elmsize, datatype, op )
void *val, *work;

int n, elmsizs, datatype;

ProcSet *procset ;
void (,op) ( );

where the routine op is defined

void op( a, b, n )
void *a, *b;
int n;

and the result of op is to perform the operation a _- aop b. [n this way users
may easily write their own global operations, for instance, multiplication, which
will be as efficient as the standard global operations.

4.3 Broadcast

Broadcast routines send a buffer to all other nodes in the designated processor
set. The source of the buffer can be indicated in two ways. With

PIbcasl:, exactly one processor should set the argument issro to 1;all others
use O. This is appropriate for programs where the source of tile buffer is not
known. The format of this routine is

PIbcast( bur, size, issrc, procset, datatype )
void *bur ;

int size, issrc, dataCype;

ProcSet *procset;

Ifthesourceisknown,theroutinePlbcastSrc shouldbe used.Thisroutine

takesan argument arc thatistheprocessorid(fromPlmytid) oftileprocessor
thatisthesourceofthedatatoscatter.

The formatofthisroutineis

PIbcastSrc( bur, size, src, procset, datatype )
void *bu_ ;

int size, src, datatype;
ProcSet *procset;

Care should be taken in using these routines. All processors izl tile selected
processorsetmust callthe same routine(eitherPIbcast or PIbcastSrc). If

therearemultiple,nondisjointprocessorsets,allofwhich areusinga PIbcast,

itisnecessaryto ensurethatthereisno possibilityofdeadlock.For example,

iftherearetwo processorsetssetl and set2,eachcontainingthe2 processors
0 and I,thenthecode

3O



if (Plmytid _ffi O)
PIbcas_( ..., se_l, ... );
Plbcast( ..., set2, ... );

else

PIbcast( ..., set2, ... );

PIbcast( ..., setl, ... );

will deadlock,

4.4 Gather

Gather routi,ms allow data from all nodes to be gathered to all nodes. Each

processor contributes some local data (in 1bur) and, at the completion of the
routine, receives the collected data (in gbuf). The routine PIgcol handles the
case of data of variable and unknown .qize; pIgcolx handles the case of data of
known size.

The format of PIgcol is

PIgcol( ibuf, isize, gbuf, gsize, glen, proceed, datatype )
void *1bur, *gbuf ;

int isize, gsize, *glen, da_atype;

ProcSe_ *procse_ ;

The parameters are

lbuf Buffer to hold the local contribution

lsize' Number of bytes in the lbuf

gbuf Buffer to hold the result

gsize Size of gbuf in bytes

gle,l Actual number of bytes received

procset Processor set to collect over

datatype Datatype of Ibuf and gbuf

The order of the collected data is implementation defined.

The format of PIgcolx is

PIgcolx( Ibuf, gsizes, gbuf, procset, da_a_ype )
void *lbuf, *gbuf ;

int *gsizes, da_atype ;

ProcSe_ *procse_ ;

31



The parameters are

lbuf Buffer to hold the local contribution

gbuf Buffer to hold the result

gsizes Array of the sizes of each contribution (gs£zes [PImyt £dJ The
size of the local contribution)

procset Processor set to collect over

datatype Datatype of lbuf and gbuf

The data is collected in order of node number. For processor subsets, the order
isthatreturnedby PSPROCLIST.

4.5 Barriers

Often, it is necessary to have all processors stop until they all have reached a
common point in a computation. Such an operation is called a barrier, ren-
dezvous, or synchronization. This is provided by the routine PIgsync. The
format is PIgsync(procse¢).

As a special case of a barrier, it is sometimes necessary to allow only one

processor to access a resource at a time. For example, if each processor is to
write to a file (or to standard output), it is necessary to ensure that only one
writes at a time. A simple way to do this is with a barrier:

for (if0; i<PIntmtid$; i++) {

Plgsync(PSA11Procs);
if (i == Plmytid) {

<myoutput>
}

}

However,thiscan be veryinefficient.The routinePIgtoken providesan alter-

nativeapproach.The same effectasabove isachievedwith

for (i=o; i<=PInumtids; i++) {

if (PIgl;oken(PSAllProcs,i)){

<myoutput>
}

}

The routiuePIgtoken passesa "token"from one processorto the next inse-

quence,returningthe valuelwhen a processorreceivesthetoken.The actual

valueofthetokenmay be setwithPISetToken and retrievedwithPIGetToken.

32



4.6 Processor Sets

A processor set is a collection of processors. Usually, this is a subset of the
total number of processors available. To the user, a processor subset is just
a pointer to a structure; the internal contents of this structure are used by
the library to perform the requested operations. When the processor subset is
no longer needed, the subset should be deleted. As a practical matter, using

the three-phase process of creating a subset, using tile subset, and deleting the
subset allows tile library to spend extra effort to optimize the use of the subset.

This optimization may include choosing special communications schedules for
the collective operations.

A processor set is created with the routine pSCreate. Each processor set
must have a unique name that all processors in the set agree on.

To use these routines, create a processor subset (procset) and specifiy which
processors are in that subset. This ProcSet is then passed to the collective oper-
ation routines. A predefined set, containing all of the proce_es, is psAl"tprocs.
An example of this process is

ProcSe_ *procset ;
int name;

name = 5 ;

procset = PSCreal;e( name );

When a processor set is created, it has no members. To add members, use

PSAddMember. This takes an array of processor numbers and a processor subset
and adds those processors to the set. It may be called multiple times to add

groups of processors. The following two examples add to a processor set the
even-numbered processors:

int i;

for (i=O; i<PInumtids; i += 2)

PSAddMember( procset, Ri, I );

and

inz i, *p;

p = (in_ *)MALLOC( ((PInumtids + I) / 2) * sizeof(int) );

for (i=O; 2*i<PInumtids; i ++)

p[i] = 2.i;

PSAddMember( procset, p, i );

FREE(p);

Before a processor Jet is used in a collective operation, it must be "compiled."
That is, once tile members of the processor set are defined, the various internal

33



fields that are used by the collective operations must be calculated. The routine
PSCompile is used for this. Once PSCompile is called, no other processors may
be added to _,he processor set. The following example creates, defines, and
compiles a processor set consisting of the even-numbered processors:

ProcSet *procse_ ;
in_ i, name;
• o ,

name = 5 ;
procseC -- PSCreate( name );
for (i=O; i<PInumtids; i += 2)

PSAddMember( procset, Ri, I );

PSCompile( procset );

When the processor set is no longer needed, use PSDestroy to remove it:
PSDes_roy( procset );.

While the use of PSCrea_e, PShddMember, and PSCompile is completely gen-
eral, it requires that all processors in the processor set know the processor ids
of all of the processors that are to be in the set. Sometimes we wish to form a

set by collecting all of the processors that want to be in the set, without each
processor knowing in advance the members of the set. This is done with
PSPaxl;il;ion. This routine takes a value (a name for the processor subset)
and finds all of the processors with that name. All processors are put into at

most one processor set by this routine. For example, the following code creates
a processor set consisting of the even-numbered processors (on even-numbered
processors) and of the odd-numbered processors (on odd-numbered processors).
That is, if there are eight processors, this will create two disjoint processor sets:
0 2 4 6 and 1 3 5 7, with the even-numbered processors creating the first of

these and the odd-numbered creating the second of these processor sets.

ProcSet *procse_ ;

procset = PSPar_ition( PImytid _ 2, PSAllProcs );

A negative number for value excludes that task from any of the new processor
sets.

Note that PSPaxtil;ion takes a processor set as the second argument. This
allows the user to partition a subset of processors. The value PSAllProcs is the

processor set containing all of the nodes in the parallel machine.
The routine PSUnion may be used to combine two processor sets to form a

new processor set.

