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Users Manual for the Chameleon Parallel Programming
Tools

by
William Gropp

Barry Smith

Abstract

Message passing is a common method for writing programs for distributed-
memory parallel computers. Unfortunately, the lack of a standard for
message passing has hampered the construction of portable and efficient
parallel programs. In an attempt to remedy this problem, a number of
groups have developed their own message-passing systems, each with its
own strengths and weaknesses. Chameleon is a second-generation system
of this type. Rather than replacing these existing systems, Chameleon is
meant to supplement them by providing a uniform way to access many of
these systems. Chameleon's goals are to (a) be very lightweight (low over-
head), (b) be highly portable, and (c) help standardize program startup
and the use of emerging message-passing operations such as collective
operations on subsets of processors, Chameleon also provides a way to
port programs written using PICL or Intel NX message passing to other
systems, including collections of workstations.

Chameleon is tracking the Message-Passing Interface (MPI) draft stan-
dard and will provide both an MPl implementation and an MPI transport
layer. Chameleon provides support for heterogeneous computing by using
p4 and PVM. Chameleon’s support for homogeneous computing includes
the portable libraries p4, PICL, and PVM and vendor-specific implemen-
tation for Intel NX, IBM EUI (SP-1), and Thinking Machines CwiMD
(CM-5). Support for Ncube and PVM 3.x is also under development.



Chapter 1

Introduction

Chameleon is a collection of routines that provide a hierarchy of models for par-
allel programming on distributed-memory parallel computers. These routines
are intended to provide a consistent, easy-to-use model of message passing that
enables access to all of the power of a distributed-memory computer. An impor-
tant feature of Chameleon is that, in combination with packages such as p4 and
PVM, code that uses Chameleon (including the program startup routines) needs
no changes to run on a collection of workstations as well as on parallel super-
computers such as the Inte] Paragon and Thinking Machines CM-5. Another
feature is that a wide variety of debugging information (both for correctness
and for performance) is made available. A production library that imposes no
overhead is aiso provided (again requiring no change in the source code).

Chameleon’s overhead is low enough that it was used as the message-passing
system in an application that won a Gordon Bell Prize in 1992 [9]. This applica-
tion, BlockSolve (a package for solving large, sparse, symmetric linear systems),
is publicly available and, because it uses Chameleon, is portable to a wide variety
of systems.

The Chameleon library is organized as a large collection of fairly simple
routines rather than as a small collection of complex routines. It is not necessary
to learn about or even be familiar with most of the routines, though as an
application is developed, many of the routines may come in handy. Chameleon is
part of the Portable, Extensible Tools for Scientific computing (PETSc) library,
which provides manual pages, portable makefiles, and a variety of numerical
support software.

The relationship of Chameleon to other systems is shown in Figure 1.1.
Note that some systems, such as PICL and NX, appear as both inputs to and
outputs from Chameleon. This means that programs written using Chameleon
can run on systems that provide PICL or NX as the message-passing system
and that many programs written using PICL or NX can run on any system that
Chameleon runs on. This “reverse compatibility” is discussed in more detail in
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Chapter 7.

1.1 Why Use Chameleon

Chameleon provides a standardized and extremely low overhead interface to
message-passing software. It provides a uniform interface for program startup
and simplifies the use of clusters of workstations or other computers (including
massively parallel ones). It provides a stable interface to other packages that are
continuing tc change as they are developed. It provides routines for managing
sets of processors (sometimes known as groups), including providing collective
operations on these subsets of processors. Finally, Chameleon is part of a larger
integrated package of routines (PETSc, for Portable, Extensible Tools for Sci-
entific computing) that includes methods for solving large systems of linear and
nonlinear equations, both sequentially and in parallel.

1.2 Organization of the Manual

This manual is organized roughly into four sections. Chapter 2 describes how
programs are initialized in Chameleon. It also contains information on both ho-
mogeneous massively parallel processing (MPP) parallelism and heterogeneous,
distributed-workstation parallelism. Chapter 3 describes point-to-point message
passing routines. Chapter 4 describes the routines for collective operations, in-



cluding the routines for defining subsets of processes. The final chapters describe
some special topics, such as debugging (Chapter 5) and examples (Chapter 8).
The rest of this chapter describes various aspects of the Chameleon system;
all users should at least skim this text. Section l.8 explains how to write a
makefile to use with Chameleon.

1.3 How to Read This Manual

This manual contains both simple examples and detailed information about
using advanced functions. 1o make it easier for the novice, many of the chapters
have a section titled “Cietting Started.” You can read just that section and
skip the rest of the chapter. This will give you enough to get started with
using Chameleon; you will need to read the rest of each chapter to discover
all of CChameleon’s functionality. In addition, you should read Chapter 5 on
debugging.

This is not a reference manual; details of the routines are available through
the man pages or the reference manual (‘tools.core/rets/refman.dvi’). X
Window system users may use ‘tools.core/bin/toolman’ to read the man
pages; this uses the xman program.

This manual does not discuss what message passing is or how to design
‘programs using message passing.

1.4 Basic Routines

This section contains a short summary that will get you started with Chameleon.
It does not contain all of the routines in all of their glory. The calling sequences
for these routines can be found in Chapter 10; some example programs are
presented in Chapter 8. Additional exarmple programs may be found in
‘tools.core/comm/examples’.

Chameleon contains a large number of routines. The set described here is
sufficient to write many portable message-passing programs. These routines
are ordered roughly by use; all programs must use PICall to get started, most
programs will use PIbsend and PIbrecv to send messages, and some programs
will use PIgdsum to perform a global sum.

PICall Call a routine in a parallel execution mode.
Plmnytid Return my processor id.

PInumtids Return the number of processors.

Plbrecv Receive a message from another processor.
PlIbsend Send a message to another processor.
PlIgXmin Form the global minimum of a vector (X = d for

double, f for float, etc.).



PIgXmax Form the global maximum of a vector.
PIgXsum Form the global sum of a vector.

Plbcast Broadcast a vector to all other processors.

These will get you started. There are many additional routines, offering dif-
ferent kinds of sends and receives. There are additional global (or collective)
operations; in addition, all global operations may be performed on subsets of
processors. Various aids for debugging are also provided; see Chapter 5. Com-
plete summaries of the calling sequences for these routines may be found in
Chapter 10. There are man pages for all of these routines.

1.5 A Simple and Complete Example

The section presents a program, written in Fortran, for computing an approxi-
mation to the value of pi. This was chosen because it is a simple program that
makes use of many of these routines. Two makefiles are also presented. One
uses the PETSc makefiles to provide a portable makefile; the other is a makefile
using the p4 system for a collection of Sun 4’s. This second makefile, because
it is more specific, may help in understanding the portable makefile.

This program is a modification of a pi program whose origins are unknown.

integer funtion worker()

integer nprocs, myid, pinumtids, pimytid
integer INTSZE, MSG_INT, PSAllProcs
integer i, n

double precision pi, PI25DT, h, sum, x, £, a, temp
parameter (INTSZE = 4, MSG_INT = 1, PSAllProcs = 0)
parameter (PI26DT = 3.141592653589793238462643d0)

¢ == function to intergrate
f£(a) = 4.d0 / (1.d0 + a*a)

nprocs = PInumtids()
myid PImytid()
10 it ( myid .eq. 0 ) then
write(6,98)
98 format(’Enter the number of intervals: (0 quits)’)
read(5,99)n
99 format (i10)
endif
Call PIbcastSrc(n, INTSZE, O, PSAllProcs, MSG_INT)

¢ —= everyone check for quit signal
it (n .le. 0 ) goto 30



¢ =- calculate the interval size
h = 1,0d0/n
sum = 0.0d0
do 20 i = myid+1, n, nprocs
x = h * {dble(i) - 0.5d0)
sum = sum + f£(x)
20 continue
pi = h * sum

¢ =- collect all the partial sums
call PIgdsum(pi, 1, temp, PSAllProcs)

¢ -~ node 0 prints the answer.
it (myid .eq. 0) then
write(6, 97) pi, abs(pi - PI25DT)
endif
goto 10

97 format(' pi is approximately: ', F18.16,’ Error is: ', F18.16)
30 continue

return

end

This program asks for the number of intervals to use and sends that value
to all the processors (with PIbcastSrc). Each processor then computes its
contribution and uses PIgdsum to compute the sum of the contributions.

The makefile for this example is

ALL: pi

ITOOLSDIR = /usr/local/tools.core

CFLAGS = -I$(ITOOLSDIR) $(OPT) $(COPT)

LDIR = $(ITOOLSDIR)/1ibs/1ibs$(BOPT)$(PROFILE)/$(ARCH)

LIBS = $(LDIR)/tools$(COMM).a $(LDIR)/tools.a \
$(LDIR)/tools$(COMM).a $(LDIR)/system.a

FLIBS = $(ITOOLSDIR)/fort/$(ARCH)/fort$(COMM) .a \

$(ITOOLSDIR)/fort/$(ARCH)/fort.a

include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)
include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)$(PROFILE)
include $(ITOOLSDIR)/bmake/$(ARCH)

pi: pi.o
$ (FLINKER) -o pi $(BASEQPTF) pi.o \
$(FLIBS) $(LIBS) $(CLIB) $(SLIB) -1lm



This makefile relies on features of the PETSc system and requires a few values
to be specified on the make line. For example, to build the program pi to run
on a collection of Sun 4 machines using p4, use

make ARCH=sun4 COMM=p4 BOPT=g

The BOPT=g produces a version with extra debugging support. BOPT=0 should .
- be used for production runs.

The second makefile for this example does not require any additional make-
files; as such, it is specific to a particular platform. In this case, the makefile
supports p4 on Sun 4’s.

ALL: pi

ITCOLSDIR = /usr/local/tools.core

LDIR = $(ITOOLSDIR)/1ibs/1ibs0/sun4

LIBS = $(LDIR)/toolsp4.a $(LDIR)/tools.a \

$(LDIR)/toolsp4.a $(LDIR)/system.a
FLIBS = $(ITOOLSDIR)/fort/sun4/fortp4.a \
$(ITOOLSDIR)/fort/sun4/fort.a
pi: pi.o
£77 -0 pi -0 pi.o $(FLIBS) $(LIBS) \
/usr/local/p4-1.2¢/SUN/1ibp4.a -1m

Note that this makefile also selects a particular optimization option (-0) and
location for the p4 libraries. Changing this makefile for use on, for example,
IBM RS/6000’s requires several changes, including additional libraries to link
with (-1bsd in this case). The portable makefile listed above needs no changes
to run on the RS/6000 or many other architectures.

1.6 Systems Supported

(Chameleon supports both native (vendor) communications libraries and several
popular “portable” communications packages. The “portable” packages sup-
ported are p4 (2], PICL [4], and PVM [1]; programs written with Chameleon
run unchanged on any system that those “portable” packages support. Of these,
p4 supports the widest variety of systems, including workstations and massively
parallel computers.

There is also support for the Intel family of parallel computers, currently
including the iPSC/i860, Touchstone Delta, and Paragon; IBM’s SP-1 (using
EUI); and the Thinking Machines CM-5, using version 2 or later of the CMMD
message-passing library.

The model of parallel computation is a “hostless” MIMD (Multiple Instruc-
tion Multiple Data) one. In this model, there is no distinguished host or pro-
cessor, and each processor may be running a different program. Most modern



parallel computer systems provide this model; it most closely resembles more
conventional uniprocessor programming. It also discourages the use of the host
to do more than start and stop the application; using the host more actively
may degrade the parallel scalability of an application because the host becomes
a resource bottleneck. For programs that require a host, one of the nodes can
be designated the host. Processor subsets, described in Chapter 4, may be used
to restrict operations to the remaining nodes.

There is also “inverse” support for some of the other communications sys-
tems. Programs using the supported subsets of PICL or Intel NX may be
linked with, for example, the p4 or PVM versions of Chameleon, providing an
easy way to port codes from a parallel computer to a cluster of workstations.
This approach is particularly helpful for parallel computer systems with poor
debugging environments; the code may be debugged in a familar environment
of workstations using standard tools.

