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electromagnetic scanning. Hydrocyclones do not

AbStract always produce a pure polymer stream, and
electromagneticscanning technologiesseparate only

In order to producepure polymer streams specifictypes of polymers,suchas PET or PVC. In
frompost-consumerwasteplastics,a quick, accurate the U.S., the majormethod for sortingpostconsumer
and relativelyinexpensivemethod of sortingneeds to plasticsishand sorting. This procedureistime
be implemented. This technologyhas been consumingand subjectto failure if no codes are
demonstratedby usingnear-infraredspectroscopy present onthe plastics.
reflectancedata and neural networkclassification
techniques. Backpropagationneuralnetworkroutines In this new system, wasteplasticsare
have been developedto run real-timesortings inthe processed byfocusinglightonto the surfaceof each
lab, using a laboratory-gradespectrometer. In plasticcontainerwhichgeneratesa specific
addition,a new reflectance spectrometerhas been reflectancepattern. These patterns are then input
developedwhich isfast enough forcommercialuse. intoa neural networkprogramwhichclassifies the

plastic.
Initialtrainingandtest sets taken withthe

laboratoryinstrumentshowthat a networkiscapable
of learning 100% when classifying5 groupsof plastic Near Infrared Spectroscopy Data
(HDPE and LDPE combined),andup to 100% when Collection Methods
classifying6 groups. Initialdata sets fromthe new
instrumenthave classifiedplasticsintoali seven Inthe laboratory,a Fourier transformnear
groupswith varyingdegrees uf success, infraredspectrometer,model PCM 4000, fromLaser

One of the initial networkshas been Precision(now KVB Analect) with4.0 cm-1 resolution
implementedin hardware,for highspeed was used to obtainthe data. This instrumenthas
computations,and thus rapidclassification. Two CaF2 beamsplittersand a thermoelectricallycooled
neuralaccelerator systems havebeen evaluated, one PbSe detector. An Axiom diffuse/specular
based on the Intel 80170NX chip, and another on the reflectanceattachment set at 15° was foundto be

the best for collectionof the reflectancedata fromthe
AT&T ANNA chip. plasticsamples. For each trainingspectrum, an

averageof five scans inthe range of 1000 - 2500 nm,
Background ratioed to the backgroundof a standardceramic disk

(CoorsCeramicCompany, Golden, CO), and plotted
Plastics mustbe sorted by polymertype prior as Log(1/Reflectance), was used. This procedure

to reprocessingto ensurethat the recycled plastic took aboutten secondsper trainingspectrum.
resinhas virtuallythe same propertiesas the original
resin. Presentlymany manufacturersare voluntarily Typicalresponsesfor each plastictype can be seen
placingcodes on theircontainersto indicatethat they in Figure 1.
may be recycled. Each code refersto a differenttype
of polymer: 1- Polyethyleneterephthalate(PET), 2- Preprocessing
High DensityPolyethylene(HDPE), 3- Polyvinyl
Chloride(PVC), 4- Low Density Polyethylene(LDPE), Preprocessingand the selectionof inputdata
5- Polypropylene(PP), 6- Polystyrene(PS), and 7- forthe network are the key elementsto successful
Other (combinations,layers, and anythingnot a 1- classification. Various methodswere tested,
6)._,2 including autoscaling (Equation 1), maximum scaling

(Equation 2) and area scaling (Equation 3).
Present automated plastic separating Autoscaling ( subtracting out the mean, and dividing

techniques commonly used are hydrocyclones and by the variance for each waveform) gave the best
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results in terms of convergence of the networks and HardwarQ Results

percent correct for testing. In eachcase, the inputs The resultsfrom the 11 input - 6 output
were range scaledaccordingto the range of each networkwere considered"worst case" of the main
inpute;ement in the training set, yj beingthe input convergednetworks,dueto the small number of
element (1 - j) and x'j being the corresponding
preprocesseddata point. (Equation4.) inputs,and maximum number of outputs,and highestfeedforwardtraining error. This networkwas
(1) x' = ( x - avg(x) )/std(x) implemented on the Inte180170NX development

system, and the AT&T ANNA chip system, in order to
(2) x' = ( x- avg(x) )/max(x) compare the implementation and accuracy issues.

The specifications for 9ach chip can be seen in Table
(3) x'= ( x- avg(x) )/sum(x) 2.

(4) yj = (x'j- min(yj))/(max(yj) - min(yj) )
Table 2 Neural Network Chip Specification

Software Results Comparison

Standardbackpropagation neural networks AT&T INTEL
with sigmoidal transfer functions (Equation 5) were ANNA 80170NX
chosen fortheir relativeease of use and portabilityto -
hardware.3 The output of the neuron is z, the Max Speed
summed input is y, and the gain of the sigmoid is _. (cps) 5 billion 2 billionMax # wts

(5) z = 1 / ( 1 + exp(-y_)) _on chip) 4096 10,240

With the hardware limitations in mind, the Wts {bits) 6 6
number of network inputs and nodes in each of the I/O Type Digital Analog
hidden layers was minimized. A backpropagation 11-6 network
network was trained with two hidden layers, learning Results
coefficients of 0.9 for hidden layer one, and 0.6 for Training 85.22% 94.33%

hidden layer two, and a convergence criteria of 0.005 Testing 93.65% 87.30%
rms output error. Networks with only one hidden
layer were tested, but did not generalize as weil, due
to the dimensionality of the input space, and the way Intel 80170NX Chip
in which the different gre'Jps were clustered. 4