For many applications, it is necessary to know something about the members
of a processor subset, such as who they are, how many processors are in the set,
and who their neighbors are. The routines described in this section gives access
to the information in a processor subset.

PSnumti,is The routine PSnum_ids(procse_) returns tile num-
ber of processors in the processor set.

34



PSmytid The routine PSmytid(procset) returns the relative
id or rank of the processor in the processor set. This

value is between 0 and PSnumtids(procset)-I.

PStidFromRank The routine PStidFromRank returns the process id

corresponding to a given rank in a processor set.

PSPROCLIST The routine PSP_OCLIST(procset,list) puts the
processor ids of the processors in the procset into

the array list (int list []).

PSISROOT The routine PSISR00T(procset) returns l if the pro-
cessor is the "root" of the processor set. For the

processor set of all nodes, this is equivalent to the
expression Plmyt id==0.

PSI:tOOT The routine PSR00T(procset) returns the processor
id of the root of the processor set. PSR00T(PSAllProcs)

is equivalent to 0.

PSSetieshSize The routine PSSetHeshSize(procset,nx,ny) spec-

ifies the dimensions of the processor set when con-
sidered as a two-dimensional mesh.

PSMESHLOC The routine PSMESHL0C(procset, i,j) sets i and j
to the relative location of the processor in a two-
dimensional mesh (as defined by PSSetMeshSize).

PSNbrRin_" The routine PSNbraing returns the processor ids of
neighbors in the processor set when considered as a
one-dimensional ring. See the man page for more
details.

PSNbrMesh The routine PSNbrMesh returns the processor ids of

neighbors in the processor set when considered as a
two-dimensional mesh. See the man page for more
details.

PSNbrTree The routine PSllbrTree returns the processor ids of

neighbors in the processor set when considered as a
binary tree. See the man page for more details.

4.7 Canging the Virtual Topology

The routines used to compute the neighbors (PSNbrR.ing, PSNbrMesh, and
PSNbrTree) may be changed by the user. These routines will be documented in

35



the next release of this documentation. The routine PISetNbrRoutines may be

used to do this. Note that since the neighbors returned by these routines are used

by the collective communications routines (such as PIgdsum and PIgbeast),
changing these routines has the side effect of changing the communication pat-
terns used by the default collective communication routines.

4.8 Changing the Reduction Method

The method used to perform a reduction may be changed by the user. Several
methods are available, and advanced users may write their own and insert them

into Chameleon (without changing the libraries). The routine PISetCombFunc
sets the routine used for the reduction operations. The format of this routine
to pass to PISetCombFunc is

void MyGsetop( val, n, wrk, procset, elmsize, datatype, op )
void *val, *wrk, (*op)();
in_ n, elmsize, datatype;

ProcSet *procset ;

where op has the form

void op( val, work, n )
void *val, *work;
in_ n;

The arguments are

val Value to contribute to reduction on input and final value
on output

n Number of elements in val

work Work area of the same size as val

procset Processor set to work in

elmsize Number of bytes per element of val

datatype Datatype of val

op Routine to combine values together

The format of PISeCCombFunc is

void PISetCombFunc( rune )
void (*rune)();

36



4.9 Changing the Broadcast Method

The method used to perform a scatter may be changed by the user. Several
methods are available, and advanced users may write their own and insert them

into Chameleon (without changing the libraries). The routine
PlSotSeatterFunc sets the routine used for the scatter operations. The format
of the routine to pass to PlSotSeattorFune is

void gscatterset( bur, size, issrc, procset, datatype )
chax *bu_ ;

int size, issrc;

ProcSet *procset;

int datatype;

The arguments are

buf Data to scatter (if issrc=l or buffer to hold data (if issrc-0)

size Number of bytes in bur

issre One if the processor is the source, zero otherwise

proeset Processor set to work in

datatype Datatype of val

The second argument to PISetScai;terFunc is the routine to be used for

PIgscatl;er-_rc; this routine has the same format, but with issrc replaced
with src, the node number of the source.

The format of PISetScatterFanc is

void PISetScatterFunc( rune, fuacsrc )

void (*_unc) (), (*_uncsrc) () ;

4.10 Why and How to Use Processor Sets

Many parallel computations, particularly on relatively small amounts of data,
cannot effectively use large numbers of processors. In this case, it is useful to
define a subset of processors for best efficiency. In other cases, a truly MIMD

algorithm may want to use a cluster of processors for each of several tasks;
again, the program needs to be able to perform collective operations on subsets
of processors.

An example is shown in Figure 4.1. This shows that the optimal number
of processors for the solution of a banded linear system by direct elimination

can occur at very small number of processors (about 4 for these choices of the
parameters). Using more than 16 processors takes more time than using a single

37



70 , I ' I ' I

6O

5O

ZO

10 20
P¢o_ore

Figure 4.1' Scalability graph for banded linear system solve

processor in this case. If this banded linear system algorithm is implemented
with processor sets, the optimal number of processors can always be used.

All collective routines take procsel_ as an argument. By always using a

procsel; argument (instead of PSAllProcs) and by using the processor set ver-
sions of PImytid and PInuml;ids, you can write code that will run on any subset
of processors.

Instead of... use

PImytid PSmytid(procset)
PInumnodes PSnumnodes(procse_)

PImytid==O PSISROOT(procset)

To convert from rank to id, use PStidFromRank(procset,rank).

38



Chapter 5

Debugging

Debugging a parallel program can be difficult. Many of the most powerfill

debugging aids for uniprocessors (such as dbx) either are unavailable on parallel
computers or have serious limitations. Further, parallel programs offer new ways
to write both incorrect and poorly performing programs. This chapter discusses
some of the aids provided by Chameleon to aid in debugging a program, both
for correctness and for performance.

5.1 Getting Started

The debugging aids provided by Chameleon are available through the command
line arguments that are processed by PICa:l.1 or the worker interface. The

arguments that are most commonly useflll are as follows:

-trace Cause all send and receive routines, as well as many collec-

tive communication routines, to write a message to stan-
dard output indicating the size, destination, and tag of a
message.

-smnmary Produce a summary listing when the program finishes with
the amount of time spent communicating and the amount
of data sent.

-event Generate an event log that can be used as input to the
upshot [8] program analysis tool.

Additional arguments may be used to modify the behavior of these arguments
(for example, -trace:file redirects the trace information to the specified file or

files).

39



5.2 Correctness

Two main results of errors in message-passing parallel programs are not present
in uniprocessor programs. These are deadlock (program "hangs") and nonde-

terministic behavior (different results for the same input data in different runs).
Both of these are often caused by the program's receiving a message intended
for either another processor or another part of the program. These problems

are difficult to diagnose, particularly since the behavior may be difficult to re-
produce. The command line argument -trace can help. When this argument
is used, every time a message is sent or receive, a description of the operation
is written to standard output. This output includes the name of ttle operation
(send, recv), the tag of the message, and the file name and line number in that
file where the operation occurred. The option -tracefi:l.e name may redirect
this output to a file or to a different file for each processor. These logs of the
communication behavior may then be examined to see whether there is a prob-

lem. In the case of deadlock, often the best way to proceed is to start at the
ends of the files and work backwards. In the case of nondeterministic behavior,

collect logs for several runs on the same input data, and then use diff to find
the first place that the logs differ.

Some sample tracing output is displayed below. This shows two processors

both waiting for a receive:

[0] recvstart <Tag 1> [buggy.c: 17]
[I] recvstart <Tag I> [buggy.c:17]

(This is from the ring example below, but with all processors executing their
Plbreev before the PIbsend.) The two lines from file 'buggy. e' at line 17 are
the beginning of the PIbrecvs. Since no processor is sending, the program hangs
at this point.