1.7 Include Files

Most C programs should use the include files ‘tools.core/tools.h’ and
‘tools.core/comm/comm.h’. These should be included with

#include "“tools.h"
#include "comm/comm.h"

Make sure that the C compiler is told to look for include files in the tools
directory; often this is done by using the command line argument
-I/usr/local/tools.core. (It is necessary to tell the C compiler this because
the include files may include additional include files; the path names for these
additional include files is relative to the root of the tools directory tree.) If you
use the portable makefile system, this is done automatically.

Fortran users need not include any files; however, the file
‘tools.core/comm/fcomm.h’ may be useful.

1.8 Linking

To build programs with Chameleon, you need to link with a number of libraries.
For simplicity in using Chameleon for both program development and produc-
tion computing, separate libraries are maintained for debugging, profiling, and
production. These libraries are in the directories

debugging ~ ‘tools.core/libs/libsg’
profiling ‘tools.core/1ibs/libsOpg’
production ‘tools.core/libs/1ibs0’



To allow the libraries for many different architectures to reside on the same
filesystern, the name of the architecture (such as ‘sun4’ or ‘rs6000’) defines an
additional directory level. For example, the debugging libraries for the Sun 4
are found in the directory ‘tools.core/libs/libsg/sun4’.

There are three libraries that you may need to link with. These are ‘tools.a’,
‘system.a’, and ‘tools<comm>.a’, where ‘<comm>’is one of ‘p4’, ‘pvm’, or ‘picl’.
For example, a partial make file is shown below that builds the program ‘example’
using p4 on a collection of Sun 4 workstations: '

COMM = p4
BOPT = 0
CFLAGS = $(BASOPT) $(COPT)
ITOOLSDIR = /usr/local/tools.core
LIBDIR = $(ITOOLSDIR)/1ibs/1ibs$(BOPT)/sun4
example: example.o
$(CLINKER) -o example -0 example.o \
$(LIBDIR)/tools$(COMM).a $(LIBDIR)/tools.a \
$(LIBDIR)/system.a $(CLIB) -lm
include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)
include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)
include $(ITOOLSDIR)/bmake/$(ARCH)

This builds a production version of ‘example’ on a Sun 4. The include lines
provide definitions for CLINKER (the linker for C programs) and CLIB (the com-
munication libraries for p4 in this case), as well as the rule to compile a C
program that uses the Chameleon macros (making sure the appropriate flags
are defined).

1.9 Using Chameleon with Fortran

The C language is the primary language that is supported. Extensive use is made
of the C preprocessor to provide much of the functionality, including traceback
information that automatically includes the file name and line number. This
allows the easy determination of exactly where errors have occurred during
the debugging stage. Fortran is supported to a lesser extent, as there is no
standardized Fortran preprocessor. However, each of the ( routines listed here
has a Fortran counterpart. Where pointers are used in the C version, integers
should be used by the Fortran programmer (the implementation automatically
handles the translation between integers and pointers).

The libraries ‘tools.core/fort/$(ARCH)/fort$(COMM).a’ and
‘tools.core/fort/$(ARCH)/fort.a’ provide a Fortran interface to the Chameleon
routines. These libraries must occur ahead of the ‘tools’ libraries in the link
line. For example, this makefile fragment links a Fortran program (example)
with the appropriate libraries:



ITOOLSDIR = /usr/local/tools.core
LDIR = $(ITOOLSDIR)/1ibs/1ibs$(BOPT)$(PROFILE)/$(ARCH)
LIBS = $(LDIR)/tools$(COMM).a $(LDIR)/tools.a \

$(LDIR)/system.a ~1lm
FLIBS = $(ITOOLSDIR)/tort/$(ARCH)/fort$(COMM) .a \
$(ITOOLSDIR)/fort/$(ARCH)/fort.a
include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)$(PROFILE)
include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)
include $(ITOOLSDIR)/bmake/$(ARCH)
example: example.o
$(FLINKER) -o example $(BASEOPTF) example.o \
$(FLIBS) $(LIBS) $(CLIB)
$(RM) example.o

This assumes that Chameleon is installed in ‘/usr/local/tools.core’.

The interface libraries are constructed automatically from the C program
files. Thus, they should always match the C versions (any new routine added
to Chameleon automatically becomes available to both C and Fortran users; no
special interface code needs to be written).

1.10 Chameleon and the Emerging Message-
Passing Standard

The intent of Chameleon is to allow programmers to select the system that
they find appropriate for the task at hand. In other words, Chameleon does not
replace message-passing systems; it simply provides a common interface to some
of the most popular systems. This common interface includes a uniform way
(from the source code) to initialize a program. Thus, programs written using
Chameleon are highly portable. Further, since Chameleon provides some tools
for running programs written fcr other message-passing systems, Chameleon is
a good choice for developing programs.

We hope that Chameleon can be replaced by the Message Passing Interface
(MPI) standard currently under development; until that standard is specified
and widely available, however, Chameleon gives programmers the widest choice
of message-passing systems, as well as providing a relatively smooth migra-
tion path to the emerging MPI standard. In any event, an implementation of
Chameleon that uses MPI will be provided. Further, an implementation of MPI
using Chameleon will be provided (an early proposal for MPI has already been
implemented in Chameleon and is described in [6]).

We note that the MPI effort does not include any standardized aids for
program correctness or performance debugging. Chameleon provides these, as
well as preserving any such aids provided by the underlying implementation
layer (such as the trace files produced by PICL or p4).
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1.11 Further Information

More detailed information about the routines mentioned in this manual may be
found in the man pages (in manual section 6 “Low-level communications”) or
in the reference manual (‘tools.core/rets/refman.dvi’). The script toolman
is one of the tools provided by PETSc for accessing the detailed documentation
on the routines and may be found in ‘tools.core/bin/toolman’. PETSc also
provides a number of routines that may be of interest to users of Chameleon,
including routines to report on floating-point errors, memory-space tracing, and
debugging. See the man pages for more information.

(hameleon is ~ontinually growing through the addition of new routines. Sug-
gestions (and bug reports) should be e-mailed to ‘gropp@mcs.anl.gov’. A users
group has been set up by David Keyes; send e-mail to him (‘keyes@cs.yale.edu’)
to be added to the PETSc mailing list.

11



Chapter 2
Starting Programs

One of the least considered but most important aspects of parallel program-
ming models is the method by which a parallel application is started. Many ap-
proaches provide a very flexible but cumbersome approach. The approach taken
here is to require as few changes to a sequential program as can be managed,
whether the program is an existing application or a new design. As always,
the advanced user with special needs can use vendor and/or system-specific
mechanisms to provide special features (Chameleon does not prevent the user
from accessing these features). The goal of the Chameleon routines is to make
a parallel program look as much like a uniprocessor program as possible. For
example, if a uniprocessor program, a.out, is run by

a.out <arguments>
then the parallel version is just
a.out ~-np <number_of_processors> <arguments>

This is accomplished by taking the original main program and turning it into a
routine that is executed in parallel.

2.1 Getting Started

For most users, a very simple interface is suitable; just replace
main (argc, argv)
with

worker (argc, argv)



This uses a main program provided by the file ‘cmain.o’ (for CC programs) or
‘fmain.o’ (for Fortran programs) in the tools library (for example,
‘tools.core/libs/libsg/sun4/cmain.o’) that must be linked with when you
link your program. A sample makefile is provided in Chapter 8. This interface
provides for a wide variety of command line options; these are discussed in detail
in Section 2.3. To get started, all that you need is the -np option which specifies
the number of processors. Section 2.3.4 describes arguments that are useful in
debugging programs. Fortran users should replace program main with integer
function worker() and add the file ‘fmain.o’ to the link step. This process is
demonstrated in the sample makefiles,

2.2 PICall Interface

For more flexibility, Chameleon allows you additional control by providing the
PICall routine. A sequential program that begins with

main(argc,argv)

is replaced by

main(argc,argv)

int argc;

char **argv;

{

int worker();

/* user setup ... */

PICall( worker, argc, argv );
}

worker( argc, argv )

When this program is run, it will use a collection of processors. PICall will
process some of the arguments in argv; these allow the user to specify the
number of processors, various debugging flags, and resource limits.

2.3 Options

PICall processes a number of options in the argument list (arge and argv).
These can be divided into three categories: parallelism arguments, resource
limits, and debugging. The debugging options are discussed in detail in Chap-
ter 5. Some of these are meaningful only for distributed computing (such as on
a collection of workstations).
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2.3.1 Parallelism Arguments

The following parallelism arguments describe the number of processes, location
of the executable, and the type of machine on which to run the program.

-up n Specifies the number of processors, n, to use
-arch name Specifies the architecture to run the program on
-exes name " Specifies the full path name of the executable

-pihosts names  Specifies the names of the machines to run on. The names
must be separated by commas.

Only the -np n argument is required; the others will be determined from the
environment that the program is run on (that is, if you start a program on a
Sun 4, the architecture will be sun4 and the name of the executable will be that
of the running program).

The architectures may be set with the environmental variable TOOLSARCHES.
If, for example, you issue the shell command

setenv TOOLSARCHES sun4:rs6000:IRIX

any (Chameleon program will attempt to use any machines of the type sun4,
86000, or IRIX that are available,

On an MPP such as the Intel Delta, none of these arguments are needed. For
example, to run the program example using 16 processors (on a 4 by 4 mesh)
on the Delta, use

mexec -t '"(4,4)" -f "example"

Here, mexec is the Intel NX command to start a program on the Delta. Chameleon
does not specify how a program is started; rather, it strives for source code porta-
bilily. That is, the source code is portable even if the interface to the operating
system commands to start a parallel job is not.

2.3.2 Resource Limits

With any program, it is necessary to set sorne limits on the amount of resources
used. With uniprocessor programs run on an individual’s workstation, this
resource limitingis often done manually by the user: if the program is taking too
long or using too much memory, the user kills it. In a parallel environment, this
is often difficult. When running on a collection of workstations, many (perhaps
all) of the processes will be running on remote workstations. In this case, manual
detection of runaway or greedy processes is impractical. To provide a simple
mechanism to prevent runaway jobs, PICall enforces resource limits on C(!PU
time, elapsed time, memory use, and page faults (since a code that is generating
large numbers of page faults will often adversely affect the performance of a
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workstation, as well as run poorly). Default limits that are suitable for small
programs are provided; these limits can be overridden on the command line
with the following arguments:

-cpu min Minutes of CPU time allowed.
-mem mb Megabytes of memory allowed.
-pfn “Number of pagefaults allowed.
-nice n Nice increment.

-dtime hh:mm  Total elapsed time (hours:minutes) allowed.

-atime hh:mm Absolute time by which the program must be finished (on
the same day as it started).

These arguments may also be set by calling the routine
SYChangeResourceDefaults before calling PICall.

2.3.3 Hosts File

When Chameleon is used for distributed computing, it needs to determine the
processors that will be used. Several methods are provided for this. One, which
will be discussed later, allows the user to list the processors to be used. However,
in most cases (particularly when the distributed-computing version is being
used to debug programs intended for an MPP), any available processors can be
used. PICall uses a file, called the hosts file, to determine which computers are
available and what resource limits apply to each machine, Each line of the file
specifies a computer (by internet host name), architecture type, principal user,
number of processors, type of processor (workstation, shared-, or distributed-
memory), and resource limits. The resource limits are specified as a time period
when the limits apply, and the actual limits. A particular computer may be
mentioned on several lines, with each line indicating a different time period. For
example, the following three lines indicate that the machine mysun is available
for small jobs from 8 am to 6:30 pm Monday through Friday and for large jobs
the rest of the time, Small jobs are defined by the third line as those using no
more than 5 megabytes of memory, 8 CPU minutes, and 1000 page faults. In
addition, the job will be “niced” by 9. User gropp, the principle user of the
machine, may use it at any time.

mysun sun4 gropp 18:30-08:00 M-F 0 0 o10W
mysun sun4 gropp 00:00-23:59 $-Su 0 0 o10W
mysun sun4 gropp 08:00-18:30 M-F 5 8 1000 1 9 W

The next example shows a shared-memory machine with 20 processors. This
machine is named srver and is available at all times,
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srver symmetry root 00:00-23:59 M~Su 0 0 0 20 0 S

The option -1istnodes will list the processors that have been chosen. The
option -pidbug will indicate which processors in the hosts file were accepted
and which were rejected, along with the reason for that rejection. .