The DynaMind (NeuroDynamX, Boulder, CO)
Table 1 shows the results from a few of the software interface package was used to run the 11-6

best performing software solutions. The networks network on the Intel 80170NX development system
which had only 5 outputs classified the HDPE(2) and (iNNTS) (Intel, Santa Clara, CA). The number of
LDPE(4) together. (These polymers differ only in the inputs were limited to 128 with a maximum of 64
amount of branching, and are thus difficult to neurons in the network. Using two hidden layers was
distinguish with only near infrared data.) Ali of these not difficult, only the total number of neurons was
software solutions were run on a PC in an interactive limited. The weights were limited to a range of +/-
system with the spectrometer. 2.5 for hardware reasons. The sigmoid function on

the chip had a slope of five, versus the slope of one
used in the original software solution. These two

Table 1. Software Emulation Network factors made it necessary to retrain the network using
Performances the available software package to match the network

Networks to the chip. A learningrate of 0.05 was used to
In - Out Training Testing convergeto 0.03 rms errorin the softwaresimulation.
11-6 97.57% 98.41% This gave a feedforwardaccuracyof 95.34% on the
11-5 99.6% 100% trainingdata and84.13% on the test set. (See Table
17-6 100% 98.18% 3.)
17-5 100% 100%
33-6 98.99% 100%
33-5 99.6% 100%



Table 3 Feedforward results for 80170NX be modified to accommodate the bias saturation
levels. The software simulation gave a feedforward

Training Test accuracy of 94.94% and 92.06% for training and
Set Set testing sets, respectively.

Simulation 95.34 84.13
The modified networks were tested using the Lisp

Chip in Loop 93.93 87.30 interface to the ANNA chip on a VME board.
Chip in Loop 94.94 84.13 Feedforward results can be seen in Table 5. In this
(w/CIL training) case, the testing data gave better results (93.65%)

An important note in the success of training than the training data (85.5%), partially due to the
this network for the hardware was the scaling of the fact that fewer of the samples were ambiguous. This
data. The outputs had to be scaled to +/- 0.8 instead ambiguity was caused by the relatively few
of +/- 1, which is the entire range of the sigmoid quantization levels on the inputs, meaning that some
function. This put the desired neuron outputs more in samples with different classifications had identical
the linear range and thus made training easier, inputs when they were digitized upon application on

this chip. This did not appear in the software training,
since the digitized transfer functions were not used.

The hardware produced an initial feedforward
training accuracy of 93.93%, with 87.3% for the test

Table 5 Testing Accuracies by Plastic Type
set. Chip-in-loop training then proceeded at a
learning rate of 0.001 for approximately 2000 epochs, ANNA chip
converging to 0.05 rms error. This gave 94.94%
accuracy on the training set and 84.13% on the test Plastic Training set Test set
set. The breakdown of the errors by plastic type type CIL # Ambig. CIL #Ambig.
shows that the main error comes from the 1 97.4 %(76/78) 2 100 (11/11) 0
differentiation between the 2s and the 4s. (See Table 2 62.0 (49/?9) 6 100 (10/10) 0

4.) 3 96.0 (96/100) 4 100 (10/10) 0

4 70.0 (61/87) 6 70 (7/10) 2

Table 4 Testing Accuracies by Plastic Type 5 100 (74/74) 0 100 (13/13) 0

tPlastic set Test set 6 85.5 (65/76) 7 92 (8/9) 1

Training

ype Sim CIL CIL-T Slm CIL CIL-T Total 8'5.5% 5104% 93.65% 4.:76%
Ii 100 100 100% 100 100 100

2 81 69.6 86 100 80 100

3 100 97 95 100 100 100 Gustom Instrument Results

4 93.1 96.6 93.1 0 60 0 The new instrument uses broadband light
5 100 100 100 100 92.3 100 with a circular variable filter and an InAsdetectol.
6 97.4 100 96 100 100 100 This configuration obtains 13 scans per second,

versus the 0.5 scans per second with the laboratory
instrument. The trade-off came in the resolution of

AT&T ANNA Chip this instrument: approximately 20 nra, compared to

The AT&T ANNA chip (AT&T Bell the 0.4 - 3.5 nm resolution on the earlier instrument.
Laboratories, Holmdel, NJ) was optimally designed The data as gathered from the new instrument is in
for locally connected, weight-sharing or time-delay the range of 1300 - 2300 nm. (See Figure 2.) With a
networks, but can also be used for fully connected small set of initial data, networks were trained to
and recurrent nets. 5 The prototype application for classify up to 100% for seven categories of plastic.
this chip was an optical character recognition system, Larger sets of data have now been taken, and
with a large, sparsely connected network. 6 training is underway for the new networks.

The 11-6 network was tested on this
hardware with appropriate modifications made by Conclusions
retraining the network within the original software The initial neural network software simulation
7routines. Unfortunately, this did not include using an accuracies are acceptable for implementation into a
accurate model of the neuron squashing function, real-time system, and it is believed that the speed of
which is a digitized output. The weights were limited
to +/- 2.5 for the chip constraints. The weights had to
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• the software will be adequate as weil. The limiting
factor of the speed proved to lie in the instrument.

Both chips performed weil, considering the
less than ideal situations for the network which was

implemented. If either hardware solution is chosen
for implementation, more accurate methods for initial
training will be used.
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Figure 1

Reflectance Data Types 1-6
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Figure 2

Reflectance Data - New Instrument
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