Most collective operations are indicated by a Starting <name> and Ending
<name>. The format of tracefile lines is

[processor-id]operation<data on operation>[filename:line]

For example, a send operation from processor 13 to processor 19, with a buffer
of size 120, message tag 27, from line 193 in file myprog.c would generate the
line

[13] send <Tag 27(120) To 19> [myprog.c:193]

A receive will generate two entries--one when the receive starts and one when
it completes. A receive on processor 19 with message tag 27 and at line 273 in
file myprog.c will generate the lines

[19] recvstart <Tag 27> [_yprog.c:273]

[19] recv <Tag 27> [myprog.c:273]

4O



If too much data is being generated to conveniently look at, consider using
the -gracefile filename option. For example, the command line options -
trace -tracefile log.gd will generate a separate log file for each processor.
The cshell script

#_ Ibinlcsh

foreach file (log.*)
echo "$file"

tail -I $file

end

will print out the last operation that each processor was attempting. Note that
using a single filename for the output may cause output to be lost because of
the way many operating systems deal (or fail to deal) with multiple processes
writing to the same file.

5.3 Error Messages

The debugging version of the Chameleon package will generate error tracebacks
of the form

Line linenumber in filename: message

Line linenumber in filename: message

Line linenumber in filename: message

The first line indicates the file where the error was detected; the subsequent
lines give a traceback of the routines that were calling the routine that detected
the error. A message may or may not be present; if present, it gives more details
about the cause of the error.

The production libraries are often built without the ability to generate these

tracebacks (or even detect many errors). So, if a program crashes without
warning, try recompiling with the BI3PT=goption and then rerunning it.

5.4 Performance

Performance debugging can be very difficult. A parallel program has many
sources of inefficiency, including

• poor algorithm,

• poor implementation of the computational part of the algorithm,

• poor implementation of the communication part of the algorithm,

• insufficient overlap of communication and computation,

41



• poor load balance, and

• malfunctioning hardware.

A number of tools are 9rovided to help diagnose these problems. Unfortunately,
the most important cause of poor performance, a poor algorithm, is the hardest

to diagnose. In fact, a poor algorithm may appear to perform well by doing large
amounts of highly parallel but unnecessary work, thus achieving high parallel
efficiency.

Before spending a lot of time tracking down a performance problem, you
should have some feel for how well you expect your program to behave. Often,
this can be done by constructing a simple complexity model of the computa-
tion. Into this model will go three machine-dependent parameters: the time

to compute an operation (for floating-point programs, the time for a floating-
point operation), tile latency in a message between two processors (the time
to send a message of length zero), and the incremental time to send a byte
between two processors. This is a crude model, but it often gives a good es-
timate of the performance of a computation. Some examples of this approach

are shown in [5, 3]. To get these machine-dependent parameters, the program
twin in 'comm/examples/a_gst' can be run. The argument -help to twin gives
information on using 1;win.

You should also check that there is no hardware problem on your parallel

computer, if each processor does not compute at the same rate as all other
processors, or if the time to send a message between two (adjacent) processors
is not independent of the processors, then a correct program will appear to
have a performance problem. Chameleon provides a program to test for this

case (which has been observed on a number of parallel computers). Note that
this problem is particularly insidious, as the program may work correctly, just
not as efficiently as expected. The program is teomm and is in the directory
'tools. core/comm/exuples/_gst'. The argument -help to l:eomm gives in-
formation on using tcomm.

5.4.1 Computation Implementation

A good way to determine the quality of the implementation is to compute the

computational rate (megaflops) achieved by the code and to compare that with
standard relevant benchmarks. For example, a program that uses primarily
floating-point operations can be compared to the LINPACK benchmarks. (Note
that some well-designed programs can greatly exceed the computational rates in-

dicated in the LINPA(_K benchmarks.) The easiest way to compute this value is
to compute (or estimate) the number of operations and divide by the time taken
by those operations. However, care should be taken to ensure that meaningfill
times are collected. For pure floating-point operations, use SVGetCPtlTime; this
measures the (_PI.I time taken by a user process. For example,

42



double precision SYGetCPUTime, tl, t2

tl = SYGetCPUTime()

<computation to measure>
t2 = SYGetCPUTime() - tl

print *, 'Took ', t2, ' seconds'

Whe. ,,,_surin_ conmlunication, it is important to remember that the time

spent waitilig to r_ceive a message will usually not be charged to a process and
thus will not show up in the CP(I time. in this case, use SYGetElapsedTime
instead of SYGetCPUTime.

An alternative to SYGetElapsedTime that can provide higher-resolution,
lower-overhead timings involves the routines SYusc_clock and
SVuscDiff,for example,

double precision SYuscDiff, I;I(2),t2(2), t

call SYusc_clock( tl )

<communication to measure>

call SYusc_clock( t2 )

t = SYuscDiff( I;I,t2 )

print *, 'Took ', t, ' seconds'

5.4.2 Communication Implementation

There are several potential sources of performance problems in the communica-

tion implementation. These include

• long transit times,

• long startups, and

• messages arriving out of order.

To diagnose these effects, use the -event and -summary switches. The -summary
switch generates a summary listing for all processors, indicating how much time
was spent sending and receiving data and what the average transfer rate was.
The time spent in collective operations is also displayed. For example, here is
the summary for node 2 after a run.

Summary for node 2:

Op: calls bytes total time Average rate
Send: 3366 1689800 3. 1601e+00 5. 3466e+05
Recv : 3367 1689824 3,5480e+01 4. 7662e+04
Global : 67 0 1. 0890e+01 O. O000e+O0

Look for

43



• low transfer rates but long messages, and

• large times (relative to tile computation time),

Low transfer rates for long messages may indicate that much of tile time was
spent waiting for messages to arrive (including waiting before they were sent).
This may indicate either a load imbalance or contention in the communica-
tion network. To get a better idea, use the -event switch. This will gen-
erate a log of all of tile communication events in the file 'bl' in the current

directory (this may be changed with the command line argument -evsntfile
ft.:l.ename). The program Upshot [8] may then be used to display the events.
Use tools, core/bin/$hRCH/upshot -1 bl. Look for large amounts of receive
idle time (waiting for a message) and for long send and receive times (between

the time a message is sent and when it is received). Possible ways to fix a
performance problem here include

• switching to nonblocking sends and receives,

• reordering or rescheduling the communications, and

• adjusting the load balance.

5.4.3 Controlling the Event Log

While the default event log is suitable for many tasks, it is sometimes necessary
to modify the content and formation of the event log. Two such modifications
are discussed in this section; most readers should skip this section until they have

used the event logs. The first modification is in the computation of the time
that an event happens. On many computers, there is no single synchronized
clock and Chameleon must synthesize one. As there is no single best way to do
this, Chameleon provides for user-control of the synthesized clocks (by default,
Chameleon uses a method that should be appropriate for most users). The

second modification affects the output format of the event log, allowing the user
to choose between two popular formats: Argonne's slog (used by upshot) and

PICL (used by ParaGraph). It is also possible to add additional formats at
runt|me.

5.4.3.1 Controlling Event Clocks

Many parallel computer systems do not provide synchronized clocks. (_hameleon

contains code that attempts to synchronize the clocks using software, by esti-
mating the difference between the local clocks. The default choice of synchro-
nization method should be acceptable for most users; this section explains how
these defaults may be rood|fed by the expert user.

The clock time is computed by taking a local time, computing an offset
(shifting all of the clocks to the time of node zero), and adjusting for skew,

44



that is, the effect of clocks running at different rates. These adjustments can
be modified by using the following arguments on the program's command-line
following -blogclock:

noskew Don't compute a modification of skew.

nooffsets Don't compute a modification for offsets.

none Don't compute any modification of local times.

print Print out the values of offset and skew applied to each clock.