The location of the hosts file is given by the environment variable
TOOLSHOSTS (for p4 programs) or TOOLSPVMHOSTS (for PVM programs); a de-
fault is established when the Chameleon package is installed. The entries in this
file must follow some very particular rules; should you need to modify it or pro-
vide your own hosts file, try to find an example that is close to what you want.
Also, be careful that you do not use other people’s workstations without their
permission; one of the main reasons for the hosts file database is to encourage
the contribution of workstations to a pool of available computers. The principal
users of a workstation are more likely to contribute their machines if they know
that their workstation will not be pummeled by users of parallel programs.

2.3.4 Debugging

PICall understands a number of arguments that aid in debugging parallel pro-
grams both for correctness and for performance. These arguments are described
briefly below; more details are in Chapter 5.

-trace Enable communication tracing.

-tracefile name  Specify a file name for the tracing information to be written
to; stdout is the default. If the nome contains “%d”, the
value of PImytid (the processor number) will replace the
“%d”.

-event Enable event tracing. A logfile will be written.

-eventfile name  Specify the event file. The same syntax is used as for -
tracefile.

-summary Enable communication summary,

2.4 Examples

This section shows how to use the command line arguments to specify different
processors and informational behavior from a program.

a.out -np 4 Use four processors from any that are available

a.out -np 4 -pihosts sun2,sun3,sun4 Use the four processors consisting of
the processor the program was started on and the hosts sun2, sun}, aad
sun4.
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a.out -up 4 -cpu 1 -mem 4 Use any four processors, restricting the run to 1
CPU minute and 4 megabytes of memory (such a restriction may make
more machines available).

a.out -np 4 -trace Cause all message-passing operations to write to stdout
(see Chapter 5). ; .

a.out -np 4 -event Produce an event file for use with Upshot [8].

a.out -np 4 -event -blogfint picl Produce an event file for usc with Para-
Giraph [7).

2.5 In Case of Trouble

On a collection of workstations, the most common cause of trouble is having too
few workstations available. PICall uses a database of workstations (described
in Section 2.3.3) to guide the selection of available machines. This database
includes resource limits on CPU, memory, and pagefaults. Different limits may
be established for different times of day. Through the use of this database,
the workstation owners (the principal users of the workstations) are assured
that their machines won’t be swamped with remote jobs when they need them;
conversely, their machines can be made available for short development tests
during the day and for long production runs at night,
The most common cause of the message

Could not find enough acceptable processors

is that there are not enough processors offering the requested resources. Try
specifying smaller values of -cpu and ~mem on the command line. If this does not
work, make sure that the database contains enough processors of the requested
architecture. The default database file is ‘tools.core/comm/hosts’. The file
name can be overridden by specifying the environment variable TOOLSHOSTS for
p4 and TOOLSPVMHQSTS for PVM.

If the parallel job seems to start but then hangs, there may be a problem
with the workstations or your program’s access to them. Unless you are using
the p4 server, p4 requires that rsh work; try doing rsh <workstation> 1s for
each workstation that you wish to use. When p4 is used, a temporary file is
created with a name that begins with the characters PI, for example, PIa1037.
This file is a p4 procgroup file and lists the machines being used. On successful
completion of a run, this file is removed. If the program hangs, you may refer
to this file to help determine which machine may be causing the problem.

PVM 2.4.x has a particular feature that can sometimes cause a job to hang. If
a program aborts or is killed in a way that does not cause all of the participating
processes to execute the PVM leave routine, it is impossible to rerun that
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program successfully without restarting the PVM daemon. This problem is
caused by the way parallel programs in PVM get access to each other through
the enroll routine. If you suspect that this is the problem, kill and then restart
the PVM daemon and then try running your code.

Finally, both p4 and PVM benefit from starting a “server” before running
any parallel programs. Sample shell scripts that use the host database to start
the servers is in ‘tools.core/comm/daemons’. These may be run by any user.
It is not necessary to run these scripts, but doing so may significantly reduce
the time that it takes to start a parallel application.

If all of this fails, look at Chapter 5 on debugging. The options -~trace may
be used to indicate where a program is getting hung.
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Chapter 3

Message Passing

Message passing is a well-known and portable method for writing parallel pro-
grams. This document does not describe the technique; rather, it describes a
particular portable implementation. This implementation is designed to make
the full power of a message-passing system available; it is not a least-common-
denominator design.

As an aside, if you are writing an apy.ication program, you may not need
any of these routines (except perhaps the inquiry routines). Instead, you should
see whether any higher-level communication or computation routines (such as
a parallel linear solver) meet your needs. If you do not find the routines you
need, let us know. They may be available elsewhere, or they may be general
enough that they could be added to Chameleon.

On systems that do not support certain message-passing features, such as
nonblocking communications, Chameleon will automatically emulate the behav-
ior (as much as possible). Thus, one need not give up efficiency on a particular
machine in order to obtain portability. Chameleon also provides a way to deter-
mine which features are supported, in the event that different algorithms would
be used depending on the available features.

3.1 Getting Started

It is not necessary to master all of these routines to write a working parallel
program. To begin with, use the blocking message-passing routines with user-
specified buffers. These routines are

PIbsend(tag,buffer,length,to,datatype);
PIbrecv(tag,buffer,maxlength,datatype);

The first line sends a message, and the second line receives one. The parameters
are
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tag

buffer

length

maxlength

to

datatype

User-specified message tag (often called the message type).
This should be a non-negative integer; it should also not
be too large (the routine PITagRange will give the range of
allowable tags).

Pointer to the buffer to send (for PIbsend) or to receive’
into (PIbrecv).

Length of the message to send, in bytes.

Maximum length of a message to receive, in bytes. The
routine PIsize may be used to determine the actual size.

Processor id of the processor to send to. This is an integer
between 0 and PInumtids-1. The id of a processor is given
by PImytid.

Datatype of the message. The use of this parameter to
build programs that are portable to heterogeneous collec-
tions of processors is discussed below. A table of possible
values is given below.

3.2 Overview

In Chameleon, message passing means sending a buffer of data (the message)
with a user-defined tag from one processor and receiving it on another proces-
sor. The choices of buffer, the kind of sending semantics, and the time when
the buffer becomes available for reuse are made by selecting one of a set of
message-passing routines (all with nearly identical calling sequences). This sec-
tion describes the routines for sending messages consisting of contiguous bytes.
This is the most common type of message.

The names of the message-passing routines (actually macros in C) have the
following general format:

PI<blocking?><operation><user_buffer?><fast_protocol?>

Below we describe the choices for each of the four fields.
The operations are

send

recv

Send a message.

Receive a message.

The values for blocking? are
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Blocking operation. When the routine completes, the op-
eration has been performed. For a send, this means that
the message has been sent (but not necessarily received).
For a receive, this means that a message has been received.

Nonblocking operation. When the routine completes, a
handle has been set. It is necessary to use the wait modifier
with this handle to ensure that the operation (both sends
and receives) has completed.

For nonblocking operations, wait until a previously requested
operation completes.

The values for user_buffer? are

<null>

Indicates that the buffer was not allocated with the mes-
sage buffer allocation routines (see PINewSendBuf and
PINewRecvButf). This is the usual case.

Indicates that the buffer was allocated with the buffer al-
location routines.

Here, <null> means “blank”.
The values for fast_protocol? are

rr

<null>

Indicates that a fast but possibly unreliable message pro-
tocol is to be used. A message sent using this modifier
may be discarded if the destination processor has not al-
ready executed an appropriate receive, or an application
may block until the destination executes a receive for this
message. The “rr” stands for “ready receiver.”

Indicates that a correct but possibly slower protocol should
be used for messages.

In addition to these routines, there are routines to determine whether mes-
sages are available and whether a nonblocking routine has finished. These are
also described below.

All of the routines that send or receive data take a datatype argument. This
indicates what kind of data the message contains; it is used to allow the use of
heterogeneous collections of machines which may use different storage formats
for integers, floating-point values, etc. The valid datatypes are as follows:
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Datatype C Fortran
MSG_SHRT short

MSGANT int integer
MSG.LNG long

MSG_FLG float real

MSG_DBL double double precision
MSG_.OTHER char character

MSG_OTHER should be used for any data whose type is unspecified.
This raises the issue of what to do if a message containing different datatypes
is to be sent, for example, a structure defined as

struct {
int n, m;
double a, b;
}

If you are using machines that all use the same storage formats, and you
do not want portability to collections of machines with {lifferent formats, use
MSG_OTHER. (You should mark this in your code; such assumptions can cause
difficult maintenance problems.)

3.3 Blocking Message-Passing

Blocking message-passing is the simplest form of message passing. The term
blocking here refers to the message buffer: when the routine exits, the buffer is
ready for use. In the case of a send, this means that the buffer may be reused.
For a receive, this means that the buffer contains the received data. The basic

routines are

PlIbrecv Receive a message of a given tag into a buffer that
was allocated by the user.

Plbsend Send a message of a given size (in bytes) to another
processor.

PIbrecvin Receive a message of a given tag into a buffer (allo-
cated with PINewRecvBuf)

PIbsendm Send a message of a given size (in bytes) to another
processor. The buffer must have been allocated with
PINewSendBuf.

PlIbrecvUnsz Receive a message of unspecified length.

PIbrecvUnsz allocates a buffer for the message and
returns a pointer to the allocated buffer and the size
of the message.
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The formats are

PIbrecvm(tag,buffer,maxlength,datatype)
PIbsendm(tag,buffer,length,to,datatype)
PIbrecvUnsz(tag,&buffer,&size,datatype)

The parameters are

tag Message tag

buffer Pointer to buffer

datatype Datatype (e.g., MSG_INT)

length Size of message to send in bytes

maxlength Size of the buffer in a receive (allows a message of this size
or smaller) in bytes

size Size of a received message in PIbrecvUnsz in bytes

For more details, see the man pages or the reference manual.

The variants such as PIbsendrr have the same calling sequences but the
slightly different semantics, as described in the overview.

There are four such routines:

Plbrecvrr  Plbrecvmrr
Plbsendrr Plbsendmrr

3.4 Nonblocking Message-Passing

Nonblocking message-passing allows the programmer to overlap communication
and computation (when the underlying hardware and system software supports
it). This is done, in the case of a send, by specifying a buffer to send. The state
of the buffer becomes undefined and may not be changed by the programmer
until the send operation completes.

A sample use of a nonblocking send is

PISendId_t id;

PInsend(tag,buffer,length,to,datatype,id)
. much computation ...
PIwsend(tag,butfer,length,to,datatype,id)

The programmer may not use the buffer until the PIwsend completes (the con-
tents at that time are implementation defined). The parameter id (which is not
present in the blocking version PIbsend) is an identification value that permits
multiple nonblocking sends to be issued before their corresponding PIwsends.
In the case of a nonblocking receive, the programmer tells the system where
to put a message when it arrives. This can save memory references and can
significantly improve the performance of a parallel program. A sample use is
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PIRecvId_t id;

PInrecv(tag,buffer,maxlength,datatype,id)
. much computation ...
PIwrecv(tag,buffer,maxlength,datatype,id)

The “wait” has the same parameter list as the “nonblocking” operation in order
to make it easy to simulate nonblocking operations with blocking ones. It also
aids the programmer in seeing just what data was expected at the end of a
nonblocking operation; this allows easy runtime checking that the expected
operation was performed.

The variants such as PInrecvm and PInsendrr have the same calling se-
quences but the slightly different semantics, as described in the overview.

