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HIGH QUALITY GARBAGE: A NEURAL NETWORK PLASTIC SORTER IN HARDWARE
AND SOFTWARE
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Abstrac

In order to produce pure polymer streams
from post-consumer waste plastics, a quick, accurate
and relatively inexpensive method of sorting needs to
be implemented. This technology has been
demonstrated by using near-infrared spectroscopy
reflectance data and neura! network classification
techniques. Backpropagation neural network routines
have been developed to run real-time sortings in the
lab, using a laboratory-grade spectrometer. In
addition, a new reflectance spectrometer has been
developed which is fast enough for commercial use.

Initial training and test sets taken with the
laboratory instrument show that a network is capable
of learning 100% when classifying 5 groups of plastic
(HDPE and LDPE combined), and up to 100% when
classifying 6 groups. Initial data sets from the new
instrument have classified plastics into all seven
groups with varying degrees uf success.

One of the initial networks has been
implemented in hardware, for high speed
computations, and thus rapid classification. Two
neural accelerator systems have been evaluated, one
based on the Intel 80170NX chip, and another on the
AT&T ANNA chip.

Background

Plastics must be sorted by polymer type prior
to reprocessing to ensure that the recycled plastic
resin has virtually the same properties as the original
resin. Presently many manufacturers are voluntarily
placing codes on their containers to indicate that they
may be recycled. Each code refers to a different type
of polymer: 1- Polyethylene terephthalate (PET), 2-
High Density Polyethylene (HDPE), 3- Polyvinyl
Chloride (PVC), 4- Low Density Polyethylene (LDPE),
5- Polypropylene (PP), 6- Polystyrene (PS), and 7-
Other (combinations, layers, and anything not a 1-
6)."2

Present automated plastic separating
techniques commonly used are hydrocyclones and
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electromagnetic scanning. Hydrocyclones do not
always produce a pure polymer stream, and
electromagnetic scanning technologies separate only
specific types of polymers, such as PET or PVC. In
the U.S., the major method for sorting postconsumer
plastics is hand sorting. This procedure is time
consuming and subject to failure if no codes are
present on the plastics.

In this new system, waste plastics are
processed by focusing light onto the surface of each
plastic container which generates a specific
reflectance pattern. These patterns are then input
into a neural network program which classifies the
plastic.

Near Infrar r D
Collection Methods

in the laboratory, a Fourier transform near
infrared spectrometer, model PCM 4000, from Laser
Precision (now KVB Analect) with 4.0 cm! resolution
was used to obtain the data. This instrument has
CaF5 beamsplitters and a thermoelectrically cooled
PbSe detector. An Axiom diffuse/specular
reflectance attachment set at 15° was found to be
the best for collection of the reflectance data from the
plastic samples. For each training spectrum, an
average of five scans in the range of 1000 - 2500 nm,
ratioed to the background of a standard ceramic disk
(Coors Ceramic Company, Golden, CO), and plotted
as Log(1/Reflectance), was used. This procedure
took about ten seconds per training spectrum.
Typical responses for each plastic type can be seen
in Figure 1.

Preprocessing

Preprocessing and the selection of input data
for the network are the key elements to successful
classification. Various methods were tested,
including autoscaling (Equation 1), maximum scaling
(Equation 2) and area scaling (Equation 3).
Autoscaling ( subtracting out the mean, and dividing
by the variance for each waveform) gave the best
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results in terms of convergence of the networks and
percent correct for testing. In each case, the inputs
were range scaled according to the range of each
input eiement in the training set, y; being the input
element (1 - j) and x'; being the corresponding
preprocessed data point. (Equation 4.)

(1) % = (x- avg(x) )/ std(x)
(2) X' = (x-avg(x) )/ max(x)
(3) x = (x-avg(x) )/ sum(x)
(4) yj= (xj - min(y))/ (max(y}) - min(y;) )

Software Results

Standard backpropagation neural networks
with sigmoidal transfer functions (Equation 5) were
chosen for their relative ease of use and portability to
hardware.? The output of the neuron is z, the
summed input is y, and the gain of the sigmoid is ¢ .

(5) z=1/(1+exp(-y$))

With the hardware limitations in mind, the
number of network inputs and nodes in each of the
hidden layers was minimized. A backpropagation
network was trained with two hidden layers, learning
coefficients of 0.9 for hidden layer one, and 0.6 for
hidden layer two, and a convergence criteria of 0.005
rms output error. Networks with only one hidden
layer were tested, but did not generalize as well, due
to the dimensionality of the input space, and the way
in which the different groups were clustered. ¢

Table 1 shows the results from a few of the
best performing software solutions. The networks
which had only 5 outputs classified the HDPE(2) and
LDPE(4) together. (These polymers differ only in the
amount of branching, and are thus difficult to
distinguish with only near infrared data.) All of these
software solutions were run on a PC in an interactive
system with the spectrometer.

Table 1. Software Emulation Network
Performances

Networks

in - Out Training  Testing
11-6 97.57% 98.41%
11-5 99.6% 100%
17-6 100% 98.18%
17-5 100% 100%
33-6 98.99% 100%
33-5 99.6% 100%

Hardware Results

The results from the 11 input - 6 output
network were considered "worst case" of the main
converged networks, due to the small number of
inputs, and maximum number of outputs, and highest
feedforward training error. This network was
implemented on the Intel 80170NX davelopment
system, and the AT&T ANNA chip system, in order to
compare the implementation and accuracy issues.
The specifications for each chip can be seen in Table
2.