Tile opposite effect of tile first two can be accomplished by removing tile "no"
infrontofnoskev or nooffsets.

Additionalcontrolswillbe made availabletotheusersoon,includingcontrol
ofthe method usedtodeterminetheoffsetsand skews.

5.4.3.2 Controlling Output Format

The default output format is the Argonne alog format. This is a general event
log format. Other formats can be generated; currently Chameleon also supports

a subset of the (old) PICL trace format, This is the format that is needed for
using the ParaGraph tools (available from netlib). This format does not support
general user-defined events, but because of the utility of the ParaGraph system,
it can be quite valuable in understanding program behavior.

The choice of output format can be changed with the command line param-

eter -b:l.ogfmal;.

alog Use alog format,

picl Use (old) PICL format.

The default file name for alog files is 'b:l.' and for picl is 'b:i.. trf'.

One warning: the ParaGraph tools require a consistent clock (that is, they
require that no message appear to arrive before it was sent). On systems without
a single clock, this can be difficult to achieve. Using the -b:l.ogc:l.ock controls
on systems without a single clock may or may not provide an accurate enough
clock. In particular, the relatively low resolution of many workstation clocks

may not be accurate enough for ParaGraph.

5.4.3.3 Load Balance

For the most efficientcomputation,allprocessorsmust be workingallof the

tinae.The more timethatsome processorsspend waitingforotherstocomplete

theirtasks,the lessefficienta parallelcomputationwillbe. One placeto look

isat the amount of timespentwaitingfora receiveto start;thisisidletime.

Becauseitmay requireextraoperations,C'hameleondoes not alwaysprovide

45



access to the time spent waiting for a receive to start. For p4 and t'VM, it
is necessary to use the command line option -p4 busywait (for p4) or -pyre

busywait (for PVM) to get this information.

5.5 Runtime Control

It is sometimes necessary to control the collection of debugging information
from within a program. For example, it is often helpful to collect an event log
for only part of a program (such as for a particular routine whose performance
needs to be investigated) rather than collect an event log for an entire program.
The routine PISetLogging allows the programmer to selectively control the

generation of event logs, trace files, and summary data. Tile fornlat of this
routine is

PISetLogging( level )
in_ level ;

where level has the following bits:

1 Event logs

2 Tracing

4 Summary data

Using a value of 0 for level disables all options. The values may be "or"ed
together to get the combinations. For example, a level of 3 turns on both
event logs alld tracing.

4_



Chapter 6

Transport Layer-Specific
Control

in most cases, completely portable programs can be written. However, in some
cases, it is necessary to access features that are dependent on the message-

passing system.

6.1 Specifying the Parallel Machines

In using a distributed network of machines as a parallel computer, it is necessary

to specify which machines are to be used. In Chameleon, one can do this in
several ways.

The simplest is to simply specify the number of machines; Chameleon will
then use a file that lists available machines and attempt to find the requested
number of machines. However, sometimes it is necessary to specify the spe-

cific machines. This can be done with the command line argument -pihosl:s
hostaame[,hos_name]. For example, to run a program on the local machine
and a workstation named spaxcl, use -pihosl;s spaxcl.

In some cases, even more information needs to be specified. In this case, a
file should be used that contains the name of the machine and other relevant
values. The format of this file is

$ ¢onlents begin gith a pound sign
nachine-name [[exe-]nane] [[np=]nunber] [ed_name] [arch_naJe]

where ex gives the name of the executable, np gives the number of processes on
that machine, wd is the working directory to be used, and arch is the name of
the architecture.

47



In addition, p4 users may specify a p4 procgroup file directly with the com-
mand line option -pg _i.lename (or -p4pg filename for p4 version 1.:3 and
later).

6.2 Running Programs

Chameleon does not attempt to provide a common invocation environment, in
large part because so many systems have special requirements. This section
touches on some of the pecularities of these systems.

6.2.1 IBM EUI

The number of processors is taken from the environment variable MP_PROCS. If

Ethernet is used for communications, the processors to use is taken from the

file 'host .list' in the current directory. Otherwise, there is (at this writing)
no control over the choice of nodes (this is expected to change). Make sure that
you use COMM=euiwhen invoking make. In addition, be sure that you do

setenv PWD '/bin/pwd'

immediately before executing the program if your login shell is the c-shell
('/bin/csh').

Some later versions of EUI (actually, the underlying support environment,
POE) support the command-line argument -procs np for specifying the number
of processors. This is known only to work from the Korn shell (ksh).

6.2.2 Intel Delta

Programs are started with an mexec command:

mexec -t "(nx,ny)" -f "program-name <arguments>"

where nx,ny is the size of the partition (for nx * ny total nodes) and <arguments>
are the command line arguments for the program. Note the use of quotes; these
are required.

6.2.3 TMC CM-5

CM-5 programs must be run from a front-end attached to a partition with a
given number of nodes; no control over the number of processors is possible
other than by chosing the partition to run in. Also, programs must be linked

with a special linker; makefiles that use the compiler (ce or f77) to produce an
executable will fail. Use $(CLINKER) or $(FLI}iKER) instead.

48



6.3 Command-Line Options

Several of the implementations provide for special options. Currently, p4 and
PVM accept special options.

6.3.1 p4 Options

-p4 busywait Do a busywait during receives; this should be used only
when using -event or -summary to get information on the
time spent waiting for a receive to start.

-p4 list List all of the options available for p4.

6.3.2 PVM Options

-pvm vsnd Use virtual circuits (vsnd and vrcv) rather than the regular

communication (and and rcv). This is available only for
PVM version 2.4.x.

-pvm busywait Do a busywait during receives; this should be used only
when using -even_ or -summary to get information on the
time spent waiting for a receive to start.

-pyre nointr Force PVM to disable interrupts during send and receive
operations. This may be needed because PVM does not

restart sends or receives that are interrupted. Use this if
you get error messages about interrupted system calls.

-pvxa list List all of the options available for PVM.

6.4 Setting Options

The command PISet0ption allows the user to control system specific features.
The format of this routine is

PISetOption( version, name, val )
char *version, *name;

void *val;

where version is the system name (such as p4 or pvm), name is the name of the
option, and val is a pointer to the data associated with name. For example,

PlSetOp_ion( "pvm", "vsnd", (void*)O)) ;

tells PVM to use vsnd/vrcv instead of snd/rcv.

49



Chapter 7

Reverse Compatibility

Chameleon provides a limited capability for running programs written using

other message-passing systems. Currently, Chameleon supports running pro-
grams written using a subset of PICL or lntel NX.

7.1 PICL Compatibility

By linking with the appropriate file, many PICL programs can be run with few
changes. The only change that you must make to the source code is to make

the program hcstless and use the PICall interface. Normally, this involves only
a few simple changes to main program.

The other change is to insert the appropriate compatabilty interface module
in the link line ahead of the Chameleon libraries. The name of the interface

file is 'picl2comm$(COMM). a', where $(COMM) is the usual COMMvariable (equal
either to "", "eui", "p4", or "pyre"). For example, this makefile fragment links
the PICL program in 'pi.f' with Chameleon:

TDIR = /usr/local/tools.core

LDIR = $(TDIR)/Iibs/Iibsg/$(ARCH)

pi: pi.f

$(FLINKER) -g -o pi pi.f $(LDIR)/fmain.o \

$(LDIR)/picl2comm$(COMM).o \
$(TDIR)/fort/$(ARCH)/for_$(COMM).a \

$(TDIR)/fort/$(ARCH)/fort.a \

$(LDIR)/tools$(COMM).a $(LDIR)/tools.a \

$(LDIR)/sys_em.a $(CLIB) $(SLIB)

As usual, symbols CLIB and SLIB are defined by the appropriate bmake include,
and ARCHis the architecture.