There are twelve such routines:

Plnrecvm  Plnrecvrr  Plnrecvmrr

PInsendm Plnsendrr Plnsendmrr
Plwrecvm  Plwrecvrr  Plwrecvmrr
Plwsendm Plwsendrr Plwsendmrr

In addition to these routines, the routine PInstatus may be used to de-
termine whether a particular nonblocking message operation has finished. The
format is PInstatus(id), where id is the identification value from the PInsend
or PInrecv. PInstatus returns the value | if the message is completed and 0
otherwise.

Note: if nonblocking messages are not supported by the underlying system
software, the use of the pairs PInsend()...PIusend() and
PInrecv()...PIwrecv() will still work. However, PInstatus in those cases
will always return 0.

The macro PI_NO_NSEND is defined if there is no nonblocking send;
PI_NO_NRECV is defined if there is no nonblocking receive. These may be used
to select different algorithms in the two cases at compile time.

3.5 Information about a Message
When a message is received, the basic routines simply return. Sometimes, ad-

ditional information is required, such as who sent the message, how long it is,
and what message tag it had. These are available from the following routines:

PIfrom Return the processor id of the sender of the message.
‘PIsize Return the length of the message in bytes.
PItag Return the tag of the message.
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These all return information about the last message received; they should be
called at most once for each message. Each is a function that takes no parame-
ters (i.e., use PIfrom() to determine which processor sent the last message that
was received).

This approach is not “thread safe.” That is, it can cause problems if there
are multiple threads of control. This situation can happen if, for example, a
signal or interrupt handler issues a receive. The MPI draft standard provides
a thread-safe version; the next version of Chameleon may provide a thread-safe
version of the receive routines (in an upward compatible way, of course).

Two routines allow the programmer to determine whether a message of a
given tag is available. The routine PInprobe returns 1 if so, and 0 if not. The
routine PIbprobe does not return until a message of the specified tag becomes
available. The formats of these routines are as follows:

PInprobe(tag) Nonblocking test for a message of the given tag
PIbprobe(tag) Blocking test for a message of the given tag

To receive a message that has been probed for, use PIbrecvProbed rather
than PIbrecvm. The former is needed because of race conditions in some im-
plementations of PIbprobe and PInprobe. The format of PIbrecvProbec. is

PIbrecvProbed( tag, buf, maxlength, datatype )

3.6 Message Buffers

For the best performance on some systems, buffers that are used for sends and
receives should be allocated with the routines PINewSendBuf and PINewRecvBuf.
These routines allow the underlying implementation to use special buffer formats
or structures for improved performance; if these routines are not used to allocate
buffers, be sure to use the user_buffer=<null> versions of the send and receive
routines. (Fortran users cannot allocate memory this way, so they cannot use
the m versions.)

PINewSendBuf Allocate a send buffer. The format is
PINewSendBuf (buf,size,type), where type is a valid C
type. For example, to create a buffer buf for 32 doubles,
use PINewSendBuf (buf,32*sizeof (double),double).

PINewRecvBuf Allocate a receive buffer. The format is the same as
PINewSendBuf.

PIFreeSendBuf Free a buffer allocated with PINewSendBuf. The format for
freeing a buffer buf is PIFreeSendBuf (but).

PIFreeRecvBuf Free a buffer allocated with PINewRecvBuf.
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3.7 Machine Topology

Some parallel programs need to know something about the number of processors
and the interconnection of processors on the parallel machine on which they are
running. Other information, such as the ranges of valid message sizes and tags,
is needed by general-purpose programs. Virtually all programs need to know
the id of the running process. This information is provided by the following
routines:

PInumtids Returns the number of processors

PImytid Returns the index of the processor, in the range 0 to
PInumtids—1

PIdistance (iives the distance between two processors. The format is

PIdistance(from,to). The returned value is the number
of hops from processor from to processor to. The exact
definition of a hop is implementation dependent; the only
requirement is that PIdistance(from, from) is zero. Note
that an implementation may define PIdistance(from,to)
to be zero even for from different from to. The value must
be non-negative.

PIdiameter Returns the maximum value of PIdistance for all pairs of
processors. This is the “diameter” of the parallel processor.

PIMsgSizes Returns the minimum and maximum message sizes. The
format is PIMsgSizes(&min,&max); the values min and max
are in bytes.

PITagRange Returns the range of valid message tags. The format is
PITagRange(&low,&high). Note that some systems have
a very limited range of tags.

Most of these routines are actually macros that return simple values.

3.8 System Functionality

( programmers can access, through macros, information on the capabilities of
the parallel system at compile time. These macros are

PI_NO_NSEND Defined if nonblocking send is not supported by the trans-
port layer

PI_NO_NRECYV Defined if nonblocking receive is not supported by the trans-
port layer
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PI_NO_READYRECEIVE Defined if ready-receive is not supported by the
transport layer

PI_NO_NATIVE_GLOBAL Defined if the transport layer does not directly
support collective operations on all processors

In all cases, Chameleon will simulate the capability if the underlying transport
system does not provide it.
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Chapter 4

Collective Operations

Many programs require operations that involve a collection of processes. When
every processor is involved, these are called global operations. Examples in-
clude barriers (all processors wait until all have reached the barrier), sums (all
processors contribute to a sum), and broadcasts (one processor sends a value to
all others). These operations also make sense on any subset of processors. The
routines described here allow the programmer to dynamically define subsets of
processors. All of the collective operations are defined on these subsets. For
simplicity, these routines are described first for collective operations on all pro-
cessors by using the predefined processor set PSA11Procs that contains all of the
processars. Section 4.6 describes how to define subsets of processors. Section
4.10 discusses where and why processor sets are useful.

4.1 Getting Started

The most common use of collective communication routines is on all of the
processors (as opposed to a subset of the processors). The routine

PIbcast( buf, size, issrc, PSAllProcs, datatype )

broadcasts a buffer but of size bytes to all processors; the value of issrc is 1
for the sender and 0 for all other nodes.
The routine

PIgdsum( val, n, work, PSAllProcs )

sums val (an array of size n of doubles) across all processors, returning the sum
in val. The array work of size n doubles must be provided.

There are additional routines for finding the maximum, minimum, and log-
ical operations on various datatypes.
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4.2 Reductions

A common operation in parallel programs is the reduction of a value (or col-
lection of values) held on many processors into a single value (or collection of
values). For example, each processor may compute a valuew and desire the
minimum of all the v’s on all processors. If v is a double, the routine
PIgdmin will compute that minimum. Since a reduction requires combining
values, it is necessary to know what datatype and format is being combined.
These datatypes are double, int, float, etc. To simplify the routines, the second
character in the routine name is used to denote the datatype.
These characters are

d double
i int
f float
¢ char
The routines are
PIgXsum Finds the sum of the values across the processor set.
PIgXmax Finds the maximum of the values across the processor set.
PIgXmin Finds the minimum of the values across the processor set.
PIgXor Finds the logical “or” of the values across the processor set (X
may be i or ¢ only).
PIgXand Finds the logical “and” of the values across the processor set (X

may be i or ¢ only).

The last two routines are not defined for double or float types.

The format of all of these routines is the same:
PIgxxxx(val,n,work,procset), where work is a work area of the same size
as val, and n is the number of elements. For example, to find the maximum
value of a number on all processors, use

double val, work;

Plgdmax( &val, 1, &work, PSAllProcs );

When any of these routines exits, val contains the result.

Some systems separate the meaning of reduction from combination; in one
case, a single node gets the reduced value; in the other, all nodes get the value.
Chameleon currently provides only the version where the final value is made
available to all nodes.

The routine PIcombine will combine values using a user-provided routine.
The format of this routine is
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void PIcombine( val, n, work, procset, elmsize, datatype, op )
void *val, *work;

int n, elmsize, datatype;

ProcSet *procset;

void (*op) ( );

where the routine op is defined as

void op( a, b, n )
void *a, *b;
int n;

and the result of op is to perform the operation a — a op b. In this way users
may easily write their own global operations, for instance, multiplication, which
will be as efficient as the standard global operations,

4.3 Broadcast

Broadcast routines send a buffer to all other nodes in the designated processor
set. The source of the buffer can be indicated in two ways. With

PIbcast, exactly one processor should set the argument issrc to I; all others
use 0. This is appropriate for programs where the source of the buffer is not
known, The format of this routine is

PIbcast( buf, size, issrc, procset, datatype )
void *but;

int size, issrc, datatype;

ProcSet *procset;

If the source is known, the routine PIbcastSrc should be used. This routine
takes an arguinent src that is the processor id (from PImytid) of the processor
that is the source of the data to scatter.

The format of this routine is

PIbcastSrc( buf, size, src, procset, datatype )
void *but;

int size, src, datatype;

ProcSet #*procset;

Care should be taken in using these routines. All processors in the selected
processor set must call the same routine (either PIbcast or PIbcastSrc). If
there are multiple, nondisjoint processor sets, all of which are using a PIbcast,
it is necessary to ensure that there is no possibility of deadlock. For example,
if there are two processor sets set1 and set2, each containing the 2 processors
0 and 1, then the code
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it (PImytid == 0)

PIbcast( ..., setl, ... );

PIbcast( ..., set2, ... );
else

PIbCaBt( L ] 8°t2. 0. );

PIbcast( ..., setl, ... );

will deadlock.

4,4 Gather

(iather routines allow data from all nodes to be gathered to all nodes. Each
processor contributes some local data (in 1buf) and, at the completion of the
routine, receives the collected data (in gbut). The routine PIgcol handles the
case of data of variable and unknown size; PIgcolx handles the case of data of
known size.

The format of PIgcol is

PIgcol( lbuf, lsize, gbuf, gsize, glen, procset, datatype )
void *1buf, *gbuf;

int lgize, gsize, *glen, datatype;

ProcSet *procset;

The parameters are

Ibuf Buffer to hold the local contribution
lsize’ Number of bytes in the Ibuf

gbuf Buffer to hold the result

gsize Size of gbuf in bytes

glen Actual number of bytes received
procset Processor set to collect over
datatype Datatype of lbuf and gbuf

The order of the collected data is implementation defined.
The format of PIgcolx is

PIgcolx( lbuf, gsizes, gbuf, procset, datatype )
void *1lbuf, *gbuf;

int *gsizes, datatyps;

ProcSet *procset;
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The parameters are

1buf Buffer to hold the local contribution

gbuf Buffer to hold the result

gsizes Array of the sizes of each contribution (gsizes [PImytid] The
size of the local contribution)

procset Processor set to collect over

datatype Datatype of lbuf and gbuf

The data is collected in order of node number. For processor subsets, the order
is that returned by PSPROCLIST.

4.5 Barriers

Often, it is necessary to have all processors stop until they all have reached a
common point in a computation. Such an operation is called a barrier, ren-
dezvous, or synchronization. This is provided by the routine PIgsync. The
format is PIgsync(procset).

As a special case of a barrier, it is sometimes necessary to allow only one
processor to access a resource at a time. For example, if each processor is to
write to a file (or to standard output), it is necessary to ensure that only one
writes at a time. A simple way to do this is with a barrier:

for (i=0; i<PInumtids; i++) {
PIgsync(PSAllProcs);
if (i == PImytid) {
<myoutput>
}
}

However, this can be very inefficient. The routine PIgtoken provides an alter-
native approach, The same effect as above is achieved with

for (i=0; i<=PInumtids; i++) {
it (PIgtoken(PSAllProcs,i)) {
<myoutput>
}
}

The routine PIgtoken passes a “token” from one processor to the next in se-
quence, returning the value | when a processor receives the token. The actual
value of the token may be set with PISetToken and retrieved with PIGetToken.
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4.6 Processor Sets

A processor set is a collection of processors. Usually, this is a subset of the
total number of processors available. To the user, a processor subset is just
a pointer to a structure; the internal contents of this structure are used by
the library to perform the requested operations. When the processor subset is
no longer needed, the subset should be deleted. As a practical matter, using
the three-phase process of creating a subset, using the subset, and deleting the
subset allows the library to spend extra effort to optimize the use of the subset.
This optimization may include choosing special communications schedules for
the collective operations.