Table 2 Neural Network Chip Specification
Comparison

AT&T INTEL
ANNA 80170NX
Max Speed
(cps) 5 billion 2 billion
Max # wts
(on chip) 4096 10,240
Wts (bits) 6 6
1/0 Type Digital Analog
11-6 network
Results
Training 85.22% 94.33%
Testing 93.65% 87.30%
Intel 80170NX Chip

The DynaMind (NeuroDynamX, Boulder, CO)
software interface package was used to run the 11-6
network on the Intel 80170NX development system
(iNNTS) (Intel, Santa Clara, CA). The number of
inputs were limited to 128 with a maximum of 64
neurons in the network. Using two hidden layers was
not difficult, only the total number ot neurons was
limited. The weights were limited to a range of +/-
2.5 for hardware reasons. The sigmoid function on
the chip had a slope of five, versus the slope of one
used in the original software solution. These two
factors made it necessary to retrain the network using
the available software package to match the network
to the chip. A learning rate of 0.05 was used to
converge to 0.03 rms error in the software simulation.
This gave a feedforward accuracy of 95.34% on the
training data and 84.13% on the test set. (See Table
3)




Table 3 Feedforward results for SO170NX

Training Test

Set Set
Simulation 95.34 84.13
Chip in Loop 93.93 87.30
Chip in Loop 94.94 84.13
(w/CIL training)

An important note in the success of training
this network for the hardware was the scaling of the
data. The outputs had to be scaled to +/- 0.8 instead
of +/- 1, which is the entire range of the sigmoid
function. This put the desired neuron outputs more in
the linear range and thus made training easier.

The hardware produced an initial feedforward
training accuracy of 93.93%, with 87.3% for the test
set. Chip-in-loop training then proceeded at a
learning rate of 0.001 for approximately 2000 epochs,
converging to 0.05 rms error. This gave 94.94%
accuracy on the training set and 84.13% on the test
set. The breakdown of the errors by plastic type
shows that the main error comes from the
differentiation between the 2s and the 4s. (See Table
4)

Table 4 Testing Accuracies by Plastic Type

Plastic  Training set Test set

type Sim CIL CIL-T  Sim CIL CIL-T
{ 100 100 100% 100 100 100

2 81 69.6 86 100 80 100
3 100 97 95 100 100 100
4 931 96.6 93.1 0 60 0

5 100 100 100 100 92.3 100
6 97.4 100 96 100 100 100
AT&T ANNA Chip

The AT&T ANNA chip (AT&T Bell
Laboratories, Holmdel, NJ) was optimally designed
for locally connected, weight-sharing or time-delay
networks, but can also be used for fully connected
and recurrent nets. 5 The prototype application for
this chip was an optical character recognition system,
with a large, sparsely connected network. ¢

The 11-6 network was tested on this
hardware with appropriate modifications made by
retraining the network within the original software
Troutines. Unfortunately, this did not include using an
accurate model of the neuron squashing function,
which is a digitized output. The weights were limited
to +/- 2.5 for the chip constraints. The weights had to

be modified to accommodate the bias saturation
levels. The software simulation gave a feedforward
accuracy of 94.94% and 92.06% for training and
testing sets, respectively.

The modified networks were tested using the Lisp
interface to the ANNA chip on a VME board.
Feedforward results can be seen in Table 5. In this
case, the testing data gave better results (93.65%)
than the training data (85.5%), partially due to the
fact that fewer of the samples were ambiguous . This
ambiguity was caused by the relatively few
quantization levels on the inputs, meaning that some
samples with different classifications had identical
inputs when they were digitized upon application on
this chip. This did not appear in ithe software training,
since the digitized transfer functions were not used.

Table 5 Testing Accuracies by Plastic Type

ANNA chip

Plastic Training set Test set

type CIL #Ambig. CIL #Ambig.
1 97.4 %(76/78) 2 100 (11/11) 0
2 62.0 (49/79) 6 100 (10/10) O
3 96.0 (96/100) 4 100 (10/10) O
4 70.0 (61/87) 6 70 (7/10) 2
5 100 (74/74) 0 100 (13/13) O
6 85.5 (65/76) 7 92 (8/9) 1
Total 85.5% 504%  93.65% 4.76%

Custom Instrument Results

The new instrument uses broadband light
with a circular variable fiter and an InAs detector.
This configuration obtains 13 scans per second,
versus the 0.5 scans per second with the laboratory
instrument. The trade-off came in the resolution of
this instrument: approximately 20 nm, compared to
the 0.4 - 3.5 nm resolution on the earlier instrument.
The data as gathered from the new instrument is in
the range of 1300 - 2300 nm. (See Figure 2.) With a
small set of initial data, networks were trained to
classify up to 100% for seven categories of plastic.
Larger sets of data have now been taken, and
training is underway for the new networks.

Conclusions

The initial neural network software simulation
accuracies are acceptable for implementation into a
real-time system, and it is believed that the speed of



the software will be adequate as well. The limiting
factor of the speed proved to lie in the instrument.

Both chips performed well, considering the
less than ideal situations for the network which was
implemented. If either hardware solution is chosen
for implementation, more accurate methods for initial
training will be used.
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Figure 1
Reflectance Data Types 1-6
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Reflectance Data - New Instrument
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