5O



Not all of PICL is supported. The supported routines include sendO, reevO,

reevbeginO, recvendO, probeO, recvinfoO, whoO, barrierO, syncO, bcastO,
clockO,checkO,gmaxO,gminO,gsumO,and openO.

In addition, stubs (that do nothing but allow you to link an application) are
provided for setareO, eloseO, clocksyncO, Cracelevel, _racenode,

traceblockbegin,traceblockend,traceexit,tracefiles,and traceflush.

For compatibility with codes written for the [ntel iPSC/860, Delta, and
Paragon, the lntel NX routines mynode, mypid, mclock, gdlow, and gdhigh are
also supported.

One of the major features of PICL is its support of extensive tracing of
operations. Chameleon provides a subset of those events. Use the command-

line switches -event -blogfmat pie1 to produce a PlCL-format trace file.

Versions on the IBM RS/6000 can support only Fortran or C, not both in
the same program. This is because the names of the routines used by PICL
create the same internal names from Fortran and C on the RS/6000 (on most
other systems, the names are made different by adding an underscore or using
upper case for Fortran and lower case for C). This choice is set when PETSc is
installed; the default case is to support Fortran instead of C' programs.

7.2 Intel NX Compatibility

By linking with the appropriate file, many lntel NX programs can be run with
few changes. The only change that you must make to the source code is to make
the program hostless and use the PICall interface. Normally, this involves only
a few simple changes to main program.

The other change is to insert the appropriate compatabilty interface module
in the link line ahead of the Chameleon libraries. The name of the interface

file is 'nx2comm$(C0NM).a', where $(C0NN) is the usual CONNvariable (equal

either to "", "p4", or "pyre"). For example, this makefile fragment links the NX
program in 'pi.f' with Chameleon:

LDIR = /usr/local/tools.core/libs/libsg/$(ARCH)
pi: pi.f

$(FLINKER) -g -o pi pi.f $(LDIR)/nx2comm$(CONN).a \
$(LDIR)/tools$(CONN).a $(LDIR)/tools.a \

$(LDIR)/sys_em.a $(CLIB) $(SLIB)

As usual, symbol CLIB is defined by the appropriate bmake include, and ARCH
is the architecture.

Chameleon currently supports only a few special types of 1/0 operations,
so the [ntel NX [/0 operations (e.g., cwri1:e, ir_,ad, and restricl;vol) and

the routines intended to support these (e.g., eadd) are not supported. The
host/node model available on the iPSC/860 is also not supported.

51



The so-called forcetypes are supported by Chameleon. However, support
is achieved by removing the forcetype bit from the tag; messages should have
distinct tags in the lower 30 bits.

52



Chapter 8

Program Examples

This chapter contains some simple example programs.

8.1 Hello World

[n the the classic "hello world" program, each processor writes "hello world from
<node>" to standard output, where <node> is the number of each processor.

#include "tools.h"

#include "torero/comm.h'°

in_ worker( argc, argv )

int argo;

char **argv;

int i;

for (i=0; i<=PInumtids; i++)

if (PIg_oken(PShllProcs,i))

prin_f( "Hello world from 7,d\n", PImy¢id );

return 0;
>

Note the use of PIgtoken to ensure that only one processor is writing at a time.

The object file 'tools. core/libs/libsg/cmain, o' is used to provide the main
program; this uses the PICall interface to start the parallel program.

The makefile for this program is

ALL: example1

ITOOLSDIR = /usr/local/tools.core

CFLAGS =-I$(ITOOLSDIR) $(OPT) $(COPT)

53



_IR = $(ITOOLSDIR)/Iibs/libs$(BOPT)$(PP_FILE)/$(ARCH)

LIBS = $(LDIB)/cmain.o $(LDIR)/tools$(COMM).a $(LDIR)/tools.a \

$(LDIR)/tools$(CO_).a $(12)IR)/system.a

LIBNAME = dummy

include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)

include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)$(PROFILE)

include $(ITOOLSDIR)/bmake/$(ARCH)

example1: examplel.o
$(CLINKER) -o examplel $(CFLAGS) $(BASEOPT) examplel.o \

$(LIBS) $(CLIB) $(SLIB) -11

The command make ARCH=intelnx BOPT=O builds a version for lnte[ NX (i860,

Delta, and Paragon) machines.

This same program written in Fortran is

integer function worker()

integer i, np

include 'coHa/fcomm.h

C

np= PInumtids()

do 10 i=O,np

if (PIgtoken(PSAllProcs,i) .he. O) then

print *, "Hello ,orld from ", PImytid()
endif

10 continue

worker = 0

return

end

8.2 Ring

A ring example circulates a value around a ring until it returns to the processor

that started the ring. Note the use of the routine PSNbrXnRing to compute the

neighbor instead of the arithmetic expression (Plmyid + 1) % Plnumtids.

int worker( argc, argv )

in_ argc;

char **argv;
{
int bur, siz = sizeof(int);

il (PImytid ==,0) {

bu_ = 1;

PIbsend( 1, kbuf, siz, PSNbrRing(1,1,PSAllProcs), NSG_INT );

54



PIbrecv( I, _buf, siz, MSG_INT );

else {

PIbrecv( 1, _buf, siz, MSG_INT );

PIbsend( I, kbuf, siz_ PSNbrRing(1,1,PSA11Procs), NSG_INT );

return 0 ;

)

The execution of this program may be viewed by running it with the option -
event and then running Upshot on the resulting log file. The sequential nature
of this program will be obvious from the upshot display.

8.3 Rows and Columns

The following example shows the use of processor subsets to perform reductions

along the rows and columns of a grid of processors. It also illustrates the use of

the routine SYArgGetInt to find command line options (in this case, -r rows
and -c coluams for the size of the mesh of processors).

int eorker( argc, argv )

int argc;

char **argv;
(
int row, col, nrows, ncols, i;

double vrow, vcol, work;

ProcSet *prow, *pcol;

/* Set the defaults for nrows and ncols */
nrows = 2;
ncols= 2;

PSSetNeshSize( PSAllProcs, nrows, ncols );

SYArgGetlnt( &argo, argv, I, "-r", Imrows );
SYArgGetInt( &argc, argv, l, *'-c", &ncols );
if (nrows *ncols _= PInumtids) {

if (PImytid -= O)
fprintf( stderr,

"[Zd,Zd] doesn't fit in Zd processors \n'*,
nrows, ncols, PInumtids ) ;

SYexitall ('*'*,I);

PSMESHLOC( PSAllProcs, row, col );

/* note that first arguments must be distinct in different

55



calls to PSPartitionand greater than 0 and distinct for

for the tvo processor sets. */

prow = PSPartition( row + I, PSAIIProcs );

pcol= PSPartition( col + nrows + I, PSAllProcs );

vrow = vcol = (double) PImytid;

PIgdsum( tvrow, I, _work, prow );

PIgdsum( &vcol, I, &work, pcul );

for (i=O; i<=Plnumtids; i++)

if (PIgtoken(PSAllProcs.i))

printf( "Rou sum = Zlf and column sum = Z1f on Zd \n",

vrov, vcol0 Plmytid );
return O;

}

8.4 Nonblocking Communication

Tile next examl)le circulates a value around a ring until it returns to the pro-
cessor that started tile ring. This version uses nonblocking receives to allow the
routines to compute while waiting _r data,

int worker( argo, argv )
int axgc ;

char **axgv ;
{

int bur, siz = sizeof(int), tag = 1;
PIRecvld_t rid;

if (PlmyCid == O) {

bur = I;

PInrecv( tag, _buf, siz, MSG_INT, rid );

PIbsend( tag, kbuf, siz, I, MSG_INT );

PIwrecv( tag, _buf, siz, MSG_INT, rid );
}

else {

PInrecv( tag, _buf, siz, MSG_INT, rid );

while (PInprobe( tag )) {

/* Do some work while waiting for the message ,/
}

PIwrecv( tag, abuf, siz, MSG_INT, rid );

PIbsend( tag, _buf, siz, PSNbrRing(1,PSAllProcs),

MSG_INT );

}
return O;

}

56



Chapter 9

Installation

9.1 Code

The code may lie acquired by anonymous ftp from info.mes.anl.gov in direc-
tory 'pub/pdetools/chameleon. tax'. Z'. Fetch this file (using type image), un-
compress it, and use tar to extract it. This will create a directory 'tools. core'.
The file 'tools. core/readme' contains information on the installation process.
For a quick start, set three environment variables:

TOOLSDIR Directory containing tools.core

P4DIR Directory containing p4, if you use p4

PVMDIR Directory containing PVM, if you use PVM

Move into this directory and then execute 'bin/install'. This will build the

object libraries. (The command bin/install -help will detail the options that
are available for the installation.)