A processor set is created with the routine PSCreate. Each processor set
must have a unique name that all processors in the set agree on.

To use these routines, create a processor subset (procset) and specifiy which
processors are in that subset. This ProcSet is then passed to the collective oper-
ation routines. A predefined set, containing all of the processes, is PSA11Procs.
An example of this process is

ProcSet *procset;

int name;
name = §;
procset = PSCreate( name );

When a processor set is created, it has no members. To add members, use
PSAddMember. This takes an array of processor numbers and a processor subset
and adds those processors to the set. It may be called muitiple times to add
groups of processors. The following two examples add to a processor set the
even-numbered processors:

int 1i;
for (i=0; i<PInumtids; i += 2)
PSAddMember( procset, &i, 1 );
and
int i, *p;

p = (int *)MALLOC( ((PInumtids + 1) / 2) * sizeof(int) );
for (i=0; 2#i<PInumtids; i ++)

pli] = 2»i;
PSAddMember( procset, p, i );
FREE(p);

Before a processor set is used in a collective operation, it must be “compiled.”
That is, once the members of the processor set are defined, the various internal
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fields that are used by the collective operations must be calculated. The routine
PSCompile is used for this. Once PSCompile is called, no other processors may
be added to the processor set. The following example creates, defines, and
compiles a processor set consisting of the even-numbered processors:

ProcSet *procset;

int i, name;

name = 5;

procset = PSCreate( name );

for (i=0; i<PInumtids; i += 2)
PSAddMember( procset, &i, 1 );

PSCompile( procset );

]

When the processor set is no longer needed, use PSDestroy to remove it:
PSDestroy( procset );.

While the use of PSCreate, PSAddMember, and PSCompile is completely gen-
eral, it requires that all processors in the processor set know the processor ids
of all of the processors that are to be in the set. Sometimes we wish to form a
set by collecting all of the processors that want to be in the set, without each
processor knowing in advance the members of the set. This is done with
PSPartition. This routine takes a value (a name for the processor subset)
and finds all of the processors with that name. All processors are put into at
most one processor set by this routine. For example, the following code creates
a processor set consisting of the even-numbered processors (on even-numbered
processors) and of the odd-numbered processors (on odd-numbered processors).
That is, if there are eight processors, this will create two disjoint processor sets:
0246 and 1367, with the even-numbered processors creating the first of
these and the odd-numbered creating the second of these processor sets.

ProcSet *procset;
procset = PSPartition( PImytid % 2, PSAllProcs );

A negative number for value excludes that task from any of the new processor
sets.

Note that PSPartition takes a processor set as the second argument. This
allows the user to partition a subset of processors. The value PSA11Procs is the
processor set containing all of the nodes in the parallel machine.

The routine PSUnion may be used to combine two processor sets to form a
new processor set.

For many applications, it is necessary to know something about the members
of a processor subset, such as who they are, how many processors are in the set,
and who their neighbors are. The routines described in this section gives access
to the information in a processor subset,.

PSnumtids The routine PSnumtids(procset) returns the num-
ber of processors in the processor set.

34



PSmytid The routine PSmytid(procset) returns the relative
id or rank of the processor in the processor set. This
value is between 0 and PSnumtids(procset)—1.

PStidFromRank The routine PStidFromRank returns the process id
corresponding to a given rank in a processor set.

PSPROCLIST The routine PSPROCLIST(procset,list) puts the
processor ids of the processors in the procset into
the array list (int 1ist[]).

PSISROOT The routine PSISROOT(procset) returns 1 if the pro-
cessor is the “root” of the processor set. For the
processor set of all nodes, this is equivalent to the
expression PImytid==0.

PSROOT The routine PSROOT(procset) returns the processor
id of the root of the processor set. PSROOT(PSAl1Procs)

is equivalent to 0.

PSSetMeshSize The routine PSSetMeshSize(procset,nx,ny) spec-
ifies the dimensions of the processor set when con-
sidered as a two-dimensional mesh.

PSMESHLOC The routine PSMESELOC(procset,i,j) sets i and j
to the relative location of the processor in a two-
dimensional mesh (as defined by PSSetMeshSize).

PSNbrRing The routine PSNbrRing returns the processor ids of
neighbors in the processor set when considered as a
one-dimensional ring. See the man page for more
details.

PSNbrMesh The routine PSNbrMesh returns the processor ids of
neighbors in the processor set when considered as a
two-dimensional mesh. See the man page for more
details.

PSNbrTree The routine PSNbrTree returns the processor ids of
neighbors in the processor set when considered as a
binary tree. See the man page for more details.

4.7 ChLanging the Virtual Topology

The routines used to compute the neighbors (PSNbrRing, PSNbrMesh, and
PSNbrTree) may be changed by the user. These routines will be documented in
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the next release of this documentation. The routine PISetNbrRoutines may be
used to do this. Note that since the neighbors returned by these routines are used
by the collective communications routines (such as PIgdsum and PIgbcast),
changing these routines has the side effect of changing the communication pat-
terns used by the default collective communication routines.

4.8 Changing the Reduction Method

The method used to perform a reduction may be changed by the user. Several
methods are available, and advanced users may write their own and insert them
into Chameleon (without changing the libraries). The routine PISetCombFunc
sets the routine used for the reduction operations. The format of this routine
to pass to PISetCombFunc is

void MyGsetop( val, n, wrk, procset, elmsize, datatype, op )
void *val, *wrk, (*op)();

int n, elmsize, datatype;

ProcSet *procset;

where op has the form

void op( val, work, n )
void *val, *work;
int n;

The arguments are

val Value to contribute to reduction on input and final value
on output

n Number of elements in val

work Work area of the same size as val

procset Processor set to work in

elmsize Number of bytes per element of val

datatype Datatype of val

op Routine to combine values together

The format of PISetCombFunc is

void PISetCombFunc( func )
void (*func)();
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4.9 Changing the Broadcast Method

The method used to perform a scatter may be changed by the user. Several
methods are available, and advanced users may write their own and insert them
into CChameleon (without changing the libraries). The routine
PISetScatterFunc sets the routine used for the scatter operations. The format
of the routine to pass to PISetScatterFunc is

void gscatterset( buf, size, issrc, procset, datatype )

char *buf;

int size, issrc;
ProcSet *procset;
int datatype;

The arguments are

buf Datato scatter (if issrec=1 or buffer to hold data (if issrc=0)
size Number of bytes in buf

issrc One if the processor is the source, zero otherwise

procset Processor set to work in

datatype Datatype of val

The second argument to PISetScatterFunc is the routine to be used for
PIgscattersrc; this routine has the same format, but with issrc replaced
with src, the node number of the source.

The format of PISetScatterFunc is

void PISetScatterFunc( func, funcsrc )
void (*func)(), (#*funcsrc)();

4.10 Why and How to Use Processor Sets

Many parallel computations, particularly on relatively small amounts of data,
cannot effectively use large numbers of processors. In this case, it is useful to
define a subset of processors for best efficiency. In other cases, a truly MIMD
algorithm may want to use a cluster of processors for each of several tasks;
again, the program needs to be able to perform collective operations on subsets
of processors.

An example is shown in Figure 4.1. This shows that the optimal number
of processors for the solution of a banded linear system by direct elimination
can occur at very small number of processors (about 4 for these choices of the
parameters). Using more than 16 processors takes more time than using a single
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Figure 4.1: Scalability graph for banded linear system solve

processor in this case. If this banded linear system algorithm is implemented
with processor sets, the optimal number of processors can always be used.

All collective routines take procset as an argument. By always using a
procset argument (instead of PSAL1Procs) and by using the processor set ver-
sions of PImytid and PInumtids, you can write code that will run on any subset

of processors.

Instead of... use

PImytid PSmytid(procset)
PInumnodes PSnumnodes(procset)
PImytid==0 PSISROOT(procset)

To convert from rank to id, use PStidFromRank(procset,rank).
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Chapter 5
Debugging

Debugging a parallel program can be difficult. Many of the most powerful
debugging aids for uniprocessors (such as dbx) either are unavailable on parallel
computers or have serious limitations. Further, parallel programs offer new ways
to write both incorrect and poorly performing programs. This chapter discusses
some of the aids provided by Chameleon to aid in debugging a program, both
for correctness and for performance.

5.1 Getting Started

The debugging aids provided by Chameleon are available through the command
line arguments that are processed by PICall or the worker interface. The
arguments that are most commonly useful are as follows:

-trace Clause all send and receive routines, as well as many collec-
tive communication routines, to write a message to stan-
dard output indicating the size, destination, and tag of a
message.

-summary Produce a summary listing when the program finishes with
the amount of time spent communicating and the amount
of data sent.

-event Gienerate an event log that can be used as input to the
upshot [8] program analysis tool.

Additional arguments may be used to modify the behavior of these arguments
(for example, ~tracefile redirects the trace information to the specified file or
files).
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5.2 Correctness

Two main results of errors in message-passing parallel programs are not present
in uniprocessor programs. These are deadlock (program “hangs”) and nonde-
terministic behavior (different results for the same input data in different runs).
Both of these are often caused by the program’s receiving a message intended
for either another processor or another part of the program. These problems
are difficult to diagnose, particularly since the behavior may be difficult to re-
produce. The command line argument -trace can help. When this argument
is used, every time a message is sent or receive, a description of the operation
is written to standard output. This output includes the name of the operation
(send, recv), the tag of the message, and the file name and line number in that
file where the operation occurred. The option -tracefile name may redirect
this output to a file or to a different file for each processor. These logs of the
communication behavior may then be examined to see whether there is a prob-
lem. In the case of deadlock, often the best way to proceed is to start at the
ends of the files and work backwards. In the case of nondeterministic behavior,
collect logs for several runs on the same input data, and then use diff to find
the first place that the logs differ.

Some sample tracing output is displayed below. This shows two processors
both waiting for a receive:

[0] recvstart <Tag 1> [buggy.c:17]
[1] recvstart <Tag 1> [buggy.c:17]

(This is from the ring example below, but with all processors executing their
PIbrecv before the PIbsend.) The two lines from file ‘buggy.c’ at line 17 are
the beginning of the PIbrecvs. Since no processor is sending, the program hangs
at this point.

Most collective operations are indicated by a Starting <name> and Ending
<name>. The format of tracefile lines is

[processor-id] operation <data on operation> [filename:line]

For example, a send operation from processor 13 to processor 19, with a buffer
of size 120, message tag 27, from line 193 in file myprog.c would generate the
line

[13] send <Tag 27(120) To 19> [myprog.c:193]

A receive will generate two entries—one when the receive starts and one when
it completes. A receive on processor 19 with message tag 27 and at line 273 in
file myprog.c will generate the lines

[19] recvstart <Tag 27> [myprog.c:273]
[19] recv <Tag 27> [myprog.c:273]
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If too much data is being generated to conveniently look at, consider using
the -tracefile filename option. For example, the command line options -
trace —tracefile log.%d will generate a separate log file for each processor.
The cshell script

#! /bin/csh
foreach file (log.*)
echo "$file"

tail -1 $file
end

will print out the last operation that each processor was attempting. Note that
using a single filename for the output may cause output to be lost because of
the way many operating systems deal (or fail to deal) with multiple processes
writing to the same file.

5.3 Error Messages

The debugging version of the Chameleon package will generate error tracebacks
of the form

Line linenumber in filename: message
Line linenumber in filename: message

Line linenumber in filename: message

The first line indicates the file where the error was detected; the subsequent
lines give a traceback of the routines that were calling the routine that detected
the error. A message may or may not be present; if present, it gives more details
about the cause of the error.

The production libraries are often built without the ability to generate these
tracebacks (or even detect many errors). So, if a program crashes without
warning, try recompiling with the BOPT=g option and then rerunning it.