9.2 Host File

For the workstation (p4 or PVM) versions to work, a list of available hosts (work-

stations and other computers) must be created. The format of this list is de-
scribed in Section 2.3.3. Also, PVM or p4 must be installed. These may be found
using xnetlib; p4 is also available by anonymous ftp from info.mcn.aal.gov
in directory pub/p4.

57



Chapter 10

Summary of Routines

This chapter contains a brief summary of the routines in this manual. Tile
chapter is organized into six major parts: program initiation, tile I)oint-to-
point routines, the collective communication routines, the process set routines,
environmental management, and parallel l/O routines. The beginning of each
section lists the include files that are needed by C programmers. Fortran users
should use the 'coma/fcomm.h' file. [f the word HhCRO precedes the routine
definition, it is a CPP macro for C users.

10.1 Program Initialization

#include "tools. h"
#include "¢oaua/comm. h"

lint PICall( ) Calls routine in parallel execution mode.

r, argc, argv & a

int (*r)(), argc;

char **argv ;

10.2 Point-to-Point Routines

#include *'tools.h"

#include "comm/comm.h"

MACROvoid PINeeRecvBuf( msg, max, Allocates storage for receiving a message.
type )

(type *)msg;
int max;

58



MACHOvoid PINewSendBuf( nag, lax, Allocates storage for sending a message.
type )

(type *)msg;
int max ;

cRovOi .......Hi d PIFreeRecvBuf(ug) Free storage for receiving a message
void *msg;

' ' ' ,,iir ............ i ' ..... i i i "

qAcRo void P'IFreeSen'dBuf(msg) Frees storagefor sendinga message,

zoid *meg;
iiiillil i iii iiiil ] i I I il I lilliII iilii

reid PISetNbrRoutines( tree, ring, Setsthe routinesused tocompute the

mesh2d ) neighbors,

.nt (,tree)(), (*ring.)(),(*mesh2d)();
i ' ,l',ii ' ' i' ii -void PlSetOp ion( version, name, val ) Setsa message-passingsystem-specific

char *version, *name; option.

void *val ;
, ,,,,_,_ ,,,, , , .... i ,i , ...... ;

MACHO void PIbprobe(type) Biocksuntila messageofa giventype is

int type ; available.
J ,,,,=,

MAcRO'"'voidPIbrecvProbed( 'type, Receivesa message that has been probed.

buffer, length, datatype)

int type, length, datatype;
void *buffer;

MACROvoid PlbrecvUnsz( type, buffer, Receives a message of unknown length. ...... -

length, datatype)
int type, length, datatype;
void ,buffer ;

d i, ',If ' i" '' I I I ilil I ilHACR void PIbrecvmrr( type, buffer, Receivesa message from anotherprocessor.

length, datatype)

int type, length, datatype;
void .buffer; ,,

qAcROvoid PIbrecvm'("type,buffer, Receivesa message from another processor.

length, datatype)

Lnt type, length, datatype;
void ,buffer;

I , il i III i

MACHO void PIbrecvrr( type, buffer, Receivesa message from another processor.

length, datatype)
int type, length, datatype;
void *buffer;

, , i JuLu, ,

MACRo void Plbrecvi type, buffer, Receives a message from another processor.
length, datatype)

int type, length, datatype;
void *buffer;

'* i L' ' i

MACRO void Plbsendarr( type, buffer, Sends a message toanotherprocessor.

length, to, datatype)

int type, length, to, datatype;
void *buffer;

59



MACROvoid Plbeenda( type, buffer, Sends a message to another processor. ]
length, to, datatype) Iint type, length, to, datatype;

void *buffer;
' I rr i - , , i J, irl i, ,,,,_ ,, i1,,,,, _..,T ....

MACROvoid Plbeendrr( type, buffer, Sends a message to another processor. I
length, to, datatype) Iint type, length, to, datatype;

void *buffer ;

'_CRO void Plbeend( type, buffer, Sends a message to another' processor.

length, to, datatype)
int type, length, to, datatype;
void *buffer;

void Plcrecv(id) Cancels a previously issued P[nrecv.. '
PlRecvId_t id;

I_tCRO void Plcaend(id) Cancels a previously issued Plnsend ....
PISendld_t id;

MACRO_ Plfrom .... - "......... '.................int () Returns the processor that sent a received
message.

I' ' I ' ' ........ ' ' ,. r ' ,, ,,,.

MAORO'int PInprobe(type) Tests whether a message of a gi'ven"type is
int type ; available.

MACROvoid PInrecvm'r( type, buffer, Starts a nonblocklng receive.

length, datatype, id)
int type, length, datatype;
PlRecvld.t id;

void *buffer;
i iiiiiii r l

MACROvoid PInrecvm( type, buffer, Starts a nonblocking receive.

length, datatype, id)
int type, length, datatype;
PIRecvId_t id;
void *buffer ;

.... L . _ ., ............. : , ,,,

MACROvoid PInrecvrr( type, buffer', ..... Starts a nonblocklng receive.
length, datatype, id)

int type, length, datatype;
PIRecvld.t id;

void *buffer;

MACROvoid PInrecv( type, buffer, starts a ll'onblockmg receive. '
length, datatype, id)

int type, length, datatype;
PlRecvId_t id;

void *buffer;

MACROvoid Pinsendarr( type, buffer, ' Starts a nonbiocking send. '

length, to, datatype, id)
int type, length, to, datatype;
PISendld_t id;
void *buffer;

6O



MACRO void PInsendm(type, buffer, Starts a nonblocking send.
length, to, datatype, id)

int type, length, to, datatype;
PISendld_t id;
void ,buffer;

MACROvoi'd PInsendrr"("type, buffer, ""'Starts 'a no_nb'l'ockingsend, ' .....................
length, to, datatype, id)

int type, length, to, datatype;
PISendId_t id;

void *buffer
..... ,.... , ,, ....... , , , , , , ,,, , ,

MACROvoid Finsend( type, buffer, ...... Starts a nonblocking send.

length, to, datatype, id)
int type, length, to, datatype;
PISendId.t id;
void *buffer

'MACROint pInstatus(id) ' ' Tests whether a nonblocking message has
PISendId_t id; completed.

MACRO'intPIsize'O ................. Returnsthe lengiho'f a receivedmessage.

MiCRO i nt PItype'(i ' " " ....... Ret'u'rns the type of the "most 'rece'n'tly "_""....... , .................... ,,, received message.
MACROvoid PIwrecwrr( type, buffer, Completes a nonblocking receive.

length, datatype, id)

int type, length, datatype;
PIRecvId.t id;

_oid *buffer;

_'iCRO void PIwrecvm'( type, buffer, Completes a nonblocking receive.
length, datatype, id)

lnt type, length, datatype;
PIRecvId_t id;

void *buffer
, , ...., ,, , ,, , ,,:,, , , ,,,..,, , .,, .,,, ,,, ,.L,,, , , ,

MACRO void PIwrecvrr( type, buffer, Completes a nonblockingreceive.

length, datatype, id)

int type, length, datatype;
PIRecvId_t id;

void *buffer;

MACRO void PI_recv( type, buffer, Completes a nonblockingreceive.
length, datatype, id)

int type, length, datatype;
PIRecvId_t id;

void *buffer;

FJtCROvoid PIwsendmrr( type, buffer, CompLetes a nonblocking send.
length, to, datatype, id)

int type, length, to, datatype;
PISendId_t id;

void *buffer;

61



, C,on_pletes a nonbiocking send. ]MACROvoid Plwsendm( type buffer,

length, to, datatype, id) Iint type, length, to, datatype;
PISendld.t id;

void *buffer ;

MACRO void PIwsend( type, buffer, Completes a nonblockingsend.

length, to, datatype, id)

int type, length, to, datatype;
PlSendld_t id;

void *buffer ;

10.3 Collective Communication

#include "tools. h"

#include "comm/comm. h"

MACRO void PlbcastSrc( bur, siz, arc, Broadcastsdata toMl processors.

procset, datatype )
void *bur ;

int siz, arc, datatype;
ProcSet *procset;

, ,_ , ,, ,',,: ,

MACR0 void Plbcast( buf,"siz, issrc, Broadcastsdata toallprocessors.

procset, datatype)
void *bur ;

int siz, issrc, datatype;

ProcSet *procset;

MACRO void PIgcolx( ibuf",gsizee',' GlobM collectionfrom data of k't'1own"size."

gbuf, procset ,datatype)

void *Ibuf, *gbuf;

int *gsizes,datatype;

ProcSet *procset;

MACR0 void Pigcol( ibuf, Isize, gbuf, Globalcollectionfrom data"0funknown size.
gsiz, glen, procset,

datatype)

void *Ibuf, *gbuf;
int Isize, gsiz, *glen, datatype;
ProcSet *procset ;

62



I_tCRO void PIgcmax( val, n, work, Computes glob_ ma_mum reduction.
procs_t)

char *val, *work;
int n;
ProcSet *procset;

MACRO void PIgcmin( val, n, work, Computes glob_ minimum reduction.
procset)

char *val, *work;
int n;
ProcSet ,procset;

MACROvoid PIgcsma( val, n, work, IComputes globM sum reduction.
procset) [

char *val, *work; [
int n; ]
Pro_Set *procset; I

MACRO void PIgdmax( val, n, work, Computes globM ma_mum reduction.

procset)

double *val, *work;

int n;
ProcSet *procset;

MACRO void PIgdmin( val, n, work, Computes glob_ minimum reduction.

I procset)

Idouble *val, *work;

lint n;
IProcSet *procset;

procset)

double *val, *work;

int n;

ProcSet *procset; .-_

procset)

float *val, *work;
int n;
ProcSet *procset;

procset)

float *val, *work;

int n;

ProcSet *procset; .
IMACROvoid PIgfsua( val, n, work, Computes glob_ Sum reduction.

procset)

float *val, *work;
int n;

ProcSet *procset;

63



MACROvoid PIgimax( val, n, work, IComputes global maxhnum reduction.

procset) Iint *val, n, *eork;

ProcSet *procset; , ..

MACROvoid PZgimin( val, n, work, Computes global minimum reduction.
procset)

int *val, n, *uork;
ProcSet *procset ;

i Computes global reduction.

II_CaO void PIgistm( val, n,' work. ' sum

J procset )
lint *val, n, *work;

IProcSet *procset ; .

MACROvoid PIgsync (procset) _ynchronizes processors.
ProcSet *procset ;

J_cao int PIgtoken( procset, i) Passes a "token" among processors.

ProcSet *procset ;
Jint i;
void PISetCollectionFtrac( func) Sets the function use for collections (Plgcol)
void (*func) () ;

void PISetCombFunc( func ) Sets the function use for reductions

void (.func) () ; (Plgdsum, etc.).

void PlSetScatterFunc( func, funcarc ) Sets the function use for scatters (Plbca.st).
void (*func) (), (*funcsrc) () ;

void PISetSyncFunc( func ) Sets thefunctionuse forsynci_ronizatioas

void (.func) () ; (Plgsync).

10.4 Process Set Management

#include "tools. h"

#include "comm/comm. h"

Ivoid PSAddMember( procset, ) J'Addsone or more a.s,nembcrsof

P, np processors

ProcSet *procset ; I'processorset.

int *p, np; J
void PSCompile( procset ) Compiles a processorset.

ProcSet *procset ;

Pr'ocSet*PSCreate( name ) ' ' Createsa processorsetstructure.
int name ;

Void PSDestroy( procset ) Destroysa processorsetstructure.

ProcSet *procset ;

64



P_ocSet *PSPartition( pval, procset ) IComputes a partitiondynamicallyby using
lint pval; fan idvaluetopartitionprocessorsinto

IProcSet *procset ; Idisj°intsets.

void PSPrintProcset( ps, form, fp ) IDisplaysa processorsetin a simplified
ProcSet *ps ; Ifashion.

int form; fFILE *fp;

ProcSet *PSUnion( psl, ps2, name ) Forms aprocset from the union oftwo

ProcSet *psi, .ps2; procsets.
int name ;

MACRO int PSISROOT(procset) Returns l ifthisprocessoristhe rootofthe
ProcSet *procset; procset,0 otherwise.

MACR0 void PSMESHLOC( procset, i, j ) Returnsthe locationofthe processorinthe

ProcSet *procset ; mesh.
int *i, ,j;

MACRO int PSMYPROCID( procset ) Returnsthe relativeprocessornumber ina

ProcSet *procset.;....... processorset. .,.

MACRO int PSNUIg0DES( procset ) Returnsthe number ofnodes ina processor

_rocSet *procset ; set.

int PSNbrMesh( offx, offy, wrapx, ' Returns the processor id's of neighbors in a
vrapy, procset ) mesh.

int offx, offy, wrapx, wrapy;
ProcSet *procset ;

Lnt PSNbrRing( offset, wrap, procset ) Returns the processorid'sofneighborsina

Lnt offset, wrap; ring.

)rocSet *procset ;
i

int PSI_brTree(n'br,procset ) Returns theselectedchildor parentofthis

PS_Tree_t nbr ; node.

ProcSet *procset ;

MACRO void PSPROCLIST(procset,list) Returnsthe processorsin the processorset.

ProcSet *procset; This isthe orderingused by Plgcolx.
int ,list ;

MACRO int PSROOT(procset) Returnsglobalidof the rootprocessorof

ProcSet *procset; thisprocessorset.

void PSSetMeshSize( procset, nx, ny ) Setsthe sizeofthe mesh to use.

ProcSet *procset ;
int nx, ny;

65



10.5 Environmental Management
#include "tools. h"

#include "comm/comm. h"

MACROint PIdia_eter Returns the maximum number of hops

between two processors.

_tCBO int PIdistance( from, to) Returns the number of hops between two
int from, to; processors.

MACRO int PInytid Returns processor id of calling processor.

MACROint PIntmtids _e'turns the number of processors.