5.4 Performance

Performance debugging can be very difficult. A parallel program has many
sources of inefliciency, including

¢ poor algorithm,
e poor implementation of the computational part of the algorithm,
¢ poor implementation of the communication part of the algorithm,

e insuflicient overlap of communication and computation,
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e poor load balance, and
¢ malfunctioning hardware.

A number of tools are provided to help diagnose these problems. Unfortunately,
the most important cause of poor performance, a poor algorithm, is the hardest
to diagnose. In fact, a poor algorithm may appear to perform well by doing large
amounts of highly parallel but unnecessary work, thus achieving high parallel
efficiency.

Before spending a lot of time tracking down a performance problem, you
should have some feel for how well you expect your program to behave. Often,
this can be done by constructing a simple complexity model of the computa-
tion. Into this model will go three machine-dependent parameters: the time
to compute an operation (for floating-point programs, the time for a floating-
point operation), the latency in a message between two processors (the time
to send a message of length zero), and the incremental time to send a byte
between two processors. This is a crude model, but it often gives a good es-
timate of the performance of a computation. Some examples of this approach
are shown in [5,3]. To get these machine-dependent parameters, the program
twin in ‘comm/examples/angst’ can be run. The argument ~help to twin gives
information on using twin.

You should also check that there is no hardware problem on your parallel
computer. If each processor does not compute at the same rate as all other
processors, or if the time to send a message between two (adjacent) processors
is not independent of the processors, then a correct program will appear to
have a performance problem. Chameleon provides a program to test for this
case (which has been observed on a number of parallel computers). Note that
this problem is particularly insidious, as the program may work correctly, just
not as efficiently as expected. The program is tcomm and is in the directory
‘tools.core/comm/examples/angst’. The argument -help to tcomm gives in-
formation on using tcomm,

5.4.1 Computation Implementation

A good way to determine the quality of the implementation is to compute the
computational rate (megaflops) achieved by the code and to compare that with
standard relevant benchmarks. For example, a program that uses primarily
floating-point operations can be compared to the LINPACK benchmarks. (Note
that some well-designed programs can greatly exceed the computational rates in-
dicated in the LINPACK benchmarks.) The easiest way to compute this value is
to compute {or estimate) the number of operations and divide by the time taken
by those operations. However, care should be taken to ensure that meaningful
times are collected. For pure floating-point operations, use SYGetCPUTime; this
measures the (!PU time taken by a user process. For example,
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double precision SYGetCPUTime, t1, t2

ti = SYGetCPUTime()
<computation to measure>

t2 = SYGetCPUTime() -~ t1

print *, 'Took ', t2, ' seconds’

When mieasuring comrmunication, it is important to remember that the time
spent waiting to receive a message will usually not be charged to a process and
thus will not show up in the CPU time. In this case, use SYGetElapsedTime
instead of SYGetCPUTime.

An alternative to SYGetElapsedTime that can provide higher-resolution,
lower-overhead timings involves the routines SYusc_clock and
SYuscDiff, for example,

double precision SYuscDiff, t1(2), t2(2), ¢t
call SYusc_clock( t1 )

<communication to measure>

call SYusc_clock( t2 )

t = SYuscDiff( t1, t2 )
print *, ’'Took ', t, ' seconds’

5.4.2 Communication Implementation

There are several potential sources of performance problems in the communica-
tion implementation. These include

¢ long transit times,
¢ long startups, and
¢ messages arriving out of order.

To diagnose these effects, use the ~event and -summary switches. The -summary
switch generates a summary listing for all processors, indicating how much time
was spent sending and receiving data and what the average transfer rate was.
The time spent in collective operations is also displayed. For example, here is
the summary for node 2 after a run.

Summary for node 2:

Op: calls bytes total time Average rate

Send: 3366 1689600 3.1601e+00 5.3466e+05

Recv: 3367 1689624 3.5450e+01 4.7662e+04

Global: 67 0 1.0890e+01 0.0000e+00
Look for
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e low transfer rates but long messages, and
e large times (relative to the computation time).

Low transfer rates for long messages may indicate that much of the time was
spent waiting for messages to arrive (including waiting before they were sent).
This may indicate either a load imbalance or contention in the communica-
tion network. To get a better idea, use the ~event switch. This will gen-
erate a log of all of the communication events in the file ‘b1’ in the current
directory (this may be changed with the command line argument -eventfile
filename). The program Upshot [8] may then be used to display the events.
Use tools.core/bin/$ARCH/upshot -1 bl. Look for large amounts of receive
idle time (waiting for a message) and for long send and receive times (between
the time a message is sent and when it is received). Possible ways to fix a
petformance problem here include

e switching to nonblocking sends and receives,
o reordering or rescheduling the communications, and

e adjusting the load balance.

5.4.3 Controlling the Event Log

While the default event log is suitable for many tasks, it is sometimes necessary
to modify the content and formation of the event log. Two such modifications
are discussed in this section; most readers should skip this section until they have
used the event logs. The first modification is in the computation of the time
that an event happens. On many computers, there is no single synchronized
clock and (Chameleon must synthesize one. As there is no single best way to do
this, Chameleon provides for user-control of the synthesized clocks (by default,
(C’hameleon uses a method that should be appropriate for most users). The
second modification affects the output format of the event log, allowing the user
to choose between two popular formats: Argonne’s alog (used by upshot) and
PICL (used by ParaGraph). It is also possible to add additional formats at

runtime.

5.4.3.1 Controlling Event Clocks

Many parallel computer systems do not provide synchronized clocks. (Chameleon
contains code that attempts to synchronize the clocks using software, by esti-
mating the ditference between the local clocks. The default choice of synchro-
nization method should be acceptable for most users; this section explains how
these defaults may be modifed by the expert user.

The clock time is computed by taking a local time, computing an offset
(shifting all of the clocks to the time of node zero), and adjusting for skew,
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that is, the effect of clocks running at different rates. These adjustments can
be modified by using the following arguments on the program’s command-line
following -blogclock:

noskew Don’t compute a modification of skew.

nooffsets Don’t compute a modification for offsets.

none Don’t compute any modification of local times.

print Print out the values of offset and skew applied to each clock.

The opposite effect of the first two can be accomplished by removing the “no”
in front of noskew or nooffsets.

Additional controls will be made available to the user soon, including control
of the method used to determine the offsets and skews.

5.4.3.2 Controlling Output Format

The default output format is the Argonne alog format. This is a general event
log format. Other formats can be generated; currently (Chameleon also supports
a subset of the (old) PICL trace format. This is the format that is needed for
using the Para(iraph tools (available from netlib). This format does not support
general user-defined events, but because of the utility of the ParaGiraph system,
it can be quite valuable in understanding program behavior.

The choice of output format can be changed with the command line param-
eter ~blogfmat.

alog Use alog format.
picl Use (old) PICL format.

The default file name for alog files is ‘bl’ and for picl is ‘bl.trt’.

One warning: the ParaGraph tools require a consistent clock (that is, they
require that no message appear to arrive before it was sent). On systems without
a single clock, this can be difficult to achieve. Using the -blogclock controls
on systems without a single clock may or may not provide an accurate enough
clock. In particular, the relatively low resolution of many workstation clocks
may not be accurate enough for ParaGraph.

5.4.3.3 Load Balance

For the most efficient computation, all processors must be working all of the
time. The more time that some processors spend waiting for others to complete
their tasks, the less efficient a parallel computation will be. One place to lock
is at the amount of time spent waiting for a receive to start; this is idle time.
Because it may require extra operations, (Chameleon does not always provide
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access to the time spent waiting for a receive to start. For pd and PVM, it
is necessary to use the command line option -p4 busywait (for p4) or -pvm
busywait (for PVM) to get this information.

5.5 Runtime Control

It is sometimes necessary to control the collection of debugging information
from within a program. For example, it is often helpful to collect an event log
for only part of a program (such as for a particular routine whose performance
needs to be investigated) rather than collect an event log for an entire program.
The routine PISetLogging allows the programmer to selectively control the
generation of event logs, trace files, and summary data. The format of this
routine is

PISetLogging( level )
int level;

where 1evel has the following bits:

1 Event logs
2 Tracing
4 Summary data

Using a value of 0 for level disables all options. The values may be “or”ed
together to get the combinations. For example, a level of 3 turns on both
event logs and tracing.
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Chapter 6

Transport Layer-Specific
Control

In most cases, completely portable programs can be written. However, in some
cases, it is necessary to access features that are dependent on the message-
passing system.

6.1 Specifying the Parallel Machines

In using a distributed network of machines as a parallel computer, it is necessary
to specify which machines are to be used. In Chameleon, one can do this in
several ways.

The simplest is to simply specify the number of machines; Chameleon will
then use a file that lists available machines and attempt to find the requested
number of machines. However, sometimes it is necessary to specify the spe-
cific machines. This can be done with the command line argument -pihosts
hostname[,hostname]. For example, to run a program on the local machine
and a workstation named sparci, use -pihosts sparcl.

In some cases, even more information needs to be specified. In this case, a
file should be used that contains the name of the machine and other relevant
values. The format of this file is

# comments begin with a pound sign
machine-name [[exe=]name] [[np=]number] [wd=name] [arch=namel

where ex gives the name of the executable, np gives the number of processes on

that machine, wd is the working directory to be used, and arch is the name of
the architecture.
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In addition, p4 users may specify a p4 procgroup file directly with the com-
mand line option -pg filename (or -p4pg filename for p4 version 1.} and
later).

6.2 Running Programs

Chameleon does not attempt to provide a common invocation environment, in
large part because so many systems have special requirements. This section
touches on some of the pecularities of these systems.

6.2.1 IBM EUI

The number of processors is taken from the environment variable MP_PROCS. If
Ethernet is used for communications, the processors to use is taken from the
file ‘host.list’ in the current directory. Otherwise, there is (at this writing)
no control over the choice of nodes (this is expected to change). Make sure that
you use COMM=eui when invoking make. In addition, be sure that you do

setenv PWD ‘/bin/pud’

immediately before executing the program if your login shell is the c-shell
(‘/bin/csh’).

Some later versions of EUI (actually, the underlying support envircnment,
POE) support the command-line argument ~procs np for specifying the number
of processors. This is known only to work from the Korn shell (ksh).

6.2.2 Intel Delta

Programs are started with an mexec command:
mexec -t "(nx,ny)" -f "program-name <arguments>"

where nx, ny is the size of the partition (for nx * ny total nodes) and <arguments>
are the command line arguments for the program. Note the use of quotes; these
are required.

6.2.3 TMC CM-5

(CM-5 programs must be run from a front-end attached to a partition with a
given number of nodes; no control over the number of processors is possible
other than by chosing the partition to run in. Also, programs must be linked
with a special linker; makefiles that use the compiler (cc or £77) to produce an
executable will fail. Use $ (CLINKER) or $ (FLINKER) instead.
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6.3 Command-Line Options

Several of the implementations provide for special options. Currently, p4 and
PVM accept special options.

6.3.1 p4 Options

-p4 busywait Do a busywait during receives; this should be used only
when using -event or —summary to get information on the
time spent waiting for a receive to start.

-p4 list List all of the options available for p4.

6.3.2 PVM Options

-pvmn vsnd Use virtual circuits (vsnd and vrev) rather than the regular
communication (snd and rev). This is available only for
PVM version 2.4.x.

-pvin busywait Do a busywait during receives; this should be used only
when using -event or -summary to get information on the
time spent waiting for a receive to start.

-pvm nointr Force PVM to disable interrupts during send and receive
operations. This may be needed because PVM does not
restart sends or receives that are interrupted. Use this if
you get error messages about interrupted system calls.

-pvin list List all of the options available for PVM.

6.4 Setting Options

The command PISetOption allows the user to control system specific features.
The format of this routine is

PISetOption( version, name, val )
char *version, *name;
void *val;

where version is the system name (such as p4 or pvm), name is the name of the
option, and val is a pointer to the data associated with name. For example,

PISetOption( "pvm", "vsnd", (void#)0) );

tells PVM to use vsnd/vrcv instead of snd/rcv.
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Chapter 7

Reverse Compatibility

Chameleon provides a limited capability for running programs written using
other message-passing systems. Currently, Chameleon supports running pro-
grams written using a subset of PICL or Intel NX.