[in1: PIGetltbrs( nyid, nbrs ) !Returns all of th'e immediate neighbors of a

i

_nt nyid, *nbrs; .: . node.

int PIGetTypes( procset, n ) Gets a range of message types that are
[ProcSet ,procset; unique to a processor set.
lint n;

NACROvoid PIMsgSizes( nin, max) {eturns the range of message sizes. ]
int *min, *max; Ji

void PIliodeNane( name, naxlen ) Creates a string containing the name of the I
char *name ; node. rint maxlen;

v_o£d PISetLoggingBit( hit, fi'ag ) Sets/clears the logging level for
int bit, flag; communications, for a single option.

void PISetLogging( level ) Sets the logging level for communications.
int level ;

void PISetMergeEventFiles( flag ) [Controls whether event files are merged.
int flag; I
void PiSetPacketSize( val ) ]Setsthe packetsizeforcollectiveoperations.
int val; J

void PISetRRSize( val ) Sets thesizeforuse ofready-receiver(force)

int val; in collective operations.

void PISetTracefile( name ) Sets the name of the file for tracing o,tput.
char *name ;

MACRO void PITagRange( log, high) Returnsthe rangeof value(user)message

int *low, *high; tags.

66



10.6 I/O Routines

#include "tools. h"

#include "comm/comm. h"

void PIFPrintArraySpec( fp, sz, nd) Prints a distributed array specifier.
FILE *fp ;

PIArrayPart *sz ;
int nd;

void PIFclose( fp ) Closes a parallel file.
PIFILE *fp; ....

void PIFflush( fp ) "lushes the output to a parallel file.

PIFILE *fp; r'

PIFILE *PIFopen( name, procset, mode, Opens a parallel file.
pmode )

char ,name;

ProcSet ,procset ;

int mode, pmode;

void PIReadCommon( fp, fmat, flen, v, _eads datafrom a paraJlel file.

,f n.,_, datatype )PIFILE

Ichar *front ;
void *v;
lint flen, n, datatype;

void PIReadDistributedArray( fp, fmat, Reads a distributedarrayfrom a parallel

flen, sz, rid,v, datatype ) file.The EXACT same data willbe read in

PIFILE *fp; independentof the number ofprocessors.
char *fmat ;

void *v ;

PIArrayPart *sz ;
int flen, nd, datatype;

Ivoid PIWriteCo_mon( fp, front, flen, v, IWrites dat_ to a parallel file.
I n, datatype ) [

[PIFILE *fp; l

{char *fmat ; I
I"°id I
lint flen, n, datatype; I

void PIWriteDistributedArray( fp, Writesa distributedarraytoa paraJlelfile.

fmat, flen, sz, nd, v,

datatype )

PIFILE *fp;
char *fmat;

void *v ;

PIArrayPart *sz;

int flen, nd, datatype;

67



Acknowledgments

The work described in this report has benefited from conversations with and use

by a large number of people. Among the contributers are David Levine, who
read the drafts, and the early users who requested additional fimctionality and

were patient with our bug fixes. Interaction with the MP] committee helped the
organization of this manual by emphasizing the need to provide an easy-to-use
subset.

68



Bibliography

[1] A. Beguelin, J. Dongarra, G. A. Geist, R. Manchek, and V. Sunderam. A
user's guide to PVM: Parallel virtual machine. Technical Report TM-11826,
Oak Ridge National Laboratory, 1991.

[2] Ralph Butler and Ewing Lusk. User's guide to the p4 parallel program-

ming system. Technical Report ANL-92/17, Argonne National Laboratory,
October 1992.

[3] lan Foster, William Gropp, and Rick Stevens. The parallel scalability of the
spectral transform method. Monthly Weather Review, 120:835-850, 1992.

[4] G. A. Geist, Michael T. Heath, B. W. Peyton, and Patrick H. Worley. PICL:
A portable instrumented communications library. Technical Report TM-

11130, Oak Ridge National Laboratory, 1990.

[5] William Gropp and Edward Smith. Computational fluid dynamics on par-
allel processors. Computers anti Fluids, 18:289-304, 1990.

[6] William D. Gropp and Ewing Lusk. A test implementation of the MPI draft
message-passing standard. Technical Report AN L-92/47, Argonne National
Laboratory, December 1992.

[7] Michael T. Heath and Jennifer Etheridge Finger. Visualizing performance
of parallel programs. IEEE Software, 8(5):29-39, September 1991.

[8] Virginia l-lerrarte and Ewing Lusk. Studying parallel program behavior
with Upshot. Technical Report ANL-91/15, Argonne National Laboratory,
August 1991.

[9] Mark T. Jones and Paul E. Plassmann. An efficient parallel iterative solver
for large sparse linear systems. In Proceedings of the IMA Workshop on

Sparse Matrix Computations: Graph Theory Issues _4 Algorithms, Min-
neapolis, 1991. University of Minnesota.

69



Function Index

P Plnumtids ............ 26

PI_NO_NRECV ......... 24 PiSetCombFunc ......... 36
PI_NO_NSEND ......... 24 P[SetLogging ........... 46
PIbcast ............. 30 PISetNbrRoutines ......... 36
PIbcastSrc ............ 30 PlSetOption ........... 49

Plbprobe ............ 25 PlSetScatterFunc ......... ;37
Plbrecvm .......... 23, 25 PlSetToken ........... :32
PlbrecvProbed .......... 25 Plsize .............. 24
PlbrecvUnsz ........... 23 Pltag .............. 24
Plbsend ............. 23 PITagRange ........... 26
Plbsendm ............ 23 Plwsend ............. 23
Plbsendrr ............ 23 PSAddMember .......... 3:3
PIC,all .............. 13 PSAllProcs ............ 34
Pldiameter ............ 26 PSCompih ............ 34
Pldistance ............ 26 PSCreate ............ 33
PIFreeRecvBuf .......... 25 PSDestroy ............ 34
PlFreeSendBuf .......... 25 PSISROOT ........... :35
Plfrom ............. 24 PSMESHLOC .......... 35

PIgcol .............. 31 PSmytid ............. ,3,5
Plgcolx ............. 31 PSNbrMesh ........... 35
Plgdmin ............. 29 PSNbrRing ........... 35
PlGetToken ........... 32 PSNbrTree ............ 35

Plgsync ............. 32 PSnumtids ............ ,34
Plgtoken ........... 32, 53 PSPartition ........... :34
PlgXand ............. 29 PSPROCLIST .......... 35
PlgXmax ............ 29 PSROOT ............ :35
PlgXmin ............. 29 PSSetMeshSize .......... 3,5
PlgXor ............. 29 PStidFromRank ......... 35
PIgXsum ............ 29 PSUnion ............. 34
PlMsgSizes ............ 26
Plmytid ........... 26, 30 S

PINewRecvBuf ........ 22, 25 SYArgGet[nt ........... 55
PINewSendBuf ........ 22, 25 SYC'hangeResourceDefaults .... 15
PInprobe ............ 25 SYusc_clock ........... 4:3
PInrecvm ............ 24 SYuscDiff ............ 43
Plnsendrr ............ 24
Plnstatus ............ 24

70



Distribution for ANL-93/23

Internal:

J. M Beumer (I00)
F. Y Fradin

W. D Gropp (25)

G. W Pieper
R. L Stevens
C. L Wilkinson

TIS File

External:

DOE-OSTI, for distribution per UC-405 (54)

A_L-E Library (2)

ANL-W Library

Manager, Chicago Operations Office, DOE
Mathematics and Computer Science Division Review Committee:

W. W. Bledsoe, The University of Texas, Austin

B. L. Buzbee, National Center for Atmospheric Research
J. G. Glimm, Stats University of _ee York at Stony Brook

M. T. Heath, University of Illinois, Urbana
E. F. Infants, University of Minnesota
D. OJLeary, University of Maryland
R. E. O'Malley, Rensselaer Polytechnic Institute
M. H. Schultz, Yale University

J. Cavallini, Department of Energy - Energy Research
F. Howes, Department of Energy - Energy Research
B. Smith, University of California, Los Angeles (18)

71



,-¥

P