7.1 PICL Compatibility

By linking with the appropriate file, many PICL programs can be run with few
changes. The only change that you must make to the source code is to make
the program hcstless and use the PICall interface. Normally, this involves only
a few simple changes to main program.

The other change is to insert the appropriate compatabilty interface module
in the link line ahead of the Chameleon libraries. The name of the interface
file is ‘picl2comm$ (COMM) .a’, where $(COMM) is the usual COMM variable (equal
either to ", "eui", "p4", or "pvm"). For example, this makefile fragment links
the PICL program in ‘pi.f’ with Chameleon:

TDIR = /usr/local/tools.core

LDIR = $(TDIR)/1libs/1ibsg/$(ARCR)

pi: pi.f

$(FLINKER) -g -o pi pi.f $(LDIR)/fmain.o \

$(LDIR)/picl2comm$ (COMM) .0 \
$(TDIR)/fort/$(ARCH)/fort$(COMM) .a \
$(TDIR)/fort/$(ARCH)/fort.a \
$(LDIR)/tools$(COMM).a $(LDIR)/tools.a \
$(LDIR)/system.a $(CLIB) $(SLIB)

As usual, symbols CLIB and SLIB are defined by the appropriate bmake include,
and ARCH is the architecture.
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Not all of PICL is supported. The supported routines include send0, recv0,
recvbegin0, recvend0, probe0, recvinfo0, whoO, barrier0, syncO, bcastO,
clock0O, check0, gmax0, gminO, gsumO, and openoO.

In addition, stubs (that do nothing but allow you to link an application) are
provided for setarcO, close0, clocksyncO, tracelevel, tracenode,
traceblockbegin, traceblockend, traceexit, tracefiles, and traceflush.

For compatibility with codes written for the Intel iPS(/860, Delta, and
Paragon, the Intel NX routines mynode, mypid, mclock, gdlow, and gdhigh are
also supported.

One of the major features of PICL is its support of extensive tracing of
operations. (Chameleon provides a subset of those events. Use the command-
line switches ~event ~blogfmat picl to produce a PICL-format trace file.

Versions on the IBM RS/6000 can support only Fortran or C, not both in
the same program. This is because the names of the routines used by PICL
create the same internal names from Fortran and C on the RS/6000 (on most
other systems, the names are made different by adding an underscore or using
upper case for Fortran and lower case for C). This choice is set when PETSc is
installed; the default case is to support Fortran instead of  programs.

7.2 Intel NX Compatibility

By linking with the appropriate file, many Intel NX programs can be run with
few changes. The only change that you must make to the source code is to make
the program hostless and use the PICall interface. Normally, this involves only
a few simple changes to main program.

The other change is to insert the appropriate compatabilty interface module
in the link line ahead of the Chameleon libraries. The name of the interface
file is ‘nx2comm$(COMM) .a’, where $(COMM) is the usual COMM variable (equal
either to "", "p4", or "pvm"). For example, this makefile fragment links the NX
program in ‘pi.f’ with Chameleon:

LDIR = /usr/local/tools.core/libs/libsg/$(ARCH)
pi: pi.t
$(FLINKER) -g -o pi pi.f $(LDIR)/nx2comm$(COMM).a \
$(LDIR)/tools$(COMM).a $(LDIR)/tools.a \
$(LDIR)/system.a $(CLIB) $(SLIB)

As usual, symbol CLIB is defined by the appropriate bmake include, and ARCH
is the architecture. :

Chameleon currently supports only a few special types of I/O operations,
so the Intel NX I/O operations (e.g., cvrite, irnad, and restrictvol) and
the routines intended to support these (e.g., eadd) are not supported. The
host/node model available on the iPSC!/860 is also not supported.
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The so-called forcetypes are supported by Chameleon. However, support
is achieved by removing the forcetype bit from the tag; messages should have
distinct tags in the lower 30 bits.
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Chapter 8

Program Examples

This chapter contains some simpie example programs.

8.1 Hello World

In the the classic “hello world” program, each processor writes “hello world from
<node>” to standard output, where <node> is the number of each processor.

#include "tools.h"
#include "comm/comm.h"
int worker( argc, argv )

int argc;
char **argv;
{

int i;

tor (i=0; i<=PInumtids; i++)
if (PIgtoken(PSAllProcs,i))
printf( "Hello world from Y%d \n", PImytid );
return 0;

}

Note the use of PIgtoken to ensure that only one processor is writing at a time.
The object file ‘tools.core/libs/1ibsg/cmain.o’ is used to provide the main
program; this uses the PICall interface to start the parallel program.

The makefile for this program is

ALL: examplel

ITOOLSDIR = /usr/local/tools.core

CFLAGS -I$(ITOOLSDIR) $(OPT) $(COPT)
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$(ITOOLSDIR)/1ibs/Libs$(BOPT)$(PROFILE)/$(ARCH)
$(LDIR)/cmain.o $(LDIR)/tools$(COMM).a $(LDIR)/tools.a \
$(LDIR)/tools$(COMM) .a $(LDIR)/system.a

LDIR
LIBS

LIBNAME = dummy

include $(ITOOLSDIR)/bmake/$(ARCH).$(COMM)
include $(ITOOLSDIR)/bmake/$(ARCH).$(BOPT)$(PROFILE)
include $(ITOOLSDIR)/bmake/$(ARCH)

examplel: examplel.o
$(CLINKER) -o examplel $(CFLAGS) $(BASEOPT) examplel.o \

$(LIBS) $(CLIB) $(SLIB) -1lm

The command make ARCH=intelnx BOPT=0 builds a version for Intel NX (i860,
Delta, and Paragon) machines.
This same program written in Fortran is

integer function worker()
integer i, np
include ’'comm/fcomm.h’

np = PInumtids()

do 10 i=0,np
if (PIgtoken{PSAllProcs,i) .ne. 0) then

print *, “"Hello world from ", PImytid()
endif
10 continue

worker = 0

return

end

8.2 Ring

A ring example circulates a value around a ring until it returns to the processor
that started the ring. Note the use of the routine PSNbrInRing to compute the
neighbor instead of the arithmetic expression (PImyid + 1) % PInumtids.

int worker( argc, argv )

int argc;
char #*#*argv;
{
int buf, siz = sizeof(int);
it (PImytid ==,0) {
buf = 1;

PIbsend( 1, &buf, siz, PSNbrRing(1,1,PSAl1lProcs), MSG_INT );
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PIbrecv( 1, &buf, siz, MSG_INT );
}
else {
PIbrecv( 1, &buf, siz, MSG_INT );
PIbsend( 1, &buf, siz, PSNbrRing(1,1,PSAllProcs), MSG_INT );
}

return O;

}

The execution of this program may be viewed by running it with the option -
event and then running Upshot on the resulting log file. The sequential nature
of this program will be obvious from the upshot display.

8.3 Rows and Columns

The following example shows the use of processor subsets to perform reductions
along the rows and columns of a grid of processors. It also illustrates the use of
the routine SYArgGetInt to find command line options (in this case, -r rows
and -c columns for the size of the mesh of processors).

int worker( argc, argv )

int argc;

char **argv;

{

int row, col, nrows, ncols, i;
double vrow, vcol, work;

ProcSet *prow, #*pcol;

/* Set the defaults for nrows and ncols =/
nrows = 2;
ncols = 2;
PSSetMeshSize( PSAllProcs, nrows, ncols );
SYArgGetInt( kargc, argv, 1, "-r", &nrows );
SYArgGetInt( kargc, argv, 1, "-c", &ncols );
if (nrows * ncols != PInumtids) {
if (PImytid == 0)
fprintf( stderr,
"[%d,%d] doesn’t fit in %d processors \n",
nrows, ncols, PIlnumtids );
SYexitall("",1);
}

PSMESHLOC( PSAl1Procs, row, col );

/* note that first arguments must be distinct in different

55



calls to PSPartition and greater than 0 and distinct for
for the two processor sets. #/

prow = PSPartition( row + 1, PSAl1lProcs );

pcol = PSPartition( col + nrows + 1, PSAllProcs );

vrow = vcol = (double) PIlmytid;
PIgdsum( kvrow, 1, &work, prow );
PIgdsunm( kvcol, 1, &work, pcul );

for (i=0; i<=PInumtids; i++)
it (PIgtoken(PSAllProcs,i))
printf( "Row sum = %1f and column sum = %1f on %d \n",
vrow, vcol, PImytid );
return 0;

}

8.4 Nonblocking Communication

The next example circulates a value around a ring until it returns to the pro-
cessor that started the ring. This version uses nonblocking receives to allow the
routines to compute while waiting for data.

int worker( argc, argv )

int argc;

char #*argv;

{

int buf, siz = sizeof(int), tag = 1;

PIRecvId_t rid;
it (PImytid == 0) {
but = 1;
PInrecv( tag, &buf, siz, MSG_INT, rid );
PIbsend( tag, &buf, siz, 1, MSG_INT );
Plwrecv( tag, &buf, siz, MSG_INT, rid );
}
else {
PInrecv( tag, &buf, siz, MSG_INT, rid );
while (PInprobe( tag )) {
/* Do some work while waiting for the message */
}
PIwrecv( tag, &buf, siz, MSG_INT, rid );
PIbsend( tag, &buf, siz, PSNbrRing(1,PSAllProcs),
MSG_INT );
}
return 0;

}
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Chapter 9

Installation

9.1 Code

The code may be acquired by anonymous ftp from info.mcs.anl.gov in direc-
tory ‘pub/pdetools/chameleon.tar.Z’. Fetch this file (using type image), un-
compress it, and use tar to extract it. This will create a directory ‘tools.core’,
The file ‘tools.core/readme’ contains information on the installation process.
For a quick start, set three environment variables:

TOOLSDIR Directory containing tools.core
P4DIR Directory containing p4, if you use p4
PVMDIR Directory containing PVM, if you use PYM

Move into this directory and then execute ‘bin/install’. This will build the
object libraries. (The command bin/install -help will detail the options that
are available for the installation.)

9.2 Host File

For the workstation (p4 or PVM) versions to work, a list of available hosts (work-
stations and other computers) must be created. The format of this list is de-
scribed in Section 2.3.3. Also, PVM or p4 must be installed. These may be found
using xnetlib; p4 is also available by anonymous ftp from info.mcs.anl.gov
in directory pub/p4.
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Chapter 10

Summary of Routines

This chapter contains a brief summary of the routines in this manual. The
chapter is organized into six major parts: program initiation, the point-to-
point routines, the collective communication routines, the process set routines,
environmental management, and parallel [/O routines. The beginning of each
section lists the include files that are needed by C programmers. Fortran users
should use the ‘comm/fcomm.h’ file. If the word MACRO precedes the routine
definition, it is a CPP macro for C users.

10.1 Program Initialization

#include "tools.h"
#include "comm/comm.h"

int PICall( r, argc, argv ) Calls a routine in a parallel execution mode
int (*r)(), argc;
char ssargv;

10.2 Point-to-Point Routines

#include "tools.h"
#include "comm/comm.h"

MACRO void PINewRecvBuf( msg, max, Allocates storage for receiving a message.

type )
(type *)msg;
int max;
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MACRO void PINewSendBuf ( msg, max,
type )

(type *)msg;

int max;

Allocates storage for sending a message.

MACRO void PIFreeRecvBuf(msg)
void *msg;

Free storage for receiving a message

MACRO void PIFreeSendBuf(msg)
void *msg;

Frees storage for sending a message.

void PISetNbrRoutines( tree, ring,
mesh2d )
int (stree) (), (»ring) (), (*mesh2d)();

Sets the routines used to compute the
neighbors.

void PISetOption( version, name, val )
char #»version, *name;

Sets a message-passing system-specific
option.

void sval;
MACRO void PIbprobe(type) Blocks until a message of a given type is
int type; available.

MACRO void PIbrecvProbed( type,
buffer, length, datatype)

int type, length, datatype;

void sbuffer;

Receives a message that has been probed.

MACRO void PIbrecvUnsz( type, buffer,
length, datatype)

int type, length, datatype;

void sbuffer;

Receives a message of unknown length.

MACRO void PIbrecvmrr( type, buffer,
length, datatype)

int type, length, datatype;

void »buffer;

Receives a message from another processor.

MACRO void PIbrecvm( type, buffer,
length, datatype)

int type, length, datatype;

void sbuffer;

Receives a message from another processor.

MACRO void PIbrecvrr( type, buffer,
length, datatype)

int type, length, datatype;

void sbuffer;

Receives a message from another processor.

MACRO void PIbrecv( type, buffer,
length, datatype)

int type, length, datatype;

void sbuffer;

Receives a message from another processor.

MACRO void PIbsendmrr( type, buffer,
length, to, datatype)

int type, length, to, datatype;

void sbuffer;

Sends a message to another processor.
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MACRO void PIbsendm( type, buffer,

length, to, datatype)
int type, length, to, datatype;
void sbuffer;

Sends a message to another processor.

MACRO void PIbsendrr( type, buffer,
length, to, datatype)

int type, length, to, datatype;

void *buffer;

Sends a message to another processor.

MACRO void PIbsend( type, buffer,

length, to, datatype)
int type, length, to, datatype;
void sbuffer;

Sends a message to another processor.

MACRO void PIcrecv(id)
PIRecvId_t id;

Cancels a previously issued Plnrecv... .

MACRO void PIcsend(id)
PISendId_t id;

Cancels a previously issued Plnsend... .

MACRO int PIfrom()

Returns the processor that sent a received
message.

MACRD int PInprobe(type)
int type;

Tests whether a message of a given type is
available.

MACRO void Plnrecvmrr( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void sbuffer;

Starts a nonblocking receive.

MACRO void PInrecvm( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void sbuffer;

Starts a nonblocking receive.

MACRD void PInrecvrr( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void »buffer;

Starts a nonblocking receive.

MACRO void PlInrecv( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void *buffer;

Starts a nonblocking receive.

MACRO void PInsendmrr( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void »buffer;

Starts a nonblocking send.
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MACRO void PInsendm(type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void *buffer;

Starts a nonblocking send.

MACRO void PInsendrr( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void *buffer;

Starts a nonblocking send.

MACRO void FInsend( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void sbuffer;

Starts a nonblocking send.

MACRO int PInstatus(id)
PISendId_t id;

Tests whether a nonblocking message has
completed.

MACRO int PIsize()

Returns the length of a received message.

MACRO int PItype()

Returns the type of the most recently
received message.

MACRO void Plwrecvmrr( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId.t id;

void »buffer;

Clompletes a nonblocking receive,

MACRO void PIwrecvm( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void sbuffer;

Completes a nonblocking receive.

MACRO void PIlwrecvrr( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void *buffer;

Completes a nonblocking receive.

MACRO void PIwrecv( type, buffer,
length, datatype, id)

int type, length, datatype;

PIRecvId_t id;

void *buffer;

Clompletes a nonblocking receive.

MACRO void PIwsendmrr( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void #*buffer;

Completes a nonblocking send.
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MACRO void PIvsendm( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void sbuffer;

Completes a nonblocking send.

MACRO void Plwsendrr( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void sbuffer;

Completes a nonblocking send.

MACRO void PIvsend( type, buffer,
length, to, datatype, id)

int type, length, to, datatype;

PISendId_t id;

void sbuffer;

Completes a nonblocking send.

10.3 Collective Communication

#include "tools.h"
#include "comm/comm.h"

MACRO void PIbcastSrc( buf, siz, src,
procset, datatype )

void =buf;

int 8iz, src, datatype;

ProcSet *procset;

Broadcasts data to all processors

MACRO void PIbcast( buf, siz, issrc,
procset, datatype)

void »buf;

int siz, issrc, datatype;

ProcSet *procset;

Broadcasts data to all processors.

MACRO void PIgcolx( lbuf, gsizes,
gbuf, procset,datatype)

void *1lbuf, =gbuf;

int »gsizes,datatype;

ProcSet *procset;

Cilobal collection from data of known size.

MACRO void PIgcol( 1lbuf, lsize, gbuf,
gsiz, glen, procset,
datatype)

void slbuf, =gbut;

int 1size, gsiz, *glen, datatype;

ProcSet *procset;

(ilobal collection from data of unknown size.
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MACRO void PIgcmax(
procsat)

char *val, *work;

int n;

ProcSet #*procset;

val,

vork,

Jomputes global maximum reduction.

MACRD void PIgecmin(
procset)

char #val, *work;

int n;

ProcSet *procset;

val,

work,

Computes global minimum reduction.

MACRO void PIgcsum(
procset)

char =val, *work;

int n;

ProcSet sprocset;

val,

vork,

Computes global sum reduction.

MACRO void PIgdmax(
procset)

double #*val, *work;

int n;

ProcSet *procset;

val,

work,

Computes global maximum reduction.

MACRO void PIgdmin(
procset)

double *val, *work;

int n;

ProcSet #*procset;

val,

n,

vork,

Computes global minimum reduction.

MACRO void PIgdsum(
procset)

double *val, *work;

int n;

ProcSet *procset;

val,

vork,

Computes global sum reduction.

MACRO void PIgfmax(
procset)

float #*val, *work;

int n;

ProcSet *procset;

val,

vork,

Computes global maximum reduction.

MACRO void PIgfmin(
procset)

float »val, *work;

int n;

ProcSet #*procset;

val,

work,

Computes global minimum reduction.

MACRO void PIgfsum(
procset)

float #*val, *work;

int n;

ProcSet #*procset;

val,

n,

vork,

Jomputes global sum reduction.
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MACRO void PIgimax( val, n, work,
procset)

int »val, n, #*vork;

ProcSet #procset;

Computes global maximum reduction.

MACRO void PIgimin( val, n, vork,
procset)

int #*val, n, *wvork;

ProcSet sprocset;

Computes global minimuin reduction.

MACRO void PIgisum( val, n, vork,
procset)

int »val, n, *work;

ProcSet *procset;

Computes global sum reduction.

MACRO void PIgsync(procset)
ProcSet #procset;

Synchronizes processors.

MACRO int PIgtoken( procset, i)
ProcSet *procset;
int i;

Passes a “token” among processors.

void PISetCollectionFunc( func )
void (»func) ();

Sets the function use for collections (Plgcol).

void PISetCombFunc( func )
void (#func)();

Sets the function use for reductions
(Plgdsum, etc.).

void PISetScatterFunc( func, funcsrc )
void (xfunc) (), (sfuncsrc)();

Sets the function use for scatters (Plbcast).

void PISetSyncFunc( func )
void (#func)();

Sets the function use for synchronizations
(Plgsync).

10.4 Process Set Management

#include '"tools.h"
#include "comm/comm.h"

void PSAddMember( procset, p, np )
ProcSet *procset;
int *p, np;

¢
Adds one or more processors as members of
processor set.

void PSCompile( procset )
ProcSet *procset;

Compiles a processor set.

ProcSet *PSCreate( name )
int name;

Creates a processor set structure,

void PSDestroy( procset )
ProcSet *procset;

Destroys a processor set structure.
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ProcSet *PSPartition( pval, procset )
int pval;
ProcSet #*procset;

Computes a partition dynamically by using
an id value to partition processors into
disjoint sets.

void PSPrintProcset( ps, form, fp )
ProcSet *ps;

int form;

FILE =*fp;

Displays a processor set in a simplified
fashion.

ProcSet *PSUnion( ps1, ps2, name )
ProcSet *psi1, *ps2;
int name;

Forms a procset from the union of two
procsets.

MACRO int PSISROOT(procset)
ProcSet #*procset;

Returns 1 if this processor is the root of the
procset, 0 otherwise.

MACRO void PSMESHLOC( procset, i, j )
ProcSet #*procset;
int =i, =*j;

Returns the location of the processor in the
mesh.

MACRO int PSMYPROCID( procset )
ProcSet *procset;

Returns the relative processor number in a
processor set.

MACRO int PSNUMNODES( procset )
ProcSet *procset;

Returns the number of nodes in a processor
set.

int PSNbrMesh( offx, offy, wrapx,
wrapy, procset )

int offx, offy, wrapx, wrapy;

ProcSet *procset;

Returns the processor id’s of neighbors in a
mesh.

int PSNbrRing( offset, wrap, procset )
int offset, wrap;
ProcSet #procset;

Returns the processor id's of neighbors in a
ring.

int PSNbrTree( nbr, procset )
PS_Tree_t nbr;
ProcSet *procset;

Returns the selected child or parent of this
node.

MACRO void PSPROCLIST(procset,list)
ProcSet #*procset;
int =list;

Returns the processors in the processor set.
This is the ordering used by Plgcolx.

MACRO int PSROOT(procset)
ProcSet #*procset;

Returns global id of the root processor of
this processor set.

void PSSetMeshSize( procset, nx, ny )
ProcSet *procset;
int nx, ny;

Sets the size of the mesh to use.
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10.5 Environmental Management

#include "tools.h"
#include "comm/comm.h"

MACRO int PIdiameter

Returns the maximum number of hops
between two processors.

MACRO int PIdistance( from, to)
int from, to;

Returns the number of hops between two
processors.

MACRO int Plmytid

Returns processor id of calling processor.

MACRO int PInumtids

Returns the number of processors.

int PIGetNbrs( myid, nbrs )
int myid, *nbrs;

Returns all of the immediate neighbors of a
node.

int PIGetTypes( procset, n )
ProcSet sprocset;
int n;

Gets a range of message types that are
unique to a processor set.

MACRO void PIMsgSizes( min, max)
int *min, *max;

Returns the range of message sizes.

void PINodeName( name, maxlen )
char *name;
int maxlen;

C'reates a string containing the name of the
node.

void PISetLoggingBit( bit, flag )
int bit, flag;

Sets/clears the logging level for
communications, for a single option.

void PISetLogging( level )
int level;

Sets the logging level for communications.

void PISetMergeEventFiles( flag )
int flag;

Clontrols whether event files are merged.

void PISetPacketSize( val )
int val;

Sets the packet size for collective operations.

void PISetRRSize( val )
int val;

Sets the size for use of ready-receiver (force)
in collective operations.

void PISetTracefile( name )
char #name;

Sets the name of the file for tracing output.

MACRO void PITagRange( low, high)
int *low, *high;

Returns the range of value (user) message
tags.
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10.6 I/0 Routines

#include "tools.h"
#include "comm/comm.h"

void PIFPrintArraySpec( fp, sz, nd )
FILE »fp;

PIArrayPart *sz;

int nd;

Prints a distributed array specifier.

void PIFclose( fp )
PIFILE =*fp;

Closes a parallel file.

void PIFflush( fp )
PIFILE #fp;

Flushes the output to a parallel file

PIFILE *PIFopen( name, procset, mode,
pmode )

char *name;

ProcSet *procset;

int mode, pmode;

Opens a parallel file.

void PIReadCommon( fp, fmat, flen, v,
n, datatype )

PIFILE =»fp;

char =fmat;

void =v;

int flen, n, datatype;

Reads data from a parallel file.

void PIReadDistributedArray( fp, fmat,
flen, sz, nd, v, datatype )

PIFILE *fp;

char *fmat;

void *v;

PIArrayPart *sz;

int flen, nd, datatype;

Reads a distributed array from a parallel
file. The EXACT same data will be read in
independent of the number of processors.

void PIWriteCommon( fp, fmat, flen, v,
n, datatype )

PIFILE »fp;

char *fmat;

void *v;

int flen, n, datatype;

Writes data to a paralle] file.

void PIWriteDistributedArray( fp,
fmat, flen, sz, nd, v,
datatype )

PIFILE *fp;

char *fmat;

void *v;

PIArrayPart *sz;

int flen, nd, datatype;

Writes a distributed array to a parallel file.